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ABSTRACT

A computational method for efficiently predicting unsteady
transonic flows in two- and three-dimensional cascades is pre-
sented. The unsteady flow is modelled using a linearized Euler
analysis whereby the unsteady flow field is decomposed into a
nonlinear mean flow plus a linear harmonically varying unsteady
flow. The equations that govern the perturbation flow, the lin-
earized Euler equations, are linear variable coefficient equations.
For transonic flows containing shocks, shock capturing is used to
model the shock impulse (the unsteady load due to the harmonic
motion of the shock). A conservative Lax-Wendroff scheme is
used to obtain a set of linearized finite volume equations that
describe the harmonic small disturbance behavior of the flow.
Conditions under which such a discretization will correctly pre-
dict the shock impulse are investigated. Computational results
are presented that demonstrate the accuracy and efficiency of the
present method as well as the essential role of unsteady shock
impulse loads on the flutter stability of fans.

NOMENCLATURE

A
	

channel height
model equation source term coefficient

b
	

inhomogenous part of linearized Euler equations
Cm	= unsteady pitching moment coefficient
Cp , Cp
	mean and unsteady coefficient of pressure

(P — P_c )/(pV 2 /2)
internal energy
	

Subscripts
f, g, h
	

grid motion perturbation functions

F,G, H = Euler equations flux vectors	 p
F, G, H = Euler equations mean flow flux vectors

	
T

model equation flux
model equation mean flow flux	 —oo, oo
linear blade-to-blade gap

g(x,t)
	

test function

rothalpy
impulse

Mach number

model equation "pressure"
model equation mean flow "pressure"
static pressure
distance from x-axis
over-relaxation factor

Euler equation source term
Euler equation mean flow source term
time

z"v	= Cartesian components of velocity
U
	

vector of conservation variables
U, u	mean, perturbation conservation variables

model equation conservation variable
U, u	model equation mean and perturbation

conservation variable
X,	 mean shock location
x,	 complex amplitude of shock motion
x, y, z
	

Cartesian coordinates

fi
	

inflow angle measured from axial direction

7	= ratio of specific heats
0
	

stagger angle

e,	C
	

computational coordinates

/3
	

static density
interblade phase angle

T
	

time in computational coordinates
W, w
	

dimensional and reduced frequencies
shaft rotation rate

= grid index
= due to perturbation in pressure
= total or stagnation quantity
= due to perturbation in conservation variable
= far upstream and downstream regions

Superscripts

n	= time index
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INTRODUCTION

In recent years, a number of linearized flow analyses have been

developed to compute unsteady flows in cascades, especially the

unsteady flows that produce the aeroelastic phenomena of flutter

and forced response. The unsteady aerodynamic loads acting on

transonic airfoils in cascades are composed of two parts: the un-

steady pressure distribution away from the shock, and a "shock

impulse" load that acts where the shock impinges on the airfoil

surface. This shock impulse arises from the unsteady motion of

the shock. Accurate prediction of the shock impulse is important

since the unsteady aerodynamic load due to the shock impulse is of

the same order as the unsteady aerodynamic loads due to the un-

steady pressure away from the shock. In viscous flows, the shock

is smeared near the airfoil surface due to shock/boundary layer

interaction and hence, strictly speaking, no shock impulse exists

at the surface. Away from the airfoil, however, the shock wave is

very thin, typically on the order of a few mean free paths thick,

and the concept of a shock impulse is important in connecting the

regions of smooth flow on either side of the shock.

Verdon et al (Verdon and Caspar, 1984; Verdon, 1987) and

Whitehead (1987, 1990) have developed linearized potential anal-

yses of two-dimensional subsonic and transonic flows in cascades.

Both Verdon and Whitehead have used shock capturing to model

unsteady shock loads. Verdon has also used shock fitting in his

linearized potential analysis to explicitly model the shock mo-

tion. Because of the assumption of isentropic and irrotational

flow, however, these potential analyses cannot be used to model

unsteady flows with strong shocks, flows with shocks that span the

blade passage, or general three-dimensional flows. For this reason,

investigators have begun to develop linearized Euler analyses of

unsteady cascade flows (Hall and Crawley, 1989; Hall and Clark,

1991a; Holmes and Chuang, 1991; Kahl and Klose, 1991; Hall

and Lorence, 1992). Hall and Crawley (1989) have shown that

shock fitting can be implemented within the framework of a lin-

earized Euler analysis to model accurately the unsteady motion of

shocks. However, due to the inherent complexity of shock fitting

algorithms, one would prefer to use the simpler shock capturing

technique to model the shock impulse.

While shock capturing is favored for its simplicity, it has only

recently been shown that the shock impulse load can be mod-

elled properly using shock capturing within a linearized frame-

work. There are two approaches that have been suggested for ob-

taining discretizations of the linearized Euler equations. The first

approach, referred to in this paper as Method I, is to first dis-

cretize the nonlinear unsteady Euler equations and then linearize

the resulting finite difference equations. The second approach,

Method II, is to first linearize the nonlinear unsteady Euler equa-

tions, then discretize the resulting linearized equations using tra-

ditional finite difference or finite volume techniques. Lindquist

(1991) and Lindquist and Giles (1991a and 1991b) have argued

that the unsteady shock loads will be correctly predicted provided

the linearized code is a Method I type linearization of a time-

accurate, conservative, nonlinear flow solver. Their results thus

far, however, have been limited to quasi-one-dimensional chan-

nel flows. Furthermore, they do not discuss the conditions under

which Method II linearizations will properly model the shock im-

pulse.

The objectives of this paper are twofold. First, we demon-

strate mathematically and by numerical experiment that the re-

quirement put forth by Lindquist and Giles that the linearization

be a Method I linearization of an unsteady nonlinear scheme is too

stringent. We show that Method II linearizations will also work as

long as the finite difference representation of the linearized Euler

equations is conservative. Second, having demonstrated that con-

servative Method II linearizations may be used to properly model

the unsteady shock impulse, we present a linearized Euler analysis

(Method II type) of unsteady two- and three-dimensional flow in

cascades. Ni's Lax-Wendroff scheme (Ni, - 1982) is used to obtain

a finite volume representation of the unsteady linearized Euler

equations. Computational results are presented for both two- and

three-dimensional unsteady transonic flows in cascades. Some of

these calculations are compared to those computed using a nonlin-

ear time-marching shock capturing Euler analysis. It is shown that

the present unsteady linearized analysis agrees quite well with the

nonlinear analysis. The computed results also demonstrate that

the unsteady shock loads can provide a destabilizing influence on

the flutter stability of cascades.

Theory

Flow Field Description

In this paper, we assume that the unsteady flow is inviscid

and adiabatic, and that the unsteady flow in a cascade may be

modelled by the Euler equations. For a three-dimensional rotating

Cartesian coordinate system, the Euler equations are given by

at at ad aft
at + ax + a y + az s = o

where U is the vector of conservation variables, t, G, and I:I are

the so-called flux vectors, and S is a vector of source terms arising

from centrifugal and Coriolis forces. These vector quantities are

given by

=

pw	;Alb

e	13111

where 13 is the density, 13 is the pressure, ft, v , and w are the
y, and z components of velocity, a is the internal energy, and I is
the rothalpy. Here we have assumed that the coordinate system is

rotating about the x-axis with rotational speed a The pressure,

15, and the rothalpy, I are given by

= (7 _ 1 ) [e. _ _ ( 72 2 +	+ ti,21 L 

72
M-12,2]

) 	P

and
= e + .13 = 7 /3 + 1 (112 + .62 +.6,2) _ s-12,2

— 1 /3 2	 2

	

Where r is the distance from the x-axis (r = Vy 2 +	z2).

Next, we would like to determine the small disturbance be-

havior of Eq. (1) due to, for example, the fluttering motion of

(1 )

U =

pw

puw

=	pvw
	

S =

13.w 2 +.73

/jib'

pv

puv

G = A 7)2 + 73

pvw

0

0

ji(S1 2 y — 25hli)

(12 2 z + 2W,)

0
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OF
+ BP = 0

ax
(6)

the blades of the cascade. To improve the accuracy of these cal-

culations, a number of investigators have proposed the use of a

harmonically deforming computational grid (Huff, 1989; Hall and

Clark, 1991a and 1991b; Holmes and Chuang, 1991; Hall and

Lorence, 1992). The motion of the grid is defined by

x(e, q, C,

y(e, 9 ,(,7)

=

=

+ f(e,q,C)0'
71 + g(4. ,71, ()Ow'

(2a)

(2b)

z(01,C,T) = + 11 (e, 71,C)e'i (2c)

tV, 71,C,T) = 7 (2d)

where w is the frequency of vibration of the blades, and where f,
g, and h are the perturbation amplitudes of the grid motion about

the mean positions, 77, and (. Having defined the grid motion,

the unsteady flow field is represented by the perturbation series

.0 (e, 77,C, T) = u(,71,C)+uV,71,C) 0' (3)

Substitution of Eqs. (2) and (3) into Eq. (1) and collection of the

terms that are first-order in the perturbations u and (f, g, h)T
results in the linearized Euler equations,

jwu + a ( aF u\ + a (aG u\ + a ( asu\ _ u = b (4)

ae ) ) a( ) au

where b is a fairly complex expression which depends on the mean

flow and the prescribed grid motion [see for example (Hall and

Lorence, 1992)].

Numerical Modelling of the Shock Impulse

The first question we address in this paper is: What is the

proper way to discretize and linearize the Euler equations in such

a way that the linearized finite difference or finite volume equa-

tions properly predict the shock impulse loads that result from

the unsteady shock motion. There are two obvious approaches

one can take to obtain a discretization of the linearized Euler

equations. One approach (Method I) is to first discretize the non-

linear Euler equations and then linearize the resulting nonlinear

finite difference equations. The other approach (Method II) is to

first linearize the nonlinear Euler equations then discretize the re-

sulting linearized equations. We claim here that both approaches

will produce the correct result provided that the resulting differ-

ence equations are conservative (we give a more precise definition

of what conservative means in the linearized case shortly). A

mathematical justification of this conjecture is given below.

Due to the complexity of the three-dimensional Euler equa-

tions, we consider the simpler one-dimensional model equation

given by

where F = F(U) and P = P(U). The linearized unsteady model

equation is given by

jwu ± a (aF	
au

u + Bpp u = 0

ax OU
(7)

where u is the perturbation solution, and aFbau and apiau are

steady flow Jacobians.

Returning for the moment to the unsteady nonlinear model

equation, Eq. (5), it is well known that because the model equation

is nonlinear, it will in general admit genuine solutions, that is,

solutions with flow discontinuities. In smooth regions of the flow,

the genuine solutions satisfy the differential equation, Eq. (5).

The weak solution is that genuine solution which also satisfies the

integral relation

(gt O — gs.fr) dx dt + J g(x,0)17(x,O)dx = 0	(8)

for every test function g(x,t) which vanishes for large x or t
and which has continuous first derivatives (Lax, 1954; Lax and

Wendroff, 1960). One can then show that the unsteady Rankine-

Hugoniot shock jump conditions at flow discontinuities are given

by

k, 101 -	=	
( 9 )

where the symbol [[• • •]] denotes the jump in the enclosed quantity

across the shock, and X, is the velocity of the shock.

If one then considers an unsteady flow with small harmonic

unsteadiness, one may linearize Eq. (9) to obtain the linearized

shock jump conditions (Ha I and Crawley, 1989)

- x,11aF
79;

where u is the small disturbance part of the unsteady flow and x s

is the small complex amplitude of the shock motion. Noting that

the steady flow solution is given by OF/ax = —BP, Eq. (10) may

be rewritten as

+ x sB[P] = 0 (11)

A graphical interpretation of Eq. (11) is shown in Fig. 1. Shown

are the mean and unsteady flow shock trajectories as well as the

resulting unsteady flow, U, the mean flow U, and the perturbation

flow, u. Note that u is just the difference between the unsteady

and mean flows, u = U — U. Further note that near the shock, an

impulse in u appears due to the motion of the shock. In the limit

as the unsteadiness in the flow tends toward zero, the integrated

value of this impulse is given by

xs+,
I„ = fxs	u dx = —x, [[U]] = —x, (U2 — U,) (12)

Finally, Eq. (11) may be written

aF

as

jwI„ + —u
au

+ BIp = 0 (13)

We presently demonstrate that the weak solution of the lin-

earized unsteady model equation, Eq. (7), produces an equivalent

shock jump condition. Multiplying Eq. (7) by a test function g(x)
and integrating the result over the solution domain x E [0, L], we

obtain

00 at
—
at + ax

— + BP = 0 (5)

where F = F(U), P = P(U), and B = B(x). This model equa-

tion is very similar in form to the quasi-one-dimensional Euler

equations which describe flow in a channel with a spatially vary-

ing cross sectional area. Since F and P are in general nonlinear

functions of the conservation variable U, this model equation is

nonlinear.

As before, we model the conservation variable U as the sum

of a mean part U plus a small harmonic perturbation The

mean solution is governed by

aF

_ aU u

=0
	

(10)

If OF

iwx 8 " — 
II aU u
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.0"..',..--Shock Impulse

Perturbation

Solution, u

(a)

Reference Time

Mean Shock Trajectory, X s

(b)

Unsteady Solution, U

Mean Solution, U             

	II	

1 1 if X, — € < x < X, + c
g(x) =

0 otherwise
(16)

Shock-Captured

Shock Impulse 

Figure 1: Top to bottom: a) Trajectory of shock in a channel

or on an airfoil surface; b) Mean and unsteady flow distribution;

c) Perturbation flow showing shock impulse; d) same as c) with
impulse modelled by shock capturing. Note that the area under
the impulse is the same as in c).

L 

g(x)[jwu +	 + B 5-0 u] dx = 0	(14)ax	
ap

Integration by parts applied to the middle term in Eq. (14) gives

L [	

dx

dg	OP	(OF )L L1.0	wgu - —u + gB-5Tj uidx + \g—:u/ =

	

j	 0	(15)
 au

Next we let the test function g(x) be given by

where X, is the mean shock position and E is a small positive
number. Differentiating Eq. (16) with respect to x gives

dg
= b[x - (X , - - b[x - (X , +	 (17)

dx

where bi[ .] is the Dirac delta function. Substitution of Eqs. (16)
and (17) into Eq. (15) gives the desired shock jump conditions of
the linearized unsteady model equation,

X	 ap
jw	udx+11—u]1+ B	—u dx = 0

x,-,	au	 au

The integrals in Eq. (18) are the areas under the impulse in u and
the impulse in p, the perturbations in the conservation variable
and pressure, respectively, and are denoted here by /,‘ and I, (See
Fig. 1).

Finally then, we may write the Rankine-Hugoniot jump con-
dition for the linearized model equation as

aUu^+ Bl
p = 0
	

(19)

This expression is identical to Eq. (13) thus demonstrating that
the weak solution to the linearized unsteady model equation is
the same as the linearized weak solution of the nonlinear model
equation.

We conclude, therefore, that for a finite difference scheme to
properly model the linearized unsteady model equation, the finite
difference scheme must be stable and consistent and satisfy the
condition given by Eq. (15) in the limit as Ax and At tend to-
ward zero. In other words, the order of linearization is immaterial;
what matters is whether the resulting discretization is conserva-
tive. Note that this condition is less stringent that the condition
suggested by Lindquist (1991) and Lindquist and Giles (1991a,
1991b) that the discretization be both conservative and a Method
I linearization. Also note the importance of the area of the im-
pulse. When capturing the shock impulse, the width and height of
the impulse will depend on the amount of smoothing (or artificial
viscosity) in the numerical scheme. The area under the impulse,
however, should be independent of the smoothing.

Method I and Method II Linearizations

To illustrate the difference between Method I and Method
II linearizations, we consider again the model equation given by
Eq. (5) with the source term set to zero (B = 0).

Method I Linearization

Consider the discretization of the nonlinear unsteady model
equation, Eq. (5), using the Lax-Wendroff scheme. The one-
dimensional computational grid is assumed to have constant cell
size Ax and constant time step At. The solution at time level
n + 1 is found by Taylor expanding the solution about time level
n to obtain

0:141 = 0:1 + At -81.1t

where i denotes the ith grid node in the x-direction. The time
derivatives in Eq. (20) are obtained by manipulation of the original
model equation, Eq. (5). Rearranging Eq. (5) gives

aP(0) 
at —	ax

Differentiating Eq. (21) with respect to time gives

=	ax

020 =

	

(aP	_ a (al. aP

ate	a0 at	

)

Next, substitution of Eqs. (21) and (22) into Eq. (20) yields

+ 2 ax ao ax

At 2 (aPaP)

A

o'
C
0	Perturbation

Solution, u

jwI +

AO 020

+ 2 ate
O(At3 ) (20)   

(21)

(22)

aP
= — At—(18) + (9(At 3 ) (23)
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At [aT
2Ax

+ 1

Finally, using centered finite difference expressions to approximate
the spatial derivatives, the familiar Lax-Wendroff finite difference
equation is obtained, i.e.,

0:,+1 on	At rfrn _ En.
2Ax '41

aP	 DE
-	-

2Ax2 80au
1+1/2

The Lax-Wendroff scheme above is second-order accurate [i.e.,
0(Ax 2 , At 2 )] and is conservative (for constant A x and At). A
Fourier stability analysis indicates the scheme is stable for CFL
numbers less than unity. Lax (1954) and Lax and Wendroff (1960)
have shown that if the conservative form of the Euler equations
is used, and the discretization of the Euler equations satisfies nu-
merical conservation, and further that the scheme is consistent
and stable, then the shock wave speed and strength will be cor-
rectly predicted. The Lax-Wendroff scheme above satisfies these
conditions and therefore will correctly predict the unsteady shock
motion.

Next, we would like to determine the behavior of Eq. (24)
when the unsteadiness in the flow is small compared to the mean
flow field. Since the resulting equations will be linear, we may
without loss of generality assume that the flow field is composed of
a nonlinear steady mean flow and a small perturbation harmonic
unsteady flow so that

0(x, t) = U(x)	u(x)el't	 (25)

where u is much smaller than U. When viewed on our computa-
tional grid, Eq. (25) becomes

U, u,e1"t"	 (26)

Substitution of Eq. (26) into Eq. (24) and collecting terms of first
order in the perturbation quantity u gives the desired discrete
small disturbance behavior of the nonlinear finite difference equa-
tions,

At [ OF
( 1 _ ejwat) -

2Ax I. au

Ott { OF
2Ax2 au

OF( OF

au 1-1/2 au

Ott 02F

2Ax2 au2

a2F

U,-1/2 ( Ft - F1-1)	 (27)

au2 i_2/2

Equation (27) describes the small disturbance behavior of the non-
linear Lax-Wendroff equation. One interesting feature of Eq. (27)
is the appearance of the terms involving a2Flau2. These terms
appear because of nonlinearities in the Lax-Wendroff scheme itself
rather than nonlinearities of the Euler equations.

For a one-dimensional problem, Eq. (27), along with appropri-
ate inflow and outflow boundary conditions, could be assembled
into a tridiagonal matrix equation which could then be solved
quite efficiently using Gaussian elimination (the Thomas algo-
rithm). For two- and three-dimensional problems, however, this

approach would be computationally expensive and require large
amounts of computer storage. For these reasons, an iterative so-
lution technique is preferred. The following explicit relaxation
procedure is proposed:

u:'+1 = u"	 (28)

where bu, is the left-hand side of Eq. (27). As Eq. (28) is marched
in time, a steady state value of will be obtained and the solution
to Eq. (27) will be recovered. This procedure is similar to the
pseudo-time time-marching technique proposed by Ni and Sisto
(1976) for solving the linearized Euler equations. Equation (27)
can be shown to be consistent with the linearized model equation,
Eq. (7), with truncation errors which are 0(Ax 2 , Ott). A Fourier
analysis of Eq. (28) reveals that the scheme is unconditionally
unstable if w is non zero. A spectral radius stability analysis,
however, that takes into account the stabilizing effect of the far-
field boundary conditions shows that the scheme is stable for CFL
numbers less than unity (Clark, 1992).

Method II Linearization

An alternative approach to Method I is to first linearize the
nonlinear unsteady flow equations, and then discretize the result-
ing linear equations. To illustrate this approach, we return again
to the one-dimensional model equation given by Eq. (5) and, in-
troducing the pseudo-time assumption of Ni and Sisto (1976), as-
sume that the unsteady flow U(x, t) is composed of a nonlinear
mean flow, U(x), plus a small unsteady harmonic perturbation
flow, u(s,t)owt, so that

0(x, t) = U(x)	u(x, t)e3L, t	 (29)

Substitution of Eq. (29) into Eq. (5) and collection of first-order
terms results in the pseudo-time linearized model equation

On
at 

+ jwu + —	u =
ax au

	

a (—aF )
	

(30)

Note that Eq. (30) is now hyperbolic in time so that it can be
marched in time. Furthermore, as time advances, u will reach a
steady-state value so that the solution to Eq. (7) will be recovered.

The next step is to discretize the linearized equation using the
Lax-Wendroff scheme. Manipulation of Eq. (30) gives

au
 = - wu - —a aF

at	ax au

and

a2u a (OF	a [ OF a (OF um
Ot 2 = -4)2	2.1"' as	

u +
) ax [au as .ou 

)j (32)

Finally, making use of centered spatial derivatives and substitu-
tion into the Taylor expansion, Eq. (20) gives the desired Lax-
Wendroff formula,

bun = jwAt
4

1- 1

w2At2
	 u1+1 2un un

8	 t-i

1-1/2 

(Fn -F" 1 )1 (24)

OF

1+1/2 au

OF
24+1 -

aui+1

1.11+1 / 2 ( Fi+

1+1/2
•

(31)

un	,nt-1-1 2u

-11
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At { aF
+

jr.,./At
ui}1 -

Or
au4	Ax	ar

At

i+1

ar
au1-

jwAt	[OF

2	Ax
t+1/2

At2 Or
+ 
2Ax2 

( Or

;4412

Or
-

u 1 } 1 au u)      

ar
aU

ar
aUi-1/2

(33)  

As in the Method I discretization [Eq. (27)], the Method II dis-

cretization [Eq. (33)] is consistent with the linearized model equa-

tion [Eq. (7)] with truncation errors which are O(Ax 2 , At 2 ).

Note that the Method II discretization [Eq. (33)] differs sig-

nificantly from that obtained using Method I [Eq. (27)]. In par-

ticular, the unsteady terms involving w are somewhat different,

and the quasi-steady terms involving a2Flau2 in Eq. (27) do not

appear in Eq. (33). Clearly, the order in which the linearization

is performed is important in determining the precise form of the

difference equations.

Test for Linearized Conservation

Consider the Method I discretization of the model equation,

Eq. (27). The one-dimensional computational grid has M nodes.

To test for conservation, Eq. (27) is multiplied by g,Ax I At (where

g, = g(x,)) and summed over the computational domain. After

some manipulation including summation by parts, one can show

that this sum is given by

M
(1 —	

m- 1

	

Ax E 	6'1 - 1 OF
At	 2

t=1	 t=2	
Ax	au

- gm —
aF 

um+ —
a F

au	
g, 

au
(9(Ax , A t)	(34)

M
In the limit as At, Ax	0, Eq. (34) approaches Eq. (15). There-

fore, this Method I linearization of the Lax-Wendroff scheme is

conservative (at least for the case considered here of constant

At, Ax). A similar analysis of Method II reveals that is also con-

servative. Hence, both methods should correctly predict the shock

impulse.

Two- and Three-Dimensional Linearized Euler

Solvers

The two- and three-dimensional linearized Euler analyses used

in these codes have been previously described (Hall and Clark,

1991a; Lorence, 1991; Hall and Lorence, 1992; Clark, 1992). We

therefore briefly outline the computational method used to calcu-

late the unsteady flow field and refer the interested reader to the

above references for more detail.

The general solution procedure is as follows. First, an H-grid

is generated for a single blade passage of the cascade. The mean

flow field is then computed using a conservative nonlinear steady

Euler solver. Then, for each interblade phase angle, vibratory

mode shape, and reduced frequency of interest, the unsteady grid

motion is prescribed. The mean flow field and prescribed blade

motion are then used to form the variable coefficients and the

inhomogeneous part of the linearized Euler equations. Finally,

the linearized Euler equations are solved in a single computational

passage using the pseudo-time technique proposed by Ni and Sisto

(1976). Ni's Lax-Wendroff scheme (Ni, 1982; Dannenhoffer, 1987;

Ni and Bogoian, 1989) is used to discretize and solve the pseudo-

time linearized Euler equations. For the comparisons presented

in this paper, we have developed both Method I and Method II

versions of the linearized unsteady Euler solver. Both Method 1

and Method II schemes are second-order accurate [O(Ax 2 , At 2 )].

A combination of second and fourth difference smoothing is used

to eliminate sawtooth modes and capture shocks. Ni's multiple

grid acceleration technique is used to speed convergence.

In the present analysis, we assume that the blade row is an

isolated blade row in an infinitely long duct. The computational

domain, however, is finite in extent. At the far-field computational

boundaries, nonreflecting boundary conditions are applied to pre-

vent spurious reflections of outgoing pressure, entropy, and vor-

ticity waves back into the computational domain (Hall, Lorence,

and Clark, 1993).

For transonic flow calculations, a conservative discretization

is required to model accurately the shock impulse. For Ni's two-

dimensional scheme to be conservative, the ratio of the cell time

step to the cell area must be a constant throughout the computa-

tional domain (in the three-dimensional scheme, the ratio of the

time step to the cell volume must be constant). Furthermore, for

stability, the CFL restriction must not be violated anywhere in

the domain. This means that the time step used in some com-

putational cells may be much smaller than the maximum permis-

sible time step for that cell, greatly slowing the convergence of

the scheme, even when using multiple grid acceleration. To over-

come this difficulty, we propose the following modification to the

linearized scheme. Consider again the finite difference representa-

tion of the linearized model problem [Eq. (27)]. We modify this

equation such that

urt-1-1 = Ri bteiz (35)

where he,' is as before and R i is an over-relaxation factor. In

the present analysis we have taken this factor to be roughly equal

to the maximum permissible local time step size divided by the

actual conservative time step.

A Fourier analysis shows that for over-relaxation factors greater

than unity, Eq. (35) produces an unconditionally unstable scheme.

It would seem, therefore, that over-relaxation would not be use-

ful. However, for transonic flow calculations, smoothing must be

added to the scheme to capture shocks. This smoothing stabilizes

the over-relaxation scheme so long as the over-relaxation factor is

not too large. Hence, a clamp is also applied so that the maxi-

mum over-relaxation factor can be no larger than about five. As

we will demonstrate, the over-relaxation scheme is stable and sig-

nificantly reduces the computational time required to obtain a

converged solution.

RESULTS

Transonic Channel Flow

To test the present linearized Euler analyses, we first consider

the transonic flow through a diverging channel. This case is pre-

sented to demonstrate the ability of the linearized Euler method

to model shock motion accurately using shock capturing. We will

demonstrate that both Method I and Method II linearizations will

produce satisfactory results as long as they are conservative.

u, Ax
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Figure 2: Steady transonic flow in a diverging channel.

The channel considered here has a height, A, given by,

A(x) = Ainlet	
1

1.10313 + 0.10313 tanh 10 x —	, 0 x < 1

(36)

(The units may be taken to be any consistent set of units.) So that

we may compare the results obtained by the present method to

those obtained by a one-dimensional shock-fitting theory, Ainlet

is taken to be small compared with the channel length (A in iet
0.01). The inflow total pressure, PT , total density, PT, and flow ve-

locity, U, are 1.0, 1.364, and 1.0 respectively. The back pressure,

is 0.7422. Shown in Fig. 2 is the Mach number and pres-Pexit
sure distribution as computed using the present nonlinear steady

Euler solver on a 129 x 5 node computational grid. The grid

was generated so that the computational cells all have the same

area, AA. The time step, At, used in these calculations was

constant throughout the computational domain unless otherwise

noted. Constant At and AA were chosen because Ni's scheme is

only conservative if the ratio At/AA is constant throughout the

computational domain.

Also shown for comparison in Fig. 2 is the solution determined

using a steady quasi-one-dimensional, shock-fitting Euler solver

using 1001 grid nodes in the x-direction. The shock-fitting Eu-

ler solution is grid converged and may be taken to be the exact

solution. Note the excellent agreement between the two different

approaches. The only noticeable differences occur at the shock,

where the present nonlinear Euler analysis smears the shock over

about five grid nodes.

Next, we consider a quasi-steady perturbation in the back pres-

sure. The perturbation solution was calculated using four differ-

ent approaches. First, the solution was calculated using a quasi-

one-dimensional, shock-fitting, linearized Euler analysis. This so-

lution was computed on an extremely fine grid (1001 nodes in

the x-direction) and is essentially the exact solution. Next, the

present nonlinear steady Euler solver was used to compute two

nonlinear solutions at slightly different back pressures. These two

solutions were then subtracted one from the other and the result

was normalized by the difference in back pressures to obtain the

perturbation solution. Finally, the solution was determined using

the present linearized Euler analysis (both Methods I and II). It
should be noted that for this comparison the usual nonreflecting

Symbol Method

0 Methods I and II, 129x5

— - - Steady Euler, 129x5

Shock Fitting, 1001

c? 	

• 0.0
	

0.2
	

0.4
	

0.6
	

0.8
	

10

0.40
	

0.44
	

0.48	0.52
	

0.56
	

0.60

Channel Location, x

Figure 3: Top: Perturbation pressure in a diverging channel due

to a steady perturbation in back pressure. Bottom: Enlarged view

of the shock impulse region.

far-field boundary conditions were replaced with reflecting bound-

ary conditions. Upstream the perturbation in total pressure and

density as well as the inflow angle was set to zero. Downstream the

perturbation in static pressure was prescribed. These boundary

conditions for this model problem were chosen for their simplicity

and are not meant to model any real physical system. The results

of these various approaches are shown in Fig. 3. The Method I and

Method II results are indistinguishable from one another and are

therefore plotted with a single symbol. As expected, all of the so-

lutions are in excellent agreement in regions away from the shock.

At the shock, however, the methods using shock-capturing pro-

duce an impulse of pressure. The area under the impulse is equal

to the product of the shock displacement and the mean pressure

jump across the shock. The shock impulse then represents the

load exerted on the wall due to the motion of the shock. Also

shown in Fig. 3 is an enlarged view of the shock region. Note that

the computed results from the Method I and Method II lineariza-

tions are virtually identical to the perturbation of the nonlinear

Euler analysis.

To further validate the linearized shock capturing technique

for unsteady flows, we computed the unsteady pressure distribu-

tion due to an unsteady perturbation in back pressure with an

excitation frequency, w, of 1.0. The results are shown in Fig. 4.

Also shown are the results of a quasi-one-dimensional, unsteady,

shock-fitting, linearized Euler solver. Away from the shock, the

results agree quite well with the Method I and II results. At the

shock, the present Method I and II solutions show an impulse.

This impulse represents the unsteady load acting on the channel

wall due to the motion of the shock.

To determine whether the present linearized Euler solver cor-

rectly predicts the unsteady loads induced by the shock motion,

no

1
C

9 0
2

• .   

• N

•-•
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Symbol Method

In A Methods I and II, 129)6

 	Method I, Nonconserv.

Shock Fitting, 1001

0
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0.44
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0.56
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Channel Location, x

Figure 4: Top: Unsteady pressure in a diverging channel due to

an unsteady perturbation in back pressure, w = 1.0. Bottom:

Enlarged view of the shock impulse region.

the pressure was integrated over the lower channel wall to deter-

mine the net wall force. The results from this analysis are tabu-

lated in Table 1 for several different frequencies. Also tabulated in

Table 1 is the wall force computed using the linearized unsteady

shock-fitting code. The agreement between the conservative form

of the Method I and Method II analyses are seen to be in almost

perfect agreement with the shock fitting scheme for all frequencies

suggesting that the shock impulse found using shock capturing is

properly modelled. Even in the higher frequency cases the agree-

ment is quite good, although there is a slight error (about 0.5°) in

the phase of the wall force. We believe that these differences arise

from the dispersion errors in the solution away from the shock

rather than from a limitation in shock capturing at high reduced

frequencies.

Finally, for the w = 1.0 case, we deliberately made the Method

I and II calculations nonconservative to demonstrate that the

shock impulse cannot be properly modelled using a nonconser-

vative algorithm. In the Method I calculation, the time step At

was held constant throughout the domain, but a grid with variable

cell areas near the shock was used. In the Method II calculations,

the cell areas AA were constant throughout the computational do-

main, but the time step used in each computational cell was based

on a local CFL number (local time stepping). In both cases, the

ratio At/AA varies over the computational domain making the

schemes nonconservative. As shown in Table 1, the incorrect wall

force is predicted whenever the scheme is nonconservative. In the

Method I case (see also Fig. 4), the phase of the wall force is in

error by about 32.1°. The phase error in the Method II example

is 6.2°.

0.0	ID Shock Fitting
	

1.0305 L 0.0°

Nonlinear Euler°
	

1.0346 L 0.0°

Method I
	

1.0273 L 0.0°

Method II
	

1.0273 L 0.0°

1.0	1D Shock Fitting 0.6390 L - 78.7°

Method I
	

0.6353 L - 78.8°

Method II
	

0.6354 L - 78.8°

Method I
	

0.5397 L - 46.6°	Nonconservative

Method II
	

0.6229 L - 84.9°	Nonconservative

2.0	1D Shock Fitting 0.1974 L - 114.1°

Method I
	

0.1983 L - 113.6°

Method II
	

0.1984 L - 113.6°

'Results from the steady analysis were found for two slightly different
back pressures. The two solutions were then differenced and normalized by

.APexit-
b Time accurate time marching steady and unsteady solution on a

nonuniform area computational grid.
`Local time stepping used in steady and unsteady analyses.

From these numerical results we conclude that both Method

I and Method II linearizations will produce satisfactory results

if and only if the linearizations are conservative. However, since

the Method I linearization is predicated on the assumption that a

constant time step is used throughout the computational domain,

this precludes the use of Method I for most problems since it would

be difficult and undesirable to generate computational grids with

constant cell areas throughout the computational domain. With

the Method II analysis, we only require that At/AA be constant

for the scheme to be conservative. Therefore, for the remaining

examples, we will use a conservative Method II analysis.

Unsteady Compressor and Fan Flows

Having demonstrated the ability of the present method to

model transonic channel flow, we next consider the unsteady flow

in compressors and fans.

Tenth Standard Configuration

The first cascade considered is the Tenth Standard Configu-

ration (BOlcs and Fransson, 1986; Fransson, 1991). The airfoils

of this cascade have a NACA 0006 thickness distribution slightly

modified so that the trailing edge is wedged rather than blunt.

The camber line is a circular arc with a maximum height of 5

percent of the chord. The flow conditions are such that there

is a supersonic patch on the suction surface of the airfoil. The

stagger angle, 0, is 45° and the gap-to-chord ratio, G, is 1.0.

The mean inflow angle, ,3_ 00 , is 58° and the inflow Mach number,

M_,„3 , is 0.8. Figure 5 shows the computed coefficient of pressure

distribution along the airfoil surface calculated using the present

nonlinear steady Euler code. The grid used for this calculation

was a 193 x 49 node H-grid with a total of 193 nodes on the airfoil

surface. Note in particular the transonic patch on the suction sur-

face of the airfoil. The present steady Euler solver captures the

Table 1: Predicted pressure loads in a transonic diverging channel

due to an unsteady perturbation in back pressure using a uniform

area computational grid.

Frequency	Scheme	Wall Force
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0.8 100 0	0.2	0.4	0.6

Distance Along Chord, 4/c

Symbol Method

lil Present Steady Euler, 193x49 nodes

Nonlinear Euler (Huff), 121x41 nodes-

Suction Surface

0

0

P ressure  Surface

Method II, 193x49 nodes

Nonlinear Euler (Hull). 121 x41 nodes

12001000200 600

Iterations

8000 400

Method ' Iterations

Case 1: Local lime stepping 272

Case 2: Conservative time stepping
wkh over-relaxation

1075

Case 3: Conservative time stepping

wkhout over-relaxtaion

2656

Scheme Integrated Lift

Method II 193x49 3.1627 , -86.7 deg

Hull 121x41 3.2343 , -83.8 deg

0

0, .7

3

2-

0

3
a
373

,)
0 C

CC

C
03

Figure 5: Coefficient of pressure distribution, Tenth Standard

Configuration:	= 0.8, G = 1.0, O = 45°, 12_,, = 58°

shock over about five grid points. Also shown is the a nonlinear

Euler solution provided by Huff based on a flux difference splitting

algorithm (1989, 1992).

With the steady solution now known, consider the case where

the airfoils plunge with an interblade phase angle, a, of —90° and

a reduced frequency, 7.) (based on the upstream velocity and blade

chord), of 1.287. Figure 6 shows the computed unsteady pressure

distribution on the airfoil surface using Method II linearization.

The impulsive shock load is clearly visible on the suction surface.

Also shown for comparison is the pressure distribution computed

using Huff's nonlinear time-marching algorithm. The agreement

between the present linearized analysis and the nonlinear time-

marching Euler analysis is excellent away from the shock. Shown

in the table insert in Fig. 6 is the magnitude and phase of the

resulting unsteady lift. The magnitude of the unsteady lift cal-

culated using the two different approaches agrees within about

2%; the phase differs by only about 3°. Note that the shock im-

pulse predicted by the present unsteady linearized Euler analysis

is somewhat narrower and taller than that predicted by the non-

linear code. The areas of the impulses, however, are very nearly

equal. Furthermore, the unsteady load due to the impulse is of the

same order of magnitude as the unsteady load due to the unsteady

pressure distribution away from the shock.

Because conservative Method II linearizations require that the

ratio At/AA be constant throughout the computational domain,

the time step taken in a particular computational cell may be

considerably smaller than the maximum permitted for stable cal-

culations. The result is that the convergence will be consider-

ably slower than if the local maximum permissible time step had

been taken everywhere (local time stepping). To overcome this

problem, we use conservative time stepping in conjunction with

multiple grid acceleration and over-relaxation. Figure 7 shows

the convergence histories for three linearized unsteady flow cal-

culations for the previous example: one using local time step-

ping with multigrid, one using conservative time stepping with

multigrid, and one using conservative time stepping with over-

relaxation plus multigrid.

E 0

ai m

as

22
S uction Surface

Pressure Surface

a
ro
c 0

E

•-
es

00
	

0.2	0.4	0.6
	

0.8	1 0

Distance Along Chord, t/c

Figure 6: Real and imaginary unsteady surface pressure, Tenth

Standard Configuration, plunging: w = 1.287, a = —90°

Figure 7: Convergence histories of unsteady solution for different

methods. All cases use multigrid acceleration.
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Pressure Surface

2D Linearized Euler (Tip)

3D Linearized Euler, Tip

3D Linearized Euler, Midspan

3D Linearized Euler, Hub

Suction Surface

E

Cs
0.

-0 o

.c 0

E

0

TipTip

3

2

TE

o 0	0.2	0.4	0.6
	

0.8	t0

Distance Along Chord, /c

Figure 8: Real and imaginary unsteady surface pressure, Tenth

Standard Configuration, plunging, airfoils vibrating in first bend-

ing mode: w = 1.287, a = —90°

Note that over-relaxation reduces the computational time re-

quired by a factor of about 2.5 compared to conservative time

stepping without over-relaxation. Finally, we should mention that

a comparable nonlinear time marching algorithm would require

about 20 to 50 times the computational time required by the

global time step calculations with over-relaxation and multigrid.

Next, we consider a three-dimensional linear cascade of Tenth

Standard Configuration airfoils. The airfoils have an aspect ratio

of 2. The steady flow conditions are the same as in the two-

dimensional problem. The solution was computed on a 129 x 33 x

17 node H-grid. For the unsteady flow problem, the airfoils are

again assumed to vibrate in plunge with an interblade phase angle,

o, of —90° and a reduced frequency, i.17, of 1.287. The mode shape

is assumed to be the first bending mode shape of a cantilevered

beam. Figure 8 shows the real and imaginary parts of the unsteady

pressure distribution at three spanwise stations. Also shown is

the two-dimensional "strip theory" result at the tip. Shown in

Figure 9 are contours of unsteady pressure on the pressure and

suction surfaces. Note the shock impulse on the suction surface.

Figure 9: Unsteady surface pressure contours, Tenth Standard

Configuration, plunging, airfoils vibrating in first bending mode:

w = 1.287, a = —90° Top: real (left) and imaginary (right) parts

of unsteady pressure on suction surface. Bottom: real (left) and

imaginary (right) parts of unsteady pressure on pressure surface.

For comparison, the contours predicted by two-dimensional strip

theory are shown in Fig. 10. These results clearly indicate the need

to model three-dimensional effects. For example, the unsteady

pressures at the tip of the blade are significantly less than would

be predicted by strip theory. Furthermore, the unsteady load at

the hub is not zero as would be predicted by strip theory.

High Speed Cascade

The next case considered is a two-dimensional cascade of fan

blades with a relative inlet Mach number, M_00 , of 1.2, stagger

angle, CI, of 55°, and blade-to-blade gap, G, of 1.0. This case

is presented to demonstrate the importance of moving shocks on

the aeroelastic response of fan blades. Figure 11 shows the steady

pressure contours. The solution was computed on a 129 x 33 node

grid with a total of 129 nodes on the airfoil surface. Figure 12

shows the computed isentropic Mach number on the airfoil's sur-

face. The pressure rise due to the passage shock can be clearly

seen on both the suction and pressure surfaces. The shock is

smeared over about four grid nodes.

Next, we computed the unsteady aerodynamic response of

the cascade for a range of interblade phase angles. The airfoils
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Figure 10: Unsteady surface pressure contours, Tenth Standard

Configuration, plunging, airfoils vibrating in first bending mode,

two-dimensional strip theory approximation: w = 1.287, a = —90°

Top: real (left) and imaginary (right) parts of unsteady pressure

on suction surface. Bottom: real (left) and imaginary (right) parts

of unsteady pressure on pressure surface.

pitch about their midchords with a reduced frequency, (.7.), of 0.5.

For each interblade phase angle, the computed unsteady surface

pressure was integrated to obtain the unsteady pitching moment.

Shown in Fig 13 is the imaginary part of the unsteady pitch-

ing moment as a function of interblade phase angle. Positive

imaginary pitching moments correspond to negative aerodynamic

damping which will produce flutter for tuned cascades. Note that

for a = 120°, the cascade is slightly unstable.

Shown in Fig. 14 is the unsteady pressure for the case where

the airfoils vibrate in pitch with a reduced frequency, LT), of 0.5 and

interblade phase angle, a, of 120°. Note that the unsteady aero-

dynamic load on the airfoil is dominated by the shock impulses.

The impulse acting near the trailing edge provides a positive con-

tribution to the imaginary part and hence is destabilizing. The

impulse near the leading edge, on the other hand, is stabilizing.

While these results demonstrate the importance of unsteady shock

motion on the unsteady aerodynamic behavior of the fan, it should

be noted that whenever strong in-passage shocks occur, viscous ef-

fects become important due to the large adverse pressure gradient

at the shock. These effects are not modelled here.

Figure 11: Steady pressure contours, modified circular arc airfoil:

= 1.2, G = 1.0,0 = 55°, 9_ 0,0 = 60°

Figure 12: Isentropic Mach number distribution, modified circular

arc airfoil:	= 1.2, G = 1.0,0 = 55°,	= 60°
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Symbol Scheme

Method 2, 129x33 nodes

Pressure Surface

270	 Suction Surface

Figure 13: Imaginary part of moment coefficient for a range of in-

terblade phase angles, modified circular arc airfoil, pitching about

midchord, w = 0.5.
Destabilizing

Impulse

CONCLUDING REMARKS

In this paper, we have presented a linearized Euler analysis of

two- and three-dimensional unsteady transonic flows in channels

and cascades. Two different types of linearization were examined.

Using Method I, the nonlinear Euler equations are first discretized

using a conservative, time-accurate Lax-Wendroff scheme. The

resulting nonlinear finite volume discretization is then linearized.

Using Method II, the Euler equations are first linearized and then

discretized using a Lax-Wendroff scheme. It was shown mathe-

matically and by numerical, experiment that the both Method I

and Method II linearizations correctly predict the unsteady shock

impulse in transonic flows if and only if the scheme is conservative;

the order of linearization and discretization appears to be inconse-

quential. When either the Method I or Method II discretizations

were made nonconservative by using a non-constant At/AA, the

shock impulse was found to be incorrectly predicted even though

the methods are formally second-order accurate and consistent

with the linearized Euler equations.

Because a constant At/AA is required in the steady and un-

steady flow calculations to insure conservation, the time step taken

at a computational cell may be significantly smaller than the max-

imum local permissible time step for stability. This small time

step in turn slows convergence of the scheme. To overcome this

difficulty, an over-relaxation technique was proposed that dramat-

ically improves the convergence rate of the linearized Euler anal-

ysis while leaving the method fully conservative. When coupled

with Ni's multiple grid acceleration technique, the present lin-

earized Euler solver can compute unsteady transonic flows nearly

two orders-of-magnitude faster than a comparable nonlinear time-

accurate time-marching solver.

A number of two- and three-dimensional unsteady transonic

flows in cascades were computed using the linearized Euler anal-

yses. Where possible, these results were compared to a nonlinear

time-accurate time-marching scheme and found to be in excellent

agreement. Furthermore, the unsteady shock load was found to

be a significant contributor to the unsteady aerodynamic forces

acting on the airfoil.

Pressure Surface

Suction Surface

Stabilizing Impulse

o 	

00
	

0.2	0.4	0.6
	

0.8	1 0

Distance Along Chord, 4/c

Figure 14: Real and imaginary unsteady surface pressure, mod-

ified circular arc airfoil, pitching about midchord: w = 0.5, a =

120°
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