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Abstract

Text-level discourse parsing remains a

challenge. The current state-of-the-art

overall accuracy in relation assignment is

55.73%, achieved by Joty et al. (2013).

However, their model has a high order of

time complexity, and thus cannot be ap-

plied in practice. In this work, we develop

a much faster model whose time complex-

ity is linear in the number of sentences.

Our model adopts a greedy bottom-up ap-

proach, with two linear-chain CRFs ap-

plied in cascade as local classifiers. To en-

hance the accuracy of the pipeline, we add

additional constraints in the Viterbi decod-

ing of the first CRF. In addition to effi-

ciency, our parser also significantly out-

performs the state of the art. Moreover,

our novel approach of post-editing, which

modifies a fully-built tree by considering

information from constituents on upper

levels, can further improve the accuracy.

1 Introduction

Discourse parsing is the task of identifying the

presence and the type of the discourse relations

between discourse units. While research in dis-

course parsing can be partitioned into several di-

rections according to different theories and frame-

works, Rhetorical Structure Theory (RST) (Mann

and Thompson, 1988) is probably the most am-

bitious one, because it aims to identify not only

the discourse relations in a small local context, but

also the hierarchical tree structure for the full text:

from the relations relating the smallest discourse

units (called elementary discourse units, EDUs),

to the ones connecting paragraphs.

For example, Figure 1 shows a text fragment

consisting of two sentences with four EDUs in

total (e1-e4). Its discourse tree representation is

shown below the text, following the notation con-

vention of RST: the two EDUs e1 and e2 are re-

lated by a mononuclear relation CONSEQUENCE,

where e2 is the more salient span (called nucleus,

and e1 is called satellite); e3 and e4 are related by

another mononuclear relation CIRCUMSTANCE,

with e4 as the nucleus; the two spans e1:2 and e3:4

are further related by a multi-nuclear relation SE-

QUENCE, with both spans as the nucleus.

Conventionally, there are two major sub-tasks

related to text-level discourse parsing: (1) EDU

segmentation: to segment the raw text into EDUs,

and (2) tree-building: to build a discourse tree

from EDUs, representing the discourse relations in

the text. Since the first sub-task is considered rela-

tively easy, with the state-of-art accuracy at above

90% (Joty et al., 2012), the recent research focus

is on the second sub-task, and often uses manual

EDU segmentation.

The current state-of-the-art overall accuracy of

the tree-building sub-task, evaluated on the RST

Discourse Treebank (RST-DT, to be introduced in

Section 8), is 55.73% by Joty et al. (2013). How-

ever, as an optimal discourse parser, Joty et al.’s

model is highly inefficient in practice, with re-

spect to both their DCRF-based local classifiers,

and their CKY-like bottom-up parsing algorithm.

DCRF (Dynamic Conditional Random Fields) is

a generalization of linear-chain CRFs, in which

each time slice contains a set of state variables

and edges (Sutton et al., 2007). CKY parsing is

a bottom-up parsing algorithm which searches all

possible parsing paths by dynamic programming.

Therefore, despite its superior performance, their

model is infeasible in most realistic situations.

The main objective of this work is to develop

a more efficient discourse parser, with similar or

even better performance with respect to Joty et

al.’s optimal parser, but able to produce parsing re-

sults in real time.

Our contribution is three-fold. First, with a
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[On Aug. 1, the state tore up its controls,]e1

[and food prices leaped]e2 [Without buffer

stocks,]e3 [inflation exploded.]e4

wsj 1146

e1 e2

consequence

e1:4

e3 e4

circumstance

sequence

e1:2 e3:4

Figure 1: An example text fragment composed of

two sentences and four EDUs, with its RST dis-

course tree representation shown below.

greedy bottom-up strategy, we develop a discourse

parser with a time complexity linear in the total

number of sentences in the document. As a re-

sult of successfully avoiding the expensive non-

greedy parsing algorithms, our discourse parser is

very efficient in practice. Second, by using two

linear-chain CRFs to label a sequence of discourse

constituents, we can incorporate contextual infor-

mation in a more natural way, compared to us-

ing traditional discriminative classifiers, such as

SVMs. Specifically, in the Viterbi decoding of

the first CRF, we include additional constraints

elicited from common sense, to make more ef-

fective local decisions. Third, after a discourse

(sub)tree is fully built from bottom up, we perform

a novel post-editing process by considering infor-

mation from the constituents on upper levels. We

show that this post-editing can further improve the

overall parsing performance.

2 Related work

2.1 HILDA discourse parser

The HILDA discourse parser by Hernault et al.

(2010) is the first attempt at RST-style text-level

discourse parsing. It adopts a pipeline framework,

and greedily builds the discourse tree from the bot-

tom up. In particular, starting from EDUs, at each

step of the tree-building, a binary SVM classifier

is first applied to determine which pair of adjacent

discourse constituents should be merged to form a

larger span, and another multi-class SVM classi-

fier is then applied to assign the type of discourse

relation that holds between the chosen pair.

The strength of HILDA’s greedy tree-building

strategy is its efficiency in practice. Also, the em-

ployment of SVM classifiers allows the incorpora-

tion of rich features for better data representation

(Feng and Hirst, 2012). However, HILDA’s ap-

proach also has obvious weakness: the greedy al-

gorithm may lead to poor performance due to local

optima, and more importantly, the SVM classifiers

are not well-suited for solving structural problems

due to the difficulty of taking context into account.

2.2 Joty et al.’s joint model

Joty et al. (2013) approach the problem of text-

level discourse parsing using a model trained by

Conditional Random Fields (CRF). Their model

has two distinct features.

First, they decomposed the problem of text-

level discourse parsing into two stages: intra-

sentential parsing to produce a discourse tree for

each sentence, followed by multi-sentential pars-

ing to combine the sentence-level discourse trees

and produce the text-level discourse tree. Specif-

ically, they employed two separate models for

intra- and multi-sentential parsing. Their choice

of two-stage parsing is well motivated for two rea-

sons: (1) it has been shown that sentence bound-

aries correlate very well with discourse bound-

aries, and (2) the scalability issue of their CRF-

based models can be overcome by this decompo-

sition.

Second, they jointly modeled the structure and

the relation for a given pair of discourse units.

For example, Figure 2 shows their intra-sentential

model, in which they use the bottom layer to rep-

resent discourse units; the middle layer of binary

nodes to predict the connection of adjacent dis-

course units; and the top layer of multi-class nodes

to predict the type of the relation between two

units. Their model assigns a probability to each

possible constituent, and a CKY-like parsing al-

gorithm finds the globally optimal discourse tree,

given the computed probabilities.

The strength of Joty et al.’s model is their joint

modeling of the structure and the relation, such

that information from each aspect can interact with

the other. However, their model has a major defect

in its inefficiency, or even infeasibility, for appli-

cation in practice. The inefficiency lies in both

their DCRF-based joint model, on which infer-

ence is usually slow, and their CKY-like parsing

algorithm, whose issue is more prominent. Due to

the O(n3) time complexity, where n is the number
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Figure 2: Joty et al. (2013)’s intra-sentential Con-

dition Random Fields.

of input discourse units, for large documents, the

parsing simply takes too long1.

3 Overall work flow

Figure 3 demonstrates the overall work flow of our

discourse parser. The general idea is that, similar

to Joty et al. (2013), we perform a sentence-level

parsing for each sentence first, followed by a text-

level parsing to generate a full discourse tree for

the whole document. However, in addition to effi-

ciency (to be shown in Section 6), our discourse

parser has a distinct feature, which is the post-

editing component (to be introduced in Section 5),

as outlined in dashes.

Our discourse parser works as follows. A doc-

ument D is first segmented into a list of sen-

tences. Each sentence Si, after being segmented

into EDUs (not shown in the figure), goes through

an intra-sentential bottom-up tree-building model

Mintra, to form a sentence-level discourse tree TSi
,

with the EDUs as leaf nodes. After that, we ap-

ply the intra-sentential post-editing model Pintra to

modify the generated tree TSi
to T

p
Si

, by considering

upper-level information.

We then combine all sentence-level discourse

tree T
p

Si
’s using our multi-sentential bottom-up

tree-building model Mmulti to generate the text-

level discourse tree TD. Similar to sentence-level

parsing, we also post-edit TD using Pmulti to pro-

duce the final discourse tree T
p

D .

1The largest document in the RST-DT contains over 180
sentences, i.e., n > 180 for their multi-sentential CKY pars-
ing. Intuitively, suppose the average time to compute the
probability of each constituent is 0.01 second, then in total,
the CKY-like parsing takes over 16 hours. It is possible to op-
timize Joty et al.’s CKY-like parsing by replacing their CRF-
based computation for upper-level constituents with some lo-
cal computation based on the probabilities of lower-level con-
stituents. However, such optimization is beyond the scope of
this paper.

4 Bottom-up tree-building

For both intra- and multi-sentential parsing, our

bottom-up tree-building process adopts a similar

greedy pipeline framework like the HILDA dis-

course parser (discussed in Section 2.1), to guar-

antee efficiency for large documents. In partic-

ular, starting from the constituents on the bot-

tom level (EDUs for intra-sentential parsing and

sentence-level discourse trees for multi-sentential

parsing), at each step of the tree-building, we

greedily merge a pair of adjacent discourse con-

stituents such that the merged constituent has the

highest probability as predicted by our structure

model. The relation model is then applied to as-

sign the relation to the new constituent.

4.1 Linear-chain CRFs as Local models

Now we describe the local models we use to make

decisions for a given pair of adjacent discourse

constituents in the bottom-up tree-building. There

are two dimensions for our local models: (1) scope

of the model: intra- or multi-sentential, and (2)

purpose of the model: for determining structures

or relations. So we have four local models, Mstruct
intra ,

Mrel
intra, Mstruct

multi , and Mrel
multi.

While our bottom-up tree-building shares the

greedy framework with HILDA, unlike HILDA,

our local models are implemented using CRFs.

In this way, we are able to take into account the

sequential information from contextual discourse

constituents, which cannot be naturally repre-

sented in HILDA with SVMs as local classifiers.

Therefore, our model incorporates the strengths

of both HILDA and Joty et al.’s model, i.e., the

efficiency of a greedy parsing algorithm, and the

ability to incorporate sequential information with

CRFs.

As shown by Feng and Hirst (2012), for a pair

of discourse constituents of interest, the sequential

information from contextual constituents is cru-

cial for determining structures. Therefore, it is

well motivated to use Conditional Random Fields

(CRFs) (Lafferty et al., 2001), which is a discrimi-

native probabilistic graphical model, to make pre-

dictions for a sequence of constituents surround-

ing the pair of interest.

In this sense, our local models appear similar

to Joty et al.’s non-greedy parsing models. How-

ever, the major distinction between our models

and theirs is that we do not jointly model the struc-

ture and the relation; rather, we use two linear-
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Figure 3: The work flow of our proposed discourse parser. In the figure, Mintra and Mmulti stand for the

intra- and multi-sentential bottom-up tree-building models, and Pintra and Pmulti stand for the intra- and

multi-sentential post-editing models.

chain CRFs to model the structure and the relation

separately. Although joint modeling has shown to

be effective in various NLP and computer vision

applications (Sutton et al., 2007; Yang et al., 2009;

Wojek and Schiele, 2008), our choice of using two

separate models is for the following reasons:

First, it is not entirely appropriate to model the

structure and the relation at the same time. For

example, with respect to Figure 2, it is unclear

how the relation node R j is represented for a train-

ing instance whose structure node S j = 0, i.e., the

units U j−1 and U j are disjoint. Assume a special

relation NO-REL is assigned for R j. Then, in the

tree-building process, we will have to deal with the

situations where the joint model yields conflicting

predictions: it is possible that the model predicts

S j = 1 and R j = NO-REL, or vice versa, and we

will have to decide which node to trust (and thus

in some sense, the structure and the relation is no

longer jointly modeled).

Secondly, as a joint model, it is mandatory to

use a dynamic CRF, for which exact inference is

usually intractable or slow. In contrast, for linear-

chain CRFs, efficient algorithms and implementa-

tions for exact inference exist.

4.2 Structure models

4.2.1 Intra-sentential structure model

Figure 4a shows our intra-sentential structure

model Mstruct
intra in the form of a linear-chain CRF.

Similar to Joty et al.’s intra-sentential model, the

first layer of the chain is composed of discourse

constituents U j’s, and the second layer is com-

posed of binary nodes S j’s to indicate the proba-

bility of merging adjacent discourse constituents.

S2

U2U1

S3

U3

Sj

Uj

St

Ut

Structure 

sequence

All units in 

sentence 

at level i

(a) Intra-sentential structure model Mstruct
intra .
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C
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(b) Multi-sentential structure model Mstruct
multi . C1, C2, and C3

denote the three chains for predicting U j and U j+1.

Figure 4: Local structure models.

At each step in the bottom-up tree-building pro-

cess, we generate a single sequence E, consisting

of U1,U2, . . . ,U j, . . . ,Ut , which are all the current

discourse constituents in the sentence that need

to be processed. For instance, initially, we have

the sequence E1 = {e1,e2, . . . ,em}, which are the

EDUs of the sentence; after merging e1 and e2 on

the second level, we have E2 = {e1:2,e3, . . . ,em};
after merging e4 and e5 on the third level, we have

E3 = {e1:2,e3,e4:5, . . . ,em}, and so on.

Because the structure model is the first com-

ponent in our pipeline of local models, its accu-

racy is crucial. Therefore, to improve its accuracy,

we enforce additional commonsense constraints in

its Viterbi decoding. In particular, we disallow 1-

1 transitions between adjacent labels (a discourse

unit can be merged with at most one adjacent unit),

and we disallow all-zero sequences (at least one
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pair must be merged).

Since the computation of Ei does not depend

on a particular pair of constituents, we can use the

same sequence Ei to compute structural probabili-

ties for all adjacent constituents. In contrast, Joty

et al.’s computation of intra-sentential sequences

depends on the particular pair of constituents: the

sequence is composed of the pair in question, with

other EDUs in the sentence, even if those EDUs

have already been merged. Thus, different CRF

chains have to be formed for different pairs of con-

stituents. In addition to efficiency, our use of a

single CRF chain for all constituents can better

capture the sequential dependencies among con-

text, by taking into account the information from

partially built discourse constituents, rather than

bottom-level EDUs only.

4.2.2 Multi-sentential structure model

For multi-sentential parsing, where the smallest

discourse units are single sentences, as argued by

Joty et al. (2013), it is not feasible to use a long

chain to represent all constituents, due to the fact

that it takes O(T M2) time to perform the forward-

backward exact inference on a chain with T units

and an output vocabulary size of M, thus the over-

all complexity for all possible sequences in their

model is O(M2n3)2.

Instead, we choose to take a sliding-window

approach to form CRF chains for a particular pair

of constituents, as shown in Figure 4b. For exam-

ple, suppose we wish to compute the structural

probability for the pair U j−1 and U j, we form three

chains, each of which contains two contextual

constituents: C1 = {U j−3,U j−2,U j−1,U j},
C2 = {U j−2,U j−1,U j,U j+1}, and C3 =
{U j−1,U j,U j+1,U j+2}. We then find the chain

Ct ,1 ≤ t ≤ 3, with the highest joint probability

over the entire sequence, and assign its marginal

probability P(St
j = 1) to P(S j = 1).

Similar to Mstruct
intra , for Mstruct

multi , we also include

additional constraints in the Viterbi decoding, by

disallowing transitions between two ones, and dis-

allowing the sequence to be all zeros if it contains

all the remaining constituents in the document.

4.3 Relation models

4.3.1 Intra-sentential relation model

The intra-sentential relation model Mrel
intra, shown

in Figure 5a, works in a similar way to Mstruct
intra , as

2The time complexity will be reduced to O(M2n2), if we
use the same chain for all constituents as in our Mstruct

intra .

described in Section 4.2.1. The linear-chain CRF

contains a first layer of all discourse constituents

U j’s in the sentence on level i, and a second layer

of relation nodes R j’s to represent the relation be-

tween a pair of discourse constituents.

However, unlike the structure model, adjacent

relation nodes do not share discourse constituents

on the first layer. Rather, each relation node R j

attempts to model the relation of one single con-

stituent U j, by taking U j’s left and right subtrees

U j,L and U j,R as its first-layer nodes; if U j is a sin-

gle EDU, then the first-layer node of R j is simply

U j, and R j is a special relation symbol LEAF3.

Since we know, a priori, that the constituents in the

chains are either leaf nodes or the ones that have

been merged by our structure model, we never

need to worry about the NO-REL issue as out-

lined in Section 4.1.

In the bottom-up tree-building process, after

merging a pair of adjacent constituents using

Mstruct
intra into a new constituent, say U j, we form a

chain consisting of all current constituents in the

sentence to decide the relation label for U j, i.e.,

the R j node in the chain. In fact, by perform-

ing inference on this chain, we produce predic-

tions not only for R j, but also for all other R nodes

in the chain, which correspond to all other con-

stituents in the sentence. Since those non-leaf con-

stituents are already labeled in previous steps in

the tree-building, we can now re-assign their rela-

tions if the model predicts differently in this step.

Therefore, this re-labeling procedure can compen-

sate for the loss of accuracy caused by our greedy

bottom-up strategy to some extent.

4.3.2 Multi-sentential relation model

Figure 5b shows our multi-sentential relation

model. Like Mrel
intra, the first layer consists of adja-

cent discourse units, and the relation nodes on the

second layer model the relation of each constituent

separately.

Similar to Mstruct
multi introduced in Section 4.2.2,

Mrel
multi also takes a sliding-window approach to

predict labels for constituents in a local context.

For a constituent U j to be predicted, we form three

chains, and use the chain with the highest joint

probability to assign or re-assign relations to con-

stituents in that chain.

3These leaf constituents are represented using a special
feature vector is leaf = True; thus the CRF never labels
them with relations other than LEAF.
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Figure 5: Local relation models.

5 Post-editing

After an intra- or multi-sentential discourse tree

is fully built, we perform a post-editing to con-

sider possible modifications to the current tree, by

considering useful information from the discourse

constituents on upper levels, which is unavailable

in the bottom-up tree-building process.

The motivation for post-editing is that, some

particular discourse relations, such as TEXTUAL-

ORGANIZATION, tend to occur on the top levels

of the discourse tree; thus, information such as the

depth of the discourse constituent can be quite in-

dicative. However, the exact depth of a discourse

constituent is usually unknown in the bottom-up

tree-building process; therefore, it might be ben-

eficial to modify the tree by including top-down

information after the tree is fully built.

The process of post-editing is shown in Algo-

rithm 1. For each input discourse tree T , which

is already fully built by bottom-up tree-building

models, we do the following:

Lines 3 – 9: Identify the lowest level of T on

which the constituents can be modified according

to the post-editing structure component, Pstruct . To

do so, we maintain a list L to store the discourse

constituents that need to be examined. Initially, L

consists of all the bottom-level constituents in T .

At each step of the loop, we consider merging the

pair of adjacent units in L with the highest proba-

bility predicted by Pstruct . If the predicted pair is

not merged in the original tree T , then a possible

modification is located; otherwise, we merge the

pair, and proceed to the next iteration.

Lines 10 – 12: If modifications have been pro-

posed in the previous step, we build a new tree

Algorithm 1 Post-editing algorithm.

Input: A fully built discourse tree T .

1: if |T |= 1 then

2: return T ⊲ Do nothing if it is a single

EDU.

3: L← [U1,U2, . . . ,Ut ] ⊲ The bottom-level

constituents in T .

4: while |L|> 2 do

5: i← PREDICTMERGING(L,Pstruct)
6: p← PARENT(L[i],L[i+1],T )
7: if p = NULL then

8: break

9: Replace L[i] and L[i+1] with p

10: if |L|= 2 then

11: L← [U1,U2, . . . ,Ut ]

12: T p← BUILDTREE(L,Pstruct ,Prel,T )
Output: T p

T p using Pstruct as the structure model, and Prel

as the relation model, from the constituents on

which modifications are proposed. Otherwise, T p

is built from the bottom-level constituents of T .

The upper-level information, such as the depth of

a discourse constituent, is derived from the initial

tree T .

5.1 Local models

The local models, P
{struct|rel}
{intra|multi}, for post-editing

is almost identical to their counterparts of the

bottom-up tree-building, except that the linear-

chain CRFs in post-editing includes additional

features to represent information from constituents

on higher levels (to be introduced in Section 7).

6 Linear time complexity

Here we analyze the time complexity of each com-

ponent in our discourse parser, to quantitatively

demonstrate the time efficiency of our model. The

following analysis is focused on the bottom-up

tree-building process, but a similar analysis can be

carried out for the post-editing process. Since the

number of operations in the post-editing process is

roughly the same (1.5 times in the worst case) as

in the bottom-up tree-building, post-editing shares

the same complexity as the tree-building.

6.1 Intra-sentential parsing

Suppose the input document is segmented into

n sentences, and each sentence Sk contains mk

EDUs. For each sentence Sk with mk EDUs, the
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overall time complexity to perform intra-sentential

parsing is O(m2
k). The reason is the following. On

level i of the bottom-up tree-building, we generate

a single chain to represent the structure or relation

for all the mk− i constituents that are currently in

the sentence. The time complexity for performing

forward-backward inference on the single chain is

O((mk− i)×M2) = O(mk− i), where the constant

M is the size of the output vocabulary. Starting

from the EDUs on the bottom level, we need to

perform inference for one chain on each level dur-

ing the bottom-up tree-building, and thus the total

time complexity is Σ
mk

i=1O(mk− i) = O(m2
k).

The total time to generate sentence-level dis-

course trees for n sentences is Σ
n
k=1O(m2

k). It is

fairly safe to assume that each mk is a constant,

in the sense that mk is independent of the total

number of sentences in the document. There-

fore, the total time complexity Σ
n
k=1O(m2

k) ≤ n×
O(max1≤ j≤n(m

2
j)) = n×O(1) = O(n), i.e., linear

in the total number of sentences.

6.2 Multi-sentential parsing

For multi-sentential models, Mstruct
multi and Mrel

multi, as

shown in Figures 4b and 5b, for a pair of con-

stituents of interest, we generate multiple chains

to predict the structure or the relation.

By including a constant number k of discourse

units in each chain, and considering a constant

number l of such chains for computing each ad-

jacent pair of discourse constituents (k = 4 for

Mstruct
multi and k = 3 for Mrel

multi; l = 3), we have an

overall time complexity of O(n). The reason is

that it takes l×O(kM2) = O(1) time, where l,k,M

are all constants, to perform exact inference for a

given pair of adjacent constituents, and we need

to perform such computation for all n−1 pairs of

adjacent sentences on the first level of the tree-

building. Adopting a greedy approach, on an ar-

bitrary level during the tree-building, once we de-

cide to merge a certain pair of constituents, say

U j and U j+1, we only need to recompute a small

number of chains, i.e., the chains which originally

include U j or U j+1, and inference on each chain

takes O(1). Therefore, the total time complexity

is (n−1)×O(1)+(n−1)×O(1) = O(n), where

the first term in the summation is the complexity

of computing all chains on the bottom level, and

the second term is the complexity of computing

the constant number of chains on higher levels.

We have thus showed that the time complexity

is linear in n, which is the number of sentences in

the document. In fact, under the assumption that

the number of EDUs in each sentence is indepen-

dent of n, it can be shown that the time complexity

is also linear in the total number of EDUs4.

7 Features

In our local models, to encode two adjacent units,

U j and U j+1, within a CRF chain, we use the fol-

lowing 10 sets of features, some of which are mod-

ified from Joty et al.’s model.

Organization features: Whether U j (or U j+1) is

the first (or last) constituent in the sentence (for

intra-sentential models) or in the document (for

multi-sentential models); whether U j (or U j+1) is

a bottom-level constituent.

Textual structure features: Whether U j con-

tains more sentences (or paragraphs) than U j+1.

N-gram features: The beginning (or end) lexi-

cal n-grams in each unit; the beginning (or end)

POS n-grams in each unit, where n ∈ {1,2,3}.

Dominance features: The PoS tags of the head

node and the attachment node; the lexical heads of

the head node and the attachment node; the domi-

nance relationship between the two units.

Contextual features: The feature vector of the

previous and the next constituent in the chain.

Substructure features: The root node of the left

and right discourse subtrees of each unit.

Syntactic features: whether each unit corre-

sponds to a single syntactic subtree, and if so, the

top PoS tag of the subtree; the distance of each

unit to their lowest common ancestor in the syntax

tree (intra-sentential only).

Entity transition features: The type and the

number of entity transitions across the two units.

We adopt Barzilay and Lapata (2008)’s entity-

based local coherence model to represent a doc-

ument by an entity grid, and extract local transi-

tions among entities in continuous discourse con-

stituents. We use bigram and trigram transitions

with syntactic roles attached to each entity.

4We implicitly made an assumption that the parsing time
is dominated by the time to perform inference on CRF chains.
However, for complex features, the time required for fea-
ture computation might be dominant. Nevertheless, a care-
ful caching strategy can accelerate feature computation, since
a large number of multi-sentential chains overlap with each
other.
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Cue phrase features: Whether a cue phrase oc-

curs in the first or last EDU of each unit. The cue

phrase list is based on the connectives collected by

Knott and Dale (1994)

Post-editing features: The depth of each unit in

the initial tree.

8 Experiments

For pre-processing, we use the Stanford CoreNLP

(Klein and Manning, 2003; de Marneffe et al.,

2006; Recasens et al., 2013) to syntactically parse

the texts and extract coreference relations, and we

use Penn2Malt5 to lexicalize syntactic trees to ex-

tract dominance features.

For local models, our structure models are

trained using MALLET (McCallum, 2002) to in-

clude constraints over transitions between adja-

cent labels, and our relation models are trained

using CRFSuite (Okazaki, 2007), which is a fast

implementation of linear-chain CRFs.

The data that we use to develop and evaluate

our discourse parser is the RST Discourse Tree-

bank (RST-DT) (Carlson et al., 2001), which is a

large corpus annotated in the framework of RST.

The RST-DT consists of 385 documents (347 for

training and 38 for testing) from the Wall Street

Journal. Following previous work on the RST-DT

(Hernault et al., 2010; Feng and Hirst, 2012; Joty

et al., 2012; Joty et al., 2013), we use 18 coarse-

grained relation classes, and with nuclearity at-

tached, we have a total set of 41 distinct relations.

Non-binary relations are converted into a cascade

of right-branching binary relations.

9 Results and Discussion

9.1 Parsing accuracy

We compare four different models using manual

EDU segmentation. In Table 1, the jCRF model

in the first row is the optimal CRF model proposed

by Joty et al. (2013). gSVMFH in the second row

is our implementation of HILDA’s greedy parsing

algorithm using Feng and Hirst (2012)’s enhanced

feature set. The third model, gCRF, represents our

greedy CRF-based discourse parser, and the last

row, gCRFPE , represents our parser with the post-

editing component included.

In order to conduct a direct comparison with

Joty et al.’s model, we use the same set of eval-

5http://stp.lingfil.uu.se/˜nivre/

research/Penn2Malt.html.

Model Span Nuc Relation

Acc MAFS

jCRF 82.5 68.4 55.7 N/A

gSVMFH 82.8 67.1 52.0 27.4/23.3

gCRF 84.9∗ 69.9∗ 57.2∗ 35.3/31.3

gCRFPE 85.7∗† 71.0∗† 58.2∗† 36.2/32.3

Human 88.7 77.7 65.8 N/A

∗: significantly better than gSVMFH (p < .01)

†: significantly better than gCRF (p < .01)

Table 1: Performance of different models using

gold-standard EDU segmentation, evaluated us-

ing the constituent accuracy (%) for span, nucle-

arity, and relation. For relation, we also report the

macro-averaged F1-score (MAFS) for correctly

retrieved constituents (before the slash) and for

all constituents (after the slash). Statistical sig-

nificance is verified using Wilcoxon’s signed-rank

test.

uation metrics, i.e., the unlabeled and labeled pre-

cision, recall, and F-score6 as defined by Marcu

(2000). For evaluating relations, since there is a

skewed distribution of different relation types in

the corpus, we also include the macro-averaged

F1-score (MAFS)7 as another metric, to empha-

size the performance of infrequent relation types.

We report the MAFS separately for the correctly

retrieved constituents (i.e., the span boundary is

correct) and all constituents in the reference tree.

As demonstrated by Table 1, our greedy CRF

models perform significantly better than the other

two models. Since we do not have the actual out-

put of Joty et al.’s model, we are unable to con-

duct significance testing between our models and

theirs. But in terms of overall accuracy, our gCRF

model outperforms their model by 1.5%. More-

over, with post-editing enabled, gCRFPE signif-

icantly (p < .01) outperforms our initial model

gCRF by another 1% in relation assignment, and

this overall accuracy of 58.2% is close to 90% of

human performance. With respect to the macro-

averaged F1-scores, adding the post-editing com-

ponent also obtains about 1% improvement.

However, the overall MAFS is still at the lower

6For manual segmentation, precision, recall, and F-score
are the same.

7MAFS is the F1-score averaged among all relation
classes by equally weighting each class. Therefore, we can-
not conduct significance test between different MAFS.
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Avg Min Max

# of EDUs 61.74 4 304

# of Sentences 26.11 2 187

# of EDUs per sentence 2.36 1 10

Table 2: Characteristics of the 38 documents in the

test data.

end of 30% for all constituents. Our error anal-

ysis shows that, for two relation classes, TOPIC-

CHANGE and TEXTUAL-ORGANIZATION, our

model fails to retrieve any instance, and for

TOPIC-COMMENT and EVALUATION, our model

scores a class-wise F1 score lower than 5%. These

four relation classes, apart from their infrequency

in the corpus, are more abstractly defined, and thus

are particularly challenging.

9.2 Parsing efficiency

We further illustrate the efficiency of our parser by

demonstrating the time consumption of different

models.

First, as shown in Table 2, the average number

of sentences in a document is 26.11, which is al-

ready too large for optimal parsing models, e.g.,

the CKY-like parsing algorithm in jCRF, let alone

the fact that the largest document contains sev-

eral hundred of EDUs and sentences. Therefore,

it should be seen that non-optimal models are re-

quired in most cases.

In Table 3, we report the parsing time8 for the

last three models, since we do not know the time of

jCRF. Note that the parsing time excludes the time

cost for any necessary pre-processing. As can be

seen, our gCRF model is considerably faster than

gSVMFH , because, on one hand, feature compu-

tation is expensive in gSVMFH , since gSVMFH

utilizes a rich set of features; on the other hand,

in gCRF, we are able to accelerate decoding by

multi-threading MALLET (we use four threads).

Even for the largest document with 187 sentences,

gCRF is able to produce the final tree after about

40 seconds, while jCRF would take over 16 hours

assuming each DCRF decoding takes only 0.01

second. Although enabling post-editing doubles

the time consumption, the overall time is still ac-

ceptable in practice, and the loss of efficiency can

be compensated by the improvement in accuracy.

8Tested on a Linux system with four duo-core 3.0GHz
processors and 16G memory.

Model Parsing Time (seconds)

Avg Min Max

gSVMFH 11.19 0.42 124.86

gCRF 5.52 0.05 40.57

gCRFPE 10.71 0.12 84.72

Table 3: The parsing time (in seconds) for the 38

documents in the test set of RST-DT. Time cost of

any pre-processing is excluded from the analysis.

10 Conclusions

In this paper, we presented an efficient text-level

discourse parser with time complexity linear in

the total number of sentences in the document.

Our approach was to adopt a greedy bottom-

up tree-building, with two linear-chain CRFs as

local probabilistic models, and enforce reason-

able constraints in the first CRF’s Viterbi decod-

ing. While significantly outperforming the state-

of-the-art model by Joty et al. (2013), our parser

is much faster in practice. In addition, we pro-

pose a novel idea of post-editing, which modifies a

fully-built discourse tree by considering informa-

tion from upper-level constituents. We show that,

although doubling the time consumption, post-

editing can further boost the parsing performance

to close to 90% of human performance.

In future work, we wish to further explore the

idea of post-editing, since currently we use only

the depth of the subtrees as upper-level informa-

tion. Moreover, we wish to study whether we can

incorporate constraints into the relation models, as

we do to the structure models. For example, it

might be helpful to train the relation models us-

ing additional criteria, such as Generalized Ex-

pectation (Mann and McCallum, 2008), to better

take into account some prior knowledge about the

relations. Last but not least, as reflected by the

low MAFS in our experiments, some particularly

difficult relation types might need specifically de-

signed features for better recognition.
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