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A theoretical analysis of the crossover theorem is presented based on a linear approximation. 
Cases are considered in which the simple crossover theorem may lead to erroneus conclusions. 
Among them are the following : more than one interaction site of an effector with the enzymatic 
chain; influx and efflux of metabolites regulated by outer metabolic processes ; existence of 
inner effectors ; conservation equations for metabolite concentrations ; and changes of the state 
of complexes with the metabolites. It is shown that the action of an effector does not always 
produce a crossover a t  the affected enzyme. On the other hand, examples are given where 
“pseudo-crossovers’’ occur a t  unaffected enzymes. It is concluded that for real systems the 
identification of the interaction sites of an effector with an enzymatic chain cannot be 
achieved by the simple crossover theorem. Furthermore, even the identification of “rate control- 
ling” or “regulatory important” enzymes by means of crossovers must be done with great 
caution. 

A simple and general procedure for the identification of interaction sites of an outer effector 
with an enzymatic chain is proposed. It requires the determination of the flux through the chain, 
the concentrations of the substrates and products of the enzymatic step under consideration and 
the rate law by which an inner effector, if present, influences the reaction rate of this step. 

The crossover theorem was first formulated by 
Chance et al. [l-41. It deals with the influence of 
outer effectors on the levels of the metabolites in 
an enzymatic chain. In  its simplest form, the 
“classical” crossover theorem can be stated in the 
following way: the variations of the concentrations 
of the metabolites before and beyond an enzyme 
which is influenced by an effector have different 
signs. It has been widely used to identify the inter- 
action sites of effectors within the chain. Chance 
et al. [l--51 have applied the crossover theorem for 
the investigation of the changes in the steady-state 
oxidation-reduction levels of the components of 
the respiratory chain. With the help of this 
theorem they were able to identify the sites of 
phosphorylation. An inspection of the literature on 
metabolic regulation shows that subsequently the 
crossover theorem has been applied to a variety 
of systems including very complicated ones. It was 
tacitly assumed that in all these cases the crossover 
theorem is valid in its simple form (e.g. [6-8)). 

Only few theoretical considerations of the cross- 
over theorem have been published so far. Chance 
et al. [7] have studied the crossover behaviour of 

the respiratory chain by means of analogue com- 
puters. In  a more general manner, Holmes [9] 
considered several types of sequences of chemical 
reactions and proved the theorem for some simple 
cases. For the characterization of a crossover he 
used pairs of neighbouring metabolites where the 
signs (-, +) and (+, -) indicate the direction of 
the variation of the concentrations produced by the 
effector. For the condition that the effector increases 
the flux the pairs were called “forward)’ and “back- 
ward” crossovers, respectively, by Williamson [lo]. 

The present paper deals with the limitations of 
the simple crossover theorem in its application to 
real systema. We shall consider five situations where 
the crossover theorem is not valid. It will be shown 
that the uncritical application of the crossover 
theorem may lead to serious misinterpretations. 
On the other hand, the procedure proposed in this 
paper for the identification of the interaction sites 
of an effector with an enzymatic chain will give 
correct results if the linear approximation holds. 

Parts of the results have been presented a t  the 
FEBS Advanced Course on “Mathematical Models of 
Metabolic Regulation”, Oberhof, November 1972. 
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Analytical Expressions of Crossovers 
in Linear Enzymatic Chains 

For simple linear enzymatic sequences the cross- 
over theorem can be written by the formalism of 
the preceding paper [ll]. It was shown that the 
following equations hold for the relative changes 
of the metabolite concentrations as functions of the 
relative variations of the effector concentration F 

i < j :  d In St = -Cj 

i 2 j :  d In AS’t = CjXjd In F 

“*‘ d In F 
(1 1 1 - C1.r 

where the symbols have the following meanings [ 111 : 
Cj, control strength of the affected enzyme Ej; 
C I , ~ ,  control strength of the enzyme sequence 
El - . . . - Ej; Xj, effector strength of the effector 
F a t  the enzyme Ej; St, metabolite concentrations. 

Equation (1) immediately reveals that the concen- 
trations of the metabolites before and beyond the 
enzyme which is influenced by the effector, change 
in opposite directions. In  particular, we have for 
the substrate 8,-1 and the product S5 of the 
enzyme Ej the variations 

Xj > 0 :  ASj-1 < 0, ASj > 0, ( 2 4  

Xj < 0 :  ASj-1 > 0, A S j  < 0 (2 b) 

i .e. a crossover occurs between the metabolites Sj-1 
and Sj. In the first case, Eqn (2a), the changes are 
produced by an activator and in the second case, 
Eqn (2b), by an inhibitor of the enzyme El. 

c ; - Q  
6 6  

...... 
.. . .. ...... 

Fig. 1. Crossover plot of a hypothetical linear enzymatic 
system. Action of an activator on the enzyme Ej. AS{ /S t ,  
relative variations of the metabolite concentrations 
(0-0); A Qr/Q(, relative variations of the mass action 
ratios (&---A). The control strength of the enzyme E, 
was assumed to be zero 

For the study of the action of an effect,or on the 
enzymatic chain commonly a graphic representation 
of the percentage variations of each metabolite is 
used. For the action of an activator on a simple 
linear enzymatic chain such a “crossover plot” is 
shown schematically in Fig. 1. The characteristics 
of this plot may be derived from Eqn (1). It is seen 
that the metabolites following the enzyme Ej show 
all the same relative variations depending only on 
the effector strength Xj  and the control strength, 
Cj. The variations of the metabolites preceding Ej 
depend in addition on the value of C1,t. The greater 
C1,z the more pronounced is the decrease of these 
metabolites. Since C1, t increases along the chain, 
the decrease of the metabolites is greater in the 
neighbourhood of the interaction site. 

If Cj of the affected enzyme Ej is zero its product 
Sj will be unchanged by an effector. If the conditions 
Cj = 0 (but q # 0, zj-characteristic time of El) 
and C1,j-l = 1 hold, i.e. that an enzyme preceding 
El catalyses an irreversible step [ll], the concentra- 
tion of the substrate will be affected. The resulting 
variations, where only one of two neighbouring 
metabolites is changed, may be called “half cross- 
overs)’. 

The influence of an effector on the metabolite 
concentrations may be also described by the varia- 
tions of the mass action ratios Qt of the enzymatic 
reactions 

i < j :  d l n Q r = -  

(3) 

While the mass action ratios of the steps beyond 
the interaction site do not change, all other ratios 
show variations provided that the corresponding 
steps are catalyzed by enzymes with control 
strength greater than zero (as before, the exception 
Ct = 0, Cj = 0 ( ~ f ,  tj # 0), C1, (-1 = 1 must be taken 
into account). For an activator the only positive 
variation of the mass action ratio Qr occurs a t  the 
interaction point, 

The analysis of this linear enzymatic chain reveals 
that the relative variations of the concentrations of 
metabolites as well as the relative variations of the 
mass action ratios can be used for an identification 
of the interaction site of an  effector. In  the first 
case, crossovers may be characterized by the 
symbols (-, +) and (+, -) which indicate acti- 
vators and inhibitors, respectively. In  the second 
case one can use the triplets (-, +, 0)  and 
(+, -, 0) [see Eqn (3)]. The mass action ratios do 
not distinguish between complete and half cross- 
overs. 
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LIMITATIONS O F  THE CROSSOVER THEOREM 

Outer Effectors with More than One Interaction Site 
in an Enzymatic Chain 

If an effector has an influence not only on one 
but on several enzymes of a chain restrictions of the 
crossover theorem must be taken into account. 
For simplicity we shall deal only with two inter- 
action sites of the outer effector. The general case 
of ‘ i ~  interaction sites may be treated analogously. 

It is assumed that an effector F influences the 
enzymes Ej and Ek with the effector strengths X j  
and x k ,  respectively. Then we may write for the 
relative variations in Sf assuming small variations 
A 3’ in the effector concentration 

(4) 

where &,j and 8f .k  are elements of the control 
matrix defined in [ll] [cf. Eqn (45) therein). Thus, 
we have for the relative changes of the substrates 
and products of the affected enzymes Ej and Ek 

1 - cl.5-1 x, + 1 Ckc1,I-l - C1.j-1 x k )  $ A S.4-1 -- 
8 5 - 1  - - ( c5c1J-1 

Depending on the location of the rate-controlling 
enzymes in the chain and on the ratio of the 
effector strengths different crossover patterns 
are obtained. 

We consider two cases shown in Table 1: (a) F is 
an activator of Ej and Ek (xj > 0, XI, > 0); and 
(b) F is an activator of Ej and an inhibitor of 
Ek ( X j  > 0, Xk < 0). 

For case (a) the metabolites before the enzyme 
Ej decrease and those beyond Ek increase. With 
regard to the location of the crossover points there 
are three possibilities of metabolite variations 
(Table 1). I n  the first and third case crossovers occur 
only either a t  the enzyme Ej or a t  Ek. Crossovers 
can be found also simultaneously at both enzymes. 
A necessary condition is 

Of course, this condition can be met only if 
there are enzymes between Ej and Ex which have 
control strengths unequal to zero. Thereby, a 
third crossover is produced which is not, however, 
the result of an interaction of an effector with the 
enzyme a t  which it occurs. Therefore, we call it  a 

pseudo-crossover”. I n  the case mentioned the 
pseudo-crossover occurs only a t  an enzyme with a 
z-value greater than zero. 

For case (b) where X ,  > 0 and Xk < 0 there 
are only two possibilities of crossover patterns. 
Depending on the ratio of the control strengths as 
well as of the effector strengths the overall effect 
is an elevation or diminuition of the flux ( A  Sk > 0 
and A s k  < 0, respectively). A crossover occurs 
either at the enzyme Ej (the flux increases) or a t  
the enzyme Ek (the flux decreases). 

I n  order to obtain the crossover patterns for the 
cases X j  < 0, Xk < 0 and X j  < 0, X k  > 0 only 
the signs in Table 1 need to be interchanged. 

(( 

Table 1. Crossover patterns of a linear enzymatic chain for an effector F acting simultaneously on the enzymes El and Ek 
For case (a) F is an activator of E j  as well as of E k ;  for case (b) F is an activator of Ej  and an inhibitor of Ek 

Case A85-1 AS5 A s k - 1  A s k  Condition ~- _ _ _ -  
S3 & 8 k - 1  Sk 

(b) X j  > 0 - + + + 
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100 Crossover Theorem-Identification of Interaction Sites 

We conclude that in all cases considered inter- 
action sites may be overlooked or falsely postulated 
if one uses for their identification crossovers of the 
metabolite concentrations. 

As mentioned before, interaction points of 
effectors may be also detected by an analysis of the 
mass action ratios of the metabolites. This method 
has the advantage that the effector of the enzyme 
Ej does not change the mass action ratios of the 
succeeding steps [see Eqns (3) and (5)J Therefore, 
in the case of two interaction points, the second 
crossover in the chains is independent from the 
first in the kind and the extent of its variation. 
On the other hand, the second crossover will have 
no influence on the preceding one only if a t  least 
one irreversible step is located between the affected 
enzymes. 

In f lux  and Ef f lux of Metabolites 
Now we shall deal with a linear enzymatic 

system where one of its enzymes, say Ej, catalyzes 
one reaction with two substrates. Fig.2 shows the 
three possibilities for influx and efflux of the 
metabolites P and Q which are product and sub- 
strate, respectively, of a metabolic pathway branch- 
ing off. We call these substances “outer metabolites” 
since they are not solely determined by the enzyme 
system under investigation. It suffices to treat only 

the first case (influx of P) since the other cases are 
completely analogous. 

Regarding P as a given parameter we can use 
for the calculation of the metabolite concentrations 
the formulae, previously derived in [ l l ]  [cf. Eqn (10) 
therein]. By a suitable transformation the two- 
substrate reaction of the enzyme Ej may be 
expressed in the following manner by means of its 
equilibrium constant and characteristic time : 

The kinetic parameters of all other enzymes 
remain unchanged. Then we obtain for the concen- 
trations of the metabolites Sj-1 and Sj 

Sj-1 = N 17 qm (1 + y [rj (PI (1 + q jp )  ii qm 
,go i-1 

m = l  m = i + l  

+ 2 t k  (1 + qk)  ii q m ~ )  (8) 
k = i + l  m = k + l  

and 

S*=sO. N 

where 

ffl + ri(P) (1 + qjp) 17 q m  
m = i + l  

+ 2 r k  (1 + qk) fi qm]  
k = j + l  m = k + l  

(10) 

and, So is the fixed substrate of the enzyme El 
and y the first order rate constant of the irreversible 
off-transport of the last metabolite S,. It follows 
from the Eqns (S), (9) and (10) that 

sj- .... 
-7- 

B . ... --sj-1 

Q 
\ 

- < o ,  __ > o .  ap ap 

Variation of P, e.g. by action of an effector on 
other metabolic pathways, produces therefore a 
crossover a t  the enzyme Ej. According to our 
notation it is a pseudo-crossover. As Eqns (S), (9) 
and (10) reveal such “crossovers” may even happen 
at steps which are catalyzed by equilibrium enzymes, 
which have a very low z-value. 

For special conditions half crossovers may occur : 
as,-l a 85 __ = O  and- ap > 0 if ri = 0 (i = 1, . . ., 

a p  < 0 and - = 0 if at least j - I) and __ 

one of the enzymes preceding the step j catalyzes an 
irreversible step. Such half crossovers a n  also be 
Produced a t  equilibrium steps (rj = 0). This demon- 
strates that equilibria may differ in their behaviour 

‘P 

ap 
a s5 
ap 

Fig. 2 .  Influx and efflux of metabolites. Three possibilities 
for the “outer metabolites” P and Q to take part in the 
reactions of a, linear enzymatic system 
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in the steady state as compared with isolated con- indicated in the figure. If the influence of the 
ditioiis where in any case one would expect changes metabolite 5, on the enzyme Ek is very small, we 
of both Sj-1 and 8,. obtain for the relative variations of the metabolites 

As before, the mass action ratios are more useful produced by the effector F the approximate expres- 
for the identification of real crossovers. If one uses sions 
the ratio Q. - - ” no change is expected a t  
variations of P if Ej is an equilibrium enzyme. 

When in the junction (Pig.3A) P is increased the 
control strengths of the enzymes preceding Ej are 
increased while those of the subsequent enzymes are 
decreased. 

3 - 8*-1P 

The Action of Inner Effectors 
So far we have dealt with a simple structure of 

the enzymatic chain which could be treated 
analytically on the assumption of linearity between 
the enzyme velocity vi and the concentrations of 
the metabolites Si-1 and Si. Generally, a real system 
is complicated by the fact that some metabolites 
are inner effectors, i.e. they act on enzymes of the 
chain. 

For the investigation of the limitations of the 
crossover theorem we shall deal analytically only 
with the case of small effector strengths of the inner 
effectors and treat the effect in a first-order approx- 
imation. 

The systems which are investigated are shown in 
Fig.3. In  case A we have a forward activation or 
inhibition, in case B a feedback activation or 
inhibition. Three different positions of the enzyme 
Ej influenced by the effector F are possible which are 

,/--\ 0 

/ / ‘p 

.--’ 
\ : {’ \ \ 

E k  \ 

!J E i  E j  

... . -. _. ..-.. . . .  . . . . . ..- - -- r n -  
E k  \ 

EJ E i  
I 

B 1 F /-- 

... . -. _. ..-.. . . .  . . . . . ..- - -- r n -  

/. . I 
‘ I  - 1 

\ 
‘, . 

Fig.3. Schematic representation of the action of inner and 
outer effectors 8, and F,  respectively. (A)  Forward activa- 
tion or inhibition of Ek by S,; (B) feedback activation or 
inhibition of Ek by Sn. Three different positions are 
possible for the enzyme Ej which is influenced by the outer 
effector F 

.- a In v * d ln  F = Xf,jXjd In F (12) a In F + fli,kflm,jXkxjd 111 F .  

& , j ,  &,k and Sm,j are elements of the control 
matrices, corresponding to a system without inner 
coupling, Xk the effector strength of the inner 
effector S, acting on Ek, and xj the effector 
strength of the outer effector F acting on Ej. 
Equation (12) can be regarded as a Taylor expansion 
of the relative changes of the metabolite concen- 
trations d In 8~ with respect to Xk, quadratic and 
higher order terms being neglected. The first term 
in Eqn (12) takes into account that the outer 
effector P changes in the usual way via Ej the 
concentration of Sc and Sm. These changes of Sm 
produce via E k  additional variations of St given in 
the second term of the equation. If the items have 
opposite signs the action of the outer effector F 

--. 

F ’--\a t 1’ 

A 

\ F  

Ek Sm E j  

\ 
/-. 

\ t  
B v / P  

Fig.4. Regions of an enzymatic chain with inner coupling 
which are stable relative to the motion of an outer effector; 
regions of stability are hatched. (A)  Forward activation of 
Ek by the inner effector S,; (B) feedback inhibition of 
Ek by the inner effector Sm 
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102 Crossover Theorem-Identification of Interaction Sites 

is damped compared with a system without coupling 
by inner effectors. Thus we have in the chain sections 
of relative stability and relative instability of metab- 
olite concentrations with respect to changes of 
outer effectors (Fig.4). 

It can be concluded that in most cases the effector 
F produces a crossver a t  the enzyme Ej between the 
metabolites Sj-1 and Sj. I n  general, one of these 
metabolites is located in a region of stability and the 
other in a region of instability (Fig.4). Therefore, 
if the inner coupling is strong enough half 
crossovers may be produced. If the effectors F and 
Sm influence the same enzyme (i = k) the regions 
of stability and instability meet a t  this step and 
the variations of all metabolites are damped. I n  
such a special case the action of an effector may fail 
to produce a crossover. 

As Eqn (12) reveals crossovers occur only a t  
the enzyme Ej which is influenced by the outer 
effector. This means that no additional pseudo- 
crossovers are produced, not even a t  the enzyme 
which is influenced by the inner effector. These 
statements are valid for the linear approximation, 
(Eqn (12). Further work must be done in order to 
test their validity in the general nonlinear case 

The Existence of Conservation Equations 
lor Metabolite Concentrations 

Let us consider an enzymatic chain which con- 
sists of a main pathway (metabolites Si )  and of a 
closed by-pass (metabolites Aj) (Fig.5). Both ways 
are coupled by the metabolites A, and A1, the former 
participating with Sj-1 and 53 in a reaction catalyzed 
by enzyme E j  and the latter (-41) correspondingly 
with Sm-l and S, in a step catalyzed by enzyme 
Em. In  [ll] a set of differential equations was derived 
which describes the time-dependence of the meta- 
bolite concentrations of a linear enzymatic chain. 
By analogy, a system of differential equations for 
the description of the more complicated system, 
represented in Fig.5 can be easily obtained. A 

simple analysis of the system shows that the follow- 
ing equation holds 

T 

By integration of Eqn (13) we obtain imme- 
diately a conservation relation 

m- 1 7 

2 Sk+ A k = T *  (14) 
k =i k = l  

It means that the sum T of the metabolite 
concentrations At and St between the enzymes Et 
and E,,& is independent of time. The increase of 
some metabolites of the cycle must be compensated 
by a decrease of others. Therefore, if the system is 
influenced by an effector acting on an enzyme which 
does not belong to the cycle, a t  least a t  one of its 
enzymes a pseudo-crossover must be produced. 

Since it is tedious to solve in an analytical form 
the general system, represented in Fig.5, we discuss 
only two simple examples from which all essential 
conclusions can be drawn (Fig. 6). The conservation 
equations for these systems become 

A + S, -+ S, = T 

A ,  + A ,  + S, + S, = T. 

(15) 

(16) 
and 

Assuming So to be constant, steady-state values 
for the metabolite concentrations can be obtained. 
For the system in Eqn (15) we get 

Fig.5. Scheme of a cycled metabolic pathway. The variations of the metabolite concentrations are restricted by the 

conservation equation Z f l k  + 2 Ak = T 
m-1 T 

k = j  k = l  

Eur. J. Biochem. 42 (1974) 
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and for the system in Eqn (16) 

103 

Now we consider the effect of an activator of the 
first enzyme El on the metabolite concentrations. 
It is easily seen that the following inequalities hold 
for the system in Eqn (15) 

- - -  as& < 0, - a A  > o .  (19) 
ax, as, 
at, at, a t ,  at1  

Different signs can be obtained for the corre- 
sponding derivative of S,  dependent on the kinetic 
constants of the enzymes and the values of So 
and T 

Comparing the inequalities of Eqns (19) and (20) 
we conclude that the action of the activator on the 
enzyme El produces a pseudo-crossover between the 
metabolites S, and S, if the reaction of the enzyme 
E, is slow. The characteristic time of this enzyme 
must be such that the upper inequality of the rela- 
tion of Eqn (20) is fulfilled. If the reaction is fast 
all metabolites Si increase and only A decreases. 
If the changes are related to the external metabolite 
A there appear to exist pseudo-crossovers between 
A and S, as well as between S, and A. 

For the system in Eqn (16) we get the inequali- 
ties 

as, as, as, as, aA, a 4  < 0,-> 0. (21) a t ,  ' at, 9 at, 7 at, 3 at, a t ,  
- - _ _ - ~  

It can be concluded that an effector of E, produces 
in each case a pseudo-crossover a t  the enzyme E, 
between the metabolites A, and A,. 

These examples show that for systems having 
a cyclic structure the crossover theorem is not 
applicable. Due to  the existence of conservation 
terms for the metabolite concentrations pseudo- 
crossovers occur. This statement is valid whether 
or not a linear approximation is used. The metab- 
olite variations of systems with several cycles may 
be restricted by more than one conservation term. 

Fig. 0. Schemes of two cycled metubolic pathways. It is assumed 
that the two-substrate reactions catalyzed by the 
enzymes E, and E, are very fast and that the slow 
enzymes El, E,, E, and E, catalyze irreversible reactions 

Of course, for such systems it is difficult to predict 
the crossover behaviour. However, it seems re- 
asonable to assume that pseudo-crossovers can be 
found predominantly a t  slow or irreversible en- 
zymes. 

Change of the Complexation State of the Metabolites 
In  this section we consider again a linear 

enzymatic system where several metabolites react 
with the enzymes as metal complexes, for example 
as Mg-complexes. Depending on the metal ion 
concentration and on the association constants of 
the complexes there are varying concentrations of 
complexed and uncomplexed species of the metab- 
olites in the system. Only the active forms of the 
metabolites must be considered for the regulation 
of the chain, if the inactive species are not effectors 
of any enzyme. With respect to  the crossover 
theorem we are interested in the variations of the 
total concentrations of the metabolites Xf t  due to  
changes of the free metal ion concentration. These 
may be produced by changes either of the total 
metal concentrations or by variations of metabolites 
with high binding capacities. For the sake of simpli- 
city we confine ourself to 1 : 1 complexes between the 
metal and the metabolites and assume that for the 
metabolites Sj the uncomplexed species Sjf and for 
the metabolites s k  (k # 1) the complexed forms 
S k M  are active. Then we have for all metabolites 
Si  the relationships 

where Kt are the association constants of the com- 
plexes, Nf the concentration of the free metal 
ions. At given concentration of the free metal ions 

Eur. J. Bioohem. 42 (1974) 
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the total concentrations Sjt and S k t  can be easily 
obt,ained as functions of their free and complexed 
forms, respectively 

8 j t  = (1 + Kj Mf) Sjf (23) 

I n  the steady state the levels of Sjf and S k M  are 
determined by the rate and equilibrium constants 
of the enzymatic steps. Thus, they are constant for 
varying concentrations of the free metal ions. There- 
fore one obtains 

It is apparent that pseudo-crossovers produced 
by variation of the free metal ion concentration can 
only be expected at steps where the active forms of 
substrate and product are different, i .e .  one reacts 
as a complex and the other as a free species. 
Neighbouring metabolites which react both either 
in the complexed or in the uncomplexed form are 
changed in t,he same direction but, depending on 
their association constants, to different extents. 
A change in the state of complexes could even cause 
differences in the relative variations of metabolites 
connected by an equilibrium enzyme. This may 
explain the "fine" structure of crossover plots for 
the influence of effectors which act not only a t  
enzymes but change also the concentration of the 
free metal ions. 

General Procedure for  the Ident i f icat ion 
of Interact ion Sites /or L i n e a r  Systems 

The following derivation is independent of the 
number of substrates and products which parti- 
cipate in the reactions. For the sake of simplicity, 
however, we regard a bimolecular reaction 

(26) 
kc 

k-t 
Si-i + Ai-i Xi + A t .  

For the flux through the chain the following 
equation holds if one uses a linear approximation 

v = ki 8g-1 Ag-1 - k-2 Sg A t .  (27) 

This equation may be rearranged to  

where Qi is the mass action ratio of the reaction 
given in Eqn (26). 

On the right side of Eqn (28) now stands a con- 
stant. If this step is influenced by an effector the 
characteristic time ri will be changed. Inversely, 

if one wishes to  identify the interaction sites of an 
effector i t  is only necessary to insert in Eqn (28) 
the experimental values before and after addition 
of the effector. All the enzymatic steps for which 
the expression in Eqn (28) is changed are inter- 
action sites of the effector. 

The use of Eqn (28) circumvents most of the 
difficulties mentioned for the application of the 
crossover theorem for the identification of inter- 
action sites. Firstly, it is independent of the number 
of interaction sites of the effector with the enzymatic 
chain. Secondly, since all metabolites that are 
substrates or products of the reaction enter the 
Eqn (28) the influx and efflux of metabolites is 
taken into account. Thirdly, the existence of con- 
servation equations for metabolite concentrations 
is no limitation for the application of Eqn (28). 
Fourthly, if one uses the concentrations of the 
active species instead of the total concentrations of 
the metabolites, changes in the state of complexes 
of the metabolites do not affect the use of Eqn (28). 
Lastly, if there exists a coupling by inner effectors 
i t  is still possible to  apply Eqn (28) provided the 
rate law by which the rate constant on the right 
side of the Eqn (28) is influenced is known. For 
instance, for the simple cases of competitive or non- 
competitive inhibitions of the reaction i by the 
metabolite Sj 

(Kj is the inhibition constant of Sj) one derives under 
linear approximation 

In  this case, one has to determine also the concen- 
tration of the metabolite 8j and the inhibition con- 
stant Kj for the identification of an interaction of 
an outer effector a t  the step i .  

The use of Eqn (28) for the identification of inter- 
action sites is limited to  the case of a linear 
dependence of the enzymatic velocity on the sub- 
strate concentrations. This is true for low sub- 
strate concentrations. However, for Michaelis-type 
enzymes less restricted conditions give the same 
equation (Rohde, Heinrich and Rapoport, 
unpublished results). 

Two special cases of Eqn (28) should be discussed. 
If the enzyme El catalyses an irreversible step the 
following simplified expression obtains : 

Sa-1-46-1 - 1 _ -  
V kr ' 
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If the enzyme Ef is an equilibrium enzyme 
(&a zz qg) the left hand side of Eqn (28) becomes zero 
and the evaluation of a change in the rate constant 
is impossible. 

It should be mentioned that an equation similar 
to Eqn (28) was previously derived by Hess and 
Brand [12]. So far i t  was not applied, however, to 
the identification of interaction sites of an effector. 

DISCUSSION 

The crossover theorem has been used in the liter- 
ature to analyse the action of effectors on complicated 
enzymatic systems. The present paper demonstrated 
that in many cases the analysis of simple crossover 
plots fails to identify the interaction sites. Even 
a system as simple as the glycolysis can show several 
pseudo-crossovers. For instance, there exist several 
points where outer metabolites take part in the 
reaction (e.9. glyceraldehyde-phosphate dehydro- 
genase and phosphoglycerate kinase), there exists a 
conservation quantity for the oxidized metab- 
olites under anaerobic conditions [13] and there are 
several reactions where the metal complexes OF the 
metabolites play a significant role. Williamson 
studied the metabolic control of perfused rat heart, 
in particular the inhibition of the glycolysis by 
acetate and pyruvate [S, 71. Applying the simple 
crossover theorem he concluded that both the 
phosphofructokinase and glyceraldehyde-phosphate 
dehydrogenase are inhibited. The latter inter- 
action site does not seem justified from the obtained 
crossover plot. 

It is clear that in even more complicated 
enzymatic systems the conclusions drawn from the 
crossover plot are rather doubtful. Several authors 
stated that crossovers indicate the rate-limiting 
steps of an enzymatic chain. For instance, Wilhelm 
et al. [8] concluded by means of crossover plots 
that the rate control in the glycolysis of Ehrlich- 
ascites-tumor cells is shifted from the phospho- 
fructokinase a t  low pH-values to the glyceraldehyde- 
phosphate dehydrogenase and phosphoglycerate 
kinase a t  higher pH-values. As will be shown in a 
succeeding paper [13], this conclusion is not justi- 
fied from the patterns of the crossover plots. 

The application of the crossover theorem to time- 
dependent processes [7] lacks any theoretical basis. 

Simple methods for the analysis of time-dependent 
processes have not been worked out so far. 

The procedure proposed in this paper for the 
identification of interation sites of an effector with 
the chain does not require much more information 
than a simple crossover plot. In  addition to  the 
behaviour of the metabolites of the chain there must 
be known : the concentrations of outer metabolites, 
the flux, the equilibrium constants of the various 
enzymatic steps and possible inner effectors and their 
rate laws. In  most cases simplifications can be prob- 
ably made (cf. [13]). Although the proposed 
procedure may be limited to some extent to a linear 
dependence of the reaction rates on the substrate 
concentrations it is much to be preferred to the use 
of the crossover theorem. 

We are very grateful to Professor S. Rapoport whose 
intuitive suspicion against the uncritical use of the crossover 
theorem was the starting point for this work. We thank 
him also for critical reading of the manuscript. 
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