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Abstract—A sequential algorithm is presented for computing the exact Euclidean

distance transform (DT) of a k-dimensional binary image in time linear in the total

number of voxelsN. The algorithm, which is based on dimensionality reduction and

partial Voronoi diagram construction, can be used for computing the DT for a wide

class of distance functions, including the Lp and chamfer metrics. At each

dimension level, the DT is computed by constructing the intersection of the Voronoi

diagram whose sites are the feature voxels with each row of the image. This

construction is performed efficiently by using the DT in the next lower dimension.

The correctness and linear time complexity are demonstrated analytically and

verified experimentally. The algorithm may be of practical value since it is relatively

simple and easy to implement and it is relatively fast (not only does it run in

OðNÞ time but the time constant is small). A simple modification of the algorithm

computes the weighted Euclidean DT, which is useful for images with anisotropic

voxel dimensions. A parallel version of the algorithm runs in OðN=pÞ time with

p processors.

Index Terms—Euclidean distance transform, closest feature transform,

Voronoi diagram.

æ

1 INTRODUCTION

A k-dimensional (k-D) binary image is a function I from the
elements of an n1 � . . .� nk array to f0; 1g. The elements are called
pixels when k ¼ 2 and voxels when k � 3. Voxels of value 0 and 1
are called background voxels and foreground or feature voxels
(FVs), respectively. For a given distance metric, the distance
transform (DT) of an image I is an assignment to each voxel x of
the distance between x and the closest feature voxel (CFV) in I.
The closest feature transform (FT), also known as the nearest feature
transform and the nearest neighbor transform, of an image I is an
assignment to each voxel x of the identity of the CFV in I. It is clear
that a DT can be computed from a FT in time linear in the total
number of voxels N ¼ n1 � . . .� nk.

DTs are useful for a variety of image processing and computer
vision applications [25]. Examples include nearest-neighbor inter-

polation, planar tesselation, morphological image processing (e.g.,
thinning, thickening, and skeletonization), pattern matching (e.g.,
object detection and stereo feature matching), robot collision
avoidance, and path finding. DTs are widely used in medical image

processing. For example, in surface-based image registration, the
DT of a binary image in which the FVs represent a surface provides a
convenient and efficient method for precomputing and storing
point-to-surface distance [12], [14], [19], [39], [40]. DTs have also

been used in nonrigid image registration [22], [27], morphological
image segmentation [15], volume visualization (distance-based

acceleration techniques for ray-tracing) [37], [49], and shape-based
interpolation [16], [32].

The Euclidean DT (EDT) is the DT for which the metric is
Euclidean distance. Sometimes the EDT is used, but often, even
when an exact EDT is desired, an approximation of the EDT such as
the chamfer DT is used because it is substantially faster to compute.
For some applications, an exact EDT is required. For example,
various approximations of the EDT have been used to generate
skeletons of binary objects [1], [24], but only the exact EDT can
produce an accurate skeleton that is reversible (i.e., allows exact
reconstruction of the object), rotation invariant, and minimal [13].
The 3D EDT has recently been used to generate skeletons of
radiosurgical targets (e.g., brain tumors) for treatment planning and
optimization in multiisocentric stereotactic radiosurgery [45], [46].

The exact EDT of a k-D image can obviously be computed by
using a brute-force exhaustive search for CFVs, which is a procedure
that inherently requires OðN2Þ time. Algorithms for computing the
exact EDT of a 2D image have been reported that require OðN3=2Þ
time [25], [26], andOðN logNÞ time [20]. It is clear that the exact EDT
of a k-D image can be computed in OðN logNÞ time by calculating
the Voronoi diagram of the FVs [6], [29]. A relatively efficient, but
not linear time, algorithm for computing the EDT of a k-D image was
achieved using gray-scale morphology decomposition [18].

A substantial amount of effort has been devoted to algorithms
that compute the DT by propagation. One type of algorithm
propagates distance values from voxels to neighboring voxels.
Algorithms that require OðNÞ time for computing the DT of a k-D
image for the L1, L1, and chamfer (a weighted L1 metric that
provides an approximation to theL2 metric) metrics with a two-pass
sequential raster scan are well-known [4], [5], [25], [26], [34], [35],
[48]. The weights in the kernel (propagation mask) can be chosen to
optimize the approximation of a chamfer DT to the EDT [3], [5], [33],
[38], [41], [44]. This type of approach has also been used to compute
constrained DTs, which are DTs where distance is defined only
within a specified constraint region [28], [42]. An alternative type of
algorithm propagates the position of the CFV (a vector pointing to
the CFV) rather than distance (a scalar). This idea was originally
proposed as a sequential raster-scan algorithm for 2D images [9] and
was later generalized to arbitrary dimensions [31] and images with
anisotropic voxel dimensions [23]. These raster-scan algorithms
require OðNÞ time and produce an approximate EDT with small
error (the maximum error in 2D is less than one pixel [9]). An
alternative to raster-scan propagation is ordered propagation. In
these algorithms, the information (distance [28], [42] or a vector
pointing to the CFV [8], [10], [30], [43]) is propagated from each voxel
to its neighbors, starting from the contours of the object and using a
dynamic list to store the pixels in the propagation front. Standard
propagation algorithms provide only approximate EDTs because
the tiles of the Voronoi diagram on a discrete lattice are not
necessarily connected sets (the tiles on a continuous plane are
connected sets). Parallel algorithms can overcome this limitation and
provide exact EDTs by allowing multiple propagation fronts to
follow each other [11], [18], [47]. Ordered propagation can provide
an exact EDT by emulating multiple-front propagation [10], [23],
[30], but the multiple propagation mechanics common to these exact
EDT algorithms require many unnecessary computations while
successive propagation fronts reach the same voxel and update its
value, and these algorithms requireOðN3=2Þ time for some 2D images
[8]. One recent algorithm first computes an approximate EDT using
an ordered propagation scheme and then produces an exact EDT by
restoring the connectivity of the Voronoi tiles by considering larger
neighborhoods on the tile boundaries [8] (a similar approach using
raster-scan propagation has also been reported [7]). This is the only
propagation algorithm we are aware of that produces an exact EDT
in apparently OðNÞ time, but the time complexity was verified only
experimentally, and extension to multidimensional or anisotropic
images has not been reported.
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Saito and Toriwaki [36] presented an algorithm for computing
the exact EDT of a 2D or 3D image that is based on dimensionality
reduction, that is, at each dimension level, the EDT is determined
by using the EDT in the next lower dimension. They used some
geometrical bounds to reduce search intervals. The computational
cost of their algorithm is image dependent and requires OðN3=2Þ
time for some 2D images; this time complexity has been observed
experimentally by us (unpublished) and others [7], [8]. Breu et al.
[6] presented an algorithm which also uses the idea of dimension-
ality reduction for computing the Euclidean FT of a 2D image in
OðNÞ time by constructing the intersection of the Voronoi diagram
whose sites are the FVs with each row of the image. Then, the EDT
is computed from the FT. Guan and Ma [17] improved the
computational performance of the Breu approach by taking
advantage of the fact that neighboring voxels tend to have the
same CFVs. They propagate CFV information in the form of
segment lists rather than individual voxels.

In this paper, we first present an algorithm for computing the FT
of a k-D binary image inOðNÞ time. This algorithm can be used for a
wide class of distance functions, including Euclidean distance as
well as theLp and chamfer metrics. We then present an algorithm for
computing, directly, the EDT in arbitrary dimensions that runs in
OðNÞ time. This algorithm is in a sense a generalization of the Breu
algorithm to arbitrary dimensions. Like Guan and Ma, we use
properties of the L2 metric to improve computational performance
with respect to Breu. Unlike both Breu and Guan and Ma, we
compute the EDT directly rather than first compute the FT; as a
result, our algorithm is an order of magnitude faster than their
algorithms. We believe this is the first algorithm that computes the
exact EDT of a k-D image inOðNÞ time without first computing a FT
and for which the correctness and time complexity are formally
verified. This algorithm may be of practical value since it is relatively
simple and easy to implement and it is relatively fast (not only does it
run in OðNÞ time but the time constant is small). A simple
modification of the algorithm computes the weighted Euclidean
DT, which is useful for images with anisotropic voxel dimensions. A
parallel version of the algorithm runs in OðN=pÞ time with
p processors, 1 � p � minðn1; . . . ; nkÞ.

2 DISTANCE FUNCTIONS AND PROPERTIES

We are interested in the Lp distance metric

�ðx;yÞ ¼
Xk
i¼1

jxi ÿ yijp
 !1=p

;

where x and y arek-tuples,xi and yi are the ith coordinates of x and y,
and 1 � p � 1. The L1, L2, and L1 metrics are known as the
Manhattan or city-block, Euclidean, and chessboard distances,
respectively. We are also interested in the weighted Lp distance
metric

�ðx;yÞ ¼
Xk
i¼1

jwiðxi ÿ yiÞjp
 !1=p

; ð1Þ

wherewi is the weight of the ith coordinates of x and y. This is useful
for images with anisotropic voxel dimensions. For example, medical
3D image volumes are frequently stacks of 2D image slices where
the slice thickness (w3) is different from the in-slice pixel size
(w1 ¼ w2). We are interested specifically in Euclidean and weighted
Euclidean distance. We are interested more generally in distance
metrics � : Rk �Rk ! R that satisfy the following properties:

Property 1. Positive definiteness. �ðx;yÞ ¼ 0 iff x ¼ y.

Property 2. Symmetry. �ðx;yÞ ¼ �ðy;xÞ for any x and y.

Property 3. Triangle inequality. �ðx; zÞ � �ðx;yÞ þ�ðy; zÞ for any x,
y, and z.

Property 4. Monotonicity. Let x and y be two k-tuples that differ only in
the values of the dth coordinates (i.e., xi ¼ yi, i 6¼ d). For
concreteness, assume that xd < yd. For any u and v such that either

1) �ðx;uÞ � �ðx;vÞ and �ðy;vÞ < �ðy;uÞ or 2) �ðx;uÞ <
�ðx;vÞ and �ðy;vÞ � �ðy;uÞ holds, ud < vd.

Property 5. Let x and y be two k-tuples that differ only in the values of
the dth coordinates (i.e., xi ¼ yi, i 6¼ d). Let u and v be two k-tuples
with identical values of the dth coordinates (i.e., ud ¼ vd). If
�ðx;uÞ � �ðx;vÞ, then �ðy;uÞ � �ðy;vÞ.
It is well known that the Lp, weighted Lp, and chamfer metrics

satisfy Properties 1-4. Property 5 follows from the contrapositive of
Property 4. Thus, any distance function that satisfies Property 4
also satisfies Property 5. Property 5 is not an independent
property, but it is convenient to include for later reference.

In the next section, we give an algorithm for computing the FT
of a k-D binary image for any distance metric that satisfies
Properties 1, 2, 3, 4, and 5. This algorithm is not appropriate for all
distance functions. For example, consider the distance function
�ðx;yÞ ¼ jx1 ÿ y1jjx2 ÿ y2j, which is given as an example in [26].
This function satisfies Properties 2 and 5 but not 1, 3, and 4.

3 THE FEATURE TRANSFORM ALGORITHM

The Voronoi diagram VS of a set of Voronoi sites S ¼ ff ig for i ¼
1; . . . ; nS consists of a set of disjoint Voronoi cells VS ¼ fCf ig for
i ¼ 1; . . . ; nS [2], [29]. The Voronoi cell Cf is the set of all points whose
closest point is f together with the cell boundary formed by points
equidistant from f and one or more other Voronoi sites. The Voronoi
site f is also known as the Voronoi center of Cf . The FT of a binary
image can be thought of as a discretized version of the Voronoi
diagram whose Voronoi sites are the FVs of the image. If the
complete Voronoi diagram is constructed, the FT can be computed
easily by querying the Voronoi diagram, i.e., by recording for each
voxel the Voronoi site of the Voronoi cell in which the voxel lies. In
this algorithm, we do not construct the complete Voronoi diagram.
Instead, our approach is based on the idea of dimensionality
reduction and partial Voronoi diagram construction. At each
dimension level, the FT is determined by constructing directly the
intersection of the Voronoi diagram whose Voronoi sites are the FVs
with each row of the image. This construction is performed
efficiently by using the FT in the next lower dimension.

The algorithm takes as input the k-D binary image I :
½1::n1� � . . .� ½1::nk� ! f0; 1g and outputs the FT

F : ½1::n1� � . . .� ½1::nk� ! ½1::n1� � . . .� ½1::nk�:

For each voxel x in I, F ðxÞ is the CFV in I. If two or more FVs are
equidistant from x, then one of them is chosen arbitrarily to be
F ðxÞ. The DT can be computed easily from F . Let Id;x denote the
d-dimensional subimage that is the restriction of I to the subspace
whose last kÿ d coordinates are identical to the corresponding
coordinates of x. Let Fd denote the FT at the dth dimension level,
where for each voxel x in I, FdðxÞ is the CFV in Id;x. If two or more
FVs are equidistant from x, then one of them is chosen arbitrarily
to be FdðxÞ. Obviously Ik;x ¼ I and Fk ¼ F . We define F0ðxÞ ¼ x if
IðxÞ ¼ 1, ; otherwise, where ; denotes an undefined CFV.
Consider, for example, a 3D binary image I. For each voxel x in
I, F1ðxÞ is the CFV in I1;x, which is the image row containing x;
F2ðxÞ is the CFV in I2;x, which is the image plane containing x; and
F3ðxÞ ¼ F ðxÞ is the CFV in the image I3;x ¼ I.

Let Xd ¼ fxig for i ¼ 1; . . . ; nd denote the set of nd voxels in I
formed by varying the dth coordinate from 1 to nd and fixing all
other coordinates. Let Rd denote the “row” (the continuous line)
running through the set of voxels Xd. There are n1 � . . .� ndÿ1 �
ndþ1 � . . .� nk ¼ N=nd such rows. Let Sd denote the set of FVs in
the binary subimage Id;xi (all voxels xi in the set Xd belong to the
same subimage). Let V�d = VSd \Rd denote the intersection of the
Voronoi diagram VSd whose Voronoi sites are the set of FVs Sd
with the row Rd. Let S0d = fFdÿ1ðxiÞg denote the set of CFVs in the
next lower dimension for the set of voxels Xd ¼ fxig on the row
Rd. As stated above, if two or more FVs are equidistant from x,
then one of them is chosen arbitrarily to be Fdÿ1ðxÞ. Thus, S0d has at
most one FV for each voxel xi. Clearly, S0d � Sd.
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Remark 1. Let f ¼ Fdÿ1ðxÞ, where x is a voxel on the row Sd.
Clearly, the FV f belongs to the set Sd. Let g be any other FV
belonging to the set Sd such that f and g have identical values of
the dth coordinate (i.e., fd ¼ gd). From the definition of Fd,
�ðx; fÞ � �ðx;gÞ. Let y be any other point on the row Rd. By
Property 5, �ðy; fÞ � �ðy; gÞ, i.e., all points on the rowRd are at
least as close to f as they are to g. This means that either the
Voronoi cell for site g does not intersect Rd ð�ðx; fÞ < �ðx; gÞÞ,
or that the Voronoi cells for sites f and g both intersectRd along
a common boundary ð�ðx; fÞ ¼ �ðx; gÞÞ and the choice of f or g
is arbitrary. Since all FVs in the set Sd are either in the set S0d or
have the same dth coordinate as a FV in the set S0d, V�d=
VSd \Rd= VS0

d
\Rd. Thus, to construct V�d, it is sufficient to

consider the set S0d (rather than the larger set Sd).

Let S�d denote the subset of Sd that are the Voronoi sites (FVs) of
Voronoi cells in V�d, i.e., that are the Voronoi sites of Voronoi cells
in VSd that intersect Rd. Clearly, S�d � S0d � Sd. Fig. 1 shows an
illustrative example of the relationship among Sd, S

0
d, and S�d .

Remark 2. Let f and g be FVs belonging to the set S�d . Let x and y
be voxels on the row Rd that lie in the Voronoi cells Cf and Cg,
respectively. By Property 4, if xd < yd, then fd < gd. Also, if
fd < gd, then xd < yd. Thus, V�d is a set of disjoint line segments
V�d = fC�f ig. If the set of Voronoi sites (FVs) S�d are sorted by the
dth coordinate, the associated Voronoi cells are similarly
ordered. That is, as the row Rd is traversed from low values
of the dth coordinate to high values, C�f is visited before C�g iff f
precedes g in the ordered set S�d . To compute Fd for each voxel

on the row Rd, it is not necessary to actually construct V�d =
fC�f ig. It is sufficient to determine the ordered set S�d and visit
each voxel by traversing the row in dth coordinate order.

Remark 3. Let u, v, and w be three FVs belonging to the set S0d such
that ud < vd < wd. Let xuv denote the point on the lineRd that is
equidistant from u and v, i.e., �ðu;xuvÞ = �ðv;xuvÞ, and let
ðxuvÞd denote the dth coordinate of this point. Let xvw denote
another point defined analogously. By Property 4 and Remark 2,
Cv does not intersect Rd if ðxuvÞd > ðxvwÞd.
The algorithm for computing the FT F from the binary image I is

performed with the initial invocation COMPUTEFTðkÞ. The algo-
rithm variables I; F ; n1; . . . ; nk are global variables. The procedure
COMPUTEFT (Fig. 2) implements dimensionality reduction using
recursion. The procedure VORONOIFT (Fig. 3) constructs and
queries the partial Voronoi diagram V�d ¼ VSd \ Rd ¼ VS�

d
\Rd. The

algorithm variable F contains successively F0, F1, . . . , Fkÿ1, Fk ¼ F .
It contains Fdÿ1 before the call to VORONOIFT and Fd upon return.
As noted in Remark 2, the algorithm does not actually construct V�d,
but instead determines the ordered set S�d (VORONOIFT, lines 1-14)
and queries the diagram (visits each voxel) by traversing the row in
dth coordinate order (lines 18-24). The set S�d ¼ fglg is constructed
from the set S0d ¼ ff ig by deleting those FVs in S0d that are the
Voronoi sites of Voronoi cells that do not intersect Rd. As noted in
Remark 1, it is sufficient to consider the set S0d ¼ fFdÿ1ðxiÞg. This is
the fundamental basis of the dimensionality reduction approach.
The set S�d is constructed in lines 1-14. It is initialized with the first
two FVs of S0d. In the outer loop, additional FVs are added from S0d
one at a time. In the inner loop, FVs that are the Voronoi sites of
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Fig. 1. Illustrative example of the relationship among Sd, S
0
d, and S�d . In all panels, the dotted lines represent the grid of an 8� 8 binary image, the open circles represent

Xd ¼ fxig, the thick line running through the open circles represents the rowRd, the filled circles represent FVs, the thin lines represent the Voronoi cell boundaries of the
Voronoi diagram whose Voronoi sites are the FVs, and d ¼ k ¼ 2. (a) The FVs shown are the set Sd. (b) The FVs shown are the set S0d ¼ fFdÿ1ðxiÞg, i.e., the set of CFVs in
the next lower dimension for the set of voxels fxig on the rowRd. In this example, Fdÿ1ðxiÞ is the CFV in the same column as xi. The two FVs indicated by arrows in the top
left panel are equidistant fromRd. The top one was chosen arbitrarily. (c) The FVs shown are the set S�d . (d) The FVs shown are the set S�d obtained by choosing the bottom
of the two equidistant FVs in the top left panel. Note that S�d � S0d � Sd and V�d = VSd \Rd = VS0

d
\Rd = VS�

d
\Rd. This is true for both choices of the two equidistant FVs.
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Voronoi cells that do not intersect Rd are removed. This is
accomplished with the procedure REMOVEFTðu;v;w;RdÞ, which
returns TRUE if ðxuvÞd > ðxvwÞd, FALSE otherwise (see Remark 3).
Let S0�d ¼ fg1; . . . ;gl; f iþ1; . . . ; fndg denote an intermediate set
of FVs during construction. Before entering the outer loop,
S0�d ¼ ff 1; . . . ; fndg ¼ S0d. It is easy to verify that at the end of the
inner loop, VS0

d
\Rd ¼ VS0�

d
\Rd. It is also easy to verify that at the

end of the inner loop, all Voronoi cells in Vfg1 ;...;glg intersectRd. Thus,
after exiting the outer loop, S0�d ¼ fg1; . . . ; gnSg ¼ S�d . In summary,

V�d ¼ VSd \Rd ¼ VS0
d
\Rd ¼ VS0�

d
\Rd ¼ VS�

d
\Rd:

There are two subtleties in VORONOIFT, line 20 worth noting.
First, although an if statement may seem sufficient, in fact the while
statement is necessary. The reason is that although the FT is discrete,
the Voronoi diagram VS�

d
and the row Rd are continuous. All

Voronoi cells in VS�
d

intersect Rd, but the first several cells may, for
example, intersectRd only where the dth coordinate is negative (an
example is illustrated in Fig. 1). Also, it is possible that a Voronoi cell
in VS�

d
intersectsRd only between two consecutive voxels xi and xiþ1

and, thus, the intersection does not contain any voxel onRd. Second,
the “> ” symbol in the distance comparison could be replaced with
the “� ” symbol. When two FVs are equidistant from the voxel x,
FdðxÞ is not unique and the choice is arbitrary.

Initialization of F0 (COMPUTEFT, lines 2-8) takes OðNÞ time.
At each dimension d, the procedure VORONOIFT is executed for
each of the N=nd rows. For each row, construction of S�d takes
OðndÞ time, since there are nd FVs in S0d, and each FV is added to
and removed from S�d at most once. This assumes that calculating
xuv requires Oð1Þ time. Querying (visiting each voxel by traversing
the row) simply requires OðndÞ time. Thus, at each dimension, the
time complexity is Oðnd �N=ndÞ ¼ OðNÞ, and the algorithm for
computing the FT of I runs in OðNÞ time. Finally, it is clear that the
DT of I can be computed from the FT in OðNÞ time.

4 THE EUCLIDEAN DISTANCE TRANSFORM ALGORITHM

If the distance metric is the L2 metric (Euclidean distance), then
the procedure REMOVEFT can be implemented simply using only
integer arithmetic. The distance between u and xuv can be
computed as

�2ðu;xuvÞ ¼ �2ðu;RdÞ þ ðud ÿ ðxuvÞdÞ
2;

where

�2ðu;RdÞ ¼
X
i 6¼d
ðui ÿ riÞ2

is the distance between u and the rowRd. Since xuv denotes the point
on Rd that is equidistant from u and v, �2ðu;xuvÞ ¼ �2ðv;xuvÞ,
which can be rearranged to obtain

ðxuvÞd ¼
�2ðv;RdÞ ÿ�2ðu;RdÞ þ v2

d ÿ u2
d

2ðvd ÿ udÞ
:

A similar expression can be found for ðxvwÞd, from which it is easy to
verify that the inequality ðxuvÞd > ðxvwÞd is equivalent to the
inequality

c ��2ðv;RdÞ ÿ b ��2ðu;RdÞ ÿ a ��2ðw;RdÞ ÿ abc > 0; ð2Þ

where a ¼ vd ÿ ud, b ¼ wd ÿ vd, c ¼ wd ÿ ud ¼ aþ b. This inequality
requires only eleven integer arithmetic operations for its evalua-
tion if the squared distances between the FVs u, v, and w and the
row Rd are known (e.g., precomputed).

The algorithm in the previous section provides a method for
computing the FT of the binary image I. The DT still needs to be
computed from the FT. For the Lp metric, in general, and the L2

metric, in particular, it is possible to compute the DT directly. Let
us consider the squared EDT D. For each voxel x in I, DðxÞ ¼
�2ðx; F ðxÞÞ is the squared Euclidean distance between x and the
CFV in I. By analogy with the definition of Fd in the previous
section, let DdðxÞ ¼ �2ðx; FdðxÞÞ. We define D0ðxÞ = 0 if IðxÞ = 1,
1 otherwise. We observe that if u ¼ Fdÿ1ðxÞ, then

�2ðu;RdÞ ¼ �2ðx;uÞ ¼ �2ðx; Fdÿ1ðxÞÞ ¼ Ddÿ1ðxÞ:

This important observation allows us to simply modify the
FT algorithm procedures COMPUTEFT and VORONOIFT to obtain
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Fig. 2. Procedure ComputeFT ðd; jdþ1; . . . ; jkÞ.

Fig. 3. Procedure VoronoiFTðd; j1; . . . ; jdÿ1; jdþ1; . . . ; jkÞ.
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the squared EDT algorithm procedures COMPUTEEDT (Fig. 4) and
VORONOIEDT (Fig. 5).

The algorithm for computing the squared EDTD from the binary
image I is performed with the initial invocation COMPUTEEDT(k).
The algorithm variable D contains successively D0, D1, . . . , Dkÿ1,
Dk ¼ D. It contains Ddÿ1 before the call to VORONOIEDT and Dd

upon return. In VORONOIEDT, the procedure variable
fi ¼ Ddÿ1ðxiÞ ¼ �2ðf i;RdÞ, gl ¼ �2ðgl;RdÞ, and hl is the dth co-
ordinate of gl. The FV deletion procedure for the squared EDT
algorithm is REMOVEEDT (�2ðu;RdÞ, �2ðv;RdÞ, �2ðw;RdÞ, ud, vd,
wd), which returns TRUE if the inequality in (2) holds, FALSE
otherwise.

5 DISCUSSION

The EDT algorithm as presented above produces the squared EDT
for isotropic voxels of unit dimension. All computations can be
implemented in integer arithmetic. The EDT can obviously be
obtained simply from the algorithm output by taking the square
root of each element. The output can be scaled to account for
nonunit voxel dimension. And, the algorithm can be modified
easily to accommodate the weighted EDT (see (1)), e.g., for medical
3D images with anisotropic voxel dimensions. The conversion
requires simply replacing the six occurrences of the coordinate
variable “i” (but not the four occurrences of the subscript “i,”
which is an array index) in VORONOIEDT, lines 6, 8, 11, 20, and
23, by “wdi,” where wd is the dth coordinate weight (see (1)).

The squared EDT algorithm has a small time constant. All of the
arithmetic operations occur in VORONOIEDT, lines 8 and 20. In line
8, the procedure REMOVEEDT is essentially the evaluation of (2),
which requires 11 integer arithmetic operations. In line 20, the
distance comparison requires seven arithmetic operations. As
explained earlier, both of these lines will execute a maximum of
twice per voxel per dimension. Thus, the squared EDT algorithm
requires a maximum of 36 integer arithmetic operations per voxel per
dimension, not including index increment/decrement, indirection,
and assignment operations. It is easier to implement COMPUTEEDT
for a fixed number of dimensions (e.g., k ¼ 3) by computing D0,D1,
. . . ,Dkÿ1, andDk ¼ D in consecutive separately coded loops than by
recursion. We note that the computation of D1 can be implemented
more efficiently as a simple forward-and-reverse distance propaga-

tion than as a call to the procedure VORONOIEDT. This requires a
maximum of eight integer arithmetic operations per voxel. Also, we
note that the number of arithmetic operations in VORONOIEDT, line
20, can be reduced by taking advantage of similarities in successive
computations instead of treating them as independent ones; the
distance comparison requires only four arithmetic operations when l
is incremented. Using these simple optimizations, the squared
EDT algorithm requires a maximum of 8þ 33ðkÿ 1Þ, which is 41 for
k ¼ 2 and 74 for k ¼ 3, integer arithmetic operations per voxel, not
including index increment/decrement, indirection, and assignment
operations.

The squared EDT algorithm executes substantially faster than the
FT algorithm because much of the distance computation necessary
for the FV deletion procedure (see (2)) is inherently stored in Ddÿ1.
We measured the execution time of straightforward (but not
necessarily well optimized) implementations of the FT and squared
EDT algorithms for 2D and 3D images over a wide range of sizes and
content. Our tests included images with a single FV in a corner;
images with randomly generated FVs where the number of FVs was
set at 1, 2, 5, 10, 20, 50, 80, 90, 95, 98, or 99 percent; images with solid
circles/spheres or squares/cubes where the number, size, position,
and orientation of the objects were randomly generated; and medical
images (CT and MR images) of heads, where FVs were obtained by
using various edge operators. The fastest execution times occurred
for the special cases of one FV in a corner or with a small number of
randomly generated FVs. This is probably due to the fact that for
images with sparse FVs, execution of line 8 in VORONOIEDT is
frequently skipped. Except for these special cases, the execution
times were remarkably constant and independent of image content,
and there was little variation of execution time per voxel with the
total number of image voxels N . The execution time of the squared
EDT algorithm was approximately 0:23�s/voxel (4.3 Mvoxel/s) for
2D and 0:38�s/voxel (2.6 Mvoxel/s) for 3D on a Sun Microsystems
SunBlade 2000 workstation with 1.05 GHz UltraSPARC III cpu, and
approximately 0:21�s/voxel (4.8 Mvoxel/s) for 2D and 0:36�s/voxel
(2.8 Mvoxel/s) for 3D on a PC with 2.2 GHz Pentium 4 cpu. The
execution time of the FT algorithm was approximately four times
longer in each case than that of the squared EDT algorithm. The
memory requirements of the EDT algorithm are approximately half
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Fig. 4. Procedure ComputeEDT(d; jdþ1; . . . ; jk).

Fig. 5. Procedure VoronoiEDT(d; j1; . . . ; jdÿ1; jdþ1; . . . ; jk).
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that of the FT algorithm because no intermediate FT is computed. We
also experimentally verified the correctness of the squared EDT
algorithm by comparing the output with EDTs computed using two
other algorithms [18], [36] and an implementation based on
k-D binary search trees. We observed no differences between the
outputs of the squared EDT algorithm and the outputs of the other
algorithms for more than one million randomly generated tests.

Because both the FT and squared EDT algorithms work one
row at a time, they can be easily parallelized. Since the N=nd row
computations at the dth dimension level are independent of each
other, all computations at the dth dimension level can be
performed in Oðnd �N=nd � 1=pÞ ¼ OðN=pÞ time with p proces-
sors, 1 � p � nd. Thus, parallel versions of these algorithms run in
OðN=pÞ time with p processors, 1 � p � minðn1; . . . ; nkÞ. This
approach is similar to the parallel method in [36]. It is
fundamentally different from the one in [11], which is a divide-
and-conquer algorithm that parallelizes a raster-scan propagation
DT algorithm [21].
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