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Abstract. We present an algorithm for computing certain kinds of three- 
dimensional convex hulls in linear time. Using this algorithm, we show that the 
Voronoi diagram of n sites in the plane can be computed in O(n) time when these 
sites form the vertices of a convex polygon in, say, counterclockwise order. This 
settles an open problem in computational geometry. Our techniques can also be 
used to obtain linear-time algorithms for computing the furthest-site Voronoi diagram 
and the medial axis of a convex polygon and for deleting a site from a general 
planar Voronoi diagram. 

1. Introduction 

Suppose we are given a set S of n sites, S={p~,p: , . . .  ,p ,} ,  in the Eucl idean  
plane. For any two sites Pi and  p~, the set of  points  closer to p~ than to pj is the 
open hal f -p lane  con ta in ing  Pi that is del imited by the perpendicular  bisector of  
Pi-'~j. Let us denote  this hal f -plane by H(p~, pj). The locus of  points  closer to p~ 
than to any  other  site, which we denote  by V(i), is the intersect ion of  n - 1  
half-planes,  i.e., V(i)=f'~i,,j H(p~, pj); V(i) is called the Voronoi region associ- 

ated with p~. The n regions V(i), which may be u n b o u n d e d ,  divide the p lane  
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into a convex net usually called the Voronoi diagram of S. The straight-line dual 
of the Voronoi diagram is called the Delaunay triangulation of  $. Because of the 
extensive applications of Voronoi diagrams and Delaunay triangulations in 
diverse areas of science and technology, the problem of computing these structures 
has received considerable attention in recent years. In 1978 Shamos [10] showed 
that the Voronoi diagram of n sites in the plane can be computed in O(n log n) 
time, and, furthermore, that this bound is optimal (up to a multiplicative constant) 
since the convex hull of  these sites can be extracted in O(n) time from the 
Voronoi diagram. 

The f~(n log n) lower bound in Shamos [10] does not apply when the input 
sites are the vertices of  a convex polygon (given in counterclockwise order) rather 
than an arbitrary set of  points in the plane. Consequently, it has remained an 
open problem whether the Voronoi diagram of the vertices of  a convex polygon 
can be computed in linear time [9]. In this paper  we settle this question in the 
affirmative by demonstrating a linear-time algorithm for this problem. We also 
show that the technique used here can be used to reduce the time complexity of 
several other problems. This technique has a number  of  novel aspects that make 
it interesting in its own right. 

Consider the following problem: construct the convex hull of  a set of  n given 
points in three dimensions when it is known that the projections of  the given 
points on the xy plane form the vertices of  a convex polygon and the counterclock- 
wise order of  these projections in this plane is provided (see Fig. 1). The main 
result of  this paper  is that this problem can be solved in linear time. By using 
the lifting map given by Guibas and Stolfi [2] that takes (x, y) to (x, y, x2+y2), 
we can reduce the problem of  constructing the closest-site Voronoi diagram for 
a set of  n vertices of  a convex polygon given in order to a special case of  this 
problem and hence we can obtain the Voronoi diagram of  such a set in linear time. 

The geometric dual of  this problem is also interesting. By dualizing our 
algorithm, we obtain the following: suppose we are given n half-spaces H~, 
H2,.. . ,  H,, in three dimensions. Suppose furthermore that we are also given a 
plane p on which these half-spaces define n half-planes intersecting in a convex 
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find the convex hull of points a-j in linear time. 
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polygon whose sides lie on the planes bounding H~, H 2 , . . . ,  Hn, in this order. 
Then the intersection of these half-spaces can be computed in linear time. 

2. The Algorithm 

In what follows we give a linear-time algorithm for computing the convex hull 
of n points in space, assuming that the projections of these points on the xy 
plane form the vertices of  a convex polygon in the given order. The method uses 
nothing but tetrahedron tests among quadruples of the given points. A tetrahedron 
test on the points a, b, c, and d returns the sign of the (signed) volume of the 
tetrahedron abcd and is denoted by (abcd).  It can be computed by taking the 
determinant of  the matrix with rows (a, 1), (b, 1), (c, 1), (d, 1). As given below, 
the algorithm only computes the "upper  half"  of the convex hull, i.e., those faces 
whose outward normals have a component in the positive z direction. The lower 
half can be computed analogously. In the exposition below we assume that no 
four of the given points are coplanar and that no plane determined by three of  
the points is vertical (i.e., parallel to the z axis). In an actual implementation 
these nondegeneracy conditions could be removed without significant 
complications. 

The algorithm is based on dividing the given set S of  n points into a blue set 
B and a red set R, and then, after recursively computing the convex hull of  the 
blue points, further subdividing the red set into a crimson set C and a garnet set 
G. The key properties of  this subdivision are: 

(1) Each of  the color classes B, R, and C contains at least a fixed fraction of  
the original n points. 

(2) No two crimson points can "see each other" over the hull of the blue 
vertices (i.e., the line segment joining them cannot lie above the blue hull) 
and each of them sees only a bounded number of  faces of that hull. 

In property (2) we say that crimson point c "sees" a face rst of the blue hull 
if c is above the plane rst, or, equivalently, the tetrahedron test (crst) returns 
positive (assuming that the triangle rst is counterclockwise when projected on 
the xy  plane.) This property allows us to add the crimson points to the blue hull 
in linear total time. The convex hull of the garnet points is then merged using 
a general linear-time procedure that is a straightforward generalization of  
Kirkpatrick's procedure for merging arbitrary Voronoi diagrams of points in the 
plane [3]. In more detail, the algorithm follows these steps: 

Procedure CH (computes the upper hull of the n points) 
(a) Partition the original points into the blue and red sets B and R. 
(b) Recursively compute the convex hull of the blue points. 
(c) Using the structure of the blue hull, select the crimson points C. 
(d) Add the crimson points to the blue hull one at a time. 
(e) Recursively compute the convex hull of the garnet points G. 
(f) Merge this garnet hull with the expanded blue hull of  step (d). 
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What makes the algorithm linear is the ability to add a fixed fraction of the 
red points to the blue hull at constant cost per point. The points added are the 
crimson points, that see disjoint subsets of the faces in the blue hull. 

We now give some additional details. First we describe how the blue-red 
partitioning is done (in linear time). 

Go counterclockwise around the convex polygon of projections on the xy 
plane. I f  a, b, c, d are four consecutive points (more precisely, points whose 
projections are consecutive), then label the edge bc as D (for down) if triangle 
abc is above bcd (a "sees"  bcd) and as U (for up) otherwise. This labeling is 
well defined, since the two triangles in question always overlap in z, because of 
convexity. The label o f  an edge can be determined by using a single tetrahedron 
test (e.g., edge bc is labeled D iff test abcd is positive). Label each vertex by the 
labels of  its two adjacent edges in counterclockwise order. Vertex labels can thus 
be UU, DD, UD, or DU (see Fig. 2). 

Now color the vertices red or blue (as in Fig. 2) so that the following conditions 
are met: 

(1) All UD vertices are colored red. 
(2) No two consecutive vertices are red. 
(3) No three consecutive vertices are blue. 

It is easy to check that such a coloring is always possible: first color all the 
UD vertices red; clearly no two of them can be adjacent. Then consider each of 
the uncolored intervals thus formed. Proceeding counterclockwise from each 
partitioning UD vertex, color the remaining vertices alternatively blue and red. 
I f  the interval has even length, then the last few vertices will be colored 
" . . .  RBRR," where the last R belongs to the next UD vertex. Since two consecu- 
tive reds are not allowed, we change the last interval vertex to a blue, thus 

Fig. 2. 
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Labeling the points blue and red. Blue vertices are dark and red are light. 
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obtaining " . . .  RBBR," which obeys the above conditions. Any coloring satisfying 
the above conditions provides a partitioning that has the following two additional 
properties: 

(1) The number of  blue and red vertices are each at least a fixed fraction of  n. 
(2) No pair of red vertices consecutive in the circular ordering can "see each 

other" across the blue hull. 

The second assertion requires that we check two situations (R and B refer to 
vertex colors; ordering is counterclockwise). In each case we establish that the 
edge connecting two consecutive red vertices passes below some edge belonging 
to the blue hull. 

(a) The RBR situation: the color sequence must be " . . .  BtRBRIB . . . .  " If  the 
central blue vertex is a UU, then the RR diagonal is below the blue 
diagonal o l ° B o lB. I f  it is a DD, then the RR diagonal is below the blue 
diagonal B I ° B o i °; and if it is a DU, then it is below both. In either case, 
RR cannot be above the blue hull (again "'below" here is to be understot~d 
in terms of the appropriate tetrahedron test). For example, in Fig. 2 the 
red diagonal ac is below the blue diagonals jb and bd. 

(b) The RBBR situation: the color sequence must be " . . .  BIRBBR[B....'" 
The two central blue vertices must arise out of  an edge label sequence 
that is UUU, DUU, DDU, or DDD. In the * UU cases, the RR diagonal 
is below the blue diagonal o I o o B o IB, and in the DD* cases it is below 
the blue diagonal B I ° B o o [ o. For example, in Fig. 2 the red diagonal eh 
is below the blue diagonal gi. 

The latter situation requires use of a transitivity property of  the tetrahedron 
test: let p, q, a, b, c be points in space such that a, b, and c lie in some comrr~on 
half-space supported by a plane passing through the line pq. Then if the tetra- 
hedron tests (pqab) and (pqbc) are positive, then so is (pqac) (see Fig. 3). In 
Fig. 2 this transitivity property means that since (efgh) is negative and (fghi) is 
negative, then (eghi) is negative, showing that eh is below gi. The supporting 
plane needed for transitivity is the vertical plane through gh. 

b 

p q 

SUPPORTING PLANE 
(PERPENDICULAR TO 
PAGE) 

Fig. 3. The transitivity property of the tetrahedron test, 
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Fig. 4. The topological ordering of  vertices around a tree. 

We next discuss how to subdivide the red vertices into the crimson and garnet 
sets (also in linear time). For this, we use the following purely combinatorial 
lemma. In this lemma, we call the counterclockwise ordering of the leaves around 
the planar embedding of  the tree the topological ordering of the leaves (see Fig. 4). 

Lemma. Suppose we have an unrooted binary tree T embedded in the plane ( a 
tree having only nodes of degree one and three), and associated with each leaf of 
T we have a "neighborhood," which is a subtree of T rooted at that leaf. Suppose 
also that the neighborhoods of leaves adjacent in the topological ordering are disjoint. 
(The neighborhoods of nonadjacent leaves may intersect.) Then there exists a fixed 
fraction of the leaves whose neighborhoods are completely disjoint. In fact, there is 
a fixed fraction of leaves with disjoint constant size neighborhoods such that no tree 
edge has its endpoints in two different neighborhoods, and such a set of leaves can 
be found in linear time. 

Proof. The proof  of this lemma is based on a simple case analysis on a contracted 
tree T* obtained from T by deleting its leaves. Each leaf of  T* was adjacent to 
two leaves in T, while each node in T* with degree two was adjacent to one leaf 
in T. We call the latter kind of  node a comb node. The remaining nodes of  T* 
have degree three and are called junction nodes. Comb nodes can join together 
to form long spines. However, if these spines were contracted to a single edge 
each, then the resulting tree would be an (unrooted) binary tree consisting only 
of junction nodes and leaves. 

The argument can be completed with the following observations: 

(a) If c is a leaf node of  T*, then it is adjacent to two leaves a and b in T. 
Not both a and b can have c in their neighborhood, so one of  them is 
isolated (see Fig. 5). 

(b) If  T* has comb nodes, then subdivide each spine formed by such nodes 
into groups of  five nodes each (plus allow one incomplete group per 
spine). Hanging off such a spinal group in T there will be five leaves, at 
least three of  which lie on the same side of the spine. These three leaves 
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Fig. 5. Case (a)--leaf nodes. 

are contiguous in the topological ordering of all leaves around T; let us 
call them a, b, and c in order. The neighborhood of b is then either 
confined to the central part of  the group, and as a result has size at most 
six, or else extends through the node adjacent to either a or c, thus cutting 
one of  them off. So at least one of  a, b, or c has a neighborhood confined 
to the group (see Fig. 6). 

The set of isolated neighborhoods implied by observations (a) and (b) provides 
the subset of  leaves sought by the lemma. Of the complete groups of five spinal 
nodes, one-fifth of the leaves of  T hanging off these nodes are in the subset. The 
remaining leaves of T are those hanging off leaves of T* and those hanging off 

spinal nodes in incomplete groups; there are at most four of  these ungrouped 
nodes per spine. Since, in a binary tree, the number of spines is three less than 
twice the number of leaves, for every eight ungrouped spinal nodes of T*, there 
is at least one leaf node of  T*. This gives a division of  the remaining leaves of 

a b c 

Fig. 6. Case (b)--comb nodes. 
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T into groups of  at most ten (eight or less hanging off spinal nodes of  T*, and 
two hanging off a leaf node of  T*), of  which one will be in our set. Our set thus 
comprises at least one-tenth of  all the leaves of T. 

Furthermore, we can find this set in linear time. We first divide the spinal 
nodes of T* into groups of five. This can be done using depth-first search. We 
then check the neighborhoods of leaves of  T. If  a neighborhood has the right 
structure, we add it to our set. If we find a neighborhood is too large, then we 
can stop checking it after we know it has size more than six. (This assumes that 
we can incrementally compute a neighborhood of size k in O(k) time.) [] 

In our case the tree T is that given by the (planar graph) dual of the blue 
convex hull, where each face of  the blue hull corresponds to an internal node 
of  the tree T. The leaves of  the tree T correspond to the outer edges of  the blue 
hull, where an outer edge is an edge adjacent to only one face of  the upper hull. 
The red points correspond to some of these leaves, and the neighborhood of a 
red leaf is the set of blue hull faces visible from the corresponding red point. If 
two red points are above the same blue face, then they can see each other over 
the blue hull. Thus, the "nonvisibility" condition between adjacent red points 
implies the disjoint neighborhoods condition of  the lemma above. Since we have 
allowed up to two consecutive blue vertices in the original ordering, there may 
be some outer edges of  the blue hull with no associated red point. However, this 
cannot be the case for more than half of the outer blue edges and so the 
corresponding "blue" leaves and all resulting degree-two nodes can be contracted 
out of  T without affecting the tree size by more than a constant factor. We can 
now apply the above combinatorial lemma to this modified tree. The set of leaves 
with disjoint neighborhoods guaranteed by the lemma is the set of crimson points. 
The rest of the red points are the garnet ones. No two crimson points can see 
each other over the blue hull. If  two points could see each other, then some blue 
edge would be visible from both points; this situation is impossible by the 
above lemma (it corresponds to a tree edge with endpoints in two different 
neighborhoods). 

All other steps in the algorithm are done in the obvious way. Steps (c) and 
(d) are accomplished by exploring the collection of visible faces of the blue hull 
from each crimson point. For step (c), the number of faces that need to be tested 
for visibility per crimson point is proportional to the size of  the neighborhood 
of  the corresponding leaf in the tree. Because there is at most one blue leaf 
between two adjacent red leaves (in the topological order), replacing the blue 
nodes we contracted can increase the size of  a neighborhood by at most a constant 
factor. Thus, even after the contracted blue nodes are replaced, neighborhoods 
of crimson points cannot have more than constant size. For step (d), since 
each crimson point sees only blue points, the crimson points can be added in 
incremental fashion in total linear time. 

The convex hull of  the garnet points is then computed recursively in step (e), 
and finally that hull is merged with the blue-crimson hull that is already available, 
again in linear total time. 
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We must still show how to merge the garnet convex hull with the blue hull in 
linear time. (We recolor crimson points blue for this part.) This is done using a 
simple algorithm based on Kirkpatrick's Voronoi merging algorithm [3]. Consider 
the final convex hull. I f  all the faces are triangles, it is easy to see that every face 
either has no or two "dichromatic" edges, where a dichromatic edge goes between 
a garnet and a blue point. To find the final hull, it suffices to find all dichromatic 
faces, since the remaining monochromatic faces from the red and blue convex 
hulls can easily be inserted. I f  we consider two faces sharing a dichromatic edge 
to be connected, then the dichromatic faces form chains, each chain starting and 
ending with a face containing a dichromatic outer edge. There can be no interior 
cycles of  dichromatic faces because the planar dual to the edge graph (of  the 
upper  hull) is a tree. To find all the dichromatic faces, we start with a dichromatic 
outer edge, find the face containing it, find the other dichromatic edge contained 
in this face, proceed to the other face on this dichromatic edge, and so on. When 
we reach the (dichromatic) outer edge at the end of this chain, we find another 
dichromatic outer edge and follow the chain of  dichromatic faces leading from 
it. We continue until we have processed all dichromatic outer edges. Finding the 
dichromatic outer edges is easy, since all outer edges can be obtained directly 
from the input. 

To go into the details of  this procedure, we must first describe the data structures 
we need. For each vertex of the blue (garnet) hull, we use a linked list containing 
the blue (garnet) edges incident to that vertex in cyclic order. This list begins 
(and ends) with an outer edge of the blue (garnet) hull. We are thus able to use 
this list to explore the monochromatic edges around a vertex in clockwise or 
counterclockwise order. (In the following, when we talk about the cyclic order 
of edges around a vertex, we mean cyclic order as seen from above.) 

Suppose we know a dichromatic edge ab (assume a is garnet and b blue) and 
we want to find a face containing it. In general, either ab is an outer edge, or 
we have already found one dichromatic face abc containing ab, so we need only 
find the dichromatic face on a given side of  ab. There must be one monochromatic 
edge in the face we want, and it must contain either a or b. We already know 
all the monochromatic  edges adjacent to a and b. We need only check these 
edges to see which one gives us the uppermost face meeting edge ab on the 
proper side of  this edge. To do this, we first find a candidate face with a 
monochromatic  garnet edge, next find a candidate edge with a monochromatic 
blue edge, and then compare these two faces to see which is above the other. (In 
Fig. 7 we need to check faces generated by the garnet edges ag3, ag4, and ags 
and the blue edges bb3 and bb4.) To find the candidate face containing a garnet 
edge quickly, we use the following fact: if we check, starting from either end of  
the cyclic list of  garnet edges through a and on the proper side of  ab, whether 
each face we test is above the following one, then the first face we find that is 
above the following one is the garnet candidate face (i.e., it is above every other 
face formed by b and a garnet edge through a that lies on the proper side of  
ab.) This is a consequence of  the convexity of  the garnet hull and the fact the b 
is outside this hull. I f  we start, not with the outer edge of  the garnet hull containing 
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g3 ~ g~ 

~ . . . . . . . . . .  ~ a 

Fig. 7. Finding the dichromatic face on edge ab. Two dichromatic faces in the same chain, ab2c 
and acb, have already been found. Besides these faces, only vertices and (monochromatic) edges 
adjacent to a and b are pictured. Light points are garnet and dark are blue. 

a, but with the first garnet edge through a that is after ab in cyclic order (in Fig. 
7, edge ag3) then the garnet candidate face we find will eliminate all previously 
checked garnet edges through a from being in the convex hull. (It will pass above 
these edges.) Thus, every time we check an edge we either find a candidate face 
or we eliminate one edge from ever being considered again. This shows that the 
time taken in checking the edges is linear. 

We still need to show how to find the two starting edges quickly. Specifically, 
the garnet (blue) starting edge is the (not yet eliminated) edge through a (through 
b) closest in cyclic order to edge ab and on the proper side of  this edge. If ab 
is an outer edge, finding the starting edges is easy. If  not, we have already found 
a dichromatic face abc containing ab (see Fig. 7). We can assume without loss 
of  generality that c is a blue vertex. ( I f  it is garnet, reverse the colors.) To find 
the starting edge through b, we start with the blue edge bc and cyclically check 
blue edges through b until we find one on the proper side of  ab. Since no edges 
through b between bc and ba in cyclic order can appear in the final hull (they 
are below face abc), we can delete these edges, again giving us constant time per 
edge. To find the starting edge through a, recall that in order to discover the face 
abc we checked some of  the garnet edges through a to find the garnet candidate 
face through ac (which was below the blue candidate face abc). We need merely 
start checking where we left off, with the other edge (not ac) through a contained 
in the garnet candidate face through edge ac. If  this edge is on the proper side 
of  ab, it is the garnet starting edge. Otherwise, we can discard all edges we check 
on the wrong side of  ab (again, they are below face abc). This step also takes 
constant time per edge considered. The total time for the merge procedure is 
thus linear. 

The lineadty of Procedure CH follows easily from the analysis of the associated 
recurrence relation for the running time. The key fact is that the recursive calls 
are done on only a fraction of  the original points. 
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3. Generalizations 

Where was convexity of  the xy projection used in this argument? It was implicitly 
used in two places: in the definition of the U and D labels for the edges, and 
in the transitivity of the tetrahedron test. In both places a weaker condition 
obviously suffices. The weaker condition states that through every side of our 
polygon in space, there should be a plane that leaves all other vertices in the 
same half-space. Furthermore, this should also be true for the vertices of any 
subpolygon that is defined by taking a subsequence of the vertices of  the original 
polygon. 

We can think of what we have proven as asserting that if we take a convex 
polygonal cylinder in space and draw a polygon with one side per face on the 
cylinder, then it is possible to compute the convex hull of that polygon in linear 
time. By the above remark, this obviously generalizes to convex cones. The 
cylinder is then the special case when the apex of  the cone goes to infinity. 

4. Consequences 

The above result implies that the Voronoi diagram and Delaunay triangulation 
of a convex polygon in the plane can be computed in linear time. We simply use 
the standard lifting map onto the paraboloid of revolution z = x 2 + y2 and compute 
the lower hull of the lifted points [2]. This gives the Delaunay triangulation, 
which we can dualize to obtain the Voronoi diagram. 

The furthest-site Voronoi diagram for a set of n given sites P l , . - - ,  Pn, is a 
partition of  the plane into convex regions, V(pl) , . . . ,  V(pn), such that any point 
in V(pi) is farther from site p~ than from any other site. By using the same lifting 
map onto z = x:  + y2, but computing the upper hull, we can construct the furthest- 
site Voronoi diagram in linear time when given the vertices of a convex polygon 
in counterclockwise order. 

Our result also implies that we can delete a vertex from a convex polyhedron 
and then recompute the convex hull of the remaining vertices in linear time. This 
is so because the neighbor vertices of the vertex being deleted form a polygon 
on a convex cone, in the above sense. A corollary of the above observation is 
that it is possible to delete a site from a Voronoi diagram in the plane and update 
the diagram in linear time. 

In the algorithm of  Lee [5] for finding the kth order Voronoi diagram, the 
result of deleting a site from a Voronoi diagram is repeatedly calculated. Using 
our linear-time procedure instead of  the standard O(n log n) time we reduce the 
time of  Lee's algorithm from O(nk 2 log n) to O(nk2+ n log n). 

Given two convex polygons, P and Q, with n and m vertices, respectively, 
consider the problem of  finding the closest (or the furthest) vertex of  P for every 
vertex of  Q. Clearly, this problem can be solved in O((m + n)log(m + n)) time 
using the Voronoi diagram of  P and any of the methods for point location in 
planar subdivisions that have been extensively studied in the literature. (See [4] 
and [9], for example.) However, we can use the linear-time algorithm given in 
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this paper to solve this problem in O(m+ n) time as follows: construct the 
closest-site Voronoi diagram of  the vertices of  P in O(n) time and, in another 
O(n) time, triangulate the convex regions of  this diagram (i.e., partition the 
regions of  this diagram into bounded or unbounded triangles). Since Q is convex, 
its perimeter can enter a triangle at most three times. Using this fact, locate the 
corresponding triangles that contain the vertices of Q in O(m + n) time. Finally, 
from this information, retrieve the closest vertex of P for every vertex of Q in 
O(m) additional time. 

The medial axis of  a simple polygon with n vertices is a partition of the poly- 
gon into n regions such that any point in the ith region is closest to the ith edge 
of  the polygon. Preparata [8] has presented an O(n log n) algorithm for comput- 
ing the medial axis of  a convex polygon. We can do this in linear time. Given a 
convex polygon in the xy plane, pass planes through its edges so that these planes 
meet the xy plane at a fixed angle. These n planes each define a half-space 
containing the polygon. The medial axis of  the polygon is the projection on the xy 
plane of  the edges of the region formed by the intersection of these half-spaces. 
This region can be found in linear time by using the dual of our algorithm. 

Given a convex polygon with n vertices, in linear time we can obtain the 
largest circle that is entirely contained in the given polygon. This follows from 
the observation that the center of the largest inscribed circle must be a vertex of 
the medial axis of  the given polygon. Thus, we can improve, by a log n factor, 
the straightforward time bound of  O(n log n) for finding the largest inscribed 
circle in a given convex polygon. Likewise, we can find in linear time the largest 
circle having its center inside a given convex polygon and containing no vertices 
of  that polygon. This follows from the fact that the center of  the circle must be 
a vertex of  the Voronoi diagram of the vertices of  the polygon or the intersection 
of  a Voronoi edge and a polygon edge. 

We can use our algorithm for the following problem: suppose that we are 
given a set S of  n sites in the left half-plane, sorted by their y coordinates. Then 
we can find the part of  their Voronoi diagram that lies in the right half-plane in 
linear time. We do this as follows. First, we lift the sites onto the paraboloid 
z = x 2 + y2  We call the convex hull of  these lifted points H. The Voronoi diagram 
in the plane is the dual of  the projection of  the lower hull of H into the xy plane. 
The faces that affect the Voronoi diagram on the right half-plane are exactly 
those faces of  the lower hull of  H which can be seen from the point at +xo~; 
i.e., the faces of  the lower right hull of H. Since the left half of  the paraboloid 
z = x 2 + y  2 is concave as seen from +xoo, the vertices of any faces of H that are 
visible from this point must be points on the horizon of H as seen from +xoo. 
Thus, if we take the projection of  H onto the yz plane, and find its two-dimensional 
convex hull, the points of  H projecting onto this two-dimensional convex hull 
are the only ones that can affect the Voronoi diagram on the right half-plane. 
(In fact, the points on the lower two-dimensional convex hull suffice.) As we 
know the y order of  the points in this projection (y coordinates are not changed 
by the two transformations), we can find their two-dimensional convex hull in 
linear time. Since the points of  H we are interested in project onto the vertices 
of  a convex polygon in the yz plane, we can use our algorithm to find the 
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three-dimensional convex hull of these points of H, and from this we can obtain 
the Voronoi diagram of S in the right half-plane, all in linear time. 

We can also apply the algorithm in the preceding paragraph to a slightly 
different problem. If we are given a set of sites S on the left half-plane, and we 
know the Voronoi diagram of S restricted to the left half-plane, it is quite easy 
to obtain the order of the y coordinates of the sites of S that affect the Voronoi 
diagram in the right half-plane. We can then use the preceding algorithm to find 
the Voronoi diagram of  S on the right half-plane. 

5. Open Problems 

Given a simple polygon, two points p and q are said to be visible from each 
other if the segment pq is contained in the interior of the polygon. With this 
concept, the circumcircle definition of the Delaunay triangulation generalizes 
naturally to the following definition of the constrained Delaunay triangulation of 
a simple polygon: given a simple polygon P, the constrained Delaunay triangula- 
tion of P is a triangulation of P such that the circumcircle of any triangle in this 
triangulation does not contain any vertex of P that is simultaneously visible from 
all three vertices of the triangle. (This terminology is due to Chew [1]; the same 
object has also been called a generalized [6] and a bounded [11] Delaunay 
triangulation.) Observe that the Delaunay triangulation of a convex polygon is 
identical to its constrained Delaunay triangulation and hence can be found in 
linear time. There are several O(n log n) time algorithms for constructing the 
constrained Delaunay triangulation of a simple polygon [1], [6], [11]; however, 
the only known lower bound for this problem is linear. Consequently, the 
optimality of these algorithms remains unclear and, in fact, optimal bounds 
for constructing the constrained Delaunay triangulation of  a monotone or a 
star-shaped polygon also remain unknown. 

Suppose we are given a Euclidean minimum spanning tree of n points in the 
plane and we are interested in computing the Delaunay triangulation of these 
points. The best known lower bound on time for any algorithm that constructs 
the Delaunay triangulation is only II(n) and the best upper bound on time for 
solving this problem is O(n log n). Closing the gap between the two bounds 
remains an open problem. 

Suppose we are given the Voronoi diagram of a set S of n points in the plane 
and a subset So c $. Can we find the Voronoi diagram of So in O(n) time? No 
known algorithms do better than O(n log n) time. Both this problem and the 
previous problem involve finding the constrained Delaunay triangulation of  
certain simple polygons. 
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