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Abstract:
A new matrix product, called semi-tensor product of matrices, is reviewed. Using it, a matrix expres-

sion of logic is proposed, where a logical variable is expressed as a vector, a logical function is expressed
as a multiple linear mapping. Under this framework, a Boolean network equation is converted into an
equivalent algebraic form as a conventional discrete-time linear system. Analyzing the transition matrix
of the linear system, easily computable formulas are obtained to show (a) the number of fixed points; (b)
the numbers of cycles of different lengths; (c) transient period, for all points to enter the set of attractors;
(d) basin of each attractor. The corresponding algorithms are developed to calculate all the fixed points,
cycles, transient period, and basins of attraction of all attractors.
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1 Introduction

Inspired by the Human Genome Project, a new view of biology, called the systems biology, is emerging.
Systems biology does not investigate individual genes, proteins or cells, one in a time. Rather, it studies
the behavior and relationships of all of the cells, proteins, DNA and RNA in a biological system, called
cellular networks. The most active networks may be the genetic regulatory networks, which, reacting to
the change of environment, determine the growth, replication, and death of cells. We refer to [20], [24]
for a general introduction to systems biology.

The Boolean network, introduced firstly by Kauffman [21], and then developed by [1], [2], [31], [16],
[3], [29], [12] and many others, becomes a powerful tool in describing, analyzing, and simulating the
cellular networks. Hence, it has received the most attention, not only from the biology community,
but also physics, systems science, etc. In this model, gene state is quantized to only two levels: True
and False. Then the state of each gene is determined by the states of its neighborhood genes, using
logical rules. It was shown that the Boolean network plays an important role in modeling cell regulation,
because they can represent important features of living organisms [4], [19]. The structure of a Boolean
network is described in terms of its cycles and the transient states that lead to them. Two different
methods, iteration and scalar form, were developed in [17] to determine cyclic structure and the transient
states that lead to them. In [13], a linear reduced scalar equation is derived from a more rudimentary
nonlinear scalar equation to get immediate information about both cycle and transient structure of the
network. Several useful Boolean networks have been analyzed and their cycles have been revealed (see,
e.g., [17], [13] and references therein). It was pointed in [34] that finding fixed points and cycles of a
Boolean network is an NP-complete problem. We refer to [5], [30], and [23] for some interesting recent
developments on this topic.

* Supported partly by NNSF 60674022, 60736022, and 60221301 of China.
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The analysis of the dynamics of Boolean networks focuses also on the link between the dependence
between variables and the state space [32], [27].

The purpose of this paper is to propose a new method, which converts the network world into a new
world, called state space, where the logical system becomes a conventional dynamic system. Then most
of the tools developed in control theory for analysis and control of dynamic systems become applicable.

We first give a brief review to the semi-tensor product of matrices. It extends the conventional
matrix product to two arbitrary matrices and keeps almost all properties of conventional matrix product
unchanged. Using semi-tensor product, a matrix expression of logic is proposed, where a logic variable is
expressed as a vector and a logical function is expressed as a multi-linear mapping. Under this algebraic
expression a Boolean network equation can be expressed as a conventional discrete-time linear system

x(t+ 1) = Lx(t), (1)

which contains complete information of the dynamics of a Boolean network. Analyzing the network
transition matrix L, precise formulas are obtained to determine the number of fixed points and numbers
of all possible cycles of different lengths. The minimum number of transient states that lead all states to
cycles, called the transient period, is also determined by L. Then some easily computable algorithms are
provided to construct all fixed points, cycles, transient period, and basins of attraction of all attractors.

The rest of the paper is organized as follows. Section 2 gives a brief review for the semi-tensor
product of matrices. Some concepts and basic properties related to this paper are presented. The matrix
expression of logic and its basic properties are discussed in Section 3. Using the tools developed in Section
3, a Boolean network equation is converted into a conventional discrete-time linear system in Section 4.
Then in Section 5 the formulas are obtained for (a) the number of fixed points; (b) the numbers of cycles of
different lengths; (c) transient period; (d) basin of attractors. The formulas for constructing them are also
presented. Section 6 revisits three examples, which have been studied widely. Comparing our solutions
with known results shows the advantage of our new approach. Section 7 is the concluding remarks, which
provide a comparison of our algorithms with others and a clue for how to use this approach to control
problems.

2 Semi-tensor Product

Throughout this paper “semi-tensor product” means the left semi-tensor product for multiplying dimen-
sional case, which is reviewed in this session. We refer to [9] for right semi-tensor product, arbitrary
dimensional case and much more details.

Definition 2.1 1. Let X be a row vector of dimension np, and Y be a column vector with dimension p.
Then we split X into p equal-size blocks as X1, · · · , Xp, which are 1× n rows. Define the STP, denoted
by n, as 

X n Y =
p∑
i=1

Xiyi ∈ Rn,

Y T nXT =
p∑
i=1

yi(Xi)T ∈ Rn.
(2)
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2. Let A ∈ Mm×n and B ∈ Mp×q. If either n is a factor of p, say nt = p and denote it as A ≺t B,
or p is a factor of n, say n = pt and denote it as A �t B, then we define the STP of A and B , denoted
by C = AnB, as the following: C consists of m× q blocks as C = (Cij) and each block is

Cij = Ai nBj , i = 1, · · · ,m, j = 1, · · · , q,

where Ai is i-th row of A and Bj is the j-th column of B.

Some related fundamental properties of the STP are collected in the following:

Proposition 2.2 The STP satisfies (as long as the related products are well defined)
1. (Distributive rule)

An (αB + βC) = αAnB + βAn C;
(αB + βC) nA = αB nA+ βC nA, α, β ∈ R.

(3)

2. (Associative rule)

An (B n C) = (AnB) n C. (4)

Proposition 2.3 Assume A �k B, then (“⊗” is the Kronecker product)

AnB = A(B ⊗ Ik); (5)

Assume A ≺k B, then

AnB = (A⊗ Ik)B. (6)

Proposition 2.4 Assume A ∈Mm×n is given.
1. Let Z ∈ Rt be a row vector. Then

An Z = Z n (It ⊗A); (7)

2. Let Z ∈ Rt be a column vector. Then

Z nA = (It ⊗A) n Z. (8)

Let A ∈Mm×n and assume either m is a factor of n or n is a factor of m. Then

Ak := An · · ·nA︸ ︷︷ ︸
k

is well defined. Particularly, for a column (or a row) ξ, ξk is always well defined.
Define a delta set as ∆k := {δik|i = 1, 2, · · · , k}, where δik is the i-th column of the identity matrix Ik.

A matrix A ∈ Mm×n is called a logic matrix if m = 2p and n = 2q, for some p, q ∈ Z+, where Z+ is the
set of natural numbers, and the columns of A are elements in ∆2p . Denote the set of logic matrices by
L. A straightforward computation shows the following:

Lemma 2.5 Assume A,B ∈ L, then AnB ∈ L.
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Later on, one will see that the Boolean network related matrices are all in ML. So the semi-tensor
product between them is always well defined.

Assume a matrix A = [δi1m, δ
i2
m, · · · , δinm ], to save space we denote it as

A = δm[i1, i2, · · · , in].

Next, we define a swap matrix, W[m,n], which is an mn×mn matrix constructed in the following way:
label its columns by (11, 12, · · · , 1n, · · · ,m1,m2, · · · ,mn) and its rows by (11, 21, · · · ,m1, · · · , 1n, 2n, · · · ,mn).
Then its element in the position ((I, J), (i, j)) is assigned as

w(IJ),(ij) = δI,Ji,j =

1, I = i and J = j,

0, otherwise.
(9)

When m = n we briefly denote W[n] := W[n,n].

Example 2.6 Let m = 2 and n = 3, the swap matrix W[2,3] is constructed as

(11) (12) (13) (21) (22) (23)

W[2,3] =



1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1



(11)
(21)
(12)
(22)
(13)
(23)

.

In condensed form we have
W[2,3] = δ6[1, 3, 5, 2, 4, 6].

Proposition 2.7 Let X ∈ Rm and Y ∈ Rn be two columns. Then

W[m,n] nX n Y = Y nX, W[n,m] n Y nX = X n Y. (10)

Remark 2.8 It is obvious that if A ∈ Mm×s and B ∈ Ms×n, i.e., the conventional matrix product AB
exists, then

AB = AnB.

Hence the semi-tensor product is a generalization of conventional matrix product. Based on this, the
notation “n” can be omitted. In the following all the matrix products are assumed to be semi-tensor
product and the notation “n” is always omitted. As the conventional matrix product exists, the product
turns to be conventional one automatically.

3 Matrix Expression of Logic

In this section we recall the matrix expression of logic. Under matrix expression a logical variable is
expressed as a vector and an n-ary logical function is expressed by a 2× 2n matrix, called the structure
matrix of the function. Then the logical action of the function over n logical variables becomes a matrix
product of the structure matrix with n vectors. We refer to [8] for details.
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First, we give some necessary notations and concerning results for logic. A logical domain, denoted
by D, is defined as

D = {T = 1, F = 0}. (11)

An n-ary logical function is a function t : Dn → D. To use matrix expression we identify each element
in D with a vector as T ∼ (1, 0)T and F ∼ (0, 1)T , and denote

Dv =

{[
1
0

]
,

[
0
1

]}
.

Using this vector expression, we can define the structure matrix of a logical function.

Definition 3.1 A 2× 2n matrix Mσ is called the structure matrix of an n-ary logical function σ, if

σ(P1, P2, · · · , Pn) = MσP1P2 · · ·Pn, where P1, · · · , Pn ∈ Dv. (12)

If such a matrix exists, it uniquely determines the logic function. To show the existence of such a
matrix for each logical function, we need some preparations. Define a matrix, called the power-reducing
matrix, as (in a condensed form)

Mr = δ4[1, 4]. (13)

Its name is from the following property.

Lemma 3.2 Let P ∈ Dv. Then we have

P 2 = MrP. (14)

The proof of the following theorem can be found in [25].

Theorem 3.3 Any logical function L(P1, · · · , Pn) with logical arguments P1, · · · , Pn ∈ Dv can be ex-
pressed in a canonical form as

L(P1, · · · , Pn) = MLP1P2 · · ·Pn, (15)

where ML is a 2× 2n matrix, called the structure matrix of L.

Next, we give some examples to illustrate the structure matrix.

Example 3.4 1. Consider a fundamental unary logical function: Negation, ¬P , and four fundamental
binary logical functions [26]: Disjunction, P ∨ Q; Conjunction, P ∧ Q; Implication, P → Q;
Equivalence, P ↔ Q. Their structure matrices are as follows:

M¬ := Mn = δ2[2, 1];
M∨ := Md = δ2[1, 1, 1, 2]; M∧ := Mc = δ2[1, 2, 2, 2];
M→ := Mi = δ2[1, 2, 1, 1]; M↔ := Me = δ2[1, 2, 2, 1].

(16)

5



2. Assume
L(P,Q) = (P → Q) ∨ (¬P ).

Using vector form of logic variables, Proposition 2.4, and the power-reducing matrix, we have

L(P,Q) = Md(MiPQ)(MnP )
= MdMi(I4 ⊗Mn)PQP
= MdMi(I4 ⊗Mn)PW[2]PQ

= MdMi(I4 ⊗Mn)(I2 ⊗W[2])P 2Q

= MdMi(I4 ⊗Mn)(I2 ⊗W[2])MrPQ

We conclude that
ML = MdMi(I4 ⊗Mn)(I2 ⊗W[2])Mr = δ2[1, 2, 1, 1].

2

In the following we use D and Dv alternatively for logical variables P , Q etc. without explanation.
From the context it is easy to figure out which form is used then.

4 Dynamics of Boolean Networks

Definition 4.1 [13] A Boolean network of a set of nodes A1, A2, · · · , An can be described as

A1(t+ 1) = f1(A1(t), A2(t), · · · , An(t)),

A2(t+ 1) = f2(A1(t), A2(t), · · · , An(t)),
...

An(t+ 1) = fn(A1(t), A2(t), · · · , An(t)),

(17)

where fi, i = 1, 2, · · · , n are n-ary logic functions.

We give a simple example to show the structure of a Boolean network.

Example 4.2 Consider a Boolean network

BA

C

Fig. 1: Boolean network of (18)
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Its dynamics is described as 
A(t+ 1) = B(t) ∧ C(t),

B(t+ 1) = ¬A(t),

C(t+ 1) = B(t) ∨ C(t).

(18)

Our first purpose is to convert it into an algebraic form. Precisely, express it as a conventional
discrete-time linear system. Using semi-tensor product, we define

x(t) = nn
i=1Ai(t). (19)

Remark 4.3 Note that in (19) we defined a mapping nn
i=1 : ∆n

2 → ∆2n . It is easy to prove that nn
i=1

is a bijective mapping. In fact, Proposition 5.1 provides a precise formula to recover Ai, 1 ≤ i ≤ n from
x = nn

i=1Ai.

Using Theorem 3.3, we can find structure matrices, Mi = Mfi
, i = 1, · · · , n, such that

Ai(t+ 1) = Mix(t), i = 1, 2, · · · , n. (20)

Remark 4.4 Note that usually the indegree is much less than n, that is, the right hand side of i-th
equation of (17) may not have all A′js, j = 1, 2, · · · , n. Say, in the previous example, for node A we have

A(t+ 1) = B(t) ∧ C(t).

In matrix form it is

A(t+ 1) = McB(t)C(t). (21)

To get the form of (20), we can construct a dummy matrix as

Ed :=

[
1 0 1 0
0 1 0 1

]
.

It is easy to prove that for any two logical variables X, Y ,

EdXY = Y, or EdW[2]XY = X.

Then we can rewrite (21) as

A(t+ 1) = McEdA(t)B(t)C(t) = McEdx(t).

Multiplying the equations in (20) together yields

x(t+ 1) = M1x(t)M2x(t) · · ·Mnx(t). (22)

To simplify (22) we need some preparations:

Lemma 4.5 Assume Pk = A1A2 · · ·Ak, then

P 2
k = ΦkPk, (23)

where

Φk =
k∏
i=1

I2i−1 ⊗
[(
I2 ⊗W[2,2k−i]

)
Mr

]
.
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Proof. We prove it by mathematical induction. When k = 1, using Lemma 3.2, we have

P 2
1 = A2

1 = MrA1.

In above formula
Φ1 =

(
I2 ⊗W[2,1]

)
Mr.

Note that W[2,1] = I2, it follows that Φ1 = Mr. Hence (23) is true for k = 1. Assume (23) is true for
k = s, then for k = s+ 1 we have

P 2
s+1 = A1A2 · · ·As+1A1A2 · · ·As+1

= A1W[2,2s]A1[A2 · · ·As+1]2

=
(
I2 ⊗W[2,2s]

)
A2

1[A2 · · ·As+1]2

=
[(
I2 ⊗W[2,2s]

)
Mr

]
A1[A2 · · ·As+1]2

Using induction assumption to the last factor of the above expression, we have

P 2
s+1 =

(
I2 ⊗W[2,2s]

)
MrA1

(∏s
i=1 I2i−1 ⊗

[(
I2 ⊗W[2,2s−i]

)
Mr

])
A2A3 · · ·As+1

=
[(
I2 ⊗W[2,2s]

)
Mr

] (∏s
i=1 I2i ⊗

[(
I2 ⊗W[2,2s−i]

)
Mr

])
A1A2 · · ·As+1,

which completes the proof. 2

Lemma 4.6 Equation (22) can be expressed as

x(t+ 1) = Lx(t), (24)

where

L = M1

n∏
j=2

[(I2n ⊗Mj) Φn] .

Proof. Note that from Lemma 4.5 we have

x(t)2 = Φnx(t).

Now
x(t+ 1) = M1x(t)M2x(t) · · ·Mnx(t)

= M1(I2n ⊗M2)x(t)2M3x(t) · · ·Mnx(t)
= M1(I2n ⊗M2)Φnx(t)M3x(t) · · ·Mnx(t)
= · · ·
= M1(I2n ⊗M2)Φn(I2n ⊗M3)Φn · · · (I2n ⊗Mn)Φnx(t).

From Remark 4.3 it is easy to see that (24) is enough to describe the dynamics. 2

Example 4.7 Recall the Boolean network in Example 4.2.
In algebraic form, we have 

A(t+ 1) = McB(t)C(t)

B(t+ 1) = MnA(t)

C(t+ 1) = MdB(t)C(t).

(25)
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Setting x(t) = A(t)B(t)C(t), we can calculate L as

x(t+ 1) = McBCMnAMdBC

= Mc(I4 ⊗Mn)BCAMdBC

= Mc(I4 ⊗Mn)(I8 ⊗Md)BCABC
= Mc(I4 ⊗Mn)(I8 ⊗Md)W[2,4]ABCBC

= Mc(I4 ⊗Mn)(I8 ⊗Md)W[2,4]ABW[2]BCC

= Mc(I4 ⊗Mn)(I8 ⊗Md)W[2,4](I4 ⊗W[2])AMrBMrC

= Mc(I4 ⊗Mn)(I8 ⊗Md)W[2,4](I4 ⊗W[2])(I2 ⊗Mr)(I4 ⊗Mr)ABC

(26)

Then the system (18) is expressed in a matrix form as

x(t+ 1) = Lx(t),

where the network transition matrix is

L = Mc(I4 ⊗Mn)(I8 ⊗Md)W[2,4](I4 ⊗W[2])(I2 ⊗Mr)(I4 ⊗Mr)
= δ8[3, 7, 7, 8, 1, 5, 5, 6].

5 Fixed Points and Cycles

To begin with, we consider how to get the logical variables {Ai(t)} from x(t) = A1(t)A2(t) · · ·An(t). It
is clear that x(t) ∈ ∆2n . It is easy to prove the following formula.

Proposition 5.1 Assume x(t) = δi2n . Define B0 := 2n − i, then Ak(t) can be calculated inductively (in
scalar form) as Ak(t) =

[
Bk−1
2n−k

]
Bk = Bk−1 −Ak(t) ∗ 2n−k, k = 1, 2, · · · , n,

(27)

where in the first equation [a] is the largest integer less than or equal to a.

Example 5.2 Assume x = A1A2A3A4A5 and x = δ7
32. Then B0 = 32 − 7 = 25. It follows that

A1 = [B0/16] = 1, B1 = B0 − A1 ∗ (16) = 9, A2 = [B1/8] = 1, B2 = B1 − A2 ∗ 8 = 1, A3 = [B2/4] = 0,
B3 = B2 − A3 ∗ 4 = 1, A4 = [B3/2] = 0, B4 = B3 − A4 ∗ 2 = 1, A5 = [B4/1] = 1. We conclude that
A1 = 1 ∼ (1, 0)T , A2 = 1 ∼ (1, 0)T , A3 = 0 ∼ (0, 1)T , A4 = 0 ∼ (0, 1)T , and A5 = 1 ∼ (1, 0)T .

Consider the Boolean Network equation (24), and denote by Li, i = 1, 2, · · · , 2n the i-th column of
the network transition matrix L. Then it is easy to see that Li ∈ ∆2n , ∀ i.

Definition 5.3 1. A state x0 ∈ ∆2n is called a fixed point of system (24), if Lx0 = x0.

2. {x0, Lx0, · · · , Lkx0} is called a cycle of system (24) with length k, if , Lkx0 = x0, and the elements
in set {x0, Lx0, · · · , Lk−1x0} are distinct.

The next two theorems are main results of this paper, which show how many fixed points and cycles
of different lengths a Boolean network has.
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Theorem 5.4 Consider the Boolean network system (17). δi2n is its fixed point, iff in its algebraic form
(24) the diagonal element `ii of network transition matrix L equals 1. It follows that the number of
equilibriums of system (17), denoted by Ne, equals the number of i, for which `ii = 1. Equivalently,

Ne = Trace(L). (28)

Proof. Assume δi2n is its fixed point. Since, Lδi2n = Li, the i-th column of L, it is clear that δi2n is its
fixed point, iff Li = δi2n , which completes the proof. 2

For statement ease, if `ii = 1, the i-th column of L is called a diagonal nonzero column of L.
Next, we consider the cycles of the Boolean network system (17). We need a notation: Let k ∈ Z+.

A positive integer s ∈ Z+ is called a proper factor of k if s < k and k/s ∈ Z+. The set of proper factors
of k is denoted by P(k). For instance, P(8) = {1, 2, 4}, P(12) = {1, 2, 3, 4, 6}, etc.

Using a similar argument as for Theorem 5.4, we can have the following theorem.

Theorem 5.5 The number of length s cycles, Ns, is inductively determined byN1 = Ne,

Ns =
Trace(Ls)−

∑
k∈P(s)

kNk

s , 2 ≤ s ≤ 2n.
(29)

Proof. First, if δi2n is an element of a cycle of length s, then Lsδi2n = δi2n . From the proof of Theorem 5.4
(Ls)i is a diagonal nonzero column of Ls, which adds 1 to the Trace(Ls). Note that if δk2n is an element
of a cycle of length k ∈ P(s), we also have Lsδk2n = δk2n , and (Ls)k will also add 1 to the Trace(Ls). Such
diagonal elements have to be subtracted from the Trace(Ls). Taking this into consideration, formula (29)
is obvious.

As for the upper boundary of s, note that since x(t) can only have at most 2n possible values, the
length of any cycle is less than or equal to 2n. 2

Next, we consider how to find the cycles. If

Trace(Ls)−
∑

k∈P(s)

kNk > 0, (30)

then we call “s” a non-trivial power.
Assume s is a non-trivial power. Denote by `sii the (i, i)-th entrance of matrix Ls. Then we define

Cs = {i|`sii = 1}, s = 1, 2, · · · , 2n,

and
Ds = Cs

⋂
i∈P(s)

Cci ,

where Cci is the compliment of Ci.
From the above argument the following is obvious.

Proposition 5.6 Let x0 = δi2n . Then {x0, Lx0, · · · , Lsx0} is a cycle with length s, iff i ∈ Ds.

Theorem 5.5 and Proposition 5.6 provide a simple algorithm for constructing cycles. We give some
examples to show the algorithm.
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Example 5.7 Recall Example 4.2. It is easy to check that

Trace(Lt) = 0, t ≤ 3,

and
Trace(Lt) = 4, t ≥ 4.

Using Theorem 5.5, we conclude that there is only one cycle of length 4. Moreover, note that

L4 = δ8[1, 3, 3, 1, 5, 7, 7, 3],

then each diagonal nonzero column can generate the cycle. Say, choosing Z = δ1
8, then we have

LZ = δ3
8 , L2Z = δ7

8 , L3Z = δ5
8 , L4Z = Z.

Using Proposition 5.1 to convert the vector forms back to the scalar form of A(t), B(t), and C(t), we
have the cycle as (111)→ (101)→ (001)→ (011)→ (111).

In the following we consider the transient period, i.e., the minimum transient states that leads any
point to the limit set, Ω, which is the union of all fixed points and cycles. First, it is easy to see that
there are only r := 2n × 2n = 22n different logic matrices. Hence, if we construct a sequence of r + 1
matrices as

L0 = I2n , L, L2, · · · , Lr,

then there must be two equal matrices. Let r0 < r be the smallest i such that Li appears again in the
sequence. That is, there exists a k > i such that Li = Lk. Precisely,

r0 = min
{
i
∣∣ Li ∈ {Li+1, Li+2, · · · , Lr}, 0 ≤ i < r

}
. (31)

Then such r0 exists. The following proposition is obvious.

Proposition 5.8 Let r0 be defined as in (31). Then starting from any state, the trajectory will enter
into a cycle after r0 iterations.

For a given state x0, the transient period of x0, denoted by Tt(x0), is the smallest k, satisfying
x(0) = x0 and x(k) ∈ Ω. The transient period of a Boolean network, denoted by Tt, is defined as

Tt = max
∀ x∈∆2n

(Tt(x)) .

In fact, we can show that r0 is the transient period of the system.

Theorem 5.9 The r0 defined in (31) is the transient period of the system. That is,

Tt = r0. (32)

Proof. First, assume

Lr0 = Lr0+T , (33)
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and T > 0 is the smallest positive number, which verifies (33). By definition, r0 + T ≤ r. We first claim
that if there is a cycle of length t, then t is a factor of T . We prove the claim by contradiction: Assume
T (mod t) = s and 1 ≤ s < t. Let x0 be a state on the cycle. Then Lr0x0 is also a state on the same
cycle. Hence

Lr0x0 = Lr0+Tx0 = LTLr0x0 = Ls(Lr0x0) 6= Lr0x0,

which is a contradiction.
From (33) and the definition of Tt it is obvious that Tt ≤ r0. To prove Tt = r0, we assume Tt < r0.

By definition, for any x, LTtx is on a cycle, which has length as a factor of T . Hence

LTtx = LTLTtx = LTt+Tx, ∀x. (34)

It is easy to check that if for any x ∈ ∆2n (34) holds, then LTt = LTt+T , which is a contradiction to the
definition of r0. 2

Remark 5.10 1. According to Theorem 5.9 it is clear that r0 ≤ 2n, because the transient period can
not be larger than 2n.

2. Let r0 = Tt be defined as in above, and T > 0 is the smallest positive number, which verifies (33).
Then it is easy to see that T is the least common multiplier of the lengths of all cycles.

Finally, we consider the basin of each attractor. Denote

Ω := ∪ki=1Ci,

where {Ci | i = 1, . . . , k} is the set of attractors. We give the following definition:

Definition 5.11 1. Denote by x(t, p) the trajectory with initial value x(0, p) = p. Si is called the
basin of attractor Ci, if Si is the set of points, which will converge to Ci. Precisely, p ∈ Si, iff, the
trajectory satisfies x(t, p) ∈ Ci for t ≥ Tt;

2. q is called the parent state of p, if p = x(1, q).

Remark 5.12 • Let C ⊂ Dn. Denote by

L−1(C) = {q |Lq ∈ C}.

Then the set of parent states of p is L−1(p).

• Dn = ∪ki=1Si. Moreover, since {Si | i = 1, · · · , k} are disjointed, it is a partition of the state space
Dn.

What remains now is how to find Si. Starting from each point p ∈ Ci. If we can find its parent states
L−1(p), then for each point p1 ∈ L−1(p), we can also find L−1(p1). Continuing this process and after Tt
times we get a tree of states, which converge to p. Summarizing above arguments, we have

Proposition 5.13

Si = L−1(Ci) ∪ L−2(Ci) ∪ · · · ∪ L−Tt(Ci) (35)
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Finally let us see how to find L−1(p). Denote the j-th column of L by Lj . Then it is easy to verify
that

Proposition 5.14 L
−1(p) =

{
δj2n

∣∣∣Lj = p
}

L−k(p) =
{
δj2n

∣∣∣Lkj = p
}
, k = 2, · · · , Ti.

(36)

Example 5.15 Recall Example 4.2. It is easy to check that r0 = 3 and

L3 = L7 = δ8[5, 1, 1, 5, 7, 3, 3, 1].

We then have the transient period Tt = 3. Using Propositions 5.13 and 5.14, we may choose any point
p ∈ C, where C is its only cycle, to find L−1(p), L−2(p), and L−3(p).

Say, choosing p = (011) ∼ δ5
8. Then we can see L6 and L7 equal to p. So δ6

8 ∼ (010) and δ7
8 ∼ (001)

form L−1(p). But (001) is on the cycle, so we are interested in p1 = δ6
8 ∼ (010). Now since only L8 = p1,

we have L−1(p1) = {δ8
8}. Let p2 = δ8

8 ∼ (000). Only L4 = p2, so we have p3 := δ4
8 ∼ (100) ∈ L−1(p2).

So we have a chain p3 → p2 → p1 → p. Choosing q = (001) ∼ δ7
8. Then L2 = L3 = q. Since δ3

8 ∼ (101)
is on the cycle, we choose q1 = δ2

8 ∼ (110). It is easy to check that L−1(q1) = ∅, and we have no more
parent states. Finally, we get the state space graph of the network in Example 4.2 as in Fig. 2. (Note
that here we use L−1 only. The iterative calculation provides whole tree. If we need only the basins Si,
L−k are convenient.)

100 000 010 011 111

101001110

Fig. 2: The State Space Graph

In literatures of Boolean networks A + B and AB are often used. Using standard logical notations
A + B := A∨̄B, and AB := A ∧ B, where ∨̄ is called the “exclusive or”, that is, A∨̄B is true whenever
either A or B, but not both are true [26].

Example 5.16 [13] Consider the following Boolean network
A(t+ 1) = B(t)C(t)

B(t+ 1) = 1 +A(t)

C(t+ 1) = B(t).

(37)

It is easy to calculate that

x(t+ 1) = McBCMnAB

= Mc(I4 ⊗Mn)BCAB
= Mc(I4 ⊗Mn)W[2,4]ABCB

= Mc(I4 ⊗Mn)W[2,4]ABW[2]BC

= Mc(I4 ⊗Mn)W[2,4](I4 ⊗W[2])AMrBC

= Mc(I4 ⊗Mn)W[2,4](I4 ⊗W[2])(I2 ⊗Mr)x(t)
:= Lx(t).
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L follows immediately as
L = δ8[3, 7, 8, 8, 1, 5, 6, 6].

Trace(Lk) = 0, k = 1, 2, 3, 4,

and
L5 = δ8[1, 3, 3, 3, 5, 6, 8, 8],

Trace(L5) = 5.

Choosing any diagonal nonzero column of L5, say, X = δ1
8 ∼ (111), we can generate a length 5 cycle

as X → LX → L2X → L3X → L4X → L5X = X, where LX = δ3
8 ∼ (101), L2X = δ8

8 ∼ (000),
L3X = δ6

8 ∼ (010), L4X = δ5
8 ∼ (011), L5X = δ1

8 ∼ (111).
It is easy to check that r0 = 2 and L2 = L7. That is, Tt = 2. Since T = 5, there are no cycles of

length longer than 5.
Choosing Z = δ2

8 ∼ (110), then

LZ = δ7
8 ∼ (001), L2Z = δ6

8 = L3X;

Choosing Y = δ4
8 ∼ (100), then

LY = δ8
8 = L2X.

The state space graph (Fig. 3) coincides with the one in [13].

110 011 010 001 111 101 000 100

Fig. 3: State Space Graph of (37)

6 Some Useful Examples

In this section we revisit some examples which have been investigated in several literatures.
The first example is a biochemical network of coupled oscillations in the cell cycle [14].

Example 6.1 Consider the following Boolean networkA(t+ 3) = A(t)B(t+ 1) + 1

B(t+ 3) = A(t+ 1)B(t) + 1.
(38)

Converting it to matrix form, we haveA(t+ 3) = MxA(t)B(t+ 1)

B(t+ 3) = MxA(t+ 1)B(t),
(39)

where

Mx =

[
0 1 1 1
1 0 0 0

]
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From above equation the period five and period ten orbits can be found directly [17]. In [13] it was
proved that the network can contain fixed points or cycles of length two, five or ten. (It was also pointed
out in [13] that there are no fixed points.) Using the approach developed in this paper, we will provide
complete description for the state space graph of this system.

Note that we need initial states {A(0), B(0), A(1), B(1), A(2), B(2)} to determine the dynamics, so
we can re-scale τ = 3t as new unit of time. Denote E(t) = A(t), F (t) = A(t + 1), G(t) = A(t + 2),
H(t) = B(t), I(t) = B(t+ 1), J(t) = B(t+ 2), then by substitution we can get

E(t+ 3) = MxE(t)I(t),
H(t+ 3) = MxF (t)H(t),
F (t+ 3) = A(t+ 4) = MxA(t+ 1)B(t+ 2) = MxF (t)J(t),
I(t+ 3) = B(t+ 4) = MxA(t+ 2)B(t+ 1) = MxG(t)I(t),
G(t+ 3) = A(t+ 5) = MxA(t+ 2)B(t+ 3) = MxG(t)MxF (t)H(t) = Mx(I2 ⊗Mx)G(t)F (t)H(t),
J(t+ 3) = B(t+ 5) = MxA(t+ 3)B(t+ 2) = M2

xE(t)B(t+ 1)B(t+ 2) = M2
xE(t)I(t)J(t).

(40)

Define
x(t) := E(t)H(t)F (t)I(t)G(t)J(t),

then we have

x(t+ 3) = MxEIMxFHMxFJMxGIMx(I2 ⊗Mx)GFHM2
xEIJ. (41)

Using Propositions 2.3, 2.4, and 2.7, a simple computation shows that

x(t+ 3) = Lx(t), (42)

where

L = Mx(I22 ⊗Mx)(I24 ⊗Mx)(I22 ⊗W[2])(I23 ⊗Mr)(I25 ⊗Mx)(I22 ⊗W[2,24])(I2 ⊗Mr)
n (I26 ⊗ (Mx(I2 ⊗Mx)))(I25 ⊗Mr)(I23 ⊗W[2,24])(I22 ⊗Mr)(I24 ⊗W[2,4])(I23 ⊗Mr)
n (I26 ⊗M2

x)(I2 ⊗W[2,25])Mr(I2 ⊗W[4,2])(I24 ⊗W[2,4])(I23 ⊗Mr)(I24 ⊗W[2])(I25 ⊗Mr).

It can be calculated as

L = δ64[ 61 53 57 49 26 17 26 17 39 39 33 33 4 3 2 1
47 39 41 33 12 3 10 1 39 39 33 33 4 3 2 1
30 21 26 17 26 17 26 17 8 7 2 1 4 3 2 1
16 7 10 1 12 3 10 1 8 7 2 1 4 3 2 1 ].

Then we can check Trace(Lk), k = 1, 2, · · · , 64 and look for nontrivial power s. They can be easily
calculated as

Trace(L2) = 2, Trace(L5) = 5, Trace(L10) = 17.

Using Theorem 5.5, we conclude that the system doesn’t have fixed point, it has one cycle of length 2, one
cycle of length 5 and one cycle of length 10.

Next, we can find out the cycles. Consider L2. It is easy to figure out that the 26th column of it is
a diagonal nonzero column. Then we can use it to general the cycle of length 2. Since Lδ26 = δ39, and
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Lδ39 = δ26, we have a cycle of length 2. Using formula (27) to convert δ26 and δ39 back to binary form,
we have δ26 ∼ (100110), δ39 ∼ (011001). Note that x(t) = A(t)B(t)A(t+ 1)B(t+ 1)A(t+ 2)B(t+ 2), we
have

(10)→ (01)→ (10)→ (01)→ (10)→ (01)→ (10)→ (01)→ (10)→ · · · .

which is a cycle of length 2.
Similarly, since δ1 is a diagonal nonzero column of L5, then δ1, Lδ1 = δ61, L2δ1 = δ4, L3δ1 = δ49,

L4δ1 = δ16 forms a cycle of length 5. Converting them to binary form yields the following cycle:

(11)→ (11)→ (11)→ (00)→ (00)→ (11)→ (11)→ (11)→ (00)→ (00)→ · · · .

since δ2 is a diagonal nonzero column of L10, then δ2, Lδ2 = δ53, L2δ2 = δ12, L3δ2 = δ33, L4δ2 = δ30,
L5δ2 = δ3, L6δ2 = δ57, L7δ2 = δ8, L8δ2 = δ17, L9δ2 = δ47 form a cycle of length 10. Converting them
to binary form yields the following cycle:

(11)→ (11)→ (10)→ (00)→ (10)→ (11)→ (11)→ (01)→ (00)→ (01)→
(11)→ (11)→ (10)→ (00)→ (10)→ (11)→ (11)→ (01)→ (00)→ (01)→ · · · .

Our result coincides the one in [17].
Finally, we consider the transient period. Since it is easy to check that the first repeating Lk is

L2 = L12, then r0 = 2. Since each iteration contains 3 time units, we can only conclude that the
transient period satisfies 3 < Tt ≤ 6. By analyzing this particular system [13] pointed that Tt ≤ 4.

The following example is the Boolean model of cell growth, differentiation, and apoptosis (programmed
cell death) introduced by [18] and re-investigated in [13].

Example 6.2 

A(t+ 1) = K(t) +K(t)H(t)

B(t+ 1) = A(t) +A(t)C(t)

C(t+ 1) = 1 +D(t) +D(t)I(t)

D(t+ 1) = J(t)K(t)

E(t+ 1) = 1 + C(t) + C(t)F (t)

F (t+ 1) = E(t) + E(t)G(t)

G(t+ 1) = 1 +B(t)E(t)

H(t+ 1) = F (t) + F (t)G(t)

I(t+ 1) = H(t) +H(t)I(t)

J(t+ 1) = J(t)

K(t+ 1) = K(t).

(43)

Converting into matrix form yields
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

A(t+ 1) = MnMiK(t)H(t)

B(t+ 1) = MnMiA(t)C(t)

C(t+ 1) = MiD(t)I(t)

D(t+ 1) = McJ(t)K(t)

E(t+ 1) = MiC(t)F (t)

F (t+ 1) = MnMiE(t)G(t)

G(t+ 1) = MnMcB(t)E(t)

H(t+ 1) = MnMiF (t)G(t)

I(t+ 1) = MnMiH(t)I(t)

J(t+ 1) = J(t)

K(t+ 1) = K(t).

(44)

It is easy to calculate the structure matrix L as

L =
MnMi(I2 ⊗ (I2 ⊗MnMi(I2 ⊗ (I2 ⊗Mi(I2 ⊗ (I2 ⊗Mc(I2 ⊗ (I2 ⊗Mi(I2 ⊗ (I2 ⊗MnMi(I2 ⊗ (I2⊗
MnMc(I2 ⊗ (I2 ⊗MnMi(I2 ⊗ (I2 ⊗MnMi))))))))))))))))(I2 ⊗W[2])W[2](I2048 ⊗W[2])(I1024 ⊗W[2])
(I512 ⊗W[2])(I256 ⊗W[2])(I128 ⊗W[2])(I64 ⊗W[2])(I32 ⊗W[2])(I16 ⊗W[2])(I8 ⊗W[2])(I4 ⊗W[2])
(I2 ⊗W[2])(I8 ⊗W[2])(I4 ⊗W[2])(I256 ⊗W[2])(I128 ⊗W[2])(I64 ⊗W[2])(I32 ⊗W[2])(I16 ⊗W[2])
(I8 ⊗W[2])(I32 ⊗W[2])(I16 ⊗W[2]))(I1024 ⊗W[2](I512 ⊗W[2])(I256 ⊗W[2])(I128 ⊗W[2])(I64 ⊗W[2])
(I32 ⊗W[2])(I4096 ⊗W[2])(I2048 ⊗W[2])(I1024 ⊗W[2])(I512 ⊗W[2])(I256 ⊗W[2])(I128 ⊗W[2])(I64 ⊗W[2])
(I2048 ⊗W[2])(I1024 ⊗W[2])(I512 ⊗W[2])(I256 ⊗W[2])(I128 ⊗W[2])(I8192 ⊗W[2])(I4096 ⊗W[2])
(I2048 ⊗W[2])(I1024 ⊗W[2])(I512 ⊗W[2])(I256 ⊗W[2])(I8192 ⊗W[2])(I4096 ⊗W[2])(I2048 ⊗W[2])
(I1024 ⊗W[2])(I512 ⊗W[2])(I16384 ⊗W[2])(I8192 ⊗W[2])(I4096 ⊗W[2])(I2048 ⊗W[2])(I1024 ⊗W[2])
(I2048 ⊗W[2])(I32768 ⊗W[2])(I16384 ⊗W[2])(I8192 ⊗W[2])(I4096 ⊗W[2])(I8192 ⊗W[2])
(I65536 ⊗W[2])(I32768 ⊗W[2])(I16384 ⊗W[2])(I32768 ⊗W[2])(I131072 ⊗W[2])(I65536 ⊗W[2])
(I2 ⊗ (I2 ⊗Mr(I2 ⊗ (I2 ⊗Mr(I2 ⊗Mr(I2 ⊗Mr(I2 ⊗Mr(I2 ⊗Mr(I2 ⊗Mr(I2 ⊗MrMr)))))))))).

Since it is a 211 × 211 matrix, even using condensed form, it is still too long to show here. But it can be
easily stored in a computer. It is easy to calculate that

Trace(L) = 3; Trace(L9) = 12,

and there are no other non-trivial powers. We conclude that there are only 3 fixed points and 1 cycle
of length 9. Finding diagonal nonzero columns of L and L9 respectively, it is easy to figure out that the
three fixed points are

E1 = (1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1),
E2 = (0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0),
E3 = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0).

The only cycle of length 9 is

(11011101011)→ (01011101111→ (00111101011)→ (00011111111)→ (00111010011)→
(10010010011)→ (11011010011)→ (11011000011)→ (11011100011)→ (11011101011).
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The minimum power for repeating Lk is L10 = L19, so the transient period Tt = 10.

Remark 6.3 It was shown in [18] that a nontrivial growth attractor exists. Our result shows that there
are exactly 3 fixed points and one cycle of length 9. As J = K = D = 1, both [18] and [13] showed
that there exists the cycle. Our result agrees with them. In the case of J = K = D = 1, it is easy to
check that The transient period is still Tt = 10. [13] claimed that Tt ≤ 7. This is incorrect. Consider
x(0) := x0 = (01111000011). It is easy to calculate that x(10) = (10010110011), which is not in the cycle,
and x(11) = (11011010011) which is in the cycle. So Tt(x0) = 10.

The following example is from [14] and re-investigated in [17].

Example 6.4 Consider the following system

A(t+ 1) = 1 + C(t) + F (t) + C(t)F (t)

B(t+ 1) = A(t)

C(t+ 1) = B(t)

D(t+ 1) = 1 + C(t) + F (t) + I(t) + C(t)F (t) + C(t)I(t) + F (t)I(t) + C(t)F (t)I(t)

E(t+ 1) = D(t)

F (t+ 1) = E(t)

G(t+ 1) = 1 + F (t) + I(t) + F (t)I(t)

H(t+ 1) = G(t)

I(t+ 1) = H(t).

(45)

The matrix form of the above equation is

A(t+ 1) = MnMdCF

B(t+ 1) = A

C(t+ 1) = B

D(t+ 1) = M2
cMnIMnCMnF

E(t+ 1) = D

F (t+ 1) = E

G(t+ 1) = MnMdFI

H(t+ 1) = G

I(t+ 1) = H.

(46)

Let x(t) = A(t)B(t)C(t)D(t)E(t)F (t)G(t)H(t)I(t), and x(t+ 1) = Lx(t). Then

L =
MnMd(I2 ⊗ (I2 ⊗ (I2 ⊗ (I2 ⊗McMcMn(I2 ⊗Mn(I2 ⊗Mn(I2 ⊗ (I2 ⊗ (I2 ⊗MnMd)))))))))(I2 ⊗W[2])
W[2](I4 ⊗W[2])(I2 ⊗W[2])(I16 ⊗W[2])(I8 ⊗W[2])(I64 ⊗W[2])(I32 ⊗W[2])(I16 ⊗W[2])(I128 ⊗W[2])
(I64 ⊗W[2])(I32 ⊗W[2])(I128 ⊗W[2])(I256 ⊗W[2])(I1024 ⊗W[2])(I512 ⊗W[2])(I2048 ⊗W[2])(I1024 ⊗W[2])
(I2 ⊗ (I2 ⊗Mr(I2 ⊗ (I2 ⊗ (I2 ⊗MrMr(I2 ⊗ (I2 ⊗ (I2 ⊗Mr)))))))).
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The non-trivial powers are Trace(L2) = 4, and Trace(L6 = 64). It follows from Theorem 5.5 that
there are only 2 cycles of length 2 and 10 cycles of length 6. Searching diagonal nonzero columns of L2

yields
(101101101)→ (010010010)→ (101101101)
(101000010)→ (010000101)→ (101000010)

Searching diagonal nonzero columns of L6 yields

(111111111)→ (011011011)→ (001001001)→
(000000000)→ (100100100)→ (110110110)→
(111111111).

(111110110)→ (011011111)→ (001001011)→
(000000001)→ (100000000)→ (110100100)→
(111110110).

(111101101)→ (011010010)→ (001001101)→
(000000010)→ (100100101)→ (110010010)→
(111101101).

(111100100)→ (011010110)→ (001001111)→
(000000011)→ (100000001)→ (110000000)→
(111100100).

(111011011)→ (011001001)→ (001000000)→
(000000100)→ (100100110)→ (110110111)→
(111011011).

(111010010)→ (011001101)→ (001000010)→
(000000101)→ (100000010)→ (110100101)→
(111010010).

(111001001)→ (011000000)→ (001000100)→
(000000110)→ (100100111)→ (110010011)→
(111001001).

(111000000)→ (011000100)→ (001000110)→
(000000111)→ (100000011)→ (110000001)→
(111000000).

(101101111)→ (010010011)→ (101001001)→
(010000000)→ (101100100)→ (010010110)→
(101101111).

(101100110)→ (010010111)→ (101001011)→
(010000001)→ (101000000)→ (010000100)→
(101100110).

Finally, we can calculate that the first repeating Lk is L3 = L9. So, Tt = 3.
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Remark 6.5 In [17] it was shown that there are no fixed points, and there are 2 cycles of length 2. Our
results about fixed points and cycles with length 2 coincide with [17]. [17] pointed out only 6 cycles of
length 6. According to our result, there are exactly 10 cycles of length 6.

7 Concluding Remarks

In this paper the topological structure of Boolean networks has been investigated. Four major objects
were considered: (1) fixed points; (2) cycles of different lengths; (3) transient period; (4) basin of each
attractor. A systematic solution is obtained by providing precise formulas and algorithms.

Using semi-tensor product of matrices, the Boolean network dynamics is converted into a standard
discrete-time linear dynamics. This approach yields the above mentioned results.

Here we would like to give a comparison of our algorithm with some existing methods. The main
interest of this paper is its theoretical aspect: How to convert the dynamics of Boolean networks into a
linear dynamic system. As a byproduct, the algorithms are obtained. There are several existing numerical
methods for Boolean problems, such as discrete iteration (DI)[28], satisfiability (SAT)[33] etc. The main
advantage of both DI and SAT is they can be used for large scale Boolean problems. DI is mainly used to
find the fixed points. It is said in [28] (page 153) that “If the algorithm ends at a cycle of length ≥ 2 then
this corresponds to a failure of the iteration”. It has been used in [17], and one sees that some auxiliary
treatments are necessary for finding different length cycles. SAT is mainly for static Boolean equations.
Fixed points can be considered as static problem and SAT can be used. Using SAT for finding cycles is
at least not straightforward. In addition, neither DI nor SAT can assure finding all solutions.

The major disadvantage of our algorithms is complexity: the dimension of the system is exponential
in the number of the nodes. So it can only be used for small networks (say, n ≤ 20). The advantage is
that it provide a complete solution to fixed points, cycles, transient time and basins.

Finally, let’s see how to use linear expression of Boolean dynamics to Boolean control problems. A
Boolean control system can be expressed as

A1(t+ 1) = f1(A1(t), A2(t), · · · , An(t), u1(t), · · · , um(t)),

A2(t+ 1) = f2(A1(t), A2(t), · · · , An(t), u1(t), · · · , um(t)),
...

An(t+ 1) = fn(A1(t), A2(t), · · · , An(t), u1(t), · · · , um(t)),

(47)

and

yj(t) = hj(A1(t), A2(t), · · · , An(t)), j = 1, 2, · · · , p, (48)

where fi, i = 1, 2, · · ·n, hj , j = 1, 2, · · · p are logical functions; yj , j = 1, 2, · · · p are outputs; ui, i =
1, 2, · · ·m, are inputs (or controls).

Let x(t) = nn
i=1Ai(t), u(t) = nm

i=1ui(t), and y(t) = np
i=1yi(t). Using the linear expression to the

Boolean control network, it can be expressed asx(t+ 1) = Lu(t)x(t), u ∈ Dm, x ∈ Dn,

y(t) = Hx(t), y ∈ Dp.
(49)
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Boolean control network, it can be expressed asx(t+ 1) = Lu(t)x(t), u ∈ Dm, x ∈ Dn,

y(t) = Hx(t), y ∈ Dp.
(50)

If we want to calculate the control-depending transition matrix, the so called “direct computation” can
do nothing for this. Using semi-tensor product, we have

x(t+ 1) = L(t)x(t),

where L(t) = Lnu(t) is straightforward computable. Moreover, this analytic form can be used for control
design. Similarly, the input-output mapping can also be easily calculated. We refer to [10, 11] for further
discussion.
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