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Abstract.—We developed a linear-time algorithm applicable to a large class of trait evolution models, for efficient likelihood
calculations and parameter inference on very large trees. Our algorithm solves the traditional computational burden
associated with two key terms, namely the determinant of the phylogenetic covariance matrix V and quadratic products
involving the inverse of V. Applications include Gaussian models such as Brownian motion-derived models like Pagel’s
lambda, kappa, delta, and the early-burst model; Ornstein-Uhlenbeck models to account for natural selection with possibly
varying selection parameters along the tree; as well as non-Gaussian models such as phylogenetic logistic regression,
phylogenetic Poisson regression, and phylogenetic generalized linear mixed models. Outside of phylogenetic regression,
our algorithm also applies to phylogenetic principal component analysis, phylogenetic discriminant analysis or phylogenetic
prediction. The computational gain opens up new avenues for complex models or extensive resampling procedures on very
large trees. We identify the class of models that our algorithm can handle as all models whose covariance matrix has a
3-point structure. We further show that this structure uniquely identifies a rooted tree whose branch lengths parametrize
the trait covariance matrix, which acts as a similarity matrix. The new algorithm is implemented in the R package phylolm,
including functions for phylogenetic linear regression and phylogenetic logistic regression.

Statistical methods are well developed now to
account for phylogenetic correlation in the analysis of
quantitative traits across species. Most of these methods
use models derived from a Brownian motion (BM) or
an Ornstein-Uhlenbeck (OU) process along the tree,
where the tree is informed by molecular data. These
models are now used on increasingly large data sets
from tree-of-life projects with large numbers of taxa
(e.g., Smith and Donoghue 2008; Cooper and Purvis
2010; Jetz et al. 2012) or on a large number of traits
such as from expression profiles (e.g., Brawand et al.
2011). The traditional likelihood calculations use generic
methods and do not raise computational issues for a
few traits and a dozen taxa. However, these methods
are challenged by large phylogenetic covariance matrices
on large numbers of taxa, causing very long computing
times at best, and possibly failure or inaccurate results
(Hadfield and Nakagawa 2010). For instance, Venditti
et al. (2011) studied body mass across 3185 mammal
species. Using generic methods, one single analysis
of their data took us 1 hour 20 minutes (using the
BM model in fitContinuous from the R package
geiger v1.3-1). To determine lineages where body
mass evolution experienced a change in its evolutionary
rate, their complex Bayesian model required millions of
likelihood calculations. Therefore, traditional likelihood
calculations were prohibitively slow and a fast algorithm
was absolutely needed for their study. Recently,
Freckleton (2012) showed how to calculate the likelihood
of BM models in linear time based on an algorithm
proposed by Felsenstein (1973), which Venditti et al.
(2011) used (personal communication). Independently,
FitzJohn (2012) recently proposed a fast Gaussian
elimination method to calculate the likelihood of BM
and OU models, philosophically similar to the pruning

algorithm for molecular sequence data. However, the
applicability of these methods to non-Gaussian traits is
not clear and remains open (Freckleton 2012).

We present here a linear-time algorithm that applies
to a broader class of phylogenetic trait models than
the fast algorithms cited above. We separately calculate
two computationally difficult terms involving the
phylogenetic covariance matrix. These are necessary
for many phylogenetic methods, making our algorithm
applicable to a number of non-Gaussian models for
which these two terms are used separately and in
various ways. Our algorithm can be used to speed
up parameter estimation and likelihood calculation
of trait data under modified BM models like Pagel’s
lambda, kappa, delta, and the early-burst model (as
can also be done with the methods of Felsenstein 1973;
Freckleton 2012). These models can be used to quantify
the level of phylogenetic signal in single traits, or they
can quantify and account for this phylogenetic signal
while testing the correlation between several traits. Our
algorithm can also be used to fit OU models with
possibly varying selection parameters along the tree
(Butler and King 2004; Beaulieu et al. 2012), as does
FitzJohn (2012). Additionally, our algorithm applies
to several non-Gaussian models like phylogenetic
logistic regression, phylogenetic Poisson regression,
phylogenetic generalized linear model (Paradis and
Claude 2002; Ives and Garland 2010), and phylogenetic
generalized linear mixed models (Ives and Helmus 2011),
thus allowing these methods to be used on very large
data sets for the first time. Other applications include
phylogenetic principal component analysis (PCA; Revell
2009), phylogenetic discriminant analysis (Motani and
Schmitz 2011) and phylogenetic prediction (Garland and
Ives 2000).
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Our method is implemented in the R package
phylolm, with functions for phylogenetic linear
regression and phylogenetic logistic regression. Our
algorithm requires that the underlying covariance
matrix V for which inversion is to be avoided belong to a
class of generalized 3-point structured matrices. In what
follows, we first describe the terms responsible for the
computational bottleneck, our algorithm for calculating
them efficiently, and computation time comparisons. We
then describe the class of 3-point structured matrices that
our algorithm applies to, with its connection to a rooted
tree structure. Finally, we show how our algorithm
applies to a number of tools for trait evolution, including
methods for which no other fast algorithm was available
before.

THE ALGORITHM

Calculating the Likelihood for Gaussian Traits
To motivate the method, we start by examining the

likelihood for Gaussian trait models as it is used for
both maximum likelihood and Bayesian inference. In this
context, we explain what terms form the computational
bottleneck. Consider a single trait, with data Y at n
tips of a tree and an evolution model under which
Y has a multivariate normal distribution with mean
�� and phylogenetic covariance matrix V�, for some
covariance parameter �. This covariance takes a specific
form depending on the underlying trait evolution model.
The simplest example is the BM model for the error term,
which corresponds to �=�2 and V�(i,j)=�2tij, where
tij is the tree length from the root to the last common
ancestor of tips i and j. In a regression framework, the
mean value is �� =X� where the matrix X contains
predictors in its columns including a column vector of
ones, 1. If there are no predictors then �� =�11 is constant
and the intercept �1 typically represents the ancestral
trait value at the root. The likelihood f (Y|�) is then
given by

−2logf (Y|�)=nlog(2�)+log|V�|
+(Y−X�)′V�

−1(Y−X�).

Given �, the estimated regression coefficients are �̂=
(X′V−1

� X)
−1

X′V−1
� Y. If there are no predictors, then this

is simply the estimated mean (or ancestral state at the

root) and simplifies to �̂1 = (1′V−1
� 1)

−1
1′V−1

� Y.
Traditional calculations use generic methods for

calculating the determinant |V�| and the matrix inverse
V−1

� , such as the Cholesky or QR decomposition, or
singular value decomposition (Lawson and Hanson
1995). However, the full matrix inverse V−1

� is not needed.
Our approach consists in calculating the following key
terms only: |V�| and the quadratic products Y′V−1

� Y
and X′V−1

� Y, without actually inverting V�. The general
algorithm to calculate these quadratic products can then
also be used to obtain the precision matrix X′V−1

� X

whose inverse gives the variances of the � regression
coefficients. These provide the basis to get standard
errors, p-values and test hypotheses about coefficients.
Note that alternative fast algorithms (Felsenstein 1973;
Freckleton 2012; FitzJohn 2012) focus on the likelihood
only, not on the standard errors of coefficients as we do
here. The gain in computation efficiency is all the more
important when the phylogenetic signal parameters in �
are unknown, requiring repeated iterations to estimate �
by maximum likelihood or Markov Chain Monte Carlo
(MCMC).

Hadfield and Nakagawa (2010) already discussed
the computational burden of inverting the covariance
matrix. They report attempts to calculate V−1 for the
4510 mammal species supertree from Bininda-Emonds
et al. (2007) that either failed completely or took up
to one month of computing time. They discussed
similarities between the phylogenetic linear mixed
model and animal models in quantitative genetics, for
which efficient algorithms have been developed early on.
They noted that an expanded covariance matrix can be
inverted analytically if the traits at all internal nodes are
considered. Therefore, they argued for algorithms that
track the unknown trait values at internal nodes, such
as expectation-maximization (EM; Dempster et al. 1977)
or MCMC for Bayesian analyses. Here, our algorithm
removes the constraint of inverting a large matrix
without relying on an expanded state space or on the
convergence of an EM algorithm.

The Algorithm
This algorithm is designed to calculate the

determinant |V| and quadratic quantities of the
form Q=X′V−1Y, for any covariance matrix V within
the class of “3-point structured” matrices. This concept
is somewhat technical and postponed to the next
section, where we show a connection between a 3-point
condition on similarity matrices and a rooted tree
structure. X and Y must have the same number of
rows as V, but can have any number of columns.
The algorithm also needs to recursively calculate the
following quantities: p=1′V−11, �̂Y =1′V−1Y/p, and
�̃′

X =X′V−11/p. For the BM phylogenetic regression
above, the algorithm needs to be applied to the response
trait Y (one column) and to X containing one column
per predictor. Then �̂Y and �̃X give the ancestral state
estimates of each trait at the root and p is proportional to
the precision of these estimates. To obtain the standard
errors of regression coefficients, the algorithm also
needs to be applied with Y replaced by X to get X′V−1X.
The algorithm runs in linear time without matrix
inversion using a tree-traversal algorithm, as follows.
Based on its 3-point structure, we can write V as

V= t11′+A with A=
⎛⎜⎝ V1 0

. . .

0 Vk

⎞⎟⎠ (1)
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FIGURE 1. Recursion for the tree traversal: at each internal node, V
is of the form t11′ +A with A block diagonal. Each block Vs of A is of
this form too.

where t≥0 and A is a diagonal matrix with one block for
each subtree stemming from the root. Each block Vs in
A is of the form (1) for the corresponding subtree rooted
by its parent edge (Fig. 1). The algorithm uses a post-
order tree traversal, starting from the external edges and
working toward the root.

1. Initialization: for a tree with a single tip, V= t>0.
Set log|V|= logt, p=1/t, �̂Y =y, �̃′

X =x′ and Q=
x′y/t, where x and y are the rows of X and Y
corresponding to the current tip.

2. For a tree with two or more tips, consider
(1) for V on this tree. Denote ps, �̃′

X,s, �̂Y,s
and Qs the quantities obtained recursively from
subtree s. Define pA =∑k

s=1ps and weights ws =
ps/pA. Then p=pA/(1+tpA), �̂Y =∑k

s=1ws�̂Y,s,

�̃′
X =∑k

s=1ws�̃
′
X,s, Q=∑k

s=1Qs − tp2
A

1+tpA
�̃′

X�̂Y and

log|V|=∑k
s=1 log|Vs|+log(1+tpA).

3. At the root of the full tree: return log|V| and Q then
stop.

For a growing number of taxa n, our algorithm is linear
in time because it uses a single tree traversal. It is also
linear in memory requirement as it does not seek to
calculate the large V−1 matrix. If one actually needed the
full inverse matrix, then the Woodbury formula could be
used to obtain V−1 in O(n) steps, as detailed in the proof
below.

Proof of formulas for the algorithm. We combine
the decomposition (1) for V=A+t1′1 with the
Woodbury formula for the matrix inverse and Sylvester’s
determinant (Hager 1989) for matrices of the form M=
A+UCV:

M−1 = A−1 −A−1U
(

C−1 +VA−1U
)−1

VA−1 ,

detM = detAdetCdet
(

C−1 +VA−1U
)
.

We use these formulas with the block diagonal matrix A
for which each block Vi is treated recursively, and obtain:

V−1 =A−1 − t
1+tpA

A−111′A−1

where pA =1′A−11=∑k
i=11′V−1

i 1, and detV=
(1+tpA)detA. The recursion for the determinant

is immediate then, because |A|=∏k
s=1 |Vs|. The

recursion for the other components uses the facts that
pA�̂′

X =X′A−11 and pA�̂Y =1′A−1Y. �

Link to other Fast Methods
Our algorithm is based on a tree traversal similar

to that used for independent contrasts, which are
computed in linear time for each trait separatelys
(Felsenstein 1973; Freckleton 2012). These authors use
both the unnormalized contrasts and the contrast
variances to calculate the trait likelihood. Our algorithm
for �̂Y and its precision p parallels the calculation
of independent contrasts. The Gaussian elimination
method by FitzJohn (2012) is also a pruning algorithm,
specifically designed to calculate the likelihood under
BM and OU models. Our algorithm calculates key
terms separately using a rank-one perturbation of the
covariance matrix, for which the 3-point condition
is required. The advantage of this method is its
application to a broad class of models including non-
Gaussian models, and its application to methods using
some components separately like phylogenetic PCA or
phylogenetic prediction (as detailed later).

Implementation and Computing Gain
The algorithm was implemented in the R package

phylolm, with a function to perform phylogenetic
regression for quantitative responses under various
models for the residual error: BM, BM with trend if
the tree is not ultrametric, Pagel’s �, �, and 	 models,
and OU models with constant selection strength 


and variance rate �2. These covariance parameters are
estimated jointly with coefficient parameters in the linear
model using maximum likelihood. The linear model
can combine quantitative and categorical predictors.
The package is available at http://cran.r-project.org/
web/packages/phylolm/ .

We quantified the gain in computing time for 10 to
4507 taxa. The tree used for simulation was obtained by
randomly sampling the desired number of taxa from
the 4507-species ultrametric tree in Bininda-Emonds
et al. (2007), rescaled to a total tree height of 1.
For various models of phylogenetic trait evolution,
100 data sets were simulated with the following
parameters: ancestral state �=0, variance rate �2 =1,
optimal value of 1 and 
=1 for the OU model, �=
0.5, �=0.5, 	=0.5, or r=−1 for the EB model. The
parameters were then estimated on 3.0 GHz processing
units using 3 implementations: our fast algorithm in
phylolm, matrix inversion as used in fitContinuous
in package geiger version 1.3-1, and the newer version
of fitContinuous in geiger version 1.99-3, which
uses FitzJohn’s fast pruning method (2012). Estimation
with fitContinuous v1.3-1 was performed on fewer
than 100 replicates for 1000 or more taxa, due to very
long computing times (3 on 4507 taxa for models other
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FIGURE 2. Running time for fitting phylogenetic regression models with maximum likelihood under BM, early-burst (EB), Pagel’s �, �, and
	 models, and the OU model. Left: average computing time of the proposed algorithm as implemented in phylolm showing a linear increase
with tree size. Middle: Ratio of average computing time using fitContinuous v1.3-1 to phylolm’s average computing time. The use of matrix
inversion causes a time requirement that explodes with tree size. Right: Ratio of average computing time using fitContinuous v1.99-3 to
phylolm’s average computing time. The use of FitzJohn’s pruning algorithm restores a linear computing time with increasing tree size.

than BM, 10 otherwise). The average computing time
using phylolm is displayed in figure 2 (left), showing
a linear increase with the number of taxa. Compared
to phylolm, fitContinuous v1.3-1 is much slower
(Fig. 2, center) due to the use of matrix inversion.
For instance, our fast algorithm provides over a 100-
fold speed increase on 500 taxa under BM, and over a
14,000-fold speed increase for the OU model on 4507
taxa. Freckleton (2012) reported similar computing gains
(although for different implementations) with his linear-
time method being 300 to 900 times faster than the
direct matrix inversion method on a tree with 1000
tips. Thanks to its use of FitzJohn’s pruning algorithm,
fitContinuous v1.99-3 does not suffer the exploding
computing burden with increasing tree size (Fig. 2,
right). Its computing time was no more than 50 times
that of phylolm on the 4507-taxon tree. phylolm
still showed a computing gain in most situations.
Note that phylolm incurs an overhead compared to
fitContinuous for calculating the covariance and
standard errors of coefficients for instance. Differences
in the optimization procedures used by both functions
might also partly explain differences in computing time.

To assess the computing gain for a non-Gaussian
evolutionary model, phylogenetic logistic regression
was performed on the 3185-taxon tree used by Venditti
et al. (2011). A simulation was inspired by Ives and
Garland (2010), who explained antipredator behavior
(either flee-fight or hide) by the species’ body size
and group size. We simulated antipredator behavior
of 3185 mammals according to their standardized log-
transformed body sizes (from Venditti et al. 2011) using
the binary trait model and parameters estimated in Ives
and Garland (2010): 
=0.5 (phylogenetic signal), b0 =
−0.82 (intercept), and b1 =0.096 (body size effect). This
simulated data set was analyzed on a 2.2 GHz processing
unit using our algorithm implemented in phyloglm

in our R package phylolm, as well as a similar R
function using matrix inversion instead. Estimation with
phyloglm took 11.75 minutes, more than 70 times faster
than when using matrix inversion, which took 862.8
minutes. The estimated coefficients were close to the true
values (b̂0 =−0.80 and b̂1 =0.07 withphyloglm and b̂0 =
−0.79 and b̂1 =0.08 with matrix inversion). Phylogenetic
signal was better estimated by phyloglm (
̂=0.32)
while matrix inversion led to a convergence failure
(due to 
̂=0.006 being close to 0). Ives and Garland
(2010) recommend running 2000 bootstrap replicates to
obtain confidence intervals on the estimated parameters,
which becomes possible with the computing gain offered
by our algorithm. Note also that further computing
gain could be achieved by coding the algorithm in C
internally, as our current implementation uses native R
code in version 2.0 of phylolm.

THE (GENERALIZED) 3-POINT STRUCTURE

Definition 1 A matrix V has a 3-point structure if
it is symmetric, with nonnegative entries (Vij ≥0) and
satisfies the following 3-point condition: for any i,j,k (not
necessarily distinct), the two smallest of Vij, Vik , and Vjk
are equal.

These conditions are easy to check, by going over each
triple i,j,k of indices and comparing the values Vij, Vik ,
Vjk . When i=k, the condition implies that Vij ≤Vii, so
that V can be interpreted as measuring similarities. Note
that our 3-point condition differs from the ultrametric
condition in Semple and Steel (2003) in that it is defined
for similarity maps instead of dissimilarity maps, and
is required to hold even when 2 of the 3 indices (i,j,k)
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FIGURE 3. A matrix V is 3-point structured if it is symmetric with
Vij ≥0 and if it satisfies the 3-point condition: for any i,j and k, the two
smallest of Vij , Vik and Vjk are equal. Note that this condition can be
verified without knowledge of the underlying tree.

are identical. As we show below, the 3-point structure
implies a tree structure:
Theorem 2 V is 3-point structured if and only if it is the
covariance matrix of a random variable at the tips of some
rooted tree under a BM model. (see Fig. 3).

Proof . The covariance matrix of a random variable
under BM evolution is obviously symmetric with
nonnegative entries and satisfies the 3-point condition.
However, the reverse is far from obvious. Our proof of the
reverse shares some common ideas with the proof of the
fundamental theorem identifying a nonrooted tree from
the 4-point condition in Semple and Steel (2003, theorem
7.2.6). Consider a symmetric matrix V satisfying the 3-
point condition, with nonnegative entries. Note that V
is not assumed to be a covariance matrix. We define a
dissimilarity map 	i,j =−2Vi,j if i �= j and 	i,i =0 for all i.
	 has many negative terms, thus does not immediately
identify a tree or positive edge weights. However the
3-point condition for V ensures that 	 is an ultrametric
as defined in Semple and Steel (2003, p.149). So there
exists an equidistant representation of 	 (theorems 7.2.5
and 7.2.8). In other words, there exists a rooted tree
and a set of edge weights such that 	i,j is the sum
of edge weights along the path from i to j. Also, all
internal edge weights are positive and the distance d0
from the root to every tip is the same. We extend the
tree with a root edge of weight −d0 and add Vi,i to the
weight of the external edge connected to i. Then all edge
weights of the new tree are positive and the covariance
matrix of a BM process evolving along this new tree is
exactly V. �

Note that our algorithm is readily applicable to
matrices of the form V=D1ṼD2, when Ṽ is 3-
point structured and D1, D2 are diagonal matrices
with nonzero diagonal elements. Indeed, the quadratic
term X′V−1Y can be obtained with our algorithm
using Ṽ and the transformed data D−1

2 X and D−1
1 Y,

which are straightforward to calculate when D1 and
D2 are diagonal. The determinant is also easy to
calculate from |V|=|D1||Ṽ||D2|. We call such matrices
V generalized 3-point structured. Also, V+D is again
generalized 3-point structured whenever V is and for
every nonnegative diagonal matrix D. This fact can
be used when D represents measurement error or

variation among individuals of the same species, for
instance.

To check whether a matrix V satisfies the 3-point
condition and leads to a particular tree topology T,
we need to check that for any 2 tips i and j, Vij ≤
Vii. If V is known to be a covariance matrix, then
this is automatically satisfied. Next, we also need to
check that for any 3 distinct tips, if i and j are more
closely related to each other than to k on T, then
Vik =Vjk ≤Vij. The equality Vik =Vjk will automatically
hold if Vab can generally be expressed as a feature
of the last common ancestor of a and b, because the
pairs i,k, and j,k share the same common ancestor. In
what follows, we use this criterion to check the 3-point
condition for models arising from a particular rooted tree
topology.

Weak 3-point Condition and Negative Correlations
Our algorithm does not strictly require that all branch

lengths (ts) are nonnegative on the rooted tree identified
from V by the Theorem. It only requires nonnegative
branch lengths at the tips, and 1+tpA >0 at each step of
the algorithm. Therefore, our algorithm would apply to
a broader class of covariance matrices than to just 3-point
structured matrices, with some potentially negative
correlations. This class of models would still require the
following weak 3-point condition: for each triple i,j,k, at
least two of Vij, Vjk , and Vki are equal.

One example is the PGLS method proposed by Martins
and Hansen (1997). In their models the error variance
depends on the mean, using the estimated mean �a
at the most recent common ancestor of tips i and j.
For instance, they propose Vij =�a(1−�a)exp(−
tij) for
a binary response. This formula ensures that Vik =Vjk
whenever i and j are more closely related to each other
than to k, so the weak 3-point condition is satisfied. The
shared value Vik =Vjk might not necessarily be smaller
than Vij, however.

For a dissimilarity matrix, the weak 4-point condition
identifies a unique unrooted tree with possibly negative
branch lengths (Semple and Steel 2003). However, the
weak 3-point condition on similarity matrices does not
necessarily identify a unique rooted tree. As a counter-
example, the similarity matrix below

V=
⎛⎜⎝ 1 a a b

a 1 b a
a b 1 b
b a b 1

⎞⎟⎠
satisfies the weak 3-point condition for any a,b≥0.
However, if a �=b, we can see that V does not correspond
to any of the 15 possible 4-taxon rooted trees (with
possibly negative branch lengths), in the sense that it
cannot be written as a matrix of shared path lengths
(tij)i,j.
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GAUSSIAN TRAIT MODELS WITH THE 3-POINT STRUCTURE

Modified Brownian Motion Models
Evolution models under BM retain their 3-point

structure when branch lengths are transformed.
Typically, branch lengths are first inferred as divergence
times based on molecular data, but can be adaptively
stretched or shrunk to better fit the trait data. The
goal of these transformations is to use branch lengths
as parameters for the phylogenetic correlation between
species, as expected from their shared history. Such
transformations include Pagel’s lambda (Pagel 1999) to
account for a mixture of BM and independent evolution,
which is equivalent to the phylogenetic mixed model
(Lynch 1991). All internal branches are multiplied by �
in [0,1] while the tips are maintained at their original
distance from the root. Also included is the kappa
transformation (Pagel 1997) where all branch lengths are
raised to the power � in [0,1], the delta transformation
(Pagel 1999) where the distance from the root to all nodes
is raised to the power 	>0, the similar � transformation
by Grafen (1989), and the acceleration/deceleration
(ACDC) model (Blomberg et al. 2003). Models with BM
evolution and a variable rate of variance accumulation
also belong to the class of 3-point structured models,
including models with a number of different rates
�2

1,...,�
2
k in different parts of the tree (O’Meara et al.

2006; Thomas et al. 2006; Revell and Harmon 2008;
Venditti et al. 2011; Eastman et al. 2011; Revell et al. 2012),
or models with a continuously varying rate along the
tree such as the early-burst (EB) model (Harmon et al.
2010), which is equivalent to the ACDC transformation.
The 3-point structure is maintained under a directional
trend (estimable when taxa do not all have the same
age), because the covariance matrix under BM evolution
depends on the transformed branch lengths only, not the
mean value.

Multivariate Response
If a multivariate response Y is considered with m

different quantitative traits, the most common model of
evolution assumes that the error structure has both a
BM-modified phylogenetic covariance V as considered
above, and a between-trait covariance structure C. In
other words, the covariance between traits k and l at
taxa i and j is taken to be cov(Yi,k,Yj,�)=Ck�Vij. The full
covariance matrix of the vectorized Yk,i values is then
the Kronecker product C⊗V. This matrix is not 3-point
structured, but its inverse is simply C−1 ⊗V−1 and its
determinant is |C|n|V|m. With a small number of traits
m, C−1 and |C| are easy to calculate, and our algorithm
can be used for the parts involving V−1 and |V|.
More complicated models have been proposed to allow
for different phylogenetic signals for different traits.
Freckleton (2012) considered Pagel’s � transformation
with parameter �k for trait k, then using cov(Yi,k,Yj,�)=
Ck�Vij(

√
�k��) and independent contrasts to do the

computations in linear time. Here again, the covariance
matrix of the full response data is not 3-point structured,
but our method can still be used for the particular model
above, because each matrix V(

√
�k��) is proportional to

the same 3-point structured V(1) up to its diagonal (in
Appendix).

Within-Species Variation
Individual values can be used at the tips instead

of species averages as in Ives et al. (2007); Felsenstein
(2008) or Revell and Reynolds (2012). This can greatly
contribute to increasing tree size and computational
burden. Each species is then represented by a star tree
of the k individuals from that species. For a univariate
response, the branches is this star tree are given length
twithin to represent and estimate the within-species
variance. At this star tree, pA =k/twithin is the precision
of the species average at the root of the star tree, p= (t+
twithin/k)−1 is the precision at the root of the parent edge,
ws =1/k equally weights the k individuals and �̂Y = ȳ is
the usual species average. For a multivariate response
with m different traits in Y, our algorithm can be applied
with no modification if the within-species phenotypic
covariance between traits Cw is assumed to be the same
as the between-species phylogenetic covariance between
traits Cb. In that case, the full covariance matrix for all the
Y values stacked as a single vector is Cb ⊗V and easy to
handle. In most cases however, the assumption of equal
within-species and between-species trait correlations is
unreasonable. The general model considered by Ives
et al. (2007) and Felsenstein (2008) leads to the covariance
matrix Cb ⊗V+Cw ⊗I for the multivariate response Y.
This matrix is not 3-point structured, but again our
method can be adapted to recursively calculate the
key terms involving its inverse and its determinant
(Appendix).

Ornstein-Uhlenbeck Models
The covariance matrix for the univariate OU model

also has a 3-point structure provided that the underlying
tree is ultrametric. Indeed, it is given by

Vij = �2

2

(1−e−2
tij )e−
dij or Vij = �2

2

e−
dij

depending on whether the value at the root is considered
to be a fixed parameter or is integrated out as a random
variable with the stationary distribution (Hansen 1997;
Ho and Ané 2013). Here tij is the time of shared ancestry
between taxa i and j and dij is the tree distance between
the two taxa. The part involving tij satisfies the 3-point
condition but the part with dij does not necessarily.
It does if the tree is ultrametric because then dij only
depends on the age of the last common ancestor of i and
j, as we can write dij =2(T−tij) where T is the tree height.
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The more general model of adaptive evolution
considered by Butler and King (2004) includes variable
optima, to allow for different constraints on different
lineages. The 3-point structure is retained under this
model because changes in the selection optimum do not
affect the covariance matrix.

When the tree is not ultrametric, the OU covariance
matrix has a generalized 3-point structure. To see this,
consider a modified tree where the external branch
to taxon i is extended (or shortened) by ui, in such a
way that the modified tree is ultrametric. The modified
covariance matrix Ṽ is then 3-point structured. It is a
simple modification of the original covariance matrix:
V=DuṼDu where Du has entries e
ui on the diagonal
and zeros elsewhere. Therefore, the covariance of the OU
model on a nonultrametric tree is indeed generalized 3-
point structured. Beaulieu et al. (2012) further extended
this adaptive evolution model by allowing different
variance rates and/or different selection strengths on
different parts of the tree. The covariance matrix under
this model also has a generalized 3-point structure. To see
this, we consider “epochs” or selection regimes, where
epochs are separated by speciation events or changes in
the selection regime. Beaulieu et al. (2012) showed that
the covariance matrix is then

Vij = exp

⎛⎝−
�(i)∑
=1


i,(si,−si,−1)−
�(j)∑
=1


j,(sj,−sj,−1)

⎞⎠
×

⎛⎝�(i,j)∑
=1

�2
ij,

2
ij,

(
e2
ij,sij, −e2
ij,sij,−1

)⎞⎠
where the s values are transition times between
successive epochs going forward in time with s=0 at the
root of the tree, �(i) is the number of epochs on the path
from the root to taxon i, �(i,j) is the number of epochs on
the path from taxon i to taxon j, and the 
 and �2 values
are the selection strengths and variance rates during each
epoch. If the selection strength is constant then the first
term simplifies to e−
tii−
tjj =e−2
tij−
dij . If the variance
rate is also constant throughout the tree, then the second
term simplifies to �2

2

(e2
tij −1), so that the formula above

generalizes the one-regime covariance matrix when the
state at the root is a fixed parameter of the model. We
can rewrite V=DṼD where D has diagonal element

exp
(
−∑�(i)

=1
i,(si,−si,−1)
)

for taxon i, and

Ṽij =
�(i,j)∑
=1

�2
ij,

2
ij,

(
e2
ij,sij, −e2
ij,sij,−1

)
,

which only depends on the regimes affecting the root
to the last common ancestor of i and j. Then Ṽ is 3-
point structured, so V is generalized 3-point structured
and our algorithm can be applied to the OU model with
variable selection parameters.

More recently, the multivariate OU model has been
used to analyze a response Y with m traits. For
this model, the selection strength α and the variance
accumulation rate σ2 are now m×m matrices. The
covariance between the m traits at tips i and j is then
(King and Butler 2009; Bartoszek et al. 2012)

cov(Yi·,Yj·)=e−αtii
(∫ tij

0
eαvσ2eαvdv

)
e−αtjj

=e−αtii
(
eαtijγeαtij −γ

)
e−αtjj

where the asymptotic covariance γ can be found by
solving γα′+αγ=σ2. If selection acts independently on
all traits, i.e., if α is diagonal (which can be obtained
by pre-transforming the traits using the eigenvectors of
α), then the phylogenetic covariance between taxa is
generalized 3-point structured for each pair of traits k
and �: cov(Yi,k,Yj,�)=�2

k�
e−
ktii−
�tjj (e(
k+
�)tij −1)/(
k +


�). If the traits are under different selection strengths

k , then different 3-point structured matrices apply to
different traits and there is no obvious adaptation of our
method to speed up the calculations. Under the special
case that 
k =
 are all equal, then the same phylogenetic
signal applies to all traits. The covariance of the full
vectorized Y is then σ2 ⊗V
 with the same phylogenetic
covariance V
 as in the univariate case. So again, terms
involving its inverse and determinant can be calculated
efficiently in that case.

APPLICATIONS TO NON-GAUSSIAN MODELS

Our algorithm can be applied to non-Gaussian traits,
as long as the computational bottleneck lies in the
calculation of quadratic forms involving the inverse
of a generalized 3-point structured covariance matrix,
and/or its determinant. It is the case for phylogenetic
logistic regression, phylogenetic Poisson regression and
phylogenetic generalized linear mixed models, as we
explain in this section.

Phylogenetic Logistic Regression
Ives and Garland (2010) proposed statistical methods

for phylogenetic logistic regression when the trait
of interest is binary. For instance, they showed that
group size influences antipredator behavior in African
antelopes, with solitary species being more likely to hide
from predators (y=0) than to flee or fight (y=1). Their
method accounted for phylogenetic correlation and a
possible body size effect. In their model, the binary
trait evolves according to a two-step process, leading
to both phylogenetic correlation and correlation with
predictors. In the first step, the binary trait is assumed to
evolve along a phylogenetic tree according to a two-state
continuous time Markov process with transition rate 

and asymptotic probability �̄ of being in state 1. In the
second step, the predictors X influence the binary trait
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values Y at each tip in such a way that the expectation of
Y satisfies

μ= exp(X�)
1+exp(X�)

(details in Ives and Garland 2010). Under this model, the
covariance of Y is

Vij =
{

�i(1−�i) if i= j
sisj exp(−
dij) if i �= j

where dij is the tree distance between tips i and j and

si =
{
�i

√
1−�̄/

√
�̄ if �i <�̄

(1−�i)
√

�̄/
√

1−�̄ if �i >�̄.

This covariance matrix is generalized 3-point structured
(using the si values to form the diagonal matrix D).
The parameters are estimated by an iterative procedure.
Given the phylogenetic correlation 
, �̂ is updated using
quasi-log-likelihood by solving the following equation

U(�̂(
)|
)= (AX)′V(
)−1(Y−μ)=0 (2)

where A is the diagonal matrix with diagonal terms
�i(1−�i). To reduce bias, the penalized quasi-log-
likelihood score adds a term involving the Fisher
information matrix I(�):

U∗
j (�̂(
)|
)=Uj(�̂(
)|
)+1/2trace{I(�)−1[∂I(�)/∂�j]}

=0 for all j.

where I(�)= (AX)′V(
)−1(AX). Here again, U(�̂(
)|
) and
I(�) take the form of a quadratic term that can be
calculated efficiently. Based on the new estimated value
�̂ (and thus new estimates of �̄ and μ), 
̂ is updated by
minimizing

SS(
̂(μ)|μ)=−1
2
(
log|V(
)|+(Y−μ)′V(
)−1(Y−μ)

)
,

which contains both the determinant of the covariance
matrix and a quadratic term. Finally, the estimated
standard error of coefficients �̂ given 
̂, �̂2(�̂|
̂)=I(�)−1,
is again evaluated using a quadratic product. Therefore,
all these steps can be carried out efficiently using our
algorithm.

Phylogenetic Logistic Mixed Models
Phylogenetic mixed models use a regression formula

that involves a random effect with phylogenetic
correlation. For example, Ives and Helmus (2011)
investigate the presence/absence of n species at m sites
to determine whether closely related species are more
likely to co-occur at the same sites, and to quantify
the phylogenetic signal in species co-occurrence. The
observations Y form a long nm vector of all binary
outcomes, for each species at each site. The authors

consider the following phylogenetic logistic mixed
model with binomial distribution IP{Yi =1}=�i and

log
�i

1−�i
=
spp[i]+bi +csite[i]

b∼N (0,Im ⊗�2
spp�spp), c∼N (0,�2

siteIm)

where 
spp[i] is an unobserved (fixed) species effect and
the random effects bi carry the phylogenetic correlation.
The phylogenetic covariance matrix among species �spp
is derived either from a BM model or an OU model
and hence is generalized 3-point structured. The full
covariance matrix of the random effects is then

C=Im ⊗(�2
spp�spp +�2

siteIn).

To estimate the parameters using approximate
maximum likelihood, Ives and Helmus (2011) iteratively
update α, b, and c given the current estimates of �2

spp

and �2
site using penalized quasi-likelihood (equations

(B.3) and (B.4) in Ives and Helmus 2011). This step
requires the calculation of quadratic terms, where the
working covariance matrix is V=C+W−1 and W is
the nm×nm diagonal matrix with diagonal elements
�i(1−�i). Our algorithm is applicable to V because
it is block diagonal, and each block has a generalized
3-point structure. Second, the estimates of �2

spp and
�2

site are updated based on the new estimated values
of α, b and c using maximum likelihood (ML) or
restricted maximum likelihood (REML). For this, the
log-likelihood function being optimized (eq. (B.5) in
Ives and Helmus 2011) involves both the determinant of
V and quadratic terms, which can again be calculated
in linear time using our algorithm. This likelihood
criterion is further used to build confidence intervals
for the variances �2

spp and �2
site, one further step that can

benefit from computational efficiency.

Phylogenetic Poisson Regression
Lavergne et al. (2013) used phylogenetic Poisson

regression to investigate whether the local diversification
rate of angiosperm families in the western
Mediterranean basin was affected by the family’s
migration rate across the strait of Gibraltar. To do so,
the number Y of local endemic species per family was
explained by the family migration rate X using the
phylogenetic GEE method (Paradis and Claude 2002),
assuming that the counts Y follow a Poisson distribution
with mean μ=exp(X�) and covariance V=�A1/2CA1/2

across species. Here � is a dispersion parameter, A is a
diagonal matrix with entries μ on the diagonal, and C is
a phylogenetic correlation matrix. The coefficients � can
be estimated from the generalized estimating equations
(similar to equation (2) for logistic regression)

(AX)′V−1(Y−μ)=0.
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These equations can be solved through an iterative
process in which � is updated at each step t by:

�t+1 =�t −I(�)−1[(AX)′V−1(Y−μ)]
where I(�)= (AX)′V(
)−1(AX). Finally, the standard
error of �̂ can be estimated from �̂2(�̂)=I(�)−1. Because
the phylogenetic correlation C is derived from a BM
model in Paradis and Claude (2002), V is generalized
3-point structured and the quadratic terms above can be
calculated efficiently by our algorithm.

Hadfield and Nakagawa (2010) described a somewhat
different model (in the class of phylogenetic generalized
linear mixed models) where the response trait follows a
Poisson distribution with mean μ=exp(X�+b+e). Here
taxon i has random effects bi and ei, where b is assumed
to follow a Brownian motion along the tree and e is an
independent Gaussian noise. This model is equivalent
to Pagel’s lambda model for the random effects b+e.
Hadfield (2010) uses MCMC for this model in a Bayesian
framework. To avoid numerical matrix inversion, the
state space is increased to track all random effects at the
n−2 non-root internal nodes. Our algorithm could also
be used for this model, except that Hadfield (2010) makes
further use of the sparsity of V−1 when this matrix is
expanded to include internal nodes, but V−1 is no longer
sparse when restricted to the tips of the tree. Therefore
our algorithm might not bring much computational gain
in this MCMC implementation. However, computational
benefits would be substantial in a frequentist approach,
using approximate ML as in Ives and Helmus (2011). A
more general model than that considered by Hadfield
(2010) would allow the random effect to follow any
evolution trait model, such as OU models or variable
rate BM models. For a Poisson-distributed trait Y, the
mean �i at taxon i is assumed to satisfy

μ=exp(X�+b)

where b∼N (0,V) and V is any generalized 3-point
structured phylogenetic covariance matrix. Penalized
quasi-likelihood estimation and REML estimation can
thus be combined iteratively, as done in Ives and Helmus
(2011). For a Poisson-distributed response, the working
covariance matrix is V+W−1 with W diagonal and
Wii =�i (Liang 2007). This matrix can be handled by the
algorithm presented here because it is still generalized
3-point structured.

FURTHER APPLICATIONS

The components we derive are the key building
blocks for other tools, such as fitting models with
REML, reduced major axis (RMA) regression (Ives et al.
2007; Hansen and Bartoszek 2012), phylogenetic PCA
or phylogenetic discriminant analysis as in Motani
and Schmitz (2011). For instance, the PCA approach
by Revell (2009) is based on the phylogenetically
corrected means �̂X and the evolutionary covariance

among traits C= (X−1′�̂X)′V−1(X−1′�̂X). Here X is an
n×m matrix for multivariate data across n taxa and m
traits. If the underlying phylogenetic covariance matrix
is generalized 3-point structured, then the algorithm
presented here can be used in these applications as well.

Prediction intervals were used in Garland and
Ives (2000) to determine if certain species deviate
significantly from an allometric prediction. More
recently, there has been renewed interest in phylogenetic
prediction (e.g., Cai et al. 2011) to predict traits of interest
across wild species to help plant breeding of cultivated
species. Let s0 be a new taxon that can be placed
on the current tree. Given the phylogenetic covariance
parameter �, the following prediction of the response
trait Y(s0) at the new taxon is the best linear unbiased
prediction (Goldberger 1962):

Ŷ(s0)=c′
�V−1

� Y+(x−X′V−1
� c�)′�̂

where x are the known covariate(s) at the new
phylogenetic location, c� is the vector of covariances
between the new taxon and the sampled taxa, �̂ contains
the estimated regression coefficients from the sampled
taxa with observed response data Y and covariates X,
and V� is the covariance matrix among the sampled taxa
as before. This is also called “universal kriging” in spatial
statistics (Cressie 1993). Prediction intervals can then be
obtained based on the prediction variance:

IE(Ŷ(s0)−Y(s0))2 =V�(s0,s0)−c′
�V−1

� c�

+(x−X′V−1
� c�)′(X′V−1

� X)
−1

(x−X′V−1
� c�).

All these quantities can be calculated easily with our
algorithm for quadratic products, without the need to
invert the large matrix V�. These quantities were already
used in Garland and Ives (2000) for the case of simple
linear regression, where the tree needed to be re-rooted
for each new taxonomic position where prediction was
desired. Our approach is general to any regression
model, fast enough for very large trees, and does not
require any re-rooting.

DISCUSSION

Speed-up for Large Scale and Iterative Analyses
The utility of this algorithm comes in when the

likelihood of trait data or other score functions need to be
evaluated on large data sets or for many iterations. The
size of data sets continues to increase as phylogenetic
trees continue to become more and more accurate and
more taxon-rich. For instance, the goal of the iPlant Tree
of Life project (Goff et al. 2011) is to scale up tree inference
and post-tree analyses, to hundreds of thousands of taxa.
Trait analyses on such large trees are possible with the
proposed algorithm. Also, the important sample size
here is the number of terminals with trait data, which
can be many times larger than the number of species
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when individual organisms are used instead of species
averages (e.g., Revell and Reynolds 2012).

The need for large numbers of iterations comes from
various sources. First, iterations are needed to optimize
model parameters and maximize the likelihood, or
to search for the area of high posterior probability
in MCMC algorithms. Such iterations are needed to
optimize Pagel’s � or �, the rate of variance decrease
in an early-burst model, the selection strength 
 in
an OU models, or the estimated ratio of within-species
variance versus between-species variance. The number
of iterations or MCMC generations that are needed
can be substantial as models become very complex,
such as with an unbounded number of rate shifts at
unknown locations in the tree (Eastman et al. 2011) or
an unknown number of selective regime changes at
unknown locations Beaulieu et al. (2012). Hadfield (2010)
noted that each MCMC step can be sped up considerably
by tracking all random effects at nonroot internal nodes,
at the expense of more iterations for convergence.
Second, many iterations are used when tree uncertainty
is taken into account, either in an integrated Bayesian
framework (as in BayesTraits, Pagel 1999), or when
repeating the analysis on a large sample of phylogenetic
trees. Finally, bootstrap procedures are now increasingly
used to test hypotheses or assess uncertainty in the
resulting parameters (Garland et al. 1993; Freckleton
and Harvey 2006). For instance, Boettiger et al.
(2012) advocate the use of parametric bootstrap where
data are repeatedly sampled from a given trait
evolution model and analyzed like the original data, to
perform reliable model selection. Bootstrap methods are
powerful but computationally heavy, and have much
to gain from a fast likelihood calculation algorithm.
Taken together, the number of iterations required to
estimate the parameters of the trait evolution model, to
integrate over tree uncertainty and to conduct bootstrap
procedures can quickly increase the overall computing
load.

Model Adequacy on very Large Trees
At very large taxonomic scales, traditional

homogeneous models of trait evolution are often
likely to be simplistic. To account for changes in modes
of trait evolution, complex models are increasingly
needed to adequately analyze very large data sets. To
do so, fast algorithms become even more important,
to deal both with large trees and models with large
numbers of parameters. The computational gains
presented here could foster the development of complex
models appropriate for large taxonomic scales, which
may require special estimation and model selection
procedures.
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APPENDIX

Algorithm for Multiple Traits with Different Phylogenetic
Signals

We focus here on the model proposed by Freckleton
(2012), where each trait is assumed to follow Pagel’s
� model with phylogenetic signal �k for trait k, using
cov(Yi,k,Yj,�)=Ck�Vij(

√
�k��) for traits k,� and taxa i,j

(Freckleton 2012, Supporting Information). Of interest
is C, the evolutionary covariance between the m traits.
We will use the fact that V(�)=�V+(1−�)T where
V is the BM covariance matrix with Vij = tij and T is
the diagonal matrix with diagonal elements tii. For this
model, the full covariance matrix of all the Y values
stacked as a single vector is W=C1 ⊗V+C2 ⊗T where
C1 =diag(

√
�k)Cdiag(

√
�k) and C2 =C−C1. Since V is 3-

point structured, we have from (1) that V= t11′+A with
A block diagonal, each diagonal block Vs corresponding
to a subtree from the root. We can then write W=
B+tC1 ⊗1.I⊗1′ where B=C1 ⊗A+C2 ⊗T. Up to a
permutation of its columns and rows to bring together all
traits from the taxa belonging to each subtree s, B is also
block diagonal, with each diagonal block corresponding
to a subtree: Ws =C1 ⊗Vs +C2 ⊗Ts. The algorithm can
then be adapted to recursively calculate the following
quantities: p=I⊗1′.W−1.C1 ⊗1, μ̂Y =p−1.I⊗1′.W−1Y,
μ̃′

X =X′W−1.C1 ⊗1.p−1 and finally both Q=X′W−1Y
and log|W|. The algorithm is adapted as follows.

1. Initialization: for a tree with a single tip i
and parent edge of length t, set p= (tiiCC−1

1 −
(tii −t)I)−1, μ̂Y =C−1

1 Y, μ̃′
X =X′, Q= μ̃′

XpY, and
log|W|= log|tiiC−(tii −t)C1|.

2. For a tree with two or more tips and root
edge length t, let ps, μ̂Y,s, μ̃′

X,s and Qs the
values obtained recursively from each subtree
stemming from the root. Define pA =∑

ps

and weights ws =p−1
A ps and w̃s =psp−1

A .
Then p=pA(I+tpA)−1, μ̂Y =∑

swsμ̂Y,s,
μ̃′

X =∑
s μ̃

′
X,sw̃s, Q=∑

sQs −μ̃′
X tp2

A(I+tpA)−1μ̂Y
and log|W|=∑

s log|Ws|+log|I+tpA|.
3. At the root of the full tree: return log|W| and Q

then stop.
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Algorithm for Multiple Traits with Different within and
between-species Covariances

If the phylogenetic covariance is shared between all
traits, but if the within-species phenotypic covariance
Cw is different from the between-species phylogenetic
covariance Cb between traits, the full covariance matrix
of all response values (stacked in a single vector) is W=
Cb ⊗V+Cw ⊗I, where V is the phylogenetic covariance
Felsenstein (2008). The within-species variance Cw may
also include measurement error, with the model above
assuming that this error is independent across species.
If V is 3-point structured, we can again use (1) to
write V= t11′+A with A block diagonal, each diagonal
block Vs corresponding to subtree s. Then we get W=
B+tCb ⊗1.I⊗1′ where B=Cb ⊗A+Cw ⊗I. Again, up
to a permutation of its columns and rows to cluster
all data from each subtree, B is also block diagonal
with each diagonal block s corresponding to subtree
s: Ws =Cb ⊗Vs +Cw ⊗I. Therefore, we can recursively
calculate the following quantities: p=I⊗1′.W−1.Cb ⊗1,
μ̂Y =p−1.I⊗1′.W−1Y, μ̃′

X =X′W−1.Cb ⊗1.p−1, and as
before Q=X′W−1Y and log|W|. The same recursion
(step 2) applies here as in the previous section, with a
different initialization step:

1. For a tree with a single tip (here an individual
within a species), set p=C−1

w Cb, μ̂Y =C−1
b Y, μ̃′

X =
X′, Q=X′C−1

w Y and log|V|= log|Cw|.
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