
A Linear-Time Model-Checking Algorithm for the
Alternation-Free Modal Mu-Calculus

Rance Cleaveland* Bernhaxd Steffen t

Abst rac t

We develop a model-checking algorithm for a logic that permits propositions to be defined
with greatest and least fixed points of mutually recursive systems of equations. This logic is
as expressive as the alternation-free fragment of the modal mu-calculus identified by Emerson
and Lei, and it may therefore be used to encode a number of temporal logics and behavioral
preorders. Our algorithm determines whether a process satisfies a formula in time proportional
to the product of the sizes of the process and the formula; this improves on the best known
algorithm for similar fixed-polnt logics.

1 I n t r o d u c t i o n

Behavioral equivalences and preorders, and temporal logics, have been used extensively in automated
verification tools for finite-state processes [CES, Fe, MSGS, RRSV, RdS]. The relations axe typically
used to relate a high-level specification process to a more de f i l ed implementation process, while
temporal logics enable system designers to formulate collections of properties that implementations
must satisfy. Decision procedures have been developed for computing different behavioral relations
and for determining when processes satisfy formulas in several temporal logics, and they have been
incorporated into various automated tools. Typically, these tools support only one of these verification
methods. However, recent results point to advantages of using the methods together (cf. [CS1, GS]),
and therefore to the need for tools, like the Concurrency Workbench [CPS1, CPS2], which support
all three. Moreover, such combined tools are not necessaxily more complex than single-purpose tools,
as e.g. preorder checking may be efficiently reduced to model checking [CS2]; the model-checking
algorithm in [CS2] leads to the most efficient algorithm known for preorder checking.

In this paper, we extend the algorithm of [CS2] to deal with a logic whose propositions axe defined
by least, as well as greatest, fixed points of mutually recursive systems of equations. This logic is
strictly more expressive than the logic of [CS2]; it has the same power as the alternation-free fragment
of the modal mu-calculus [EL], and therefore a number of different branching-time logics, including
Computation Tree Logic [CES] and Propositional Dynamic Logic [FL], have uniform, lineax-time
encodings in it. Moreover, the time complexity of our new algorithm is proportional to the product of
the sizes of the process and the formula under consideration, and therefore matches the complexity of
the algorithm in [CS2].

The remainder of the paper develops along the following lines. Section 2 describes transition
systems, which serve as our process model, and presents our logic. The section following then gives
our model-checking algorithm, and Section 4 shows how the algorithm may be applied to model
checking in other logics as well as to the calculation of behavioral preorders. The final section contains
our conclusions and directions for future reseaxch.

*Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206, USA. Researchsup-
ported by National Science Foundation/DARPA Grant CCR-9014"i?fi.

! Lehrstutd fdr Informatik H, Rheinisch-Westf'allsche Technische Hochschule Aachen, D-5100 Aachen, GERMANY.

49

Formulas are interpreted with respect to a Taxed labeled transition system (S, Act,.-*), a valuation
]) : .4 ~ 2 s , and an environment e : Vat ~ 28.

~ale = V(A)
[X]e = e(X)

l[r V ~2]]1~ : H(:T~I]e U [[~2]e
[[Ox A 02lie = [[0 l i en ~O2]e

[[a]~le = { s I V s ' . s - m s ' = ~ ' ~ l[~]e}

Figure 1: The semantics of basic formulas.

2 P r o c e s s e s a n d t h e M o d a l M u - C a l c u l u s

We use labeled transition systems to model processes. These may be formally defined as follows.

Def in i t i on 2.1 A labeled transition system T is a triple (S, Act,--*), where:

�9 S is a set of states;

�9 Act is a set of actions; and

�9 ---* C S X Act X S is the transition relation.

Intuitively, a labeled transition system encodes the operational behavior of a process. The set S
represents the set of states the process may enter, and Act contains the set of actions the process
may perform. The relation ~ describes the actions available to states and the state transitions that
may result upon execution of the actions. In the remainder of the paper we use s ~-* g in lieu of
Is, a ,s ') G---~, and we write s -~ when there is an s I such that s -~ s'. I f s -~ g then we say that s ' is
an a-derivative of s.

Given a labeled transition system T = IS, Act, "*1, we define processes as rooted transition systems,
i.e. as pairs (T, s), where s E S is a distinguished element, the "start state". If the transi t ion system
is obvious from the context, we omit reference to it; in this case, processes will be identified with their
start states. Finally, when ~q and Act are finite, we say that the labeled transi t ion system is finite-state.

2 . 1 S y n t a x a n d S e m a n t i c s o f B a s i c F o r m u l a s

The logic we consider may be viewed as a variant of the modal mu-calculus [Ko], or the Hennessy-Milner
Logic with recursion [La]. Let Vat be a (countable) set of variables, .~ a set of atomic propositions,
and Act a set of actions. In what follows, X will range over Vat, A over .4, and a over Act. Then the
syntax of basic formulas is given by the following grammar.

The formal semantics appears in Figure 1. It is given with respect to a labeled transi t ion system
IS, Act, -~), a valuation ~ mapping atomic propositions to subsets of 8 , and an environment e mapping
variables to subsets of S. Intuitively, the semantic function maps a formula to the set of states for
which the formula is "true". Accordingiy, a state s satisfies A G A if s is in the valuation of A, while s
satisfies X if s is an element of the set bound to X in e. The propositional constructs are interpreted in
the usual fashion: s satisfies 01 V ~ if it satisfies one of the ~ and ~1 A ~2 if it satisfies both of them.
The c o n s t r u c t s / a / a n d [a] are modal operators; s satisfies (a)~ if it has an a-derivative satisfying ~,
white n satisfies [a]~ if each of its a-derivatives satisfies ~.

50

2 .2 S y n t a x o f E q u a t i o n a l B l o c k s

Formulas may also he defined using sets of blocks of (mutually recursive) equations. A block of equations
has one of two forms - - rain{E} or maz{E} - - where E is a list of equations

Xl = 01

in which each 0~ is a basic formula and the Xi are all distinct. Intuitively, a block defines n mutually
recursive propositions, one per variable; the precise role played by the maz and rain indicators will
become clear in a moment. Several blocks may be used to define formulas, and the right-hand sides of
an equation in one block may refer to variables appearing on the left-hand sides of equations in other
blocks. In what follows we assume that all the variables that appear on the left-hand sides in a set
of blocks are distinct, and we also impose an additional syntactic restriction. Define Bi -* Bj if Bi
and Bj are distinct and a left-hand-side variable in Bi appears in a right-hand-side expression of Bj.
Then the "block graph" induced by --~ must be acyclic. This ensures that there are no alternating
fized poinLs [EL]; we shall have more to say on this later.

2 .3 S e m a n t i c s o f E q u a t i o n a l B l o c k s

To define the semantics of a set B of blocks, we first define the semantics of an individual block. Let
E be the set of equations

X l = O1

X~ = On.

Then, given a fixed environment e, we may build a function f~ : (2s) n --, (2s) n as follows. Let
~-- {81,. . . ,Sn) E (2S) n, and let e~ = e[X1 ,-* S~,.. . ,X , v-r S,,] be the environment that results from

e by updating the binding of Xi to Si. Then

(2s) '~ forms a complete lattice, where the ordering, join and meet operations are the pointwise ex-
tensions of the set-theoretic inclusion C_, union O and intersection N, respectively. Moreover, for any
equation system E and environment e, /~ is monotonic with respect to this lattice and therefore,
according to the Tarski fixed-point theorem [Ta], has both a greatesf fixed point, vf~ , and a least fixed
point, pf~. In general, these may be characterized as follows.

When the labeled transition system is fiuite-state f~ is continuous, and the fixed points also have an
iterative characterization. Let

fo = (s , . . . , s)
]o = (0 , . . . , 0)

y,+l = f~Cf,) for i _> 0
/,+1 = f ~ (/ ,) for i > 0.

Then v f~ = n~o fl, and p f~ = t.J~o],.

51

Blocks maz{E} and rain{E} are now interpreted as environments in the following fashion.

[m o . { E }] e = e~,~

So maz{E} represents the "greatest" fixed point of E, while rain{E} represents the least.
We now give the semantics of a (finite) set of blocks B satisfying our syntactic condition. Let

Bx , . . . ,B~ be a topological sorting of the blocks in B according to the relation ~ defined above.
Notice that the syntactic restriction ensures the following: the variables that can appear on the right-
hand side of an equation in B i can only appear on the left-hand side of equations in blocks Bi with
i < j , if they appear on any left-hand side at all. We now define the following sequence of environments,
where e is given.

e, = [B~]e

e,~ = II'B,,,]~,,,-~

Then [B]e -- e,,. Note that the syntactic restriction ensures that [[B]e,~ = era.
It is possible to define what it means for a state in a transition system to satisfy a formula whose

variables are "bound" by a set of equations. First, we say that a basic proposition ~ is closed with
respect to a set of blocks B if every variable in ~ appears on the left-hand side of some equation in
some block in B. We also refer to a set of blocks B as closed if each right-hand side in each block in B
is closed with respect to B. Then it turns out that for any e and e' and closed B, [B]e = [B]e ~. This
is a corollary of the following, more general result.

P ropos i t ion 2.2 Let B be a closed set of blocks, and �9 be a proposition being closed with respect to
Z. Then.for any enmronments e and e's ~] ([B]e) = [~]([tHe')

When B is dosed with respect to itself we often omit reference to e and speak of I[B], and we write
s ~ �9 where B when �9 and B are closed with respect to e and s �9 [~][B].

To illustrate how properties may be formulated using sets of blocks of equations, consider the
following set containing two blocks. 1

B~ - m i n { X l = e ^ [a]X~ ^ (a)t t}
B , - m o ~ { x ~ = x ~ A [s i X , }

Intuitively, the proposition X2 where {B1, B~} represents the CTL formula A G A F P - - "it is always
the case that eventually, P will hold" - - for labeled transition systems in which Act = {a}. Notice
that B1 --* B2, since X1 is mentioned in the right-hand side of the equation in B2.

2 . 4 B l o c k s a n d A l t e r n a t e d N e s t i n g

In this section we establish a correspondence between the logic introduced in Sections 2.1 mad 2.2 and
the alternation-frce modal mu-caiculus. Emerson and Lei [EL] define the notion of alternation depth
of a formula in the modal mu-calculus. Intuitively, the alternation depth of a formula refers to the
"level" of mutually recursive greatest and least fixed-polnt operators. When no such mutual recursion
exists, the alternation depth is one, and the formula is said to be alternation-free. They refer to Lpl
as the alternation-free fragment of the full logic. We have the following.

T h e o r e m 2.3 (Express iv l ty)
Let T be a transition systems and let e be an environment mapping formula variables to sets of states
in T . Then:

IHexe tt is an atomic proposition that holds of every state in every inbeled transition system.

$2

1. Every formula r in Lpl can be translated in time proportional to the size of r into a block set B

with Hr]e = [X]l([B]e) for some left-hand-side variable X orB.

e. Fo,. ,,,ery block B and a able x there a/o. ula r in = r]e.

Thus our logic is as expressive as the alternation-free modal mu-calculus.

3 A L i n e a r - T i m e M o d e l C h e c k e r

In this section we present an algorithm for computing lIB] for a closed set of blocks B with acyclic
block graph, given a finlte-state transition system. The algorithm, solve, extends the algorithm of
[CS2], which only deals with maximum fixed points. The main alterations include:

�9 Adding the (dual) initialization and update rules for the minimum fixed points.

�9 Developing a method for hierarchically computing maximum and minimum fixed points.

The resulting algorithm still exhibits complexity that is linear in the size of the transition system and
B .

Following [AC, CS2], we restrict our attention to equations whose right-hand sides axe simple, i.e.
have only variables as nontrivial subterms and do not just consist of a variable. So X4 V Xs is simple,
while (al(X4VXs) and)(4 are not. Any equation set E may be transformed in linear time into a simple
equation set E S with at most a linear blow-up in size. Accordingly, solve has the same complexity for
our full logic as it does for the simple sublogic.

3.1 O v e r v i e w

As with the algorithms in [AC, CS2], solve is bit-vector-based. Each state in 8 has a bit vector whose
i th entry indicates whether or not the state belongs to the set associated with Xi in the current stage
of the analysis. The algorithm then repeatedly updates the bit vectors until they correspond to [[B].
Given B, solve first initializes every component in each state's bit vector as follows.

�9 If the variable corresponding to the component is a left-hand side in a maz block then the
component is set to true, with the following exceptions.

- The right-hand side of the corresponding equation is atomic, and the state does not satisfy
the atomic proposition.

- The right-hand side of the corresponding equation is of the form (a)Xj, and the state has
no e-derlvatives.

�9 Dually, if the variable corresponding to the component is a left-hand side in a rain block then
the component is set to fa/se, with the following exceptions.

- The right-hand side of the corresponding equation is atomic, and the state ,satisfies the
atomic proposition.

- The right-hand side of the corresponding equation is of the form [a]Xj, and the state has
no a-derivatives:

The procedure then topologically sorts the blocks in B with respect to the relation --% yielding
B1, . . . ,B,~. Subsequently, the blocks are processed one at a time in this order until consistency of
the bit-vector annotation with the semantics of formulas is achieved; this is done by successively
setting components to fa/se (in the case of maz blocks) or true (in the case of rain blocks) that cause
inconsistency. Notice that because of the order of processing, after initialization each component may
change value at most once.

$3

3 .2 D a t a S t r u c t u r e s

Let B be a set of m blocks, and assume that the list of equations in B is of the form X~ -- '~i, where i
ranges between 1 and n. As in [AC, CS2], each state 8 will have the following fields associated with it.

�9 An array X[1..n] of bits. Intuitively, 8.X[i] is true if 8 belongs to the set associated with propo-
sition vm'iable X~. The array is initialized as described above.

�9 An array C[1..n] of counters. The role played by C[i] depends on the kind of block B in which
X~ is a left-hand side. If B is a maz block, then C[i] contains the following.

- If Xi = Xj V Xk is an equation in B, then 8.Gill records the number of disjuncts (0,1 or 2)
of the right-hand side that are true for 8. In this case, 8.C[i] = 2 initially.

- If X~ = (a)Xj is in B then 8.U[i] records the number of a-derivatlves of 8 that ~ e in the set
associated with Xj. In this case, 8.C[i] is initially set to the number of a-derivatives that 8
has.

- For other kinds of equations, C[i] is not used.

Dually, if B is a rain block, then C[i] contains the following.

- If Xi = Xj A Xk is an equation in B, then 8.C[i] records the number of conjuncts (0,1 or 2)
of the right-hand side that axe false for 8. In this case, 8.C[i] -- 2 initially.

- If X~ = [a]Xj is in B then 8.C[i] records the number of a-derivatives of 8 that axe not in
the set associated with Xj. In this case, 8.C[i] is initially set to the number of o-derivatives
that 8 has.

- Otherwise, C[i] is not used.

�9 A field 8.A for every atomic proposition A that indicates whether 8 satisfies A or not. This is
assumed to be given at the s t~ t of the algorithm.

In addition, the algorithm maintains two other data structures that allow one to determine efllciently
which state/vm'iable pairs must be reinvestigated as a result of changes that have been made to bit-
vector components.

�9 An az~ay M[1..m] of l/st~ of state-variable pairs; (8,X~) is in M~r if X~ is a left-hand side in
block Bj and s.X[i] has just been changed.

�9 An edge-labeled directed graph G with n vertices, one for each left-hand-side vaxiable in B. The
edges are defined as follows.

- Xi v Xj if there is an Xk such that either Xj = X~ V Xh or Xj = Xh V X~ is an equation
in B.

- Xi ~ Xj if there is an X~ such that either Xj = Xi A Xk or Xj = Xh A X~ is an equation
i nB .

- X , ~ Xj if Xj = (a)X, is in B.

- x , ~ x~ if x~ = [a]x, is in v .

Intuitively, there is an edge from X~ to Xj if the set of states associated with Xi directly influences
the set of states associated with Xj. This graph may be constructed in O([B{) time from B, and
it contains no more than 2n edges, where n is the total number of equations in B, since the
right-hand sides in B axe simple.

54

3 . 3 T h e A l g o r i t h m

The procedure solve computes ~B] as follows.

�9 Initialize the bit-vector X and counter array C for each state as described above, and the array
M of lists as follows. For each maz block Bj, add pair 48, X~) to M[j] if X~ is a left-hand side of
Bj and 8.X[i] has been set to false. For each rain block Bj, add pair (8, Xi) to M[j] if Xi is a
left-hand side of Bj and 8.X[i] has been set to true.

�9 Topologically sort B, yielding B1, . . . ,B,,,.

�9 Process each block Bi in order.

Block processing is performed by the procedures m a x and min , depending on the form of the block.
Each of these routines "applies" the semantics of formulas to compute the meaning of the block. We
describe each procedure in turn.

3.3.1 P roces s ing M a x Blocks

Given maz block Bj as an argument, routine m a x repeatedly deletes a pair {s,Xi) from the list ML?]
and processes it as follows until the M~] is empty.

�9 For every Xk such that Xi _~v Xk, if Xh a is left-hand side in a maz block Bt then the counter
8.C[k] is decremented by one. If s.C[/r is now 0, then none of the disjuncts on the right-hand side
of Xk axe satisfied by 8, and 8 must be removed from the set associated with Xk. Accordingly,
s.X[k] is set to false and the pair (, ,Xk) is added to M[l].

�9 For every Xs such that Xi -~ Xh, if Xk is s left-hand side in a maz block Bz and s.X[k] is true
the component 8.X[k] is set to false and the pair 48, Xk) is added to M[l].

�9 For every Xh with Xi ~ Xk, if Xk is a left-hand side in a maz block Bi then each counter C[k]
for each s ~ that has 8 as an a-derivative is decremented by one, and if it becomes 0 (meaning
that 8' now has no a-derivatives satisfying X~), then 8'.X[k] is set to false and (8',Xk) is added
to M[l].

�9 For every XI, with Xi [-~ Xk that is a left-hand side in a maz block BI, each state s ~ having 8
as an a-derivative has its X[k]-component examined, and if it is true then it is changed to false
and (8', Xk) is added to M[l].

When M[j] is empty, the bit-vector entries for each state corresponding to maz block Bj contain their
final fixed-point values. They are guaranteed not to change further because of the order in which blocks
are processed. Procedure m a x also updates bit-vector entries, counters and lists associated with yet-
to-be processed maz blocks. On the other hand, bit-vector entries, counters and lists corresponding
to rain blocks are not modified by the procedure above, because approximate values generated by the
maximum fixed-point computations can not be safely used for rain block variables. Accordingly, the
data structures for these blocks must be updated in a separate pass; m a x does this by performing the
following for each (8,X~) pair for which Xi is a left-hand side in Bj and 8.X[i] is true.

�9 For every Xi, such that Xi v Xk, if Xh is a left-hand side in a rain block B! and 8.X[k] is false
the component 8.X[k] is set to true and the pair (8,Xk) is added to Mill.

�9 For every Xk such that Xi ~ Xk, if Xi, is a left-hand side in a rain block Bl then the counter
s.C[k] is decremented by one. If s.C[k] is now O, then both of the conjuncts on the right-hand
side of Xk are satisfied by 8, and s must be added to the set associated with Xh. Accordingly,
s.X[k] is set to true and the pair (8, Xh) is added to M[l].

55

�9 Fo~ every Xk with Xi (-~ Xk, if Xh is a left-hand side in a mln block Bi each state 8 ~ having
as an a-derivative has its X[k]-component examined, and if it is false then it is changed to true
and/s~,Xk) is added to Mill.

�9 For every Xh with Xi [-~ Xk, if Xk is a left-hand side in a rain block Bi then each counter U[k]
for each 8' that has 8 as an a-derivative is decremented by one, and if it becomes 0 (meaning that
all the a-derivatives of 8 ~ satisfy Xi), then ~.X[k] is set to true and Is', X~) is added to Mill.

3.3.2 Process ing Min Blocks

The procedure min works in a completely dual fashion to max. Again, the routine successively deletes
pairs /8,Xi/from the list M[j] until it is empty and processes them as follows.

�9 For every Xk such that Xi ~ Xk, ifXk is in a rain block Bz then the counter 8.U[k] is decremented
by one. If 8.C[k] is now 0, then all of the conjuncts on the right-hand side of Xk are satisfied by
8, and 8 must be added to the set associated with Xk. Accordingly, 8.X[k] is set to true and the
pair (8, X~ I is added to M[l].

�9 For every Xk such that Xi v Xh, if Xk is in a rain block Bt and 8.X[k] is false the component
8.X[k] is set to true and the pair (8,Xh/ is added to M[l].

�9 For every Xk with Xi [-~ Xh, if Xh is in a rain block BI then each counter C[k] for each s ~
that has 8 as an a-derivative is decremented by one, and if it becomes 0 (meaning that all the
a-derivatives of 8 ~ now satisfy X~), then 8'.X[k] is set to true and (8~,Xk) is added to Mill.

�9 For every Xk with Xi (-~ Xi, that is in a rain block Bt, each state 81 having 8 as an a-derivative
has its X[k]-component examined, and if it is false then it is changed to true and (8', Xk) is
added to M[l].

As before, when M[j] is empty the bit vectors corresponding to rain block Bj contain their final values,
and the bit vectors, counters and lists corresponding to rain blocks have been appropriately updated.
The bit vectors, counters and lists corresponding to mar blocks must be updated subsequently in a
separate pass. m i n does this by performing the following for each 8/Xi pair for which Xi is a left-hand
side in Bj and 8.X[i] is false.

�9 For every Xh such that Xi -~ Xs, if Xs is in a mar block Bl and 8.X[h] is true the component
s.X[h] is set to false and the pair (8,Xh) is added to M[l].

�9 For every Xh such that Xi v Xk, if Xh is in a mar block Bi then the counter 8.U[k] is decremented
by one. If 8.U[k] is now 0, then both of the disjuncts on the right-hand side of Xk are not satisfied
by a, and 8 must removed from the set associated with Xh. Accordingly, 8.X[k] is set to false
and the pair (,,Xk) is added to Mill.

�9 For every Xh with Xi ~ Xh, if Xk is in a mar block Bi each state 8' having 8 as an a-derivative
has its X[k]-component examined, and if it is true then it is changed to false and (s',Xk) is
added to M[l].

�9 For every Xh with Xi (-~ Xk, if Xh is in a maz block Bt then each counter U[k] for each 8' that
has 8 as an a~derivative is decremented by one, and if it becomes 0 (meaning that none of the
a-derivatives of 8 ~ satisfy X~), then 8~.X[k] is set to false and (8 ~, Xk) is added to M[l].

56

3 .4 C o r r e c t n e s s a n d C o m p l e x i t y

The algorithm solve consists of a call to an initialization procedure, a call to a topological sorting
routine, and calls to m a x and min . It always terminates, since the number of states is finite and
for any state s and any i, the component s.X[i] can be changed at most once during its execution.
Moreover, upon termination (i.e. when all lists in M are empty), the blt-vector annotations represent
~B]; this follows from the fact that max computes the appropriate vf~, while w i n computes the
appropriate pf~.

T h e o r e m 3.1 (Correc tness)
Let T = (S, Act, --*) be a labeled transition system and 13 be a closed set of blocks with acyelie block
graph. Then for any left-hand-side variable Xi in I3, s E [X,]([B]) i f and only if s.X[i] = true.

Finally, we state and prove our complexity result, which is a straightforward extension of the
complexity result stated in [CS2].

T h e o r e m 3.2 (Complex i ty)
Let T = (S, Act, -4) be a labeled transition system and I3 be a closed set of blocks of simple equations.
Then the worst-cane time eomplezity of solve /s O(larl . 1131), where larl = ISl + I -~ I and 1131 /s the
total number of equations in I3.

4 Applications

In this section we show how the model-checking algorithm presented in the previous section may
be used to implement efficiently different verification methodologies on finite-state labeled transition
systems. In the first subsection we illustrate how our model checker may be used to compute behavioral
preorders. Subsequently, we indicate how various kinds of temporal logics may be model-checked with
our algorithm using CTL as an example.

4 .1 C o m p u t i n g B e h a v i o r a l P r e o r d e r s

In this section we briefly outline how one may use the model-checking algorithm of the previous section
to compute the prebislmulation preorder [Wa]. In addition to being interesting in its own right, this
preorder may also be used as a basis for defining other preorders, including various testing preorders
[CH, CPS1, CPS2]. This account is essentially a distillation of one found in [CS2, Ste] 2. The interested
reader is referred to these papers for details.

The prehisimulation preorder, ~ , is defined in terms of eztended labeled transition systems. An
extended labeled transition system T has the form (S, Act, ---*, {~a [a G Act)) , where (S, Act, --,) is a
labeled transition system and the ~a are atomic formulas. Intuitively, s satisfies ~a if the behavior of s
in response to action a is completely defined.

The model-checking approach to verifying whether sl~s2, where Sl is a state in extended labeled
transition system T1 and s2 a state in T2, works in two steps:

�9 construct a characteristic block set B for T1, which consists of a single maz block containing one
equation for each state in T1, and

�9 check whether s~ ~ X1 where B, where X1 is the variable associated with sl.

The correctness of this approach relies on the main theorem of [Ste], which may be phrased as
follows.

2The logic considered in these papers differs from the one considered here in the interpretation of the [a] modalities.
Howevex, it is a simple matter to %ode up ~ these modal operators in our logic, given the ~a atomic propositions.

57

Theo rem 4.1 Let T be an eztended labeled transition system and s one of its states. Also let E be
the characteristic equation set of T and X , the variable in E associated with s. Then for any state s ~
in any eztended labeled transition system, s ea ' if and only if s' ~ X . where{maz{E}}.

The complexity of this preorder-checking procedure is proportional to the product of the numbers
of transitions of the two transitions systems involved, which improves published complexity results
about preorder checking.

4 . 2 O t h e r L o g i c s

Emerson and Lel have shown how various logics, including Propositional Dynamic Logic (PDL) and
Computation Tree Logic (CTL), may be translated in linear-time into the alternation-free part of the
modal mu-calcnlus. Our logic has the same expressive power as this fragment (Theorem 2.3), and
since the same linear-time translations may be used (with slight modifications), our algorithm delivers
linear-time model checkers for PDL and CTL. In the remainder of this section we illustrate this by
giving the translation of CTL into our logic.

We first assume that CTL formulas axe in positive normal form, meaning that all negations have
been "pushed" inside formulas until they reach atomic formulas. To illustrate the translation of CTL
formulas, then, it suffices to give accounts of the following formulas: A(PuQ), E(PuQ) , A(PUQ) and
E(PUQ). Here A is the universal path quantifier, and E is the existential path quantifier; u and U
represent "weak" and "strong" until path operators, respectively. So a state satisfies A(PuQ) if along
every computation path beglnnlng with s, P holds until Q does; moreover Q is not required ever to
hold, in which case P will hold everywhere.

The translation is as follows.

A(PuQ)
E(PuQ)
A(PUQ)
E(PVQ)

= x ~he~ { m ~ { X = Q v (P ^ [alX)}}
= x ~he.e { ~ { X = Q V (P ^ (a)X)}}
= x where { ~ i n { x = Q v (v ^ [alX ^ (~)tt)}}
= x where { ,n in{x = Q v (P ^ {~)x)}}

This translation is linear-time, and hence our model-checking algorithm yields a linear-time model-
checking algorithm for CTL. This matches the complexity for existing CTL model checkers [CES].

5 C o n c l u s i o n s a n d F u t u r e W o r k

In this paper, we have presented a llnear-time algorithm for model checking in a logic that is equivalent
in expressiveness to the alternatlon-free modal mu-calcuius. The algorithm extends one given in [CS2]
for a logic that only includes greatest fixed points, and it does so while maintaining the same time
complexity; it runs in time proportional to the product of the sizes of the process and the formula under
consideration. The algorithm may also be used to compute behavioral preorders and to model-check
other logics.

A major challenge is to extend of our algorithm to handle the full modal mu-calcnlus including
alternating fixed points. We conjecture that it is possible to achieve an algorithm in this fashion whose
worst case time complexity is O((ITI**-~)*~(~)), where IT[= IS[+1--* [, IBI is the size of 4, and
ad(~) is the alternation depth of 4. This would outperform the model-checking algorithm of Emerson
and Lel [EL], which is the most efficient algorithm in the literature for the full mu-calcnlus. Their
algorithm is O((IT[*]~[) o~(~)+a). In support of this conjecture, we note that in the special case of
alternation-free formulas our approach is linear, while theirs is quadratic. We also plan to implement
this algorithm as an extension of the Concurrency Workbench [CPS1, CPS2].

58

R e f e r e n c e s

[AC] Arnold, A., and P. CrubKle. "A Linear Algorithm To Solve Fixed-Point Equations on Tran-
sition Systems." Information Processing Letters 29:57-66, 30 September 1988.

ICES] Clarke, E.M., E.A. Emerson and A.P. Sistla. "Automatic Verification of Finite State Concur-
rent Systems Using Temporal Logic Specifications." ACM TOPLAS 8(2):244-263, 1986.

[CH] Cleaveland, R. and M.C.B. Hennessy. "Testing Equivalence as a Bisimulation Equivalence."
In Proc. Workshop on Automatic Verification Methods for Finite-State Systems. LNCS 407.

[CPS1] Cleaveland, R., J. Parrow and B. Steffen. "The Concurrency Workbench." In Proc. Workshop
on Automatic Verification Methods for Finite-State Systems, 1989, LNCS 407. To appear in
A CM TOPLAS.

[CPS2] CleaveJand, R., J. Parrow and B. Steffen. "A Semantics-based Verification Tool for Finite-
State Systems", In Proc. 9 tn Syrup. on Protocol Specification, Testing, and Verification, 1989.

[CS1] Cleave]and, R. and B. Steffen. "When is 'Partial' Complete? A Logic-Based Proof Technique
using Partial Specifications." In Proc. LICS 'gO, 1990.

[CS2] Cleaveland, R. and B. Steffen. "Computing Behavioural Relations, Logically." In Proc. ICALP
'91, 1991.

[EL] Emerson, E.A. and C.-L. Lei. "Efficient Model Checking in Fragments of the Propositional
Mu-Calculus." In Proc. LICS '86, 1986.

[Fe] Fernandez, J.-C. Ald~baran: Une Syst~me de V~rification par R~duction de Processus Com-
municants. Ph.D. Thesis, Universit~ de Grenoble, 1988.

[FL] Fischer, M., and It. Ladner. "Propositional Dynamic Logic of Regular Programs." Journal of
Computer and System Sciences 18:194-211, 1979.

[GS] Graf, S. and B. StetTen. "Using Interface Specifications for Compositional Reduction." In
Computer-Aided Verification ,gO.

[Ko] Kozen, D. "Results on the Propositional p-Calculus." Theoretical Computer Science 27:333-
354, 1983.

[La] Larsen, K. "Proof Systems for Hennessy-Milner Logic with Itecursion." In Proc. CAAP, 1988.

[MSGS] Malhotra, J., S.A. Smolka, A. Giacalone and R. Shapiro. "Winston: A Tool for Hierarchi-
cal Design and Simulation of Concurrent Systems." In Proc. Workshop on Specification and
Verification of Concurrent Systems, University of Stirllng, Scotland, 1988.

[ItItSV] Itichler, J., C. Itodrlguez, J. Sifakis, J. and Voiron. "Verification in Xesar of the Sliding
Window Protocol." In Proc. 7th Syrup. on Protocol Specification, Testing, and Verification,
1987.

[ItdS] Roy, V. and It. de Simone. "Auto/Autograph." In Computer-Aided Verification 'gO, 1990.

[Ste] Stef[en, B.U. "Characteristic Formulae for CCS with Divergence." In Proc. ICALP 'sg, 1989.
With A. Ing61fsd6ttir, to appear in Theorectical Computer Science.

[Ta] Tarski, A. "A Lattice-Theoretical Fixpoint Theorem and its Applications." Pacific Journal
of Mathematics 5, 1955.

[Wa] Walker, D. "Bisimulations and Divergence." In Proc. LICS '88, 1988.

