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SUMMARY

Linearly conforming point interpolation method (LC-PIM) is formulated for three-dimensional elasticity
problems. In this method, shape functions are generated using point interpolation method by adopting
polynomial basis functions and local supporting nodes are selected based on the background cells. The
shape functions so constructed have the Kronecker delta functions property and it allows straightforward
imposition of point essential boundary conditions. Galerkin weak form is used for creating discretized
system equations, and a nodal integration scheme with strain-smoothing operation is used to perform the
numerical integration. The present LC-PIM can guarantee linear exactness and monotonic convergence for
the numerical results. Numerical examples are used to examine the present method in terms of accuracy,
convergence, and efficiency. Compared with the finite element method using linear elements, the LC-PIM
can achieve better efficiency, and higher accuracy especially for stresses. Copyright q 2007 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Mesh-free methods have been proposed and achieve remarkable progress in recent years, such as
the smooth particle hydrodynamic method [1, 2], general finite difference method [3], the diffuse
element method [4], the element-free Galerkin method [5], reproducing kernel particle methods [6]
and the meshless local Petrov–Galerkin method [7], etc.

The point interpolation method (PIM) is a mesh-free method based on Galerkin weak form. In
this method, the shape functions are constructed using simple interpolation through a set of nodes
located in a local support domain. For different basis functions adopted, two types of PIM have
been developed, i.e. polynomial PIM using polynomial basis functions [8–10] and radial PIM
(RPIM) using radial basis functions [11, 12]. In the original PIMs, Gauss integration scheme is
used to perform the numerical integration. Although both these two methods can provide linear
consistent shape functions, neither of them could guarantee a linear exactness of the solutions due
to the inconformability or incompatibility.

Recently, a scheme of stabilized conforming nodal integration has been proposed by Chen and
coworkers [13]. In their works, the technique of strain smoothing is introduced in order to eliminate
the error in the procedure of direct nodal integration. By using the stabilized conforming nodal
integration scheme, the integration constraints can be met and linear exactness in the solution can
be guaranteed based on the linear consistent shape functions [13]. Liu et al. have applied the
scheme of nodal integration into the original PIMs, linearly conforming PIM (LC-PIM) [14] and
linearly conforming RPIM (LC-RPIM) [15] have been formulated for 2-D elastic problems and
shown good performance.

In this paper, the LC-PIM is extended for 3-D problems. In this method, a background cell of
four-node tetrahedrons is employed and shape functions are constructed using linear polynomials,
as tetrahedrons can be created by standard routines automatically for 3-D solids. The stabilized
nodal integration scheme with strain smoothing is extended to 3-D problems and volume integrals
involving shape function gradients are recast into surface integrals involving only shape functions.
The present method so constructed can guarantee the linear exactness of the numerical solution
and is computationally efficient.

2. POINT INTERPOLATION METHOD

In the present method, polynomials are used to serve as basis functions to create shape functions.
Consider a continuous function u(x), which is a displacement component for our solid mechanics
problems. It can be approximated in the vicinity of x as follows:

u(x)=
n∑

i=1
pi (x)ai =pT(x)a (1)

where pi (x) is polynomial basis function of x=[x, y, z]T, n is the number of polynomial
terms, and a={a1, a2, . . . , an}T, in which ai is the corresponding coefficient yet to be deter-
mined. The polynomial basis pi (x) is usually built utilizing the Pascal’s triangles, and a com-
plete basis is preferred because of the requirement of higher possible order of consistency. The
complete polynomial basis of order 1 and order 2 in three dimensions can be written in the
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following forms:

pT(x) = {1 x y z} Bases of complete 1st order

pT(x) = {1 x y z x2 y2 z2 xy yz zx} Bases of complete 2nd order
(2)

The coefficients a in Equation (1) can then be determined by enforcing u(x) to be the nodal
displacements at these n nodes in the support domain of x, which would lead to the following n
equations:

u(x1, y1, z1) = a1 + a2x1 + a3y1 + a4z1 + · · · + an pn(x1)

u(x2, y2, z2) = a1 + a2x2 + a3y2 + a4z2 + · · · + an pn(x2)

...

u(xn, yn, zn) = a1 + a2xn + a3yn + a4zn + · · · + an pn(xn)

(3)

In matrix form, it can be written as

Us =Pna (4)

where Us is the vector of nodal displacements in the support domain

Us ={u1 u2 u3 . . . un}T (5)

Pn the polynomial moment matrix given by

Pn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 y1 z1 . . . pn(x1)

1 x2 y2 z2 . . . pn(x2)

1 x3 y3 z3 . . . pn(x3)

...
...

...
...

. . .
...

1 xn yn zn . . . pn(xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

Assuming the existence of P−1
n , a unique solution for a can be obtained as

a=P−1
n Us (7)

Substituting Equation (7) back into Equation (1) yields

u(x)=PT(x)P−1
n Us =

n∑
i=1

�i ui =UT(x)Us (8)

where U(x) is the vector of PIM shape functions

UT(x)={�1(x) �2(x) . . . �n(x)} (9)

The kth derivative of the shape functions can be easily obtained, but they are not required in our
LC-PIM formulations due to the use of strain-smoothing operation to be described in Section 3.
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In the present method, linear monomials are used to serve as the basis functions. Similarly, as
in the finite element method (FEM), four vertexes of the background four-node tetrahedron cell
are taken to perform the interpolation of the interest points located inside the cell. This can be
easily implemented and can always ensure the invertability of the moment matrix, as long as the
four vertexes of the tetrahedron are not on a plane.

3. NODAL INTEGRATION OF WEAK FORM

3.1. Galerkin weak form

Consider a 3-D solid mechanics problem defined in domain � bounded by �, which can be
expressed by the following equations [16].

Equilibrium equation:

LTr+ b= 0 in � (10)

where L is a differential operator in the following form:

LT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
�x

0 0
�
�y

0
�
�z

0
�
�y

0
�
�x

�
�z

0

0 0
�
�z

0
�
�y

�
�x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

rT = {�xx �yy �zz �xy �yz �zx } is the stress vector, uT = {u v w} is the displacement vector,
and bT ={bx by bz} is the body force vector.

Essential boundary conditions:

u= u on �u (12)

where u is the prescribed displacement on the essential boundaries.
Natural boundary conditions:

r · n= t on �t (13)

where t is the prescribed traction on the natural boundaries, and n is the vector of unit outward
normal. Note that �=�u + �t .

The standard Galerkin weak form for this problem can be expressed as∫
�
(L�u)T(DLu) d� −

∫
�

�uTb d� −
∫

�t

�uTt d�= 0 (14)

where D is the matrix of material constants.
Substituting Equation (8) into Equation (14), the discretized system equation can be expressed

in the following matrix form:

Ku= f (15)
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where

Ki j =
∫

�
BT
i DB j d� (16)

fi =
∫

�t

�i t d� +
∫

�
�ib d� (17)

Bi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�i,x 0 0

0 �i,y 0

0 0 �i,z

�i,y �i,x 0

0 �i,z �i,y

�i,z 0 �i,x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

3.2. Nodal integration scheme with strain-smoothing operation

To carry out the domain integration in Equations (16) and (17), several types of numerical inte-
gration schemes can be used. For example, the Gauss integration scheme is widely adopted in
the process of numerical integration. In the present method, the nodal integration scheme with
strain-smoothing operation [13] is adopted to perform the integration.

In the process of nodal integration, a background cell of four-node tetrahedrons is needed,
and it can be generated easily using any mesh generator developed for FEM. Afterwards, the
problem domain � will be divided into N smoothing domains �k (k = 1, . . . , N ), in which
N is the total number of field nodes. The smoothing domain for each field node is centred
by the node and constructed based on the background cells of four-node tetrahedrons. As il-
lustrated in Figure 1, the sub-domain of the smoothing domain for node k located in the par-
ticular cell j can be obtained by connecting the mid-edge-points, the centroids of the surface
triangles, and the centroid of cell j . Finding out other sub-domains located in cells which
contain node k and the smoothing domain for node k can be constructed by uniting all the
sub-domains.

Applying the nodal integration scheme, the domain integration can be performed numerically
as follows:

Ki j =
N∑

k=1
K(k)

i j (19)

in which

K(k)
i j =

∫
�k

BT
i DB j d� (20)
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Field node

Mid-edge-point

Centroid of the
triangle

Centroid of the
tetrahedron

Cell j

Node k

Figure 1. Illustration of background four-node tetrahedron cell and one of the subsmoothing-domain for
node k located in cell j created by connecting the mid-edge-points, the centroids of the surface triangles

and the centroid of the tetrahedron.

In the present method, to guarantee a linear exactness in the solution, a technique of smoothing
is applied on the strains [13]

�̃hi j (xk) =
∫

�k

�hi j (x)�(x − xk) d� (21)

where � is a smoothing function.
For simplicity, we use

�(x − xk) =
{
1/Vk, x ∈ Vk

0, x /∈ Vk
(22)

where Vk = ∫
�k

d� is the volume of the smoothing domain for node k.
Substituting Equation (22) into Equation (21) and integrating by parts, we obtain

�̃hi j (xk) = 1

Vk

∫
�k

�hi j (x) d�

= 1

Vk

∫
�k

1

2

(
�uhi
�x j

+ �uhj
�xi

)
d�

= 1

2Vk

∫
�k

(uhi n j + uhj ni ) d� (23)
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where �k is the boundary surface of the smoothing domain for node k. Introducing the PIM shape
functions into Equation (23), the smoothed strain can be written in the following matrix form:

ẽh(xk) = ∑
i∈Gk

B̃i (xk)Ui (24)

where Gk contains a number of nodes whose shape functions support cover node k. In 3-D space

ẽh
T = {̃�hxx �̃hyy �̃hzz �̃hxy �̃hyz �̃hzx }, UT

i = {uxi uyi uzi } (25)

B̃i (xk) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̃i x (xk) 0 0

0 b̃iy(xk) 0

0 0 b̃i z(xk)

b̃iy(xk) b̃i x (xk) 0

0 b̃i z(xk) b̃iy(xk)

b̃i z(xk) 0 b̃i x (xk)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(26)

b̃il = 1

Vk

∫
�k

�i (x)nl(x) d� (l = x, y, z) (27)

Applying Gauss integration among each part of the surface �k of smoothing domain �k , the
above equation can be written in algebraic form as

b̃il = 1

Vk

Ns∑
m=1

[
Ng∑
n=1

wn(�i (xmn)nl(xm))

]
(28)

where Ns is the number of surface areas of smoothing domain �k , Ng is the number of Gauss
points distributed in each area, and wn is the corresponding weight number of Gauss integration
scheme. In the present method, Ng = 4 is adopted which means that 2× 2 Gauss points are used
for integration on each quadrangular surface area of the smoothing domain.

It has been shown that the strain smoothing can successfully eliminate spatial instability in
nodal integration. Furthermore, the employment of the nodal integration scheme together with
the linearly consistent shape functions in Galerkin weak form can guarantee a linear exactness
in the numerical solutions [13]. All these properties will be demonstrated numerically using the
following examples.

4. NUMERICAL RESULTS

Several numerical examples are reported in this section. The error indicators in displacement and
energy are, respectively, defined as follows:

ed=
√∑n

i=1 (uexacti − unumerical
i )2∑n

i=1 (uexacti )2
(29)
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Table I. Displacement error of the linear patch.

Location of node 9 (5, 5, 5) (9.9, 9.9, 9.9) (9.9, 9.9, 0.1) (0.1, 5, 5) (5, 5, 0.1)
Error in displacement 2.5807E−16 2.0467D−14 1.4951D−14 2.4072D−16 1.5590D−16

ee= 1

V

√
1

2

∫
�

(eexact − enumerical)
TD(eexact − enumerical) d� (30)

where the superscript exact notes the exact or analytical solution, numerical notes a numerical
solution obtained using a numerical method including the present LC-PIM, and V is the volume
of the problem domain.

4.1. Standard patch test

For a numerical method working for solid mechanics problems, the sufficient requirement for
convergence is to pass the standard patch test [17]. Therefore, the first example is the standard
patch test using the present LC-PIM. The problem is studied in a cubic domain with the dimension
of 10× 10× 10, and the displacements are prescribed on all outside boundaries by the following
linear function:

ux = 0.6x

uy = 0.6y

uz = 0.6z

(31)

The linear patch test is first conducted using a set of nodes distributed in the cubic domain, i.e.
eight nodes locate on the vertexes of the cube and the ninth node locates inside. By changing the
location of the ninth node inside the cube, displacement error as defined in Equation (29) has been
calculated and listed in Table I. It can be found that the present method can pass the linear patch
test regardless the location of the ninth node. This result numerically proves the stability of the
LC-PIM.

Second, the problem domain has been represented using both 125 regularly and 166 irregularly
distributed nodes as shown in Figure 2. For these two models, the errors in displacement are
found to be 1.2837× 10−15 and 1.2036× 10−15, respectively, which reach almost the level of
the machine precision. The results show that the displacements of all the interior nodes follow
‘exactly’ the same function of the imposed displacement. This example demonstrates numerically
that the present LC-PIM can monotonically converge due to its ability to reproduce linear fields
and the use of the Galerkin weak form.

4.2. Cantilever beam

The performance of the present method is evaluated using the cantilever beam problem under a
parabolic traction on the right edge. As shown in Figure 3, the beam is of L = 10m, H = 1m,
B = 1m, and P =−100N. The relative parameters are taken as E = 3.0× 107 kPa and v = 0.3.
Since the beam is relatively thin, analytical solution based on the plane stress theory can be used
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Figure 2. Illustration of nodal distributions of a cube for the standard patch test.
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Figure 3. 3-D cantilever beam subjected to a parabolic traction on the right edge.

approximately as reference solutions [16]

ux = − Py

6EI

[
(6L − 3x)x + (2 + �)

(
y2 − H2

4

)]
(32)

uy = P

6EI

[
3�y2(L − x) + (4 + 5�)

H2x

4
+ (3L − x)x2

]
(33)

�x = − P(L − x)y

I
(34)

�y = 0 (35)

�xy = P

2I

[
H2

4
− y2

]
(36)

where I is the moment of inertia given as I = H3/12.
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Figure 4. Illustration of nodal distributions of the 3-D cantilever beam.
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Figure 5. Deflection distribution along the neutral line of the 3-D cantilever beam.

The problem domain is presented using both 775 regularly and 874 irregularly distributed nodes
(as shown in Figure 4), and computed distribution of defection along the neutral line and shear
stress (�xy) along the mid-line (x = L/2, z = 0) are plotted together with the reference solutions in
Figures 5 and 6, respectively. It can be found that the numerical results obtained using the present
LC-PIM with both regular and irregular nodal distribution models are in very good agreement with
the reference ones.
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Figure 6. Shear stress distribution along the line of (x = L/2, z = 0) of the 3-D cantilever beam.
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Figure 7. The Lame problem of a hollow sphere under internal pressure.

4.3. 3-D Lame problem

The 3-D Lame problem consists of a hollow sphere with inner radius a and outer radius b and
subjected to internal pressure P , as shown in Figure 7. For this benchmark problem, the analytical
solution is available in polar co-ordinate system [16]

ur = Pa3r

E(b3 − a3)

[
(1 − 2�) + (1 + �)

b3

2r3

]
(37)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 72:1524–1543
DOI: 10.1002/nme



LC-PIM FOR THREE-DIMENSIONAL ELASTICITY PROBLEMS 1535

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

R
ad

ia
l d

is
pl

ac
em

en
t U

 r

Analytical solu.
LC-PIM solu.

Figure 8. Distribution of the radial displacement along the x-axis for the 3-D Lame problem.

�r = Pa3(b3 − r3)

r3(a3 − b3)
(38)

�� = Pa3(b3 + 2r3)

2r3(b3 − a3)
(39)

where r is the radial distance form the centroid of the sphere to the point of interest in the
sphere.

As the problem is spherically symmetrical, only one-eighth of the sphere is modelled and
symmetry conditions are imposed on the three planes of symmetry. The numerical solution of
this problem has been calculated using the material parameters E = 1.0 kPa, v = 0.3, geometric
parameters a = 1m, b= 2m and internal pressure P = 1N/m2. The problem domain is presented
using 1304 irregularly distributed nodes. The computed nodal displacements and stresses along
the x-axis are plotted in Figures 8 and 9, respectively. It can be clearly seen that the numerical
results agree well with the analytical ones.

Furthermore, to investigate the properties of convergence and efficiency of the present LC-PIM,
four models of 173, 317, 729, and 1304 irregularly distributed nodes are employed. For each model
of nodes distribution, the error in energy of the numerical results is calculated according to the
definition in Equation (30). For comparison, the FEM using linear four-node tetrahedron element
is also employed to study the problem with the same nodes distributions. As shown in Figure 10,
the results of error in energy norm against h are plotted for both the FEM and the present LC-
PIM, where h is the average nodal spacing of the nodes distribution. It is found obviously that
these two methods reach similar rates of convergence, but the LC-PIM obtains more accurate
results compared with the linear FEM. In Figure 11, the energy errors of the numerical results
obtained using these two methods are plotted against the central processing unit time consumed,
which shows performance of numerical methods. It can be found that the LC-PIM is clearly more
efficient than the linear FEM.
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Figure 9. Distribution of radial and tangential stresses along the x-axis for the 3-D Lame problem.
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Figure 10. Comparison of convergence between FEM and LC-PIM via the Lame
problem with the same nodes distribution.

4.4. 3-D Kirsch problem

The 3-D Kirsch problem is considered to examine the stress distribution in the vicinity of a small
cavity in an infinite cube subjected to far-field uniform tension, as illustrated in Figure 12. The
analytical solution for the normal stress (�zz) in the plane z = 0 is given as [16]

�zz = �0

[
1 + 4 − 5v

2(7 − 5v)

(a
r

)3 + 9

2(7 − 5v)

(a
r

)5]
(40)

where r is the radial distance from the centroid of the cube to the point of interest.
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Figure 11. Comparison of efficiency between FEM and LC-PIM via the Lame
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Figure 12. 3-D Kirsch problem: a cube with a spherical cavity subjected to a uniform tension.

The problem is modelled for a = 1m, b= 10m and �0 = 1N/m2 with the material parameters,
E = 3.0× 107 kPa and v = 0.3. The problem domain is presented with total 1256 nodes. Figure 13
shows the comparison between the analytical solution and the numerical solution for the normal
stress �zz along the x-axis. It can be clearly seen again that the LC-PIM solution is in excellent
agreement with the analytical ones.
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Figure 13. Distribution of �zz along the x-axis for the Kirsch problem.

Figure 14. Simplified model of an automotive rim.

4.5. An automotive part: rim

A typical rim used in automotive industry is modelled and studied using the present method. As
shown in Figure 14, the rim is of inner radius 2m, outer radius 19m and a thickness of 3m.
It is constrained in three dimensions along the inner annulus and a uniform pressure of 100N/m2

is applied on the outer annulus of 60◦. As no analytical solution is available for this problem,
a reference solution is obtained using the FEM software NASTRAN, in which a very fine mesh
is adopted. The problem domain is represented using 7972 nodes and the numerical solutions
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Figure 15. Stress contour of �xx on the plane z = 0 for the rim problem.

Figure 16. Stress contour of �yy on the plane z = 0 for the rim problem.
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Figure 17. Stress contour of �xy on the plane z = 0 for the rim problem.

Figure 18. Simplified model of the three-dimensional riser connector.
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Figure 19. Reference solution of contour for elemental Von Mises stress obtained using
FEM software (NASTRAN) via fine mesh.

Figure 20. Contour of elemental Von Mises stress obtained using LC-PIM via coarse mesh.

of stress components of nodes located on the plane of z = 0 are plotted in the form of contour.
Figures 15–17 show the comparison of stress contour between the reference solutions and the
numerical ones for �xx , �yy , and �xy , respectively. It can be seen that the results obtained using
the LC-PIM match well with the reference ones.
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Figure 21. Contour of elemental Von Mises stress obtained using FEM via coarse mesh.

4.6. Riser connector

The following example comes from a real offshore project of Floating Production and Storage
Unit (FPSO). Fluid transfer between FPSO and subsea pipeline is carried out through a kind of
flexible pipe called riser, which is attached to FPSO shipside by riser connector. The simplified
model of riser connector is shown in Figure 18 with the load being applied on the top flange of
riser connector. The boundary conditions are defined at the end of I-beams where riser connector is
supported by other structures. This riser connector is made of steel material with Young’s modulus
E = 2.0× 105 N/mm2, Poisson’s ratio � = 0.32.
Reference solution of this problem is obtained using the FEM software NASTRAN via very fine

mesh (total 27 072 nodes), and the contour of elemental Von Mises stress is plotted in Figure 19 in
the deformed shape of the riser connector. For the purpose of comparison, this problem is studied
using both the present LC-PIM and the linear FEM via the same nodes distribution (total 2228
nodes). The numerical results of the elemental Von Mises stress got using these two methods
are plotted in the form of contour are shown in Figures 20 and 21, respectively. It can be found
that, although the riser connector is presented with less than one-tenth of the reference nodes
distribution, the LC-PIM solution matches well with the reference one and is more close to it than
that of the linear FEM.

5. CONCLUSIONS

In this work, the linearly conforming point interpolation method (LC-PIM) is formulated for 3-D
problems. The present LC-PIM employs polynomial basis functions for field approximation and the
shape functions so generated have the property of Kronecker delta function. Galerkin weak form
is used and a stabilized nodal integration scheme with strain-smoothing technique is employed
to perform the numerical integration. Some examples are studied numerically using the present
method. Either for the benchmark problems which have the analytical solutions, or for the practical
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example with the complicated shapes, the LC-PIM can always obtain very stable and accurate
results in terms of both displacements and stresses. The following remarks can be made:

• Shape functions are generated using the polynomial basis functions and have the property of
Kronecker delta function, which allows straightforward imposition of point essential boundary
conditions.

• With the implementation of strain-smoothing technique, the nodal integration scheme can
obtain stable numerical results.

• Using the technique of strain smoothing, field gradients are computed directly using shape
functions itself and no derivative of shape function is needed. This property can reduce
the requirement on the smoothness of shape functions, which allows the LC-PIM to obtain
accurate stress solutions, even using low-order shape functions.

• The present LC-PIM guarantees a linear exactness of the numerical solutions, which is also
proven numerically by the standard patch test. This property ensures the stability and the
convergence of the LC-PIM.

• Compared with the FEM using the linear tetrahedron element, the LC-PIM can achieve a
higher accuracy and better efficiency.
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