
COMBINATORICA
A k a d ~ m i a i K i a d 6 - Sp r inge r -Ver lag

COMBINATORICA 15 (1) (1995) 135--150

A L I N E A R - T I M E A L G O R I T H M F O R E D G E - D I S J O I N T P A T H S IN
P L A N A R G R A P H S *

DOROTHEA WAGNER and KARSTEN WEIHE

Received March 30, 1993
Revised November Pb, 1995

In th i s paper we discuss the problem of f inding edge-disjoint pa th s in a p lanar , und i rec ted
g raph such t h a t each p a t h connec ts two specified vert ices on the b o u n d a r y of the g raph . We will fo-
cus on t he "classical" case where an ins tance addi t ional ly fulfills t he so-called evenness-condition.
T h e fas tes t a lgor i thm for this p rob lem known from the l i te ra ture requires O (nb/3(loglogn)l/3)
t ime, where n denotes the n u m b e r of vertices. In th is paper now, we in t roduce a new approach to
th is problem, which resul ts in an O(n) algor i thm. T h e proof of correc tness immed ia t e ly yields an
a l te rna t ive proof of the T h e o r e m of O k a m u r a and Seymour , which s t a tes a necessary and sufficient
condi t ion for solvability.

1. Introduction

Let G = (V, E) be an undirected, planar graph. A net {s, t} is a pair of vertices
s, t E V, s # t , such that both s and t, the terminals of net {s, t}, are on the boundary
of G, that is, incident to a fixed outer face. An instance of the problem we consider
in this paper is a pair (G,N), where N - - {{s l , t l } , . . . ,{sk,tk} } is a set of nets of
G. Additionally, the so-called evenness-condition is fulfilled, which means that the
extended graph (V,E+{sl , t l}+. . .+{sk, tk}) is Eulerian. The problem is to decide
whether there are edge-disjoint paths P l , . . . ,Pk, such that Pi connects si with ti for
i = 1, . . . , k, and if so, to determine such a set of paths.

The asymptotically fastest algorithm known so far is due to Kaufmann and
Kls and requires O(nb/3(loglogn)l/3) t ime [9], where n = lYl. This algorithm

relies on an O(n 2) algorithm introduced by Becket and Mehlhorn [1] and uses
decomposition techniques of Frederickson [2]. In this paper, we now give a linear
time algorithm.

Becket and Mehlhorn also considered a certain generalization, which arises in
VLSI layout. There, only the weak evenness-condition must be fulfilled, which
means that each vertex not incident to the outer face has even degree. They
propose an O(bn+T(n)) algorithm, where b denotes the number of vertices on the
boundary of G and T(n) the time required to solve any instance fulfilling the strong
evenness-condition. Clearly, in connection with our result, this immediately yields

M a t h e m a t i c s Subject Classif icat ion (1991): 05 C 85, 68 Q 35

* T h e au tho r s acknowledge the Deutsche Forschungsgemeinschaft for s u p p o r t i n g th is re-
search unde r g ran t M6 ~ 6 / 1 - 3

136 DOROTHEA WAGNER, KARSTEN WEIHE

an O(bn) algorithm for that more general problem. The relation to VLSI layout is
not surprising at all since any grid graph without internal holes fulfills at least the
weak evenness-condition.

The "capacitated" version of the problem is solved by Hassin [5], by Mat-
sumoto, Nishizeki and Saito [12], and by Weihe [17]. Note that the problem of find-
ing edge-disjoint paths between designated pairs of vertices can be seen as an inte-
gral multicommodity flow problem with unit capacities and unit supplies/demands.
In the capacitated version, the restriction to unit values is dropped, and now the
evenness condition means that, for any vertex, the sum of the capacities of the inci-
dent edges plus the sum of all supplies and demands arising at this vertex is an even
number. The algorithms require O(n4), O(kn +n2) , and O(kn) time, respectively.
The last two algorithms use a recent result by Klein, Rao, Rauch, and Subramanian
on shortest paths to achieve the respective complexity [11]. (Actually, the earlier
result of Frederickson [2] suffices for the algorithm by Nishizeki et al.)

The algorithm in [17] is based on the approach that we are going to introduce
now. All other algorithms cited above, as well as many other algorithms tailored
to special cases and similar problems (e.g. [8, 10, 13]) are closely related to the
Theorem of Okamura and Seymour and to its highly constructive proof [i4]. This
theorem gives a necessary and sufficient condition for solvability. To state it, we
need some terminology.

Let (G,N) be an instance of the problem. A cut is simply a set X C V of
vertices with X • O and V \ X # O. The capacity of X, cap (X), is the number of
edges having one endvertex in X and the other one in V \ X. The density of X,
dens(X), is the number of nets {si,ti} E N with one terminal in X and the other
one in V \ X. The free capacity is defined to be fcap(X) = c a p (X) - dens(X).
A cut X is called saturated, if fcap(X) = 0, and oversaturated, if fcap(X) < O.
Obviously, if (G,N) is solvable, no cut is oversaturated (cut condition). Okamura
and Seymour have shown that the cut condition is also sufficient [14].

Theorem 1.1. (Okamura-Seymour, 1981) An instance is solvable if and only i f the
cut condition holds.

With the following Lemma 1.2, Okamura and Seymour have strengthened their
result further, which is crucial for all algorithms relying on Theorem 1.1. A cut X
is essential, if the subgraphs induced by X and V \ X , respectively, are connected
and neither set is disjoint with the boundary of C. (In fact, in this case each of X
and V \ X shares one single connected interval with the boundary.)

Lemma 1.2. (Okamura-Seymour, 1981) The cut condition holds for aI1 cuts if and
only if it holds for all essential cuts.

Our algorithm works as follows. In a preprocessing step, we determine a specific
solution for a certain auxiliary instance, which helps us to determine the solution,
that is paths Pl,--. ,Pk, correctly. The core of the algorithm consists in a loop,
where in each iteration exactly one of the paths P l , . . . ,Pk is drawn. If the algorithm
fails at any stage, it invokes a subroutine, which constructs an oversaturated cut
from the past history of the failure. Clearly, this serves as a certificate for non-
solvability. In particular, the correctness proof amounts to showing that each of
the two subroutines, one for the preprocessing step and one for the core procedure,
actually constructs an oversaturated cut when invoked after a failure. This is proved

E D G E - D I S J O I N T PATHS IN P L A N A R G R A P H S 137

without using Theorem 1.1. Therefore, this in turn yields an alternative proof for
Theorem 1.1.

For a linear-time realization, we will make use of a technique proposed by
Gabow and Tarjan [3], which will enable our algorithm to perform certain sequences
of union-find operations in linear time. Since our algorithm is linear in the worst
case, it is optimal. In particular, it improves on some results for special cases
[8, 10], and for even instances it is as fast as the algorithm in [13], which is in
general applicable to weakly even instances with the additional restriction that the
underlying graph forms a convex grid.

The paper is organized as follows. After some preliminaries in Section 2,
we will introduce the new algorithm in Section 3 and prove its correctness (and
Theorem 1.1, in particular). We conclude with the proof of the linear worst case
bound in Section 4.

2. Preliminaries

Throughout this paper, G = (V,E) is an undirected, connected, planar graph
without loops or multiple edges (although the Mgorithm easily extends to that
case). Graph G is given along with a fixed combinatorial embedding, tha t is, the
adjacency list of each vertex is sorted according to a fixed geometric embedding in
the plane, and there is one designated face, the outer face.

We assume that the set of nets is not empty, N r 0, and that x E V is a fixed
terminal, the start terminal. Moreover, we assume that all terminals have degree 1
and all other vertices have even degree. Obviously, a simple modification transforms
any instance into a completely equivalent instance that fulfills this assumption.
W.ho.g., according to a counterclockwise ordering of all terminals starting with x,
si precedes ti for i = 1, . . . ,k , and ti precedes ti+l for i = 1 , . . . , k - 1 . The latter
clearly means that in a sense all t-terminals are sorted in increasing order. The i-th
terminal in counterclockwise ordering, starting with x, is denoted by xi. Finally,
we assume that the resulting graph after removing all terminals and their incident
edges, G \ {Sl , . . . , s k , t l , . . . , t k } , is biconnected, because otherwise we could solve
each biconnected component separately.

We will also consider another, auxiliary, instance, which is denoted by (G, N()).

N 0 The set = {s~ , t~}} consists of the same terminals as N itself,

and we have ti = t~) for all i = 1 , . . . ,k . But nonetheless, the pairing is different,
namely according to a (unique) "parenthesis structure." That is, consider a 2k-
string with a left parenthesis at the i-th position, if xi is an s-terminal, and a
right parenthesis otherwise. Then two terminals are paired if and only if the
corresponding parentheses match. This is equivalent to the restriction that for

no pair j, / = 1,... k, the counterclockwise order around G is s~.) < s 0 ~ t 0 ~ t 0 l ~ j ~ ~.
In particular, a solvable instance allows a solution where no two paths cross each
other, if and only if it has a parenthesis structure. In fact, the solutions that we
will produce for our auxiliary instances will be non-crossing in this sense.

At the end of this section, we now prove a fact that will not only be useful later
on, but might also give an interesting insight into the interplay of input instances

138 DOROTHEA WAGNER, KARSTEN WEIHE

with their induced auxiliary instances in view of Theorem 1.1 and Lemma 1.2. For
a cut X C V, let densx (X) denote the density of X with respect to the auxiliary
instance induced by start terminal x.

Lemma 2.1. We have dens (X) = maxi=l,...,2k densx~ (X) for each essential cut X.

In particular, the cut condition holds for (G,N()) ff and only if it holds for a11
auxiliary instances induced by the 2k possible star t terminals.

Lemma 2.1 follows immediately from a more general, "combinatorial," lemma,
which we will state and prove next. Let S be a linear string of length 2k, consisting
of k emerald and k ruby pearls. A pairing 5 D of the ruby pearls with the emerald
pearls is legal, if each emerald pearl precedes its respective mate. The unique legal
pairing 5 D0 with parenthesis structure is defined by the restriction tha t we have el <
e2 < r l < r2 for no two pairs (el ,r1), (e2,r2)E~ D(). Let R be a connected substring
of S with R r 0 and S \ R r ~. Then for any ruby-emerMd pairing 2 , nhD (R) is the
number of pairs with both pearls inside R. Substring R is called a prefix of S, if R
starts with the first pearl of S.

Lemma 2.2. Let S be a 2k-string of emerald and ruby pearls that allows legal
pairings, and let R be a substring of S with R ~ ~ and S \ R ~ ~. Then we have
n~(R) < n~o (R) for each legal pairing ~. If R is a prefix of S, this holds with
equality.

Proof. Let 5 D ~ 0 be a legal pairing. Then there are two pairs (el , r1) , (e2,r2) C
with el < e2 < r l < r2. Let 5 Dt be the legal pairing arising from ~ by exchanging

r l with r2. Since 5 D0 can be constructed from 5 D by a sequence of such exchange
steps, it suffices to show n~, (R) < n$ (R), and equality, if R is a prefix.

I t is easy to see that ny,(R) ~ n~(R) is possible only if R contains e2 and
r l , but neither of el and r2. Since R is no prefix in this case, this already proves
the latter claim of Lemma 2.2. Moreover, in this case we obviously have ny, (R) =
n ~ (R) - 2, which proves the former claim as well. |

3. The Algorithm

In principle, our algorithm works as follows. First a preprocessing step is done,
which tries to construct the specific solution for the auxiliary instance mentioned
in the introduction. If this preprocessing step fails, we determine an oversaturated
cut from the incomplete auxiliary solution constructed until the first appearance
of a failure. Otherwise the auxiliary solution is used for constructing a solution
for the input instance. If the latter procedure, the core procedure, fails, we again
determine an oversaturated cut from the "past history" of this failure.

We are now going to handle preprocessing and core separately and in detail.

E D G E - D I S J O I N T P A T H S IN P L A N A R G R A P H S 139

~.1. Preprocessing

In the preprocessing step, we construct a particular solution (ql , . . . ,qk) for
instance (G,N()) , which is in a sense "extremal." In this procedure we will use
a right-first search for each path, starting with the respective s-terminal. This
means a depth-first search where in each step all possibilities of going forward
are searched "from right to left." In other words, in any search step we select
the counterclockwise next edge after the ingoing edge in the adjacency list of the
current vertex.

In principle, we proceed in the same way as the well-known stack-algorithm
for a similar problem, where vertex-disjoint paths are to be drawn [15]. It is easy
to see that this procedure succeeds if and only if (G, N 0) is solvable.

Preprocessing: determine the auxiliary solution

FOR i : = l TO k DO
1. let qi initially consist of the unique edge incident to s~);J

2. v := the unique vertex adjacent to s~);
3. WHILE v is no terminal DO

(a) let e be the edge added to qi last;
(b) let {v,w} be the counterclockwise next free edge after e in the adjacency

list of v that is not passed yet in this procedure;
(c) add {v,w} to qi;
(d) orient {v,w} from v to w;
(e) v :=w;

4. IF v = t~) THEN indicate success ELSE indicate failure AND RETURN
{ql,...,qi-1}.

RETURN {ql , . . . , qk}.

An instance (G, N) and its auxiliary graph are shown in Figure 1.
We notice that, due to the evenness condition, the procedure never gets stuck

because of an unforeseen situation: While the current vertex is no terminal, there
is always at least one edge left to proceed with. Therefore, the procedure does not
crash down, but terminates properly.

Note that the paths q l , . . . , qi do not cross themselves nor each other. However,
nonetheless they may not be simple. This means the following. There may be two
pairs of subsequent edges of path qj, say, incident to the same vertex, b u t the
elements of the pairs are ordered non-alternatingly around this vertex. In other

words, when we pass qj from s~) to t~.), we never cross our own trace. Another fact
worth to be mentioned is that all edges incident to a path qj from the right belong
to one of the paths ql , . . . ,qj-1.

The following Lemma 3.1 generalizes the obvious fact that none of the paths
ql,. . . ,qi contains a clockwise cycle, that is, a cycle that does not cross itself, and
whose right side is just its interior. (Clearly, the right side and the interior of a non-
crossing cycle are well defined.) Let A(G,N ,x) denote the directed graph formed
by all paths ql , . . . ,qi (i = k, if no failure has occurred), where the direction of an

140 DOROTHEA WAGNER, KARSTEN WEIHE

1) 2) 1) 2) 3)
, ' 3) ,~___~ ~ - - - - ;-.

.,, ' " " ! 7,,
z .~ . . " -~ - -%., ..j__ 4) ~ ' - - - - - % \ , - -

~(3 " / I4 \ (2 "(3 ~ f4 " \ (2
(~) (b)

1) , 2) 1)
2 r x - - - ~ ... /

":" \ / \ I ~

"(3
(c) (d)

3)

(1~(2~ 1 5)
4)

Fig. 1. An example, which satisfies all requirements stated in Section 2, to il lustrate the
preprocessing: (a) an even instance and the parenthesis s tructure induced by the encircled s tar t
terminal 5; (b) the first auxiliary path; (c) first and second paths; (d) the whole auxiliary graph
A (G, N,x) determined by the preprocessing. Note tha t the auxiliary path from 5 to 1 contains

two counterclockwise cycles

edge is "inherited" from the orientation of its respective path from the s-terminal
to the t-terminal.

Lemma 3.1. There is no clockwise cycle in A (G , N , x) .

Proof. Let ~ be a non-crossing cycle of A (G, N, x), let e be the first edge of
added to one of the paths ql , . . . ,qi in the preprocessing step, and let e r be the
immediate predecessor of e with respect to that path. Then e I points to ~ from
outside, which immediately implies that e is given the orientation conforming to a
counterclockwise orientation of ~. |

Now we are going to show how to construct an oversaturated cut if the prepro-
cessing fails, that is, if i < k. For this, we make use of a technique that is folklore [6]
and is extensively investigated by Itai and Shiloach and by Hassin in connection
with the maximum flow problem in (s, t)-planar networks [7, 4].

Let Go = (V0,E0) denote the graph G after removing all terminals and all
edges incident to terminals. Recall from Section 2 that Go is biconnected. Next let
G d-- (Vd, E d) be the graph that arises from the dual graph of Go as follows: The
dual vertex corresponding to the outer face is split into two vertices, r and u, and
each edge on the boundary of Go is incident in G d either to r or to u. Namely,
the edges made incident to r are just the edges counterclockwise after the (unique)

E D G E - D I S J O I N T PATHS IN P L A N A R G R A P H S 141

vertex of Go adjacent to s}) and before the (unique) vertex adjacent to t}). And
analogously, the edges made incident to u are just the edges on the other interval

of the boundary of Go between s~) and t~).
The graph G*= (V d, E*) is a directed subgraph of G d, which means that each

edge in E* is given an orientation in addition. Let q~ denote the path qj restricted
to Go, that is, without the first and the last edge. Then E* consists of all dual
edges crossing one of the paths q~,...,q~_l, and each edge is given the orientation
such that it crosses its respective path "from right to left." Let m E {1,... , i - 1 } be

maximum such that t ~ < s~). If no such m exists, we set m = 0 .
Now the crucial insight is the following.

Lemma 3.2. There is a vertex v E V d SUCh that v can be reached from u by a
directed path Pl in G* which crosses only the paths q~,.., i ,qm, and from r, by a
directed path P2 in G* which crosses only qlm+l,... ,q~-l' In particular, v = u if
m = 0 , and v = r i f r e = i - 1 .

Before proving Lemma 3.2, we first give its consequences.

Corollary 3.3. There is an oversaturated cut in (G, N) .

Proof of Corollary 3.3. Let v E V d be a vertex as guaranteed by Lemma 3.2, and let
Pl and P2 be a dual (u,v)-path and a dual (r,v)-path as described in Lemma 3.2. In
particular, v, Pl and P2 can be chosen so that Pl and P2 are vertex-disjoint except

for v. Clearly, the concatenation Pl +P2 separates s~) from t~). Let X C V denote

the set of all vertices on the sl)-side of Pl+P2. Then each edge entering X belongs
to one of the paths q~,... ' ,q~, and each edge leaving X belongs to q ~ + l , " " ,q~-l"
Therefore, all edges connecting X with V \ X belong to pairwise different paths. As

ql ,qi-1 are correct, each net (s~.),t}))" " whose path qj occupies an edge between
X and V \ X contributes to the density of X. Hence, these nets already saturate

the cut X in (G,NO), and the net (s}),t})) even oversaturates X in (G, NO). Now
Lemma 2.1 implies that X is oversaturated in (G,N) as well, since X is obviously
essential. |

Lemma 3.2 and Corollary 3.3 immediately suggest the following algorithm.

After failure of preprocessing: determine an oversaturated cut

1. construct Go--(Vo,Eo);
2. construct the two-source dual graph G d-- (V d , E d) from Go;
3. E* :-~ Ed;
4. remove all edges from E* that cross none of the paths q~,...,q~_l;
5. orient each edge in E* such that it crosses its path from right to left;
6. G* :=(Vd, E*);
7. let T be a tree in G* which is rooted at r and spans all dual vertices that can

be reached from r in G*;

142 DOROTHEA WAGNER, KARSTEN WEIHE

8. find a directed path Pl in G from u to some vertex v in T so that Pl is
internally vertex-disjoint from T;

9. let P2 be the path from r to v in T; (* Pl +P2 separates s~) from t~). *)

10. RETURN the set of all vertices on the s~)-side" of Pl q-P2.

Each step of this algorithm is linear. (For step 7, simply take a depth-first search,
and for step 8, a depth-first search which terminates immediately when a vertex
of T is seen.) And correctness is immediate from Lemma 3.2 and the proof of
Corollary 3.3. Hence, for the preprocessing, it remains to prove Lemma 3.2. We
divide this proof into several lemmas.

Lemma 3.4. I f a vertex v e Y d \ {r, u} is left in G* by an edge crossing path q~., say,

Proof. Let v e v d \ { r , u } be left by an edge crossing path q~. This means that q~
runs a bit clockwise around the face corresponding to v. By Lemma 3.1, there is a
primal edge of Go incident to v which either belongs to no path at all, or belongs
to some path that runs a bit counterclockwise along the face of v.

First note that the latter is true in any case, that is, one of these edges belongs
to some path q~ running counterclockwise along the face of v. In fact, otherwise
the layout of qj had run into a clockwise cycle around v. As the primal edges of
q~ on the face of v correspond to dual edges of G* that enter v, it remains to show

s})<- s~)<" t~)<" t})." To see this, next note t h a t s r j , because otherwise, as that is

easy to see, q~ had to cross itself to run twice in different directions along the same
face, which is obviously not the case.

In summary, a path q~ with g ~ j shares an edge with the face of v and orients
this edge counterclockwise around v. As the auxiliary paths do not cross each

other, this may happen only if (s~),t~))'" is properly nested in (s () t!)~. This proves
"3'3:

Lemma 3.4. |

Lemma 3.5. A11 dual vertices incident to edges crossing paths q~l,'", qlm can be
reached via directed paths from u in G*, and all dual vertices incident to edges
crossing paths ' / qm+l, '" ,q i -1 can be reached from r in G*.

Proof. First let (s!) t(.)~ be an innermost nested net in the parenthesis struc-
\ 3 ' 3 "

ture. Then q~ runs counterclockwise along the boundary of Go, which means

that, for each edge on q~, the dual vertex immediately on the right side is ei-
ther u or r. In fact, it is u if and only if j < m, since the vertices adjacent

to the terminals s~)," . 8 0 , t 0 t 0 �9 " , 1 , " ' , m, respectively, all belong to the part of the
boundary of Go connected with u, and the vertices adjacent to the terminals
s 0 , s~)__l , ' - t 0 , t 0 all belong to the part connected with r. Moreover, mq-1 " " ' mq-1 " " , i--1
each vertex on the left side of an edge on q~. is entered in G* by an edge crossing

q~., which has tail u if j < m, or r, otherwise. This proves the claim for innermost
nets. Using Lemma 3.4, a straightforward induction shows the claim for the other
nets as well. |

E D G E - D I S J O I N T PATHS IN P L A N A R G R A P H S 143

Lemma 3.6. In G*, r and u are weakly connected, that is, there is a path from r
to u, which may contain forward and backward edges.

Proof. Note that there is a cut in Go which separates s~) from t~), and all of whose
(primal) edges belong to the paths / q l , ' " ,q j ' , because otherwise the ~ i-th iteration
had succeeded. The duM edges corresponding to this cut form a pa th as desired. |

Proof of Lemma 3.2. Let p be an (r,u)-path as guaranteed by Lemma 3.6. If all
vertices on p can be reached from u via directed paths from u, we define Pl to be
a directed path from u to r and P2 -- {r}, and we are done. Otherwise, let v be
the vertex closest to r on p that can be reached from u (possibly v--= u). Then Pl
is a directed path from u to v. Let w be the next vertex after v on p towards r.
By the specific choice of v, vertex w cannot be reached from u. Hence, Lelnma 3.5
implies that w can be reached from r. However, since v can be reached from u and
w cannot, we know that the edge [v,w} is oriented towards v. This means that v
is reachable from r as well, and we may construct a path P2 from r to v via w. |

3.2. Core Procedure

We now assume that the preprocessing step has succeeded. Next we determine
the paths P l , . . . ,Pk for our original instance (G,N) , in this order in fact. (Recall
that t i precedes ti+ 1 for all i counterclockwise after the start terminal.) For
each path Pi we use a directed right-first search in A (G , N , x) , starting with si.
(Remember the definition of A (G, N, x) in Section 3.1.) "Directed" means that we
may pass an edge only according to its orientation, from tail to head. The adjacency
list of v is a cyclic list representing all edges incident to v in A (G , N , x) , leaving v
or entering v. Now we are able to formulate the core of our algorithm formally.

Core procedure: t ry to determine a solution for (G,N)

FOR i : = l TO k DO

1. let Pi initially consist of the unique edge leaving si in A(G ,N ,x) ;
2. v:-- the head of this edge;
3. WHILE v is no terminal DO

(a) let e be the edge added last to Pi;
(b) let (v,w) be the counterclockwise next free edge after e in the adjacency

list of v that leaves v and is not passed yet in this procedure;
(c) add (v,w) to Pi;
(d) v :=w;

4. IF v = t i THEN indicate success ELSE indicate a failure and break loop;
RETURN the paths Pl , . . . ,Pi constructed so far.

In Figure 2, the auxiliary graph of Figure 1 is shown, along with the situation after
the first four iterations of the core procedure, respectively. Again we notice that
the procedure will in any case be terminated correctly by the RETURN statement.

Note that all edges of A (G,N,x) leaving path pj, say, on the right side belong
to one of the paths Pl , . -- ,P j - 1. Before proceeding with the case of a failure, we shall

144 DOROTHEA WAGNER, KARSTEN WEIHE

cite an insightful result from the conference version of this paper, where tha t result
has been used for proving correctness of the algorithm in a completely different
manner.

Lemma 3.7. [18] Consider the residual instance that arises from (G, N) by removing
all nets {8 i , t t } , . . . , { S j - l , t j - 1 } and all edges on the paths P l , . . . ,P j -1 . Then the
restriction of A (G, N, x) to this residual graph equals the auxiliary graph in this
residual graph with respect to an appropriate s tar t terminal.

In particular, it would suffice to show that the very first pa th Pl is correct, i.e.
connects the correct terminals and leaves a solvable residual instance: Any other
pa th is just the first pa th in a residual instance.

Now we are going to construct an oversaturated cut from Pl , . - . ,Pi, if the i-th
iteration of the core procedure has failed. Again, the first i - 1 paths are correct,
that is, end with t l , . . . , t i - 1 , respectively. On the other hand, the i- th pa th ends
with a terminal xr r ti.

Let H denote the graph formed by all vertices and edges on the paths Pl , . . . ,Pi.
Then H is a directed graph, and the orientation of an edge conforms to the
orientation of the path pj it belongs to.

We construct the oversaturated cut by a reverse directed /eft-first search in
H, which starts with xr and terminates when another terminal xe, say, is seen.
"Reverse" means that an edge is passed only from head to tail. This defines a pa th
p in H going from x l to xr. The oversaturated cut consists of all vertices on the
right side of p. (Lemma 3.9 will show that the right side of p is well defined.)

This procedure terminates properly, too.

After failure of core procedure: determine an oversaturated cut

1. let p initially consist of the unique edge incident to xr;
2. v : = the unique vertex adjacent to Xr;
3. WHILE v is no terminal DO

(a) let e be the edge added last to p;
(b) let (u, v) be the clockwise first edge after e in the adjacency list of v that enters

v and is not passed yet in this procedure;
(c) add (u,v) to p;
(d) v :=u;

4. R E T U R N the vertices on the right side of p.

This completes the description of the algorithm. It remains to show tha t the last
procedure (henceforth called the failure-handler) actually finds an oversaturated
cut when invoked after a failure of the core procedure. We will prove the following,
even stronger theorem. We call an iteration of the core procedure "good," if no
error has been detected in this iteration or in any previous one.

Theorem 3.8. Consider an iteration of the core procedure such that ai1 previous
iterations were good. I f the failure-handler is deliberately invoked after this itera-
tion, the failure-handler returns a saturated or oversaturated cut. Moreover, i f this
iteration is bad, the cut returned is oversaturated.

We divide the proof of Theorem 3.8 into several lemmas. Suppose tha t the first
i - 1 iterations of the core procedure were good, and that we invoked the failure-
handler after the i-th iteration, good or bad. Let p be the pa th produced by the

EDGE~DISJOINT PATHS IN PLANAR GRAPHS

% A 2 1 __~2 1 <____ ~ 3 v~<____ ~ ~ 3

/3 4 \ 2

(a) (b)

5

4

145

.. . .3 1 1 2 l v ~ < - - L L ~ ~ < - ~ - . ~ / 3 1

(c) (e)

5

4

Fig. 2. Edge-disjoint paths determined in the auxiliary graph of Figure 1: (a) the first "final"
path; (b) the first and the second "final" paths; (c) the first three "final" paths; (d) the first four

"final" paths determined by the algorithm. The fifth path will use up all edges of A (G, N,x)

failure-handler when being invoked after the i-th iteration. First of all, we have to
show that the right side of p is well defined, because this is the cut returned by the
failure-handler.

Lemma 3.9. Path p does not cross itsels In particular, the right side and the left
side of p are well defined.

Proof. Suppose p does cross itself at vertex v. This means that there are four edges
of A (G , N , x) , el, e2, e3, e4, incident to v such that el (resp., e2) is the immediate
predecessor of e3 (e4) on p and the counterclockwise order of these four edges around
v is el < e2 < e3 < e4. By construction of p, el and e 3 must precede e2 and e 4 on p,
since otherwise, by our right-first strategy, e3 were the immediate successor of e2
rather than e 4.

Therefore, path p decomposes into three subpaths, p l p2 and p3, where pl is
the subpath from the s-terminal up to el, p2 is the (cyclic) subpath from e 3 to e2,
and p3 is the subpath from e4 to the t-terminM. W.l.o.g. assume that no internal
vertex of pl is a crossing of p. In particular, p2 does not cross pl.

Clearly, at this ~oint of our argumentation we cannot exclude the case that p2
crosses itself. But p may be reduced to a non-crossing cycle which still contains
e 3 and e 2 as consecutive edges and still does not cross pl. The latter implies that
el points to this reduced cycle from outside. On the other hand, el points to this
reduced cycle from the left side between e 2 and e3. Hence, the reduced cycle is a
clockwise cycle of A (G, N, x), which contradicts Lemma 3.1. |

146 D O R O T H E A W A G N E R , K A R S T E N W E I H E

Let X denote the right side of p and let 5(X) be the set of all edges in
A (G,N,x) connecting a vertex in X with a vertex in V \ X . Moreover, let (X, V \ X)
and (V \ X , X) denote the sets of all edges in 5 (X) tha t leave and enter X,
respectively. An edge is called occupied, if it belongs to one of the paths P l , . . . ,Pi,
and free, otherwise.

Lemma 3.10. Each edge in (X, V \ X) c A (G , N , x) is free, and each edge in
(Y \ X , X) C_A(G,N,x) is occupied.

Proof. The former claim follows immediately from our reverse left-first strategy,
applied by the failure-handler to construct p. To see the latter claim by contradic-
tion, assume that e E (V \ X , X) is free. Let v be the tail of e. Then v belongs to p.
Let el be the counterclockwise next edge of p after e in the adjacency list of v. As
e belongs to the right side of p, e 1 leaves v. Let pj, j <<_ i, be the pa th occupying el
and let e2 be the immediate predecessor of el on pj. Because of the former claim
of Lemma 3.10, e2 cannot be located counterclockwise after e and before el. Con-
sequently, e precedes el counterclockwise after e2 in the adjacency list of v. But
this contradicts the right-first strategy applied to construct pj, since e had become
the immediate successor of e2 on pj rather than el. |

Next we want to prove that all edges of G between X and V \ X actually belong
to 5 (X). For this aim, we first give two consequences of the right-first s t ra tegy in
the preprocessing and in the core procedure (Lemmas 3.11 and 3.12). We need some
terminology. Let v E V and let e, e I E E incident to v. Then [e, el]v denotes the
interval of the adjacency list of v counterclockwise after e and before e I (including
both e and el). Furthermore, ~)v[e, eq denotes the difference of the cardinalities
of two certain subsets of [e,el]v N A (G , N , x) . More precisely, the number of edges
entering v minus the number of edges leaving v. Whenever we count only occupied

or free edges, we instead write ~~ , e'] and ~]vree[e, e'], respectively.

Lemma 3.11. Let v E V and let e, e I E E be incident to v. I f e I does not belong
to A (a , N , x) , the number Wedges in [e , e '] vnA(a ,N ,x) entering" v is at most the
number of edges in [e, el] v N A (a, N, x) leaving v. For short: ~v [e, e'] <_ O.

Proof. Suppose we have ~)v I e, et] > O. A simple pigeon hole argument shows tha t at
least one of the edges in [e, e]v that enters v is immediately followed on its auxiliary
pa th by an edge outside [e, eqv. Therefore, e I is incident to this auxiliary pa th from
the right side. If e I does not belong to A (G , N , x) , this is clearly a contradiction to
our right-first s trategy applied to this auxiliary pa th in the preprocessing. |

Lemma 3.12. Let v E V and let e, e I E E be incident to v. I f e I is a free edge of
A (C, N, X) leaving v, the number of occupied edges in [e, e']v A A (G, N, x) entering
v is at most the number of occupied edges in [e , d] v n A (C , N , x) leaving v. For
short: ~~ e11 <0. V L ' J - -

Proof. Completely analogously to the proof of Lemma 3.11, we may arrive at a
contradiction to our right-first strategy in the core procedure. |

Now we are able to prove the following Lemma 3.13.

E D G E - D I S J O I N T PATHS IN P L A N A R G R A P H S 147

Lemma 3.13. Each edge of E connecting a vertex in X with a vertex in V \ X
belongs to 5 (X) C_ A (C, N, x).

Proof. Assume for a contradiction that there is an edge e between X and V \ X
that does not belong to A (G, N,x) . Let v be the endvertex of e in V \ X. Then v
belongs to p. Let el be the counterclockwise next edge o fp after e in the adjacency
list of v.

There is an edge e2 ~ e l such that ~~ =-0. (At least the counterclock-
wise first edge after el will do.) In particular, let e2 be the clockwise first edge
after el with ~~ = 0. Then e2 enters v and is occupied. We will show

~~ e] > 0 and ~)v free [e2, e] > 0. Clearly, this proves the claim in connection with
Lemma 3.11.

The former claim of Lemma 3.10 implies e 2 ~ [e,el] v or, equivalently, e E
[e2,el]v. Moreover, that particular claim also implies 2~ el] < 0, since no

~occ r e e ~ occupied edge in [e,el]v enters v and at least el leaves v. Because of v L 2, lJ----
0, we therefore have 2~ > O.

free It remains to show ~)v [e2,e] >_ 0. For this aim, we will show that no free
edge in [e2,e]v MA(G,N,x) leaves v. To see this, let e3 E [e2,e]v, e3 ~ e2. By the
specific choice of e2, we have 2~ < 0. However, if e3 is a free edge, this
would imply 2)~ e3] > 0. And if e3 in addition belongs to A (G, N, x) and leaves
v, this contradicts Lemma 3.12. |

Now we are in a position to prove Theorem 3.8 itself.
Proof. Let capl(X) and cap2(X) denote the number of occupied and free edges
of 5 (X), respectively. By Lemma 3.13, cap (X) = capl (Z) + cap2 (X). Moreover,
let densl(X) denote the number of pairs {s j , t j } , j - -1 , . . . , i - 1 , separated by X.
Analogously, let dens2(X) be the number of pairs {sj,tj}, j > i, with sj E X and
tj (tZ, and let dens3(Z) be the number of pairs {sj,tj}, j > / , w i t h tj E X and sj (~
Z . Clearly, we have dens (Z) --densl(X) +dens2(X)+dens3(X).

As all occupied edges in 5 (Z) are oriented from V \ X to X (Lemma 3.10),
they all must belong to pairwise different paths P l , . . . ,Pi-1, respectively connecting
an s-terminal in V \ X with a t-terminal in X. Since the first i - 1 iterations
have succeeded, this implies capl(X) ~ densl(X). Therefore, it suffices to show
cap2(X) ~ dens2(X)+dens3(X), and that this inequality is strict if a failure was
detected.

Obviously, the free edges decompose into directed cycles and directed paths
from free s-terminals to free t-terminals. As all free edges between X and V \ X are
oriented from X to V \ X (Lemma 3.10), they all belong to pairwise different paths
in this decomposition. Thus, the number of free edges in 5 (X) equals the number
of free s-terminals in X minus the number of free t-terminals in X. Because~of
Lemma 3.13, this already proves cap2(X) < dens2(X). In case of a failure, note
that ti E X and si C X, which means dens3(X) > 0. |

This completes the correctness proof. We notice that if the failure-handler is
invoked after the first iteration of the core procedure, we have P=Pl. Therefore, if
(G, N) is solvable, the path Pl runs along a saturated cut. This has an interesting
consequence, which might give a better insight into the nature of the evenness
condition. (In fact, the following corollary 3.14 does not hold for non-even instances
in general.)

148 DOROTHEA WAGNER, KARSTEN WEIHE

Corollary 3.14. The right side of pl is saturated. In particular, the set of all paths
from sl to t l that belong to solutions for (G, N) has a unique "rightmost" element
(namely Pl)

As the start terminal, x, is arbitrary, each net {s j , t j } has a unique rightmost
solution path, if the interval of the boundary of G counterclockwise after si and
before ti contains at most one terminal of any other net. Moreover, it is easy
to see tha t this is true for any other net {s j , t j } , too, if we restrict at tention to
solutions where no two paths cross more than once. (Obviously, there is always
such a solution.) To see this, simply consider the residual instance after removing
all nets with both terminals on the right side of { s j , t j } and removing all edges on
the rightmost paths for these nets.

4. A Linear-Time Realization

It is not hard to see that the preprocessing step and the failure-handler need
only linear time. Since in each iteration of the WHILE-loop in the core procedure,
one edge is added to a path Pi and no edge is added twice, the total number of
iterations of the WHILE-loop is linear. Therefore, realizing the core procedure in
linear t ime amounts to designing data structures for vertices and edges such that
any statement of the WHILE-loop can be executed in (amortized) constant time.
Recall that we store for each vertex v its adjacency list, which is a cyclic list of all
edges incident to v in A (G, N, x), leaving v or entering v.

Obviously, each statement requires constant time, except for the problem to
find the next edge to proceed with in the core procedure and in the failure-handler.
For this particular task, we need some terminology. At any stage of the algorithm,
the signpost of e E E is the next edge after e that leaves the head of e. Conversely,
the set of all edges with signpost e C E is called the client set of e. During the
algorithm, we will always maintain the client set of each edge. Any edge "knows"
the client set it belongs to, and any client set "knows" its signpost.

Let v E V be no terminal. Then the adjacency list of v can be uniquely
decomposed into maximal connected components such tha t all edges in such a
connected component leave v or all edges enter v. Let e E E leave v. The initial
client set of e is either empty or just the maximal connected component of edges
entering v that appears counterclockwise immediately before e in the adjacency list
of v in reverse clockwise ordering. The former is true if and only if the clockwise
next edge after e in the adjacency list of v leaves v, too.

Whenever an edge e is occupied whose client set is non-empty, we have to
update this set. If the next edge after e, say d, leaves v, e I must still be a free edge,
because anyway, e has to be considered before e r for going forward from v. Then
the signpost of the client set of e is simply set to e t.

In case of e ~ entering v, there are two different cases. If there is more than
one client set consisting of edges entering v, the signpost of the client set of e must
from now on be the signpost of the client set to which e ~ belongs. In other words,
we have to unite these two client sets. On the other hand, if there is only one such
client set, there is no more free edge leaving v at all. Since there is also no more
free edge entering v in this case, we need not consider v any longer.

EDGE-DISJOINT PATHS IN PLANAR GRAPHS 149

Therefore, maintaining and using client sets and their signposts amounts to
performing, for each non-terminal vertex v, a sequence of union-find operations on
the set of all edges entering v.

In general, such a sequence cannot be performed in linear time in the worst
case [16]. However, Gabow and Tarjan have shown that this is possible for a certain
special case [3]. We will show that, with a little trick, this special case covers our
problem. The special case considered by Gabow and Tarjan is the following. Let T
be a rooted tree. Initially, the underlying set, on which the union-find operations
shall be performed, is partitioned into singletons. Any singleton is represented by
exactly one vertex of T. Then two partition sets S1 and $2 are allowed to be
united if and only if there are two elements Sl E $1 and s2 C $2 such that Sl is the
immediate parent of s2 in T or vice versa. The name of the union is the name of
the set closer to the root of T.

In our application, tree T will simply be a linear list Lv of all edges entering
v. This list is sorted according to the plane embedding. In other words, to obtain
such a list Lv the cyclic adjacency list of v is broken at some point, and all edges
leaving v are removed from it. We select the point where to break the adjacency list
such that none of the initial client sets is broken. As a consequence, constructing
the initial client sets can be done by the technique of Gabow and Tarjan, applied
to "tree" Lv. As a further consequence, for any non-terminal vertex v there is at
most one stage where two client sets of Lv that are not neighbored in Lv are to be
united, namely the first and the last client set of Lv. All other unions can be done
using the technique of Gabow and Tarjan.

In order to cope with the single union-operation where this technique fails,
we simply maintain that the signpost of the last client set is always equal to the
signpost of the first set, once we have arrived at a stage where these two sets are
to be united: During the algorithm, we maintain the information, which client set
is the first one. ,Whenever the signpost of the first set is changed (or even the first
set itself by a union), the signpost of the last client set is updated accordingly. As
a result, we obtain the following theorem.

Theorem 4.1. The algorithm can be realized such that it requires linear time in the
worst cc':q,se.

Acknowledgement. We would like to thank Gabriele Neyer and Heiner John for
pointing out, independently of each other, an error in an earlier version of the failure
handler for the preprocessing step. This has led to a completely new procedure and
correctness proof for the case of a failure in the preprocessing.

References

[1] M. BECKER, and K. MEHLHOaN: Algorithms for routing in planar graphs, Acta
Inform., 23 (1986), 163-176.

[2] G. N. FREDERICKSON: Fast algorithms for shortest paths in planar graphs with
applications, SIAM J. Comput., 16 (1987), 1004-1022.

[3] H. N. GABOW, and R. E. TARJAN: A linear-time algorithm for a special case of
disjoint set union, J. Comput. System Sci., 30 (1985), 209-221.

150 D. WAGNER, K. WEIHE: EDGE-DISJOINT PATHS IN PLANAR GRAPHS

[4] R. HASSIN: Maximum flows in (s,t) planar networks, Inform. Process. Lett., 13
(1981), 107.

[5] R. HASSIN: On multicommodity flows in planar graphs, Networks, 14 (1984), 225-
235.

[6] T. C. Hu: Integer programming and network flows, Addison-Wesley, Reading, MA,
1969.

[7] A. ITnI, and Y. SHILOACH: Maximum flows in planar networks, SIAM J. Comput.,
S (1979), 135-150.

[8] IV[. KAUFMANN: A linear time algorithm for routing in a convex grid, IEEE Trans.
Comp.-Aided Design, CAD-9, 180-184, 1990.

[9] M. KAUFMANN, and G. KL~R: A faster algorithm for edge-disjoint paths in planar
graphs, In W. L. Hsu and R. C. T. Lee, editors, ISA '91 Algorithms, Second In-
ternational Symposium on Algorithms, pages 336-348. Springer-Verlag, Lecture
Notes in Computer Science, vol. 557, 1991.

[10] M. KAUFMANN, and K. MEHLHORN: Generalized switchbox routing, J. Algorithms,
7 (1985), 510-531.

[11] P. KLEIN, S. RAO, M. RAUCH, and S. SUBRAMANIAN: Faster shortest-path algo-
rithms for planar graphs, Proceedings of STOC '9~.

[12] K. MATSUMOTO, T. NISHIZEKI, and N. SAITO: An efficient algorithm for finding
multicommodity flows in planar networks. SIAM J. Comput., 14 289-302, 1985.

[13] T. NISHIZEKI, N. SAITO, and K. SUZUKI: A linear time routing algorithm for convex
grids, IEEE Trans. Comp.-Aided Design, CAD-4:68-76, 1985.

[14] H. OKAMURA, and P. D. SEYMOUR: Multicommodity flows in planar graphs. Y.
Combin. Theory Set. B, 31 (1981), 75-81.

[15] H. SUZUKI, T. AKAMA, and T. NISHIZEKI: Finding Steiner forests in planar graphs.
In Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA '90, pages 444-453, 1990.

[16] R. E. TARJAN: A class of algorithms which require non-linear time to maintain
disjoint sets. J. Comp. System Sciences, 18 (1979), 110-127.

[17] K. WEIHE: Multicommodity flows in even, planar networks, In K. W. Ng, P. Ragha-
van, N. V. Balasubramanian, and F. Y. L. Chin, editors, Algorithms and Com-
putation, ~th International Symposium, ISAAC'93, pages 333-342. Springer-
Verlag, Lecture Notes in Computer Science, vol. 762, 1993.

[18] D. WAGNER, and K. WEIHE: A linear time algorithm for edge-disjoint paths in
planar graphs, In T. Lengauer, editor, First European Symposium on Algorithms,
ESA '93, pages 384-395. Springer-Verlag, Lecture Notes in Computer Science,
vol. 726, 1993.

Dorothea Wagner

Universitiit Konstanz,
Informatik,
78~3~ Konstanz, Germany,
dorothea. ~agner�9 de

Karsten Weihe

Universitiit Konstanz,
Informatik,
78~34. Konstanz, Germany,
karsten, weihe@uni-konstanz, de

Typeset by TYPOTEX Ltd, Budapest
PRINTED IN HUNGARY

Akad6miai Kiad5 6s Nyomda Vs Budapest

