
A LINGUISTIC METHOD FOR ROBOT VERIFICATION,
PROGRAMMING, AND CONTROL

A Thesis

Presented to

The Academic Faculty

by

Neil T. Dantam

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in

Robotics

Robotics and Intelligent Machines

Georgia Institute of Technology

December 2014

Copyright © 2014 by Neil T. Dantam

A LINGUISTIC METHOD FOR ROBOT VERIFICATION,
PROGRAMMING, AND CONTROL

Approved by:

Professor Henrik I. Christensen,

Committee Chair

Interactive Computing

Georgia Institute of Technology

Professor Irfan Essa

Interactive Computing

Georgia Institute of Technology

Professor Mike Stilman, Advisor

Interactive Computing

Georgia Institute of Technology

Professor Andrea L. Thomaz

Interactive Computing

Georgia Institute of Technology

Professor Magnus Egerstedt

Electrical and Computer Engineering

Georgia Institute of Technology

Professor George J. Pappas

Electrical and Systems Engineering

University of Pennsylvania

Date Approved: 27 October 2014

ACKNOWLEDGEMENTS

I am grateful to my advisor Mike Stilman. Thank you, Mike, for your guidance, support,

and patience. Your encouragement pushed me to do more than I realized I could, your

lucid and engaging style is a standard to which I will always strive, and your perpetual

enthusiasm will always be an inspiration.

Thank you to my thesis committee members: Henrik Christensen, Magnus Egerstedt,

Irfan Essa, George Pappas, and Andrea Thomaz. Your helpful insight and feedback has

given me better focus and improved the quality and presentation of this work.

Many thanks to my collaborators for all of the fascinating discussions and fun exper-

iments. Thank you, Heni Ben Amor, for your substantial feedback and your help imple-

menting the work in chapter 5. Thank you, Henrik Christensen, for always giving the right

context in which to present a topic. Thank you, Irfan Essa, for helping to identify good

demonstrations and steering me towards suitable perception. Thank you, Aaron Ames and

Ayonga Hereid, for working with me to develop a software synthesis pipeline, and then

entrusting your robot in College Station to code generated in Atlanta. Thank you, Paul

Oh, Dan Lofaro, Michael Grey, and Matt Zucker, for your work showing some of my soft-

ware underpinning the control implementation on a cool robot, the DRC-Hubo. Thank

you, Carlos Nieto, for helping to put together a fun demo despite a flaky robot. Thank you,

Magnus Egerstedt, for your help in understanding hybrid dynamics and developing some

proofs in chapter 4. Thank you, Pushkar Kolhe, for implementing the perception side of

the experiments that started the work in this thesis.

Thank you to all who stepped in to give their help and support in our time of loss,

especially to Annie Antón, Aaron Bobick, Frank Dellaert, Henrik Christensen, Andrea

Thomaz, Heni Ben Amor, and Cynthia Matuszek.

iii

Thank you to my friends and fellow members of the Humanoids Lab. Thank you in

particular to Jon Scholz for helping bootstrap our lab from day one, to Saul Reynolds-

Haertle for countless crazy and entertaining discussions, and to Tobi Kunz for his prescient

feedback on many papers and presentations. Thank you also to Pushkar Kolhe, Misha

Novitsky, Ana Huamán, Martin Levihn, Michael Grey, Can Erdogan, and Sungmoon Joo.

You have all made this lab a tremendously exciting place to work.

All the professors I have talked and studied with have shaped my understanding and

views. Thank you, in particular, to Aaron Bobick for always asking the most interesting

questions and to Eric Feron for showing me a different perspective on software engineering.

I am thankful to our research engineer Dan Walker for all the sturdy equipment he built

to support this work.

Thank you to my mentors at Purdue University – Antony Hosking, Monika Ivantysyn-

ova, and Peter Meckl – for first introducing me to the excitement of research. Today, I

could not imagine taking any other path.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . x

SUMMARY . xv

I INTRODUCTION . 1

1.1 Challenges . 2

1.2 Approach . 3

1.2.1 Hierarchy of Abstraction . 3

1.2.2 Phases of System Design . 4

1.2.3 Assumptions . 5

1.3 Overview . 6

1.3.1 Contributions . 6

1.3.2 Outline . 7

II RELATED WORK . 9

2.1 Formal Language . 9

2.2 Discrete and Hybrid Systems . 10

2.3 Logical Planning . 12

2.4 Policy Specification Approaches . 14

III SPECIFYING LANGUAGE MODELS . 15

3.1 The Motion Grammar . 15

3.1.1 Application of the Motion Grammar 17

3.1.2 Languages, Systems, and Specifications 17

3.2 Hierarchical Task Specification: Physical Human-Robot Games 19

3.2.1 Tokenizing . 20

3.2.2 Parsing . 20

3.2.3 Syntax and Semantics . 21

3.2.4 Yamakuzushi . 22

v

3.2.5 Chess . 31

3.3 Walking Speed Graphs . 39

3.4 Inferring Grammars for Small Object Assembly 43

3.4.1 Assembly Language . 44

3.4.2 Human Activity to Event String 46

3.4.3 Event Strings to Robot Grammar 50

3.4.4 Manipulation Grammar . 53

3.5 Logical Planning Domains . 54

3.5.1 Minimum Finite-State Regular Policies 55

3.5.2 Hierarchically Compacted Context-Free Policies 58

3.5.3 Alternative Outcomes and Faults 62

3.5.4 Logical Domain Examples . 65

3.6 Relationship of Grammars and Other Representations 67

3.6.1 Petri Nets . 69

3.6.2 Hybrid Automata . 70

3.6.3 MDLe . 71

3.6.4 Maneuver Automata . 73

3.6.5 Linear Temporal Logic . 75

3.6.6 The C Programming Language 76

IV ANALYZING LANGUAGE MODELS . 77

4.1 Model Guarantees . 77

4.1.1 Completeness . 77

4.1.2 Correctness . 78

4.2 Discussion of Language Class . 81

4.2.1 Chomsky Hierarchy of Languages 81

4.2.2 Limits of Language Class . 81

4.2.3 Language Classes and Symbol Design 83

4.3 Unpredictable Events . 84

4.4 Implementation Model Checking . 85

vi

4.5 Motion Grammar Calculus . 87

4.5.1 Tokenization and Reachability 88

4.5.2 Process to Derive Correct Grammars 92

4.5.3 Completeness and a Simulation Lemma 93

4.5.4 Rewrite Rules . 94

4.5.5 Using the Calculus to Enforce Correctness 97

4.5.6 Safe Regions and New Switching Surfaces 97

4.5.7 Example Derivation . 99

4.6 Composing Mapping and Manipulation 104

4.6.1 Composing Maps and Grammars 107

4.6.2 Composition using the Motion Grammar Calculus 109

4.6.3 Supervisory Control . 110

4.6.4 Mobile Manipulation Demonstration 111

4.6.5 Discussion . 115

V PLATFORM MODELS FOR MANIPULATION 118

5.1 Spherical Parabolic Blends for Workspace Trajectories 119

5.1.1 SLERP for Inverse Kinematics 122

5.1.2 Derivation of Spherical Parabolic Blends 123

5.1.3 Generating and Tracking Trajectories 127

5.1.4 Trajectory Experiments . 129

5.2 Online Registration of Single Arm and Camera 133

5.2.1 Technical Approach . 135

5.2.2 Registered Visual Servoing . 142

5.2.3 Single Arm and Camera Experiments 142

5.3 Online Registration of Multiple Arms and Cameras 145

5.3.1 Asynchronous Pose Co-Estimation 145

5.3.2 Control: Bimanual Workspace Trajectories 147

5.3.3 Multiple Arm and Camera Experiments 149

5.4 Discussion . 152

vii

VI MODELING AND PROGRAMMING CONCURRENCY 155

6.1 Review of POSIX IPC . 157

6.1.1 Streams . 158

6.1.2 Datagrams . 158

6.1.3 Shared Memory . 158

6.1.4 Further Considerations . 159

6.1.5 General, Real-Time, Robotics Middleware 160

6.2 The Ach IPC Library . 161

6.2.1 Channel Data Structure . 162

6.2.2 Core Procedures . 163

6.3 Case Studies . 165

6.3.1 Dynamic Balance on Golem Krang 165

6.3.2 Speed Regulation on Nao . 167

6.3.3 Reliable Software for the Hubo2+ 169

6.4 Performance and Discussion . 171

6.4.1 Formal Verification . 171

6.4.2 Benchmarks . 172

6.4.3 Discussion . 175

VII EXECUTING LANGUAGE MODELS . 179

7.1 Online Parsing . 179

7.1.1 Discrete vs. Continuous Time . 179

7.1.2 Selecting Productions and Semantic Rules 180

7.1.3 Attribute Inheritance and Synthesis 181

7.2 Real-Time LL(1) Parser Generation . 182

7.2.1 Bounding Memory Use . 183

7.2.2 Parser Implementation . 185

7.2.3 Online Supervision . 186

VIIICONCLUSION AND FUTURE WORK . 189

viii

8.1 Contributions . 189

8.1.1 Integrate specification, analysis, and execution 189

8.1.2 Data-Driven Specification . 190

8.1.3 Logical Domain Policies . 190

8.1.4 Hierarchical Policy Compaction 190

8.1.5 Generating Real-Time Software 190

8.1.6 Real-Time Communication . 191

8.1.7 Direct, Nonstop Workspace Interpolation 191

8.2 Future Work . 191

APPENDIX A — FORMAL LANGUAGE . 193

APPENDIX B — DUAL QUATERNIONS . 196

References . 217

ix

LIST OF FIGURES

1 Abstraction Hierarchy for Robot Control 4

2 System Design Approach . 4

3 Thesis Organization . 7

4 Operation of the Motion Grammar. 15

5 Experimental setup for chess . 19

6 Syntax-Directed Definition for impedance control trajectories 22

7 Yamakuzushi Experimental Setup . 24

8 Yamakuzushi piece touching . 25

9 Yamakuzushi Piece Touching with Impedance and Discrete Control Strategies 26

10 Grammar fragment to reacquire lost Yamakuzushi pieces. 27

11 Application of sliding grammar in Fig. 10 when contact is lost. 27

12 Deciding target Yamakuzushi piece and direction. 28

13 Grammar fragment to decide winner . 29

14 Yama parse tree for draw . 29

15 Complete Yama Grammar . 30

16 Guarded move grammar . 32

17 Grammar fragment for guarded moves . 32

18 Chess Grammar fragment for recovering fallen pieces 33

19 Robot recovering fallen chess pieces . 33

20 Grammar fragment to reset chessboard . 34

21 Example of board resetting . 35

22 Perception with point cloud is discretized into tokens. 36

23 Grammar Productions for Chess Game . 38

24 Aldebran Nao . 39

25 Graph of permissible Nao speed transitions 40

26 Minimum state FA for speed transitions 42

27 Finite automaton fragment for single Nao transition step 42

x

28 Parameter Grammar GP . 43

29 Step Grammar Gstep . 43

30 Experimental Setup and Kinect Data . 44

31 Robot Assembly . 45

32 Connection Graph for an object assembly. 45

33 Recognized and labeled objects . 48

34 Inferred structure of the object assembly. 49

35 Assembly demonstration sequences . 49

36 Assembly demonstration strings . 50

37 Regular Expression parse tree for Assembly Task. 51

38 Inferred NFA for Assembly Task . 52

39 Minimum State DFA for Assembly Task. 52

40 Pick and Place Grammar for Schunk LWA3 and SDH. 53

41 Example of repeated submachines . 59

42 Example grasping domain for bimanual manipulation and the correspond-

ing policy automaton. 65

43 Sussman Anomaly and Finite Automaton. 66

44 The assembly domain used in our experiments 67

45 Logical actions for the assembly domain 68

46 A high-level action to align all screw holes on a bracket. 68

47 high-level action to align and screw and bracket 69

48 A high-level action to align and screw a rod to a bracket. 70

49 Top-Level Automaton for table assembly, incorporating High Level Ac-

tions from Fig. 46. 70

50 Example of Hybrid Automata to Motion Grammar Conversion 71

51 Example Transform: MDLe to Finite Automata 73

52 Maneuver Automaton→ Online Grammar. 74

53 Example of equivalence between Büchi Automata and Linear Temporal

Logic formula ✷✸x. 75

54 Multiple Screw Construction . 84

xi

55 Region boundary crossing . 91

56 Simulating and non-simulating grammar example 93

57 Region Splitting Example . 98

58 Initial grammar for 1-dimensional battery robot. 100

59 Sequence of operations to generate policy. 107

60 Example semantic map and manipulation grammar 107

61 Representing maps with formal language. 108

62 Segway RMP-200 mobile platform . 112

63 Generated Semantic Maps for the Aware Home. 113

64 Semantic map of Georgia Tech RIM Center 113

65 Grammars for the Uncontrolled and Controlled mobile manipulator 114

66 Mobile Manipulation Path . 115

67 Grammars for the Uncontrolled and Controlled mobile manipulator in the

Aware Home. 117

68 Use cases for online camera registration 118

69 Spherical blending for a screwing task . 121

70 Layers of abstraction for waypoint following 121

71 Rotation Vector Interpolation vs. SLERP 122

72 SLERP interpolation parameters for blend regions 127

73 Spherical Parabolic Blend Trajectory . 130

74 Manipulator Hardware Block Diagram 130

75 Manipulator Software Block Diagram . 131

76 Physical Screwing Task . 131

77 Plots of physical screwing task . 132

78 Single Arm and Camera Control Diagram 135

79 Marker and model-based tracking . 137

80 Registration under disturbances . 143

81 Experimental setup for positioning accuracy 144

82 Pre-grasp experiment . 145

xii

83 Multiple Arm and Camera Control Diagram 146

84 Kinematic frames for one arm, camera, and feature. 146

85 Manipulation error using only encoders 150

86 Testing relative positioning accuracy by aligning the end-effectors 150

87 Relative left-right arm trajectory . 151

88 An object hand-off task. 152

89 Robots using Ach IPC . 156

90 Logical Memory Structure for an Ach Channel 163

91 Golem Krang Hardware Diagram . 166

92 Golem Krang Software Diagram . 166

93 Nao software . 169

94 Hubo software diagram . 169

95 Ach Benchmark Summary . 173

96 IPC Source Lines of Code . 174

97 Examples grammar fragments that are and are not Semantically LL(1) . . . 180

98 A tail recursive function in the Scheme programming language. Function

some-function immediately returns the value returned by a-tail-call.184

99 Example of parsing code . 186

100 Monotonically ascending and descending Speed Finite Automata, Am . . . 187

101 Ascending FA with transition steps, At . 187

102 Supervisor for transitioning from 10 to 11 cm/s. Here, STEP corresponds

to the union of all terminals in Fig. 29 . 188

103 Example Context-Free Grammar for a load/unload task and parse tree for

string “[load] [load] [full] [unload] [unload]” 195

104 Imaginary Plane for Quaternions . 201

xiii

LIST OF TABLES

1 Yamakuzushi Tokens . 23

2 Attributes for the Yamakuzushi Motion Grammar 23

3 Chess Grammar Tokens . 31

4 State Space Reduction via State Minimization and Hierarchization. 67

5 Correctness Decidability by language class 80

6 Reference parameter computation time . 132

7 Positioning experiment results . 144

8 Pre-grasp experiment results . 144

9 Positioning Test Results (mm) . 151

10 Full Buffer Semantics . 160

11 POSIX IPC Summary, pros and cons for real-time 160

12 Algebraic Quaternion Properties . 198

13 Storage Requirements for Orientation Representations 205

14 Computational Requirements for Orientation Representations 205

xiv

SUMMARY

There are many competing techniques for specifying robot policies, each having ad-

vantages in different circumstances. To unify these techniques in a single framework, we

use formal language as an intermediate representation for robot behavior. This links pre-

viously disparate techniques such as temporal logics and learning from demonstration, and

it links data driven approaches such as semantic mapping with formal discrete event and

hybrid systems models. These formal models enable system verification – a crucial point

for physical robots. We introduce a set of rewrite rules for hybrid systems and apply it

automatically build a hybrid model for mobile manipulation from a semantic map.

In the manipulation domain, we develop a new workspace interpolation methods which

provides direct, non-stop motion through multiple waypoints, and we introduce a filtering

technique for online camera registration to avoid static calibration and handle changing

camera positions. To handle concurrent communication with embedded robot hardware,

we develop a new real-time interprocess communication system which offers lower latency

than Linux sockets.

Finally, we consider how time constraints affect the execution of systems modeled hier-

archically using context-free grammars. Based on these constraints, we modify the LL(1)

parser generation algorithm to operate in real-time with bounded memory use.

xv

CHAPTER I

INTRODUCTION

Programming robots would be easier if it were automatic. In this thesis, we develop a

method to automate robot software development through the use of formal language.

General-purpose, autonomous robots offer tremendous potential across diverse areas

from manufacturing to domestic service to disaster response. There are many successful

teleoperated and single-task robots and even multifunctional robot hardware, yet multi-

functional robot systems remain an elusive goal. The key challenge lies in developing robot

policies that are general enough to cover the range of situations a robot may encounter yet

specific enough to be executable.

Robot policy development has been approached from a variety of angles. Behaviors

have been specified through logical descriptions, hierarchical decompositions, and demon-

strations. Analyzing system models to ensure stability and correctness is a key focus of

work in hybrid dynamic systems. Online execution is often a reactive control system ulti-

mately implemented in software. Superficially, many of these approaches seem very dif-

ferent, with their integration presenting a time-consuming and costly challenge. However,

there is a common thread we can apply to automate integration and policy development.

Underlying all of these techniques for robot policies is the concept of formal language,

which provides a unifying basis to connect these previously disparate approaches.

Adopting a formal language representation for robot policies bridges high-level rea-

soning with low-level control and enables diverse techniques to automate model con-

struction, system verification, and code generation.

Formal language deals with sets of sequences of symbols. This enables reasoning about

1

policies using set operations: subset, union, intersection, and difference. It also enables

policy translation, from initial descriptions as logical specifications or acquired data to

intermediate representations as automata and grammars and finally to executable form as

synthesized software.

This thesis also applies several existing techniques. We adopt the hybrid dynamic sys-

tems view of robots as having both continuous and discrete dynamics, and connecting this

with other methods for automated specification and code generation. We directly apply

the discrete event systems techniques of model checking and supervisory control. To de-

tect objects in our manipulation experiments, we use existing perception algorithms and

software [31, 141, 150].

1.1 Challenges

The difficulty in precisely specifying what a robot should do has spawned a variety of

largely-disconnected techniques: logical planning, behavior-based architectures, robot pro-

gramming languages, temporal logics, hybrid systems, learning from demonstration, etc.

Each of techniques excels in a particular domain, e.g., procedural tasks are easily described

through demonstrations and safety properties are succinctly expressed in temporal logics.

However, integrating many of these approaches has previously been a manual process.

Safety is important for physical robots where failures impose physical costs. Software

development and verification is a significant and costly challenge – particularly for real-

time and safety-critical domains. While a software developer writing business applications

may produce up to 100 lines of code per hour, real-time software developers generally

produce between 0.1 and 8 lines per hour [127]; given developer salary plus overhead of

$200,000 per year, this is a cost of $10 to $1000 per line. Software errors are the leading

cause of medical device recalls [182], and for commercial airplanes – huge mechanical

2

systems – a quarter of the development cost goes to software verification [13, 186]. Au-

tonomous robots are especially software-intensive devices, so automating software devel-

opment and verification would significantly reduce development time and cost.

A challenge in representing robot policies for complex tasks is the required memory

usage. Analogous to the curse of dimensionality with increasing continuous degrees of

freedom, discrete policies can succumb to combinatorial explosion as discrete options in-

crease. This issue has been widely addressed in the development of plans – where only a

single execution path is necessary – but remains a significant issue for the development of

policies – where multiple execution paths and response to unpredictable events are crucial.

1.2 Approach

We propose an approach for policy robot development that covers multiple levels of the

robot abstraction hierarchy (see Fig. 1) and multiple phases of system design (see Fig. 2).

Converting various types of specifications to intermediate represents as grammars and au-

tomata provides an automated pipeline from specification to execution and links task-level

logical descriptions with low-level control.

1.2.1 Hierarchy of Abstraction

A hierarchy of abstractions are used in robot control, Fig. 1. Robot hardware, such as servo

controllers and sensors, is at the lowest level. Above that are low-level control modes for

simple tasks such as trajectory tracking or specific walking gaits. These low-level con-

trollers are referred to with a variety of names, including skills, behaviors, and motion

primitives. Then, the low-level control elements are sequentially composed – forming a

language of controllers. On top of the compositional layer is the higher level reasoning or

planning to perform the desired task.

Viewing high-level reasoning as formal language directly links this abstraction level to

real-time control, avoiding the need to separately implement planning and execution layers.

To address the potentially large memory usage of the resulting automata, we introduce

3

Robot hardware

Low-Level Control

Composition

Reasoning

Task

LWA4, Nao

Jacobian IK, Human-Inspired Control

DES/Hybrid Systems

STRIPS/PDDL

Assemble object, Play chess

Motion Grammar

Figure 1: An abstraction hierarchy for robot control. At the lowest level is the robot

hardware. Above the hardware are low-level controllers – sometimes called behaviors,

skills, or motion primitives. These low-level controllers are sequentially composed in a

language, e.g., using discrete event or hybrid systems approaches. Above this composition

is high-level reasoning or planning to perform the desired task. The linguistic approach

described in this thesis bridges the compositional and reasoning levels of this hierarchy.

Specify Analyze Execute

Motion Grammar

Figure 2: System design approach. The linguistic framework in this thesis integrates

specification, analysis, and execution.

algorithms for direct generation of minimum state forms and hierarchical compaction of

policies.

1.2.2 Phases of System Design

We consider three phases of system design: specification, analysis, and execution (Fig. 2).

1.2.2.1 Specification

In the specification phase, the system designer describes and models the system and de-

sired behavior. For traditional dynamical systems, this amounts to producing the equations

of motion and performance criteria. For robots, a variety of specification formats are com-

monly used: finite state machines, behavior-based architectures, STRIPS-like domains,

4

temporal logics, task demonstrations, etc. Different formats may be better suited for dif-

ferent tasks or users, e.g., temporal logics are convenient for safety criteria and procedural

tasks may be conveniently specified through demonstrations, particularly for non-expert

users. This specification gives a precise definition for how the system should operate.

1.2.2.2 Analysis

The analysis phase is the typical focus of control system design. The system model is used

to determine suitable control inputs and performance guarantees.

1.2.2.3 Execution

In the execution phase, we go from the theoretical model to the physical implementation.

The abstract control system is concretely implemented, typically in software, and the sys-

tem runs in real-time.

1.2.3 Assumptions

We make certain assumptions in this framework to simplify the analysis the experimental

design.

1.2.3.1 Fully Observable

In our manipulation experiments, we assume the immediate state of our system is fully

observable.

1.2.3.2 Non-stochastic Events

We assume that the events or terminal language symbols are not stochastic. Events are

assumed to be detected with perfect certainty. This limits the way in which uncertainty

may be handled so that any possible outcome must be handled rather than dealing with

sufficiently likely outcomes.

5

1.2.3.3 Serial Tasks

We assume that the high-level task is executed sequentially and consequently adopt a serial

language model. However, low-level communication and control occurs in parallel (see

chapter 6).

1.2.3.4 Kinematic Manipulator Control

In our manipulation experiments, we assume kinematic control of the manipulator. In real-

ity, all manipulators are subject to forces and torques which restrict acceleration. However,

the Schunk LWA3 and LWA4 manipulators used have large gear ratios which permit high

acceleration, and we do consider continuity of the computed trajectories (see chapter 5).

1.3 Overview

1.3.1 Contributions

This thesis develops an integrated pipeline for producing robot control software. We com-

bine previously distinct specification approaches: logical planning domains, semantic map-

ping, and human demonstrations. We address memory usages issues with algorithms to

produce compact policies. We support general physical execution with a highly-efficient

real-time communication method, and execution of kinematic manipulations with a new

direct-motion, multipoint interpolation approach. We connect the formal models to exe-

cutable software by adapting parsing to operate in real-time.

The contributions of this thesis are summarized as follows.

Integrate specification, analysis, and execution We present a linguistic framework that

combines system specification, analysis, and execution.

Data-Driven Specification We show how data-driven approaches for modeling – learning

from demonstration and semantic mapping – can be connected to formal verification

and code generation.

6

Specify

(chapter 3)

Analyze

(chapter 4)

Execute

(chapter 7)

Manipulation Platform Models (chapter 5)

Real-Time Communication (chapter 6)

Figure 3: Organization of this thesis.

Logical Domain Policies We give an algorithm to produce minimum finite-state policies

directly from logical planning domains, accounting for faults and uncontrollable

events

Hierarchical Policy Compaction We give an algorithm to reduce the memory usage for

linguistic policies by inferring hierarchies.

Generating Real-Time Software We generate real-time control software directly from

the mathematical model.

Real-Time Communication We present a high-performance, real-time, concurrent com-

munication software library that outperforms Linux sockets

Direct, Nonstop Workspace Interpolation We develop an interpolation scheme that pro-

duces direct, constant-axis motion through multiple workspace waypoints without

stopping at each waypoint.

1.3.2 Outline

This thesis is organized as follows (see Fig. 3).

chapter 2 – Related Work surveys related research in the areas of discrete event and hy-

brid systems, formal methods for robotics, parser generation.

7

chapter 3 – Specifying Language Models introduces a context-free grammar based rep-

resentation for robot policies and shows how these grammars can be generated from

hierarchical task decompositions, human demonstrations, and logical planning do-

mains.

chapter 4 – Analyzing Language Models discusses the formal guarantees and analyses

possible with this framework and introduces a rewrite system for hybrid models.

chapter 5 – Platform Models details the underlying kinematic control approach used for

the manipulation experiments in this work, including an online approach for camera-

manipulator registration.

chapter 6 – Modeling and Programming Concurrency presents a programming approach

to handle the inherent concurrency in physical robots and a high-performance com-

munication library for real-time control.

chapter 7 – Executing Language Models analyses the constraints imposed during the on-

line execution of a linguistic model and presents an algorithm for real-time LL(1)

parsing.

chapter 8 – Conclusion and Future Work summarizes the contributions of this work and

discusses future extensions to relax the currently-imposed assumptions.

8

CHAPTER II

RELATED WORK

We survey related work in the areas of formal language, discrete event and hybrid systems,

and robot policy specification, and we discuss how they relate to this thesis.

2.1 Formal Language

There is a large body of literature on grammars from the Linguistic and Computer Science

communities, with a number of applications related to robotics.

Languages and grammars are widely used for perception. Fu did some early work

in syntactic pattern recognition [69]. Han, et al. use attribute graph grammars to parse

images of indoor scenes by describing the relationships of planes in the scene according

to production rules [76]. Koutsourakis, et al. use grammars for single view reconstruction

by modeling the basic shapes in architectural styles and their relations using syntactic rules

[110]. Toshev, et al. use grammars to recognize buildings in 3D point clouds [177] by

syntactically modeling the points as planes and volumes. The syntactic approach is applied

to human activity recognition by [93, 129, 131, 140]. Our goal here is not to just recognize

or classify an activity in isolation, but to combine perception and action online.

B. Stilman’s Linguistic Geometry applies a syntactic approach to deliberative planning

and search in adversarial games [168]. Our focus is on real-time robot control.

Parser generation is an established technique with many successes. Recursive Descent

parsing was popular for early compilers [82] and has more use recently as well [34, 70].

Lewis and Stearns developed LL grammars [118]. Knuth developed LR parsing [108].

DeRemer developed LALR [55] and SLR parsing [54], with LALR methods popularized

by Johnson’s Yacc tool [94]. The Earley [59] and CYK [99, 187] algorithms produce

parsers for any Context-Free Grammar. Compared to these parsing methods for program

9

translation, online parsing for robot control presents some restrictions due to time con-

straints and the potential for very long input strings. We address these issues by developing

a specially optimized LL(1) parser generator.

Grammatical inference is an ongoing field of research focused on developing language

models from example strings and learner queries [51]. While there are a number of positive

results in the field, trivial grammatical inference problems are often undecidable. For ex-

ample, the class of regular languages cannot be learned solely from positive examples. To

develop a workable system given these challenges, we initially focus in inferring grammars

for finite languages. However, our overall approach is also amenable to more powerful

forms of inference such as informed learning.

2.2 Discrete and Hybrid Systems

Hybrid Control is a quickly advancing research area describing systems with both dis-

crete, event-driven, dynamics and continuous, time-driven, dynamics. Ramadge and Won-

ham [151] first applied Language and Automata Theory [86] to Discrete Event Systems.

Hybrid Automata generally combine a Finite Automaton (FA) with differential equations

associated with each FA control state. This is a widely studied and utilized model [6, 25,

81, 88, 122].

Model checking and supervisory control formally relate the behavior of a system model

with a given specification. Ensuring correct operation is important for physical robots

where errors may cause damage or injury. Model checking verifies correctness, and su-

pervisory control enforces it. Model-checking has been successfully applied to software

verification [84], and supervisory control approaches have also been used to ensure cor-

rect software synchronization [185]. We can also apply supervisory control to context-free

grammars [86].

To model-check a hybrid system, we must know the feasibility of discrete transitions

resulting from the continuous dynamics. In other words, it is important to know whether

10

or not discrete transitions from continuous region A to B are possible. This is particularly

important in the case where region B is a system failure state that should be avoided. The

general answer to this question can be determined by solving the Hamilton-Jacobi-Isaacs

partial differential equation (HJI PDE) to compute the backwards reachable set from the

region of the transition [57, 130]. However, solving these HJI PDEs can be very difficult.

The method of Barrier Certificates is a simpler approach that verifies avoidance of unsafe

regions using a local test for uncrossable boundaries [148]. We apply this method in our

approach for deriving safe system paths.

Model checkers also use the simulation and bisimulation relations between two sys-

tems, which show that one system may match the stepwise behavior of the other [13].

These relations are useful because they allow properties proven for one system to trans-

fer to the other. Bisimulation for continuous and hybrid systems is studied in [74]. We

use a simplified simulation relation in subsection 4.1.2 to determine allowable steps in the

stepwise derivation of a correct system.

The Motion Description Language (MDL) is another approach that describes a hybrid

system switching though a sequence of continuously-valued input functions [19, 87]. This

string of controllers is a plan whereas we focus on policies representing the robot’s response

to any feasible event.

Harel statecharts [77] and SysML [138] are popular visual modeling representations.

We consider the specification of models not only through manual decomposition but from

a variety of formats including STRIPS-like domains and through data-driven approaches.

Discrete event and hybrid systems models are widely applied to robots. Grammars

were used to represent robot tasks in [183]. Lyons and Arbib introduced a linguistic con-

trol model for robots [123] based on port automata. Kosecka directly applied the discrete

event systems approach to mobile robots [109]. Rawal, et al. use a class of Sub-Regular

Languages to describe robotic systems [153]. Maneuver Automata use a Finite Automaton

to define a set of maneuvers that transition between trim trajectories [68]. [7] describes

11

a hierarchical modeling language for hybrid systems. Temporal logics such as LTL have

gained popularity in robotics [64, 106, 111, 172]. [111] uses an English-like syntax for

Linear Temporal Logic in mobile robot motion planning. Controller synthesis for prob-

abilistic environments is considered in [180]. The combination of motion planning and

logical specifications is explored in [144] which checks safety properties of hybrid systems

and [98, 125] which generate motion plans for hybrid systems. Livingston et. al. present

a method to locally modify automata to handle changes in the environment [119]. These

works demonstrate the utility of discrete event and hybrid systems methods in robotics.

The focus of this thesis is on the extending levels of abstraction (Fig. 1) and phases of

system design (Fig. 2) to which these formal methods apply. Rather than using formal lan-

guage only to reactively compose control modes, we consider efficiently integrating high-

level planning traditionally viewed as a distinct, deliberative step. Rather than operating

on manually-specified models and producing abstract controllers, we consider techniques

to partially-automate specification and synthesis and execution of real-time software from

formal models. Using formal language as an intermediate representation, we can encode

a variety of specification formats – including specifications derived from data or typically

reserved for deliberative planning, – analyze the resulting formal model, and generate and

execute real-time software.

2.3 Logical Planning

Logical planning was pioneered with STRIPS [65] and has been studied in detail [18, 80,

83, 100]. The general planning problem operates on a description of the domain, an initial

state, and a goal state to produce an execution path from the initial state to the goal.

Different aspects of the relationship between planing, temporal logics, and language

have also been explored. In this work, we focus on the direct representation of planning

domains as formal language, introducing methods for finding compact representations of

planning domain languages. SAT-solvers have proven effective for both planning [100]

12

and model checking [33]. Generating plans with loops is analyzed in [165]. Compared

to this approach, we propose a single formal language which combines both the planning

and execution, which may include loops. [24] considers performing planning within a dis-

crete event system simulation. In contrast, we consider the language-theoretic properties

of planning and show that simple planning domains can be expressed entirely within a

discrete event systems and without external planners invoked at runtime. [5] describes a

temporal logic for planning problems. In this work, we focus on the connections between

logical domains and formal language to construct policies. [50] considers use of infinite-

string Büchi automata for solving planning problems, and [38] shows a translation from

Linear Temporal Logic to the Planning Domain Description Language (PDDL). However,

Büchi automata minimization is NP-complete [157], and minimal forms are not canoni-

cal [166]. We instead use finite-string regular automata. We can find canonical minimum

state representations of deterministic finite automata in O(n logn) [85], and we use hierar-

chical automata to further reduce representational size. Identifying the canonical forms of

subtask finite automata is key to inducing the task hierarchy.

Hierarchical Task Network (HTN) planning is closely related to the context-free pre-

sentation we apply. Generalized HTN planning can simulate context-free grammars [62]

if tasks may self-recurse. We consider the opposite case, using automata and grammars

to represent a policy. In practical applications of HTN, it is typically finite-state equiva-

lent [117, 124].

Automatic inference of hieararchies is also explored with the Alpine [107] and High-

point [12] algorithms. In contrast to this work, we take an automata-based view in order

find hierarchical abstractions while also handling alternative outcomes and faults.

In the assembly domain, Tellex, Knepper, et. al. use a STRIPS-style planner to se-

quence assembly actions, and when failure occurs, consider how to generate useful requests

for human help [174]. In contrast, we focus on how the robot can recover from faults on its

own.

13

2.4 Policy Specification Approaches

Domain specific robot programming languages are widely used. An early approach which

remains in common use is the G-code of CNC machines [61]. The Forth programming lan-

guage was originally developed to control radio telescopes [152]. [121] presents a domain-

specific language for robot manipulation tasks. [104] describes a type-safe, Turing-complete

robot programming language. Other approaches develop robot programming frameworks

in general programming languages, such as OpenRTM [10], Orocos [22], and ROS [149].

The goal of robot programming languages and frameworks is generally to provide a conve-

nient software environment to specify robot behavior. In contrast, we are concerned with

formally modeling and verifying robot behavior, whiling maintaining the convenience of

automatically generating executable software.

There are numerous other approaches to learning from demonstration for robotic sys-

tems [11, 17]. Many approaches focus on learning continuous trajectories [156], while in

this work, we focus on a symbolic abstraction of a specific task. Other symbolic learning

approaches include [27] which learns goal configurations for sets of objects and [60] which

learns a logical model for a STRIPS planner from multiple human demonstrations. Our

work differs from these other methods by producing a syntactic task model which, com-

bined with the semantics for a robot, represents a hybrid dynamical control policy that is

formally verifiable and efficiently executable.

14

CHAPTER III

SPECIFYING LANGUAGE MODELS

Formal language provides a unifying basis for a variety of specification approaches. First,

we introduce a linguistic model, the Motion Grammar, based on context-free grammars,

and give two examples of hierarchically specified applications. Then, we consider alternate

specification approaches based on human demonstrations and logical planning domains.

3.1 The Motion Grammar

The Motion Grammar (MG) is a Syntax-Directed Definition expressing the language of

interaction between agents and real-world uncertain environments. MG tokens are system

states or discretized sensor readings. MG strings are histories of these states and readings

over the system execution. Like SDDs for programming languages, the MG must have two

components: syntax and semantics. The syntax represents the ordering in which system

events and states may occur. The semantics defines the response to those events. The MG

uses its syntax to decide from the set of system behavior and semantics to interpret the state

and select continuous control decisions.

The Motion Grammar represents the operation of a robotic system as a Context-Free

Motion Parser

ζ0 ζ1 . . . ζk−1︸ ︷︷ ︸
history

ζk ζk+1 . . . ζn︸ ︷︷ ︸
future

input tape

Robot

η(z)ζ

u

Figure 4: Operation of the Motion Grammar.

15

language. The grammar is used to generate the Motion Parser which drives the robot as

shown in Fig. 4.

Definition 1 (Motion Grammar). The tuple GM = (Z,V,P,S,X ,Z ,U ,η ,K) where,

Z set of events, or tokens

V set of nonterminals

P⊂V × (Z∪V ∪K)∗ set of productions

S ∈V start symbol

X ⊆ R
m continuous state space

Z ⊆ R
n continuous observation space

U ⊆ R
p continuous input space

η : Z ×P×N 7→ Z tokenizing function

K ⊂X ×U ×Z 7→X ×U ×Z set of semantic rules

Definition 2 (Motion Parser). The Motion Parser is a program that recognizes the language

specified by the Motion Grammar and executes the corresponding semantic rules for each

production. It is the control program for the robot.

From Def. 1, the Motion Grammar is a CFG augmented with additional variables to

handle the continuous dynamics. Variables Z, V , P, and S are the CFG component. Spaces

X , Z , and U are for the continuous state, measurement, and input. The tokenizing

function η produces the next input symbol for the parser according to the sensor reading

and the position within the currently active production. The semantic rules K describe

the continuous dynamics of the system and are contained with the productions P of the

CFG. Using these discrete and continuous elements, the combined Motion Grammar GM

explicitly defines the Hybrid System Path.

16

Definition 3 (Hybrid System Path). The path of a system defined by Motion Grammar GM

is the tuple Ψ = (x,σ) where,

x : t 7→X continuous trajectory through X

σ ∈ L{GM} discrete string over Z

3.1.1 Application of the Motion Grammar

We use the Motion Grammar in as a model for both offline reasoning, in system spec-

ification and analysis, and for online parsing during system execution. The properties

of Context-Free languages provide guarantees for each of these phases. Offline, we can

always verify correctness of the language (subsection 4.1.2) and there are numerous al-

gorithms [4, 59, 142, 142] for automatically transforming the grammar into a parser for

online control. Online, the parser controls the robot. The structure of CFLs guarantees

that online parsing is O(n3) in the length of the string [59], and with some restrictions on

the grammar [4, p.222], parsing is O(n) – constant at each time step, a useful property for

real-time control.

Online parsing is illustrated in Fig. 4. The output of the robot z is discretized into

a stream of tokens ζ for the parser to read. The history of tokens is represented in the

parser’s internal state, i.e. the stack and control state of a PDA. Based on this internal state

and the next token seen, the parser decides upon a control action u to send to the robot. The

token type ζ is used to pick the correct production to expand at that particular step, and the

semantic rule for that production uses the continuous value z to generate the input u. Thus,

the Motion Grammar represents the language of robot sensor readings and translates this

into the language of controllers or actuator inputs.

3.1.2 Languages, Systems, and Specifications

The Motion Grammar models and controls a robotic system. Often during controller de-

sign, there is a rigid distinction between what is the plant and what is the controller, and

17

analogously, Fig. 4 shows the Robot and the Motion Parser as separate blocks. However,

these are arbitrary distinctions. Consider the case of feedback linearization where we intro-

duce some additional computed dynamics so that we can apply a linear controller. While

these additional dynamics may physically exist as software on a CPU, for the purpose of

designing the linear controller, they are part of the plant. With the Motion Grammar, we

have the same freedom to designate components between the plant and controller in what-

ever way is most convenient to the design of the overall system.

For linguistic control approaches, there is one critical distinction to make between the

language of the system and the language for the model. The system is the physical entity

with which we are concerned: the controller and the robot. The model is the description of

how the controller and robot respond; it is a set of mathematical symbols on paper or in a

computer program. Both the system and the model can be described by formal languages.

Definition 4. The System Language, Lg, is the set of strings generated by the robot and

parsed by the controller during operation.

Definition 5. The Modeling Language, Ls, is the set of strings that describe the operation

of controllers and robots.

These languages are related. Each string in the modeling language describes a par-

ticular system: a robot and controller. This specification is parsed offline to generate the

control program. The system language is parsed online by the control program. The Motion

Grammar is a modeling language that describes a Context-Free system.

We emphasize that the Motion Grammar is not simply a Domain Specific Language

or Robot Programming Language [37, p.339] but rather the direct application of linguistic

theory to robot control in order to formally verify performance. The language described by

the Motion Grammar is that of the robotic system itself.

18

Figure 5: Our experimental setup for human-robot chess and a partial parse-tree indicating

the robot’s plan to perform a chess move.

3.2 Hierarchical Task Specification: Physical Human-Robot Games

The Motion Grammar is a useful model for controlling physical robots. In this section,

we discuss how to apply grammars to robots and illustrate the points with our sample

applications of Yamakuzushi and human-robot chess.

We performed these experiments using a Schunk LWA3 7-DOF robot arm with a Schunk

SDH 7-DOF, 3-fingered hand as shown in Fig. 5. A wrist mounted 6-axis force-torque sen-

sor and finger-tip pressure distribution sensors provided force control feedback. The robot

manipulated pieces in standard yamakuzushi and chess sets, and a Mesa SwissRanger 4000

mounted overhead allowed it to locate the individual pieces. We used a Kalman filter on the

force-torque sensor and both median and Kalman filters on the Swiss Ranger to handle sen-

sor uncertainty. The robot used a speaker and text-to-speech program to communicate with

its human opponent. Domain-specific planning of chess moves was done with the Crafty

19

chess engine [91]. The perception, motion planning, and control software was implemented

primarily in C/C++ and Common Lisp using the Ach (chapter 6 message-passing IPC run-

ning on Ubuntu Linux 10.04. The lowest-levels of our grammatical controller operate at a

1kHz rate.

3.2.1 Tokenizing

The tokens in the Motion Grammar for are based on both the sensor readings and game

state. A summary of token types for Yamakuzushi and Chess are given in and Table 1

Table 3. Position thresholds, velocity thresholds, and timeouts indicate when the robot has

reached the end of a trajectory. Force thresholds and position thresholds indicate when the

robot is in a safe operating range.

While formal language defines tokens as atomic symbols, these tokens are in fact ab-

stractions of underlying phenomena. Consider the tokens of natural language: words may

exist as vibrations in air, ink on paper, or magnetic transitions on a metal disk, yet all these

representations define the same symbol. In formal grammars, this hierarchy is made ex-

plicit through the relationship between nonterminal and terminal symbols. Terminal sym-

bols are atomic. Nonterminals represent a set of strings of symbols, in essence a language

of their own. Whenever it is necessary to deepen the abstraction for some terminal symbol,

α , we can convert α to a nonterminal and define a new set of strings that α may expand

to. We have used this approach for the manual construction of MG since it facilitates hi-

erarchical task decomposition. For automatic grammar generation, we can again use this

hierarchy of symbols to translate the task-appropriate symbols from humans to robots even

though human and robot actions are quite different at the atomic level.

3.2.2 Parsing

Once the Motion Grammar for the task is developed, it must be transformed into the Motion

Parser. For our Yamakuzushi and chess applications, we used a hand-written recursive

descent parser, an approach also employed by GCC [70]. A recursive descent parser is

20

written as a set of mutually-recursive procedures, one for each nonterminal in the grammar,

algorithm 1. Each procedure will fully expand its nonterminals via a top-down, left-to-

right derivation. This approach is a good match for the Motion Grammar’s top-down task

decomposition and its left-to-right temporal progression.

Algorithm 1: parse-recursive-descent-A

1 Choose a production for A, A→ X1 . . .Xn;

2 for i = 1 . . .n do

3 if nonterminal? Xi then

4 call Xi;

5 else if Xi = η (z(t)) then

6 continue;

7 else

8 syntax error

9 Execute semantic rule for A→ X1 . . .Xn;

3.2.3 Syntax and Semantics

The syntax of the Motion Grammar represents the discrete system dynamics while the se-

mantic rules in the grammar compute the continuous dynamics and control inputs. Within

the Motion Parser, semantic rules are procedures that are executed when the parser expands

a production. For our application, these rules store updated sensor readings, determine new

targets for the controller, and send control inputs. These values are stored in the attributes

of tokens and nonterminals. Attributes for a nonterminal node in the parse tree are synthe-

sized from child nodes and inherited from both the parent nodes and the left-siblings of that

nonterminal. Here, we give a key example of robot control through semantic rules.

The Syntax-Directed Definition presented in Fig. 6 illustrates a simple grammar for im-

plementing trapezoidal velocity profiles. Expanding 〈Ai〉 will carry the system through the

phases of the trajectory. While [0≤ t < t1], the system will constantly accelerate accord-

ing to 〈A1〉. While [t1 ≤ t < t2], the system will move with constant velocity according to

〈A2〉. While [t2 ≤ t < t3], the system will constantly decelerate according to 〈A3〉. Finally,

21

PRODUCTION SEMANTIC RULES

〈T〉 →〈T1〉〈T2〉
〈T1〉→〈A1〉〈A2〉
〈T2〉→〈A3〉〈A4〉
〈A1〉→[0≤ t < t1] xr = x0 +

1
2 ẍmt2, ẋr = tẍm

〈A2〉→[t1 ≤ t < t2] xr = x0 +
1
2 ẍmt2

1 + ẋm(t− t1), ẋr = ẋm

〈A3〉→[t2 ≤ t < t3] xr = xn− 1
2 ẍm(t3− t)2, ẋr = ẋm + ẍm(t2− t)

〈A4〉→[t3 ≤ t] u = 0

Figure 6: Syntax-Directed Definition that encodes impedance control over trapezoidal

velocity profiles. For each Ai, the input is computed according to u = ẋr−Kp(x− xr)−
K f (f − fr).

the system will stop according to 〈A4〉. Each segment of the piecewise smooth trajectory

is given by the semantic rule of one of the productions. This is an example of how the con-

tinuous domain control of physical systems can be encoded in the semantics of a discrete

grammar.

3.2.4 Yamakuzushi

We implemented and evaluated the performance of the Motion Grammar on the Japanese

game Yamakuzushi (yama). This game is similar to Jenga. In yama, a mountain of Shogi

pieces is randomly piled in the middle of a table as shown in Fig. 7. Each of the two players

tries to clear the pieces from the table. Each player is only allowed to use one finger to move

pieces. If a player causes the pieces to make a sound, it becomes the other players turn.

The winner is the player who removes the most pieces.

3.2.4.1 Touching Pieces

The Finite State Machine in 8(a) could be used to make the robot touch a Shogi piece. This

state machine is equivalent to the grammar in 8(b). In the grammar, the tokenizing function

η applies a threshold to the force-torque sensors and produces [contact] if the end-effector

forces exceed the threshold or [nocontact] otherwise. To expand the 〈touch〉 nonterminal,

the parser consumes a [contact] and returns, or it consumes a [nocontact], moves down a

small increment using the trapezoidal velocity profile in 〈touch′〉 and 〈g〉, and recurses on

22

Table 1: Yamakuzushi Tokens

Token Description

[α ≤ t < β] Within time Range

[contact] E.E. touching piece

[no contact] not touching piece

[destination] at traj. end

[human piece] removed by human

[robot piece] removed by robot

[clear] board cleared

[sound] noise removing piece

[quiet] no noise made

[inspace] human in workspace

[¬inspace] not in workspace

[point] element of point cloud

Table 2: Attributes for the Yamakuzushi Motion Grammar

Attr. Description

Sensor Driven

t Current Time

x Act. Robot/Point Pos.

f Act. E.E. Force

Inherited/Synthesized

tα Duration or Timeout

xr Ref. Robot Pos.

ẋr Ref. Robot Vel.

x0 Traj. Start Pos.

xn Traj. End Pos.

fr Ref. E.E. Force

23

MESA SR4000 Schunk LWA3 Robot End-Effector

Computer

Microphone
Mountain of Shogi Pieces

Figure 7: Our experimental setup for physical human-robot games of Yamakuzushi.

〈touch〉. This behavior is mirrored by the state transitions in 8(a).

We implemented this grammatical controller for touching Shogi pieces on the LWA3

and compared it to a pure continuous-domain impedance controller. Due to the large phys-

ical constants of the LWA3, we implemented our impedance controller on top of a velocity

controller. This approach has the potential for oscillation, especially when gains are large,

yet even under these circumstances, the grammatical controller achieved superior perfor-

mance. The impedance controller in 9(a) with an appropriate gain is able to make contact

with the piece, but it does suffer from some oscillation and overshoot. An impedance

controller with high gains in 9(b) has severe oscillation and very poor performance. The

grammatical controller in 9(c) has both less overshoot and less oscillation than the purely

continuous impedance controller. Additionally, we also observed the grammatical con-

troller to be much more robust to sensing errors. If we estimated the height of a piece

incorrectly, the impedance controller would often completely fail to make contact due to

limited ability to increase gains; however, the grammatical controller would still be able to

find the piece.

24

〈touch〉〈touch′〉 Goal〈g〉〈g′〉

[no contact]

[t > tn]

[t≤ tn][∗]

[ε]

[contact]

(a) Finite State Machine Representation

〈touch〉 → [contact]

| [no contact]〈touch′〉〈touch〉
〈touch′〉 → [t > tn] | [t≤ tn]〈g〉〈touch′〉

(b) Equivalent MG Fragment

Figure 8: Illustration of control for piece touching.

3.2.4.2 Sliding and Reacquiring Lost Pieces

The grammar in Fig. 10 describes how the robot slides pieces and how it can reacquire

pieces it has lost. This grammar again uses the trapezoidal velocity profile 〈g〉. The tok-

enizer η supplies [destination] when robot has moved the piece to the desired location. If

the robot momentarily loses contact with the piece, it will continue expanding 〈slide〉; how-

ever, when the contact loss is long enough for the robot to move past the piece, the robot

must backtrack to the last contact position to reacquire the piece. This action is performed

by 〈reacquire〉. Following this grammar allows the robot to move pieces across the table

and recover any pieces that it loses.

Our implementation of this grammar on the LWA3 slides pieces and recovers them

after any contact loss. As the robot moves through the sequence in Fig. 11, it uses the

end-effector forces shown in 11(d) to make its decisions regarding piece contact. At 6s,

the robot begins moving down to touch the piece. It acquires the pieces at 6.8s, 11(a) and

begins sliding. At 10.8s, 11(b), it loses contact with the piece. Recognizing this, the robot

backtracks, and again makes contact with the piece at 18.5s. It then continues sliding the

piece, reaching the destination at 28.3s, 11(c).

25

-16
-14
-12
-10
-8
-6
-4
-2
 0
 2

 0 0.5 1 1.5 2 2.5 3

F
or

ce
 (

N
)

Time (s)

X
Y
Z

(a) Impedance

-16
-14
-12
-10
-8
-6
-4
-2
 0
 2

 0 0.5 1 1.5 2 2.5 3

Time (s)

X
Y
Z

(b) High Gain Impedance

-16
-14
-12
-10
-8
-6
-4
-2
 0
 2

 0 0.5 1 1.5 2 2.5 3

Time (s)

X
Y
Z

(c) Grammatical

Figure 9: Yamakuzushi Piece Touching with Impedance and Discrete Control Strategies

26

〈slide〉 → [contact]〈g〉〈slide〉
| [no contact]〈g〉〈slide〉
| [destination]

| 〈reacquire〉 [contact]〈g〉〈slide〉
〈reacquire〉 → [no contact]〈touch〉

Figure 10: Grammar fragment to reacquire lost Yamakuzushi pieces.

(a) contact (b) no contact (c) destination

-10

-8

-6

-4

-2

 0

 2

 0 5 10 15 20 25 30 35

F
or

ce
 (

N
)

Time (s)

X
Y
Z

down

(a) contact

(b) no contact

contact

(c) destination

(d) Forces at the robot end-effector during grammar execution.

Figure 11: Application of sliding grammar in Fig. 10 when contact is lost.

27

(a) Pieces (b) Planes

〈act〉 → 〈target〉〈touch〉〈slide〉
〈target〉 → 〈plane〉0 | . . . | 〈plane〉n
〈planei〉 → [point]j | [point]j 〈planei〉

(c) MG Fragment

Figure 12: Deciding target Yamakuzushi piece and direction.

3.2.4.3 Selecting Target Pieces

The grammar in 3.2.4.3 describes how the robot chooses a target piece to move. The Swiss

Ranger provides a point cloud from the stack of pieces, 12(a). From this point cloud, a

set of planes is progressively built based on the distance between the test point and the

plane and on the angle between the plane normal and the normal of a plane in the region

of the test point. Using only these identified planes, the robot selects a target piece. The

precedence of the target plane is based on height above the ground, a clear path to the edge

of the table, and whether the piece may be supporting stacked neighboring pieces. The

parser will select the highest precedence plane as the target to move, 12(b).

3.2.4.4 Deciding the Winner

An example of a Context-Free system language is deciding the winner of the game. The

grammar fragment for this task is shown in Fig. 13. This grammar will count the number

of pieces removed by the human [human piece] and the robot [robot piece]. The 〈draw〉

nonterminal serves to match up a piece removed by the human and a piece removed by the

28

〈winner〉 → 〈draw〉 | 〈robot〉 | 〈human〉
〈draw〉 → ε

| [robotpiece]〈draw〉 [humanpiece]〈draw〉
| [humanpiece]〈draw〉 [robotpiece]〈draw〉

〈robot〉 → 〈draw〉 [robotpiece]〈draw〉
| 〈draw〉 [robotpiece]〈robot〉

〈human〉 → 〈draw〉 [humanpiece]〈draw〉
| 〈draw〉 [humanpiece]〈human〉

Figure 13: Grammar fragment to decide winner

〈winner〉

〈draw〉

[r] 〈draw〉

[r] 〈draw〉

ε

[h] 〈draw〉

ε

[h] 〈draw〉

[h] 〈draw〉

ε

[r] 〈draw〉

ε

Figure 14: Parse tree for winner decision problem in draw case:

[h]≡ [humanpiece], [r]≡ [robotpiece]

29

〈game〉 → 〈robot turn〉 [clear]〈winner〉
| 〈robot turn〉〈humanturn〉 [clear]〈winner〉
| 〈robot turn〉〈humanturn〉〈game〉

〈robot turn〉 → 〈act〉 [quiet]〈robot turn〉
| 〈act〉 [sound]

| [clear]

〈humanturn〉 → 〈waitsound〉〈waitsafe〉
〈waitsound〉 → [sound]

| [clear]

| [quiet]〈waitsound〉
〈waitsafe〉 → [inspace]〈waitsafe〉

| [¬inspace]

Figure 15: Complete Yama Grammar. This is the remaining set of productions used in

the game.

robot. The 〈robot〉 and 〈human〉 nonterminals consume the extra tokens for pieces removed

by the robot or the human, indicating that player is the winner. An example parse tree for a

draw condition is given in Fig. 14. This parse tree demonstrates how each 〈draw〉 matches

one [r] and one [h] token which requires a CFL [86, p125]. This solution to the counting

problem for deciding the winner demonstrates the advantage of using a Context-Free model

for the MG.

3.2.4.5 Complete Game

The remaining productions to implement a full game of Yamakuzushi are given in Fig. 15.

A game consists of alternating robot and human turns until the board is clear. During the

〈robot turn〉, it will repeatedly 〈act〉 to remove pieces until it causes [sound] by making a

noise exceeding the preset threshold or until it clears the board. During the 〈humanturn〉,

the robot will simply wait until it detects a [sound] or sees that the board has been cleared.

After the human makes a [sound], the robot will wait until the human is out of the workspace

before beginning its turn.

30

Table 3: Chess Grammar Tokens

Sensor Tokens

Token η(z) Description

[0] t < t1∨‖x−x1‖> εx∨‖q̇‖> εq̇ Not at Traj. End

[1] ¬ [0] At Traj. End

[limit] ‖F‖> Fmax Force Limit

[grasped]
∫

ρdA > ε∫ ρ Pressure sum limit

[ungrasped] ¬ [grasped] Pressure sum limit

Chessboard Tokens

Token Description

[set] board is properly set

[moved] opponent has completed move

[checkmate] checkmate on board

[resign] a player has resigned

[draw] players have agreed to draw

[cycle(x)] x is in a cycle of visited during

Perception Tokens

Token η(z) Description

[obstacle] w(C)< wk Robot workspace occupied

[occupied(x)] w(x)> wmin Piece is present in x

[clear(x)] ¬ [occupied(x)] No piece in x

[fallen(x)] height(x)< hmin Piece is fallen

[offset(x)] mean(x)−pos(x)> ε Piece is not centered

[moved] Cr 6=Cc Boardstate is different

[misplaced(x)] Cr(x) 6=Cc(x) Piece is missing

3.2.5 Chess

Next, we demonstrate a Motion Grammar to perform the real-time motion control in human-

robot chess.

3.2.5.1 Guarded Moves

Our implementation of guarded moves using the Motion Grammar allows the human and

robot to safely operate in the same workspace. A [limit] token is generated when the wrist

force-torque sensor encounters forces above a preset limit. The limit is large enough so that

31

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 5 10 15 20 25

F
o
rc

e
 (

N
)

Time (s)

X
Y
Z

force limit

(a) Forces (b) Contact

Figure 16: Grammatical guarded moves safely protecting the human player.

〈G〉 → 〈GD〉 | 〈GL〉 (1)

〈GD〉 → [1] | 〈κ〉〈GD〉 (2)

〈GL〉 → [limit] | 〈κ〉〈GL〉 (3)

〈κ〉 → [0] {q̇ = J∗
(
ẋ−Kp (x−xr)−K f (F−Fr)

)
} (4)

Figure 17: Grammar fragment for guarded moves

the robot can perform its task and small enough to not injure the human or damage itself.

When the parser detects [limit], it stops and backs off, preventing damage or injury. The

plot in 16(a) shows the forces encountered by the robot in this situation. The large spike at

4.7s occurs when the robot’s end-effector makes contact with the human’s hand pictured

in 16(b). The grammar in Fig. 17 guarantees that when this situation occurs, the robot will

stop. After the human removes his hand from the piece, the robot can then safely reattempt

its move

This example shows the importance of both response to unpredictable events – the

human entering the workspace – and fast online control possible with the Motion Grammar.

The robot must respond immediately to the dangerous situation of impact with the human.

The polynomial runtime performance of Context-Free parsers means that the grammatical

controller can respond quickly enough, and the syntax of Fig. 17 guarantees that the robot

will stop moving according to the kinematic model. For guarded moves with a dynamic

32

〈recover : x,z〉 → 〈GD : x〉〈pinch〉〈GD : x+h(z)k̂,
π

6
〉〈release〉

〈pinch〉 → [grasped] | [ungrasped]〈pinch〉

Figure 18: Chess Grammar fragment for recovering fallen pieces

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

N
o

rm
a

liz
e

d
 T

o
u

c
h

 F
o

rc
e

Time (s)

gripped

lift

rotate

release

(a) Touch Force: Knight

(b) Grasped, Rook (c) Rotated, Queen (d) Finished, Bishop

Figure 19: Robot recovering fallen chess pieces

model, the method from [52] could be incorporated in place of the kinematic model here.

3.2.5.2 Fallen Pieces

The grammar to set fallen pieces upright has a fairly simple structure but builds upon the

previous grammars to perform a more complicated task, demonstrating the advantages of

a hierarchical decomposition for manipulation. This grammar is shown in Fig. 18, and

Fig. 19 shows a plot of the finger tip forces and pictures for this process. The production

〈recover : x,z〉will pick up fallen piece z at location x. The nonterminal 〈GD : x〉moves the

33

〈reset board〉 → [set] | [misplaced(x)]〈reset : x,home(x)〉
〈reset : x0,x1〉 → [clear(x1)]〈move : x0,x1〉

| [occupied(x1)]〈reset : x1,home(x1)〉〈move : x0,x1〉
| [cycle(x1)]〈move : x1, rand()〉

Figure 20: Grammar fragment to reset chessboard

arm to location x. The production 〈pinch〉 will grasp the piece by squeezing tighter until

the fingertip pressure sensors indicate a sufficient force. The production 〈GD : x+h(z)k̂, π
6 〉

will lift the piece sufficiently high above the ground and rotate it so that it can be replaced

upright. Finally the nonterminal 〈release〉 will release the grasp on the piece setting it

upright.

3.2.5.3 Board Resetting

The problem of resetting the chess board presents an interesting grammatical structure. If

the home square of some piece is occupied, that square must first be cleared before the

piece can be reset. Additionally, if a cycle is discovered among the home squares of several

pieces, the cycle must be broken before any piece can be properly placed. The grammatical

productions to perform these actions a given in Fig. 20.

An example of this problem is shown in 21(a) where all of Blacks’s Row 8 pieces have

been shifted right by one square. The parse tree for this example is shown in 21(c), rooted at

〈reset board〉. As the robot recurses through the grammar in Fig. 20, chaining an additional

〈reset〉 for each occupied cell, it eventually discovers that a cycle exists between the pieces

to move. To break the cycle, one piece, Nc1, is moved to a random free square, χ . With

the cycle broken, all the other pieces can be moved to their home squares. Finally, Nχ can

be moved back to its home square. This sequence of board state tokens and 〈move〉 actions

can be seen by tracing the leaves of the parse tree, shown also beginning from PLAN in

21(c).

Observe that as the parser searches through the chain of pieces that occupy each other’s

34

8 srmbjqan
h g f e d c b a

8 snaklbmr
h g f e d c b a

(a) Board position - Initial (b) Board position - Final

〈reset bd〉

[mispl(Rg8)]

〈reset : Rg8a8〉

[occupied(a8)] 〈reset : Na8b8〉

[occupied(b8)] 〈reset : Bb8c8〉

[occupied(c8)] 〈reset : Qc8d8〉

[occupied(d8)] 〈reset : Kd8e8〉

[occupied(e8)] 〈reset : Be8f8〉

[occupied(f8)] 〈reset : Nf8g8〉

[cycle(g8)] 〈move : Nf8χ〉

〈move : Be8f8〉

〈move : Kd8e8〉

〈move : Qc8d8〉

〈move : Bb8c8〉

〈move : Na8b8〉

〈move : Rg8a8〉

〈reset bd〉

[mispl(Nχ)] 〈reset : Nχg8〉

[clear(g8)] 〈move : Nχg8〉

〈reset bd〉

[set]

PLAN

1.Nf8χ

2.Be8f8

3.Kd8e8

4.Qc8d8

5.Bb8c8

6.Na8b8

7.Rg8a8

8.Nχg8

(c) Motion grammar parse tree and plan for resetting the board.

Figure 21: Example of board resetting

35

(a) Detecting obstacle (Black points are ob-

stacles. Red/Green points indicate the orien-

tation of each fallen piece.)

(b) Finding offsets for all pieces

Figure 22: Perception with point cloud is discretized into tokens.

home squares, it is effectively building up a stack of the moves to make. This demonstrates

the benefits of the increased power of Context Free Languages over the Regular languages

commonly used in other hybrid control systems. Regular languages, equivalent to finite

state machines, lack the power to represent this arbitrary depth search.

Claim 1. Let n be the number of misplaced pieces on the board. The grammar in Fig. 20

will reset the board with at most 1.5n moves.

Proof. Every misplaced piece not in a cycle takes one move to reset to its proper square.

Every cycle causes one additional move in order to break the cycle. A cycle requires two

or more pieces, so there can be at most 0.5n cycles. Thus one move for every piece and one

move for 0.5n cycles give a maximum of 1.5n moves.

3.2.5.4 Perception and Board Tokens

To play the game of chess, we integrated our controller with the Crafty [91] chess engine.

The Crafty boardstate serves as the model of the position of the chessboard. The MESA

SR4000 point cloud is discretized by clustering to generate the tokens given in Table 3. We

use a finite moving average filter over the point cloud to remove sensor noise.

36

Obstacles are found in the point cloud C by a weighting function w(C) which finds

out if the workspace above the chessboard is occupied or not. An example of an obstacle

is shown in 22(a). We give the following attributes to each cluster in the point cloud: the

weight of the cluster, the height of the cluster from the chessboard, the maximum area

occupied by a cross section parallel to the chessboard, and the mean of the cluster. Here,

the weight is denoted by w(.), and it counts the number of points in that cluster. The height

of the cluster is the highest point in the cluster. The maximum area occupied by the chess

piece is expressed as a ratio of its width and length. If the ratio is above a certain threshold,

we can easily conclude that a chess piece is fallen. The longest side of the chess piece

gives its orientation. The mean point gives the center of the chess piece. Fig. 22 shows

these attributes in the point cloud.

If an obstacle is found, it is denoted by [obstacle]. Nearest Neighbor over the entire

chessboard determines all squares x with [occupied(x)]. If a piece is not placed exactly in

the center of the square, an offset is computed and denoted by [offset(x)]. The boardstate

retrieved from perception is termed Cr and the one from the Crafty engine is Cc. Cr is

with Cc reported by Crafty to find whether a move has been made. If a move has been

made, then [clear(x)] and [misplaced(x)] are determined. Our perception algorithm also

finds out the height, orientation, and the area occupied by a horizontal cross-section for

each piece. Using this and a recursive nearest neighbor algorithm for clustering, we can

find all [fallen(x)] as shown in Table 3.

3.2.5.5 Full Game

The entire motion planning and control policy is specified in the grammar in Fig. 23. This

grammar describes the game, 〈game〉, as consisting of an alternating sequence of the robot

moving, 〈act〉, followed by the human moving, 〈wait〉, until the game has ended, 〈end〉, via

checkmate, resignation, or draw. When it is the robot’s turn, it will correct any fallen pieces,

〈fix〉, make its move, and then again correct any pieces that may have fallen while it was

37

〈game〉 → 〈act〉〈end〉 | 〈act〉〈game′〉
〈game′〉 → 〈wait〉〈end〉 | 〈wait〉〈game〉
〈end〉 → [checkmate] | [resign] | [draw]

〈act〉 → 〈fix〉〈turn〉〈fix〉
〈fix〉 → 〈end〉 | [fallen : x,z]〈recover : x,z〉〈fix〉 | ε
〈turn〉 → 〈move : x0,x1〉 | 〈capture : x0,x1〉

| 〈castle〉 | 〈castle queen〉 | 〈en passent〉
| 〈resign〉 | 〈draw〉

〈wait〉 → [moved] | 〈wait〉
〈move : x0,x1〉 → 〈grasp piece : x0〉〈place piece : x1〉
〈grasp piece : x〉 → 〈GL : x〉〈grasp piece : x〉 | 〈GD : x〉〈grip〉
〈place piece : x〉 → 〈GL : x〉〈place piece : x〉 | 〈GD : x〉〈ungrip〉

〈grip〉 → [grasped] | [ungrasped]〈grip〉
〈capture : x0,x1〉 → 〈take : x1〉〈move : x0,x1〉

〈take : x〉 → 〈move : x,offboard〉
〈castle〉 → 〈move : Ke1g1〉〈Rh1f1〉

〈castle queen〉 → 〈move : Ke1c1〉〈Ra1d1〉
〈en passent : x〉 → 〈take : x−1〉〈move : px〉

〈resign〉 → 〈GL : K+1〉〈resign〉 | 〈GD : K+1〉〈resign′〉
〈resign′〉 → 〈GL : K−1〉〈resign′〉 | 〈GD : K−1〉

Figure 23: Grammar Productions for Chess Game

38

ϕsa

θsa

θsk

ϕsh

θsh
ϕnsh

θnsh

θnsk

ϕnsa

θnsa

Figure 24: Aldebran Nao

making the move. Making a move, 〈turn〉, can be either a simple move between squares,

a capture, a castle, en passent, or a draw or resignation. A simple piece move, 〈move〉,

requires first grasping the piece, then placing it on the correct square. To grasp the piece,

the robot will move its hand around then piece then tighten its grip, 〈grip〉, until there is

sufficient pressure registered on the touch sensors. To capture a piece, the robot will remove

the captured piece from the board, 〈take〉, and then move the capturing piece onto that

square. A 〈castle〉 requires the robot to move both the rook and the king. For 〈en passent〉,

the robot will 〈take〉 the captured pawn and then move its own pawn to the destination

square. Finally, to resign – indicating a failure in chess strategy, not motion planning – the

robot moves its end-effector through the square occupied by the king, knocking it over. By

following the rules of this grammar, our system will play chess with the human opponent.

3.3 Walking Speed Graphs

Next, we apply this linguistic framework to the task of speed-controlled walking for the

bipedal Nao robot. In this application we build on the method of Human-Inspired Control

[8] aims for more human-like walking on bipedal robots [9, 145], generating stable control

laws from human demonstrations. Then, we connect these control laws into a grammar

representing the set of speed controlled actions available to the Nao robot.

Bipedal walking exhibits both continuous and discrete dynamics throughout the course

of a step – the continuous behavior occurs when the non-stance leg swings freely and the

39

10 15 20 25 30 35 40

40

35

30

25

20

15

10

target speed (cm/s)

s
o

u
rc

e
 s

p
e

e
d

 (
c
m

/s
)

allowed transition

(a)

18
14 16 1713

15

11
12

10

(b)

Figure 25: Graph Γs of permissible speed transitions. (a) full graph, 10-39cm/s. (b)

partial graph, 10-18cm/s.

discrete behavior occurs when the non-stance foot strikes the ground [9]. It is, therefore,

natural to model bipedal robots as hybrid systems.

The Aldebaran NAO robot, Fig. 24, is a 0.5m, 5kg bipedal robot with 25 degrees-of-

freedom (DOF). We focus on controlling the NAO’s legs, each of which has five DOF, and

also control the shoulder pitch joints to better balance of upper body of the robot. The

robot contains an on-board Intel Atom PC running GNU/Linux with the NAOqi software

framework. This setup permits control of the robot’s motors at 100Hz. Additionally, Force

Sensitive Resistors (FSR) located on the bottom of the feet detect the reactive force when

the non-stance foot hits the ground (see Fig. 29).

Applying Human-Inspired control for the Nao approach give a graph of stable fixed

speeds and transition speeds, Fig. 25 [41].

Based on the graph Γs of permissible speed transitions in Fig. 25, we proceed to con-

struct the Motion Grammar for the system, which we will use to automatically generate

the control software. First, we convert the speed graph (Fig. 25) to a Finite Automaton As

(Fig. 26). Then we add symbols for transitions steps between different speeds to produce

automaton AT . Next, we replace each individual step symbol with symbols to set the ap-

propriate parameter matrix and to take a step based on that matrix, producing grammar Gp.

40

Finally, we extend Gp with a grammar for discrete-time control of the individual steps. The

result is a grammar Ĝ describing all sequences of walking speeds.

We first convert the graph of permissible speed transitions into a Finite Automaton

(FA) for the language of permissible speed transitions. This means moving the important

symbols – speeds for this walking domain – from the nodes in the graph to the edges in the

FA. Fig. 26 shows the FA for transitions between 10 and 18 cm/s. The corresponding FA

for the full system with transitions between 10 and 39 cm/s has 31 states, 30 terminals, and

401 edges. Algorithm 2 performs this transformation.

Rewriting the graph as an FA has a few benefits. First, we can apply many existing

algorithms for Finite Automata such as Hopcroft’s Algorithm for state minimization [85].

Crucially, abstracting the graph to an FA provides the automaton state as a computational

memory, enabling more detailed decision making than simply stating which speeds may

follow which other speeds. This will be necessary as we introduce the additional language

symbols used for online parsing and supervisory control.

Algorithm 2: Graph to Finite Automaton

Input: Γ = (Q, E) ; // Graph

Input: w ∈ Q ; // Graph Initial Vertex

Output: A = (Q′, Z′, E ′, S′) ; // Finite Automaton

1 Z′← Q;

2 Q′← Q;

3 S′← w;

4 E ′←{p× p×q : (p×q) ∈ E};

Definition 6 (Graph Traces). For graph Γ = (V,E) and vertex w ∈ V , let Traces(w,Γ) be

the set of sequences of symbols over V such that σ ∈ Traces(w,Γ) if and only if σ0 = w and

for every σi and σi+1, σi×σi+1 ∈ E.

Lemma 1. In algorithm 2 with Γ = (Q,E), Traces(w, Γ) is equal to the language of Finite

Automaton A = (Q′,Z′,E ′,S′).

Proof. We prove by induction. Define σΓ and σA as strings in Traces(w,Γ) and the lan-

guage of A, respectively. For the inductive case, consider some equal prefix of σΓ and σA

41

11
13
15

16

10

14

11
13

15
14

12

14

16

12

12
11

13

15
10

16

11

13

11

13

15

10

12

10

12

10

14

16

start

Figure 26: Minimum state FA As of speed

transitions. Edge labels are speed in cm/s.

Shown only for 10-16cm/s.

(STEP 11)

(STEP 10 11) (STEP 11)

(STEP 10)

start

Figure 27: Finite Automaton fragment AT

showing transition step between 10 and 11

cm/s

of length i, ∀ j ≤ i, σΓ
j = σA

j . σΓ
i is given by visiting state σi ∈ Q, and σΓ

i+1 must be in the

set {q : (σi×q) ∈ E}. Each state p in A has outgoing edges which only contain terminal

p, and at terminal σA
i , we will have reached some successor state of state σi which is in

{q : (σi×q) ∈ E}. Therefore, σA
i+1 must be in {q : (σi×q) ∈ Q} as well. For the base

case, σΓ
0 = w. σA

0 must be in the set {p : (S′× p×q) ∈ E ′}, which is the set {S′}= {w};

therefore, σA
0 = w as well.

Now, we add to Fig. 26 the transition steps to go between different fixed walking speeds.

Fig. 27 shows a fragment of the resulting FA. The full transition-step FA for 10-39 cm/s

has 60 states, 400 terminals, and 430 edges.

Next, we replace each of the unique [(step x)] and [(step y z)] symbols with a semantic

rule to apply the appropriate parameter matrix to walk at fixed speed x or transition from

speed y to z followed by a symbol for the actual step. We also add transitions to terminate

upon a special [HALT] symbol. This is shown as a grammar GP in Fig. 28 for speeds of 10

and 11 cm/s. The full grammar for 10-39 cm/s has 490 productions.

Finally, we take each 〈step〉 symbol and decompose it with a discrete-time hybrid con-

troller to take a single step, Gstep. This step controller is shown as the grammar in Fig. 29.

42

〈0〉 → [HALT]

| {setparam 10}〈step〉〈0〉
| {setparam 10 11}〈step〉〈1〉

〈1〉 → {setparam 11}〈step〉〈2〉
〈2〉 → {setparam 11}〈step〉〈2〉

| [HALT]

Figure 28: Parameter Grammar GP

〈step〉 → {time← 0}〈S1〉
〈S1〉 → {count← 0}{κ}〈S′1〉
〈S′1〉 → [weight< εw]〈S1〉

| [weight≥ εw]〈S′′1〉
〈S′′1〉 → [τ < ετ]〈S1〉

| [τ ≥ ετ]〈S2〉
〈S2〉 → {count← count+1}{κ}〈S′2〉
〈S′2〉 → [weight< εw]〈S1〉

| [weight≥ εw]〈S′′2〉
〈S′′2〉 → [count< εc]〈S2〉

| [count≥ εc]{reset stance}

Figure 29: Step Grammar Gstep

The {κ} production in this grammar computes the inputs for the robot based on the current

parameter matrix for the current control cycle, described in [146]. The productions of the

resulting grammar Ĝ are the union of productions of GP and Gstep. Grammar Ĝ has 412

terminals, 70 nonterminals, and 504 productions, which represent a control policy for all

sequences through speeds of 10-39 cm/s that the robot may take.

3.4 Inferring Grammars for Small Object Assembly

We demonstrate the automatic transfer of an assembly task from human to robot. This work

extends performs real visual analysis of human demonstrations to automatically extract a

policy for the task. We tokenize each human demonstration into a sequence of object

connection symbols, then transforms the set of sequences from all demonstrations into an

automaton, which represents the task-language for assembling a desired object. Finally, we

combine this assembly automaton with a kinematic model of a robot arm to reproduce the

demonstrated task.

Our experimental setup consists of an assembly kit of wooden pieces, a Kinect RGBD

camera, and a simulated Schunk LWA3 7-DOF robot arm with Schunk SDH 7-DOF dex-

terous hand. From a physical human demonstration, we infer the control policy for the

43

(a) Construction Kit (b) Point Cloud (c) Segmentation/Clustering

Figure 30: Experimental Setup and Kinect Data

task and then implement that policy on the simulated Schunk robot. To capture the demon-

stration, the Kinect sensor is mounted above a table to observe a human performing the

assembly task. The assembly pieces, shown in 30(a), come from a Melissa & Doug brand

wooden construction set. The only modification we make to the pieces is to attach a brightly

colored dot to the end of screws. This simplifies distinguishing the screw from an attached

bar in the Kinect image, which has a limited resolution of 640 × 480 pixels. To illustrate

our inference pipeline, we will show each of the steps required to build the simple assem-

bly in 32(a). After inferring the policy from human demonstration, we simulate this policy

with a kinematic model of the Schunk robot and then display the results, shown in Fig. 31,

with the Peekabot visualization tool.

3.4.1 Assembly Language

In an object assembly, the connections between objects form a graph. In the simple case,

objects are the graph nodes and connections between objects are the edges. However, we

can make this model more precise by accounting for the multiple connection points on

objects. To do this, we introduce additional nodes for these connection points. Each object

node has edges to each of its connection point nodes. Each connection in the assembly is

represented by an edge between the two graph nodes for the connection. This type of graph

is shown in Fig. 32.

From the representation in Fig. 32, we can produce an appropriate set of event symbols.

44

Figure 31: Robot Assembly

(a) Assembly

screw

screwscrew

bar bar

bar

0

00

0

1

0

1

0 1

(b) Connection Graph

Figure 32: Connection Graph for an object assembly.

45

The meaningful events of the assembly domain are when the connection graph is modified

by connecting a new object to the assembly or when creating an additional connection

between objects already part of the assembly. This event is represented as the tuple oi×

c j×ok× cℓ, where oα is some object and cβ is the connection point on that object. In our

figures, we write these symbols as “p.q-r→x.y-z” where p is the type of object oi, q is the

object number of oi, p.q is then oi, r is c j, x is the object type of ok, y is the object number

of ok, x.y is then ok, and z is cℓ. A sequence of these connection symbols represents the full

construction of the assembly.

Definition 7 (Assembly Symbols). Let O be the finite set of objects. Let C⊂N be the finite

set of connection points for any given object. Then the alphabet of assembly symbols is

Z = O×C×O×C.

The language over these assembly symbols is a syntactic model of the assembly task

policy. Each string in the language is a plan to assemble the desired object. In this language,

the task is abstracted to the level where we can transfer it from human to robot. We then

produce a Motion Grammar representing the hybrid dynamical control policy for the robot

assembly task by combining this assembly language with the continuous semantics and

lower level abstractions for our robot.

3.4.2 Human Activity to Event String

The first step in our system for automatically generating motion grammars is converting a

human demonstration of the desired task, assembling an object, into a string of the connec-

tion events that the human performs. Given multiple example strings, we can then infer the

Motion Grammar for the robot.

3.4.2.1 Image Segmentation and Clustering

First, we segment the RGBD image to identify the clusters representing objects and partial

assemblies. Since the table is the largest feature in the image, we can robustly fit a plane

46

to the table using RANSAC. For large objects, the height of each point above the table

segments the object from the table. However, because some of our objects are within the

depth sensing error of the Kinect, we cannot use the depth information alone. Instead, we

combine the depth and color information to perform the segmentation.

We perform segmentation by computing the Mahalanobis distance Dm of each point

in the space of height above table z, hue h, and saturation s. This approach assumes a

uniformly colored table, which is appropriate in our setup. To approximate the mean and

variance of h and s, we iteratively compute these values for points on the table according to

z, then reject outliers. Then, with the resulting mean and variance for the space, we compute

the Mahalanobis distance for each point in the image using Dm =
√

(x−µ)E−1(x−µ),

where x = [z h s]T , µ is the mean of x, and E is a weight matrix.

All points with both distance Dm above a threshold and with z above the table are taken

as part of objects or assemblies. These points are then clustered according to Euclidean

distance (30(c)).

3.4.2.2 Object Recognition and Tracking

The next step is to recognize the objects that form each cluster and to track the objects

across subsequent images. Since we have a small, fixed set of objects, we can recognize

these objects by template matching in the RGB (sans D) image, 33(a). However, the track-

ing problem is complicated by two factors. First, many of our objects look identical so

we cannot independently track them across subsequent frames. Second, because a human

is moving the objects with his or her hands, tracking is only relevant when objects are

occluded. We handle these issues by assuming that most of the objects in the frame are

stationary, which is appropriate given that the human has only two hands to move objects.

This assumption allows us to convert object tracking to the Assignment Problem.

The Assignment Problem is an optimization problem that consists of finding the mini-

mum cost matching between two sets, A and B, where the distances between members of A

47

(a) First Image (b) Second Image

Figure 33: Recognized and labeled objects. Specific objects are tracked across subsequent

images and objects combined into one cluster are grouped.

and B are known. Several subtasks in our inference pipeline are instances of this problem.

Definition 8 (Assignment Problem). Given sets A and B and distance function d : A×B 7→

R, find the bijection f : A 7→ B such that the cost J = ∑
a∈A

d(a, f (a)) is minimized.

To convert object tracking to the assignment problem, we represent the point clusters

in the initial frame as set A and in the subsequent frame as set B. The distance d(a,b)

is then the Euclidean distance between the centroids of the two clusters in each frame,

d(a,b) =
√

xT
a xb. We can then solve this Assignment Problem using the Hungarian Al-

gorithm, enabling us to track motion when multiple identical objects are moved without

crossing.

By recognizing objects and tracking them across frames, we can determine when an

object is added to an assembly, 33(b). In the event tuple, (oi,c j,ok,cℓ), this gives us object

oi. The next step is to determine which other object oi is connected to and how these two

objects are connected.

3.4.2.3 Structure Recognition

To identify the precise connections between objects in an assembly, we first locate the

individual objects within that assembly. Our system locates the bars and screws and then

infers the connections between them.

48

(a) Lines (b) Structure

Figure 34: Inferred structure of the object assembly. Segmented points are iteratively

clustered and line fit.

Figure 35: Each row is a demonstration sequence for the example object.

We locate the screws in the assembly using template matching. The bars are located

by iteratively fitting lines and clustering points to the closest lines. The resulting lines are

shown in 34(a).

Now that we have the locations of a number of identical bars and screws, we track the

specific object for each located element. By assuming that the elements of the assembly

are mostly stationary between frames, this becomes another instance of the assignment

problem. The first set A is the located objects from the previous frame and the second set B

is the elements in the current frame. Distance between sets is Euclidean distance between

object positions, d =
√

xT x. Solving this assignment problem gives the specific object for

each located element.

49

“1.0-0→0.0-0” “1.0-0→0.1-0” “1.1-0→0.0-1” “1.2-0→0.1-1” “1.1-0→0.2-0” “1.2-0→0.2-1”

“1.0-0→0.0-0” “1.1-0→0.0-1” “1.2-0→0.1-0” “1.0-0→0.1-1” “1.1-0→0.2-0” “1.2-0→0.2-1”

“1.0-0→0.0-0” “1.1-0→0.0-1” “1.0-0→0.1-0” “1.1-0→0.2-0” “1.2-0→0.1-1” “1.2-0→0.2-1”

Figure 36: Three generated strings from demonstrations, one per row. Each string indi-

cates the sequence of object connections. A connection between screw i and bar k at bar

location ℓ is “1.i-0→ 0.k-ℓ.”

Having located the specific objects in the assembly, we now infer the connections be-

tween them. To do this, we assume that screws and bars can only connect at fixed locations

on the bar, which is true for our construction set. Then we identify the connections with

another assignment problem. The first set is the screws in the assembly. The second set is

the connection points on the bars. Solving this gives us a connection for each screw and

a single bar. To identify which screws connect multiple bars, we first identify the inter-

sections between the lines for each bar. If that intersection goes through a screw, then that

screw must connect the intersecting bars. Thus, we identify all connections between screws

and bars in the assembly.

3.4.2.4 Symbol Generation

Given the connection graph at each frame, we can now abstract the demonstration to a

sequence of symbols. Whenever the connection graph changes between subsequent frames,

we add a new symbol representing that change to the sequence. Since our assemblies

contain many identical objects, we also renumber the objects in the order they are added to

the assembly. Some assembly strings are shown in Fig. 36. Thus, we abstract the human

demonstration of assembly construction to a sequence of object connections which we use

to infer a motion grammar for the robot to repeat the task.

3.4.3 Event Strings to Robot Grammar

Now that we have reduced the human demonstrations to an initial symbolic abstraction,

we can transform this abstraction into a controller for the robot. First, we use the example

50

union

concatenation

concatenation

concatenation

“1.0-0→0.0-0” “1.0-0→0.1-0” “1.1-0→0.0-1” “1.2-0→0.1-1” “1.1-0→0.2-0” “1.2-0→0.2-1”

“1.0-0→0.0-0” “1.1-0→0.0-1” “1.2-0→0.1-0” “1.0-0→0.1-1” “1.1-0→0.2-0” “1.2-0→0.2-1”

“1.0-0→0.0-0” “1.1-0→0.0-1” “1.0-0→0.1-0” “1.1-0→0.2-0” “1.2-0→0.1-1” “1.2-0→0.2-1”

Figure 37: Regular Expression parse tree for Assembly Task.

strings to infer a syntactic model of the assembly task. Then, we combine the syntax of

this assembly language with the semantic model of our robot to produce an MG for the

demonstrated task.

3.4.3.1 Strings to Regular Expression

First, we convert the set of demonstration strings S to a regular expression R. This is

directly accomplished by taking the union over all demonstration strings S. Thus, R =

⋃
σ∈S σ . The language of this regular expression L(R) is now a syntactic abstraction of

all given demonstrations. For our example assembly, we transform the strings in Fig. 36

to the regular expression in Fig. 37. Notice that we introduce one union operator and k

concatenation operators where k is the number of demonstrations, so the size of the regular

expression is O(1+ k+ pk) = O(pk).

3.4.3.2 Regular Expression to Nondeterministic Finite Automaton

Next, we convert the regular expression R to a Nondeterministic Finite Automaton (NFA)

N using the McNaughton-Yamada-Thompson (MYT) algorithm [4, p159]. This transfor-

mation is always possible because Regular Expressions and NFA are equivalent represen-

tations. The MYT algorithm recursively walks the parse tree for the regular expression,

producing an NFA which represents the same language. The resulting NFA for our exam-

ple is shown in Fig. 38. Note that this NFA follows the conventional form of language

51

1.0-0→0.0-0

1.2-0→0.2-1

1.1-0→0.2-0

1.0-0→0.1-0

1.1-0→0.0-1 1.0-0→0.1-1

1.1-0→0.2-0

1.0-0→0.1-0 1.1-0→0.2-0

1.2-0→0.2-1
1.0-0→0.0-0

ε1.2-0→0.1-0

1.2-0→0.2-11.1-0→0.0-1 1.2-0→0.1-1
ε

1.1-0→0.0-1

1.0-0→0.0-0

1.2-0→0.1-1
ε10 118 9

6 74 52 3

1

1917 1815 16

0

14

12 13start

Figure 38: Inferred NFA for Assembly Task. Language symbols are on edges; state labels

are arbitrary.

1.0-0→0.1-1

1.1-0→0.0-1

1.0-0→0.1-0

1.2-0→0.2-1

1.1-0→0.2-0

1.1-0→0.2-0
1.1-0→0.0-1

1.2-0→0.1-0

1.0-0→0.1-0
1.0-0→0.0-0

1.2-0→0.1-1

1.2-0→0.1-1

10
start 10

32

5
47

6
98

Figure 39: Minimum State DFA for Assembly Task.

symbols on edges and arbitrary state labels [4, 86].

The MYT algorithm visits each symbol of the Regular expression once and adds a

constant bounded number of states and edges to the NFA for each regular expression sym-

bol. Thus, for a regular expression of size n, the MYT algorithm runs in linear O(n) time.

Since our regular expression is size O(pk), the MYT algorithm will run in time O(pk) and

produce an NFA of size O(pk).

3.4.3.3 Nondeterministic Finite Automaton to Minimum Deterministic Finite Automa-

ton

We now convert the assembly NFA to a minimum-state DFA using Brzozowski’s algo-

rithm [23]. Because NFA and DFA are equivalent representations, this transformation is

always possible. Brzozowski’s algorithm produces a minimum state DFA by reversing all

connections in the FA and converting the result to a DFA, then repeating that procedure

once more. The resulting DFA for assembly is shown in Fig. 39.

Analyzing the runtime of Brzozowski’s Algorithm is more complicated than in the pre-

vious case. The NFA to DFA conversion in this algorithm has a worst-case exponential

time, though typical performance is much better [4, p.153]. Brzozowski’s Algorithm often

outperforms Hopcroft’s Algorithm for DFA minimization [85] which has O(n logn) run-

time [26]. We provide implementations for both Brzozowski’s and Hopcroft’s Algorithms.

52

〈oi,cj,ok,cℓ〉 → [¬placed(oi)]〈P(xi,xws)〉〈oi,cj,ok,cℓ〉
| [placed(oi)]〈P(xk,xi)〉

〈P〉 → 〈pick〉〈place〉
〈pick〉 → 〈move〉〈grasp〉
〈place〉 → 〈move〉〈ungrasp〉
〈move〉 → 〈T1〉 [|x−xr|< ε]

〈grasp〉 → {close} [|x−xr|< ε]

〈ungrasp〉 → {open} [|x−xr|< ε]

Figure 40: Pick and Place Grammar for Schunk LWA3 and SDH.

3.4.4 Manipulation Grammar

Next, we employ the grammar of Fig. 6 to hierarchically decompose the connection sym-

bols from Fig. 39. This hierarchical decomposition exploits the power of Context-Free

languages to compactly represent the task policy. The resulting grammar, shown in Fig. 40,

will expand the connection symbols 〈oi,cj,ok,cℓ〉 to sequences of robot trajectories neces-

sary to perform the connection. Notice the [placed(σ)] and [¬placed(σ)] symbols, which

are an example of using sensors for memory in order to maintain an efficient model.

Note that to implement the assembly task, we must satisfy the geometric constraints in

addition to the ordering constraints expressed by the DFA. One could naı̈vely handle these

geometric constraints by initially placing objects arbitrarily and then later repositioning –

or dragging – the object to satisfy the constraint. However, if we account for the geometry

in our language, we can minimize this repositioning. Thus, we consider distances between

pairwise connections in our language as follows. Given two symbols (oi,c j,ok,cℓ) and

(om,cn,ok,cp), we observe that oi and om are both connected to ok and thus their positions

are constrained by the distance between cℓ and cp, given as x j− xn = xℓ− xp. When oi is

already placed, we select an xn to satisfy this constraint,

xn = (xp− xℓ)− x j (5)

Now, we expand the grammar of Fig. 40 to make the connection. First, if object on has

53

not been placed, we place it at position xws calculated according to the constraint. Then, we

pick ok and place it. The picking and placing follow the trajectories of Fig. 6, and the robots

grasps by pinching the object between two fingers of the SDH. Through the combination

of this manipulation grammar and the inferred assembly automaton of Fig. 39, the robot

reenacts the human demonstration, shown in Fig. 31.

3.5 Logical Planning Domains

Logical domains correspond to formal languages over propositions and actions [38, 50].

The formal language view provides a set of techniques for checking properties such as

reachabilitity and safety over sets of states and in the presence of action uncertainty and

unpredictable events [151]. However, because the worst-case size of finite automata repre-

sentations is exponential in the number of propositions, it is a challenge to produce prac-

tically compact forms. To address this representational challenge in logical domains, we

introduce (1) an algorithm to compute the minimum state deterministic finite automaton

for a logical domain directly from the set of logical actions, (2) an algorithm to compute

compact, context-free forms for hierarchical domains, and (3) independence conditions to

enable separate solutions to subgoals. Inducing hierarchies on policies has several advan-

tages. First, repeated subtasks need only be stored once, thereby compacting the represen-

tation. Second, inferred sub-policies can be reused as high-level actions when generating

new policies, reducing computational demands while at the same time transferring existing

knowledge to new tasks. In addition, hierarchies also present a task structure, allowing

easier human inspection and analysis of the generated policies.

Applying Motion Grammars for logical domains enable compact representation of re-

active robot controllers and directly connects logical domains with guarantees on perfor-

mance and correctness in discrete event and hybrid systems. In this section, we generate

a Motion Grammar representing a policy for a logical domain. In contrast to planning ap-

proaches, such as STRIPS [65], which generate single plans for meeting goals, we focus

54

on generating robust control policies that will achieve the goals by specifying the robot’s

response to any occurring event. In contrast to single plans, policies encode different al-

ternative executions of the task depending on environmental conditions. We show how

the presented policy generation algorithm can be used to produce compact controllers for

a robot manipulation and assembly task. Given a planning domain representing furniture

components, we derive a hierarchical controller for assembling specific furniture pieces.

3.5.1 Minimum Finite-State Regular Policies

We first consider the connections between logical domains and the regular (finite-state) set.

A planning domain defines interleaved sequences of state assignments and action symbols.

Starting from some initial state S, we can select actions which lead to subsequent states. The

domain defines a set of these sequences which are the potential plans. This corresponds to

the definition of a formal language, which is also a set of sequences of symbols. A planning

domain is a formal language, whose strings are the permissible plans.

Because the planning domains in 12 have a finite set of propositions, their state space is

also finite, i.e., it is at most the space of boolean words over the propositions. The language

of states and actions is therefore regular. algorithm 3 defines the naı̈ve construction of a

finite automaton for this language, by enumerating all states. The reverse translation, from

a finite automaton to a planning domain, is also possible and defined in algorithm 4, which

also minimizes the number of propositions in the planning domain (see 2) by compactly

encoding the automata states.

Proposition 1. Planning domains over finite propositions are equivalent to the regular set.

Algorithm 3: Planning Domain to Regular Automataton

Input: (Φ,K,S0,Γ) : Planning Domain

Output: (Q,Z,E,q0,F): Language

1 Q← 2Φ ; /* all boolean words over propositions */

2 E←{qi
k−→ q j : k ∈ K∧pre(k) |= qi∧post(k) |= q j};

3 return (Q,K,E,S0,Γ);

55

Proof. Construction using algorithm 3 and algorithm 4.

Note that running algorithm 3 followed by algorithm 4 may not yield the original set of

propositions but rather an equivalent representation. However, in the automata representa-

tion, we can always recover the canonical form [86].

While the state space resulting from algorithm 3 is exponential in the number of propo-

sitions, we can always find minimum-state forms of finite automata. Minimizing state

removes transitions to states from which the goal is unreachable, yielding an automaton

containing all paths to the goal and no paths not leading to the goal. This represents a

policy for the domain; following any string in the automaton will reach the goal.

Hopcroft’s algorithm finds the minimum state form by iteratively refining partitions of

the state space until reaching a fixpoint [85]. However, the algorithm normally operates on

an initial automaton, which in our case could be exponentially large. Instead, we modify

this algorithm to operate not on an initial automaton, but directly on the logical domain.

algorithm 5 shows this modification of Hopcroft’s algorithm to directly produce the mini-

mum state finite automaton from the logical domain.

In algorithm 5, we start with an initial partitioning Q of the states into the goal and non-

goal states, line 2. Then, for each of the partitions q, we refine q into subgroups where for

some action k, all states in the same subgroup transition to the same partition in Q. The key

Algorithm 4: Finite Automaton to Minimal Planning Domain

Input: (Q,Z,E,q0,F) : Language

Output: (Φ,K,S0,Γ) : Planning Domain

1 n← |Q|;
2 Renumber states Q as 0,1, . . . ,n;

3 Φ← φ1, . . . ,φlog2 n; /* binary encoding of states */

4 K← /0;

5 foreach (qi
κ−→ q j) ∈ E do

6 Add to K a new action whose precondition is the binary encoding of qi, action symbol is

κ , and effect is the binary encoding of q j.

7 S0← q0;

8 Γ← F ;

56

insight is to compute predecessor and successor states directly from the action precondition

and effects, line 7, instead of requiring an initial, potentially much larger, automaton. Then,

we refine sets of states using symbolic logical operations, line 10. This is repeated until we

reach a fixpoint of Q.

Proposition 2. To represent minimum state DFA A= (Q,Z,E,q0,F) as a planning domain,

the minimum number of propositions necessary is log2 |Q|.

Algorithm 5: Minimized Regular Automatazation

Input: (Φ,K) : Planning Domain

Input: Θ : Start Set

Input: Γ : Goal

Output: L: Language

1 Z←{κ : κ ∈ K} ; /* all action symbols */

/* Partition State */

2 Q←{Γ,¬Γ}; // Initial Partitioning

3 T ←{Γ};
4 while T do

5 q′← pop(T);
6 forall the k ∈ K do

7 if post(k)∧q′ 6= false then

8 Q∗ = /0;

9 forall the y ∈ Q do

10 i = y∧pre(k); // Subset of y transitioning on k

11 j = y∧¬pre(k); // Subset of y not transitioning on k

12 if i 6= false∧ j 6= false then

13 Q∗← Q∗∪{i, j}; // Replace partition y with i and j

14 if y ∈ T then

15 T ← (T − y)∪{i, j};
16 else if |i|< | j| then

17 T ← T ∪{i};
18 else

19 T ← T ∪{ j};

20 else

21 Q∗← Q∗∪{y}; // Don’t split y

22 Q← Q∗;

/* Create transitions */

23 E
⋃

k∈K

{
qi

k−→ q j

}
(qi∧pre(k) 6= false)∧ (q j ∧post(k) 6= false);

24 return (Q,Z,E,Θ,Γ);

57

Proof. Assume we can represent A using k propositions. This will represent at most 2k

states. To represent |Q| distinct states, it is necessary that 2k ≥ |Q|, so k ≥ log2 |Q|.

Representing logical policies as regular automata works for planning domains with

sufficiently small state spaces to fit into memory. For planning domains with larger state

spaces, the approach does not yield reasonably compact automata to be used as controllers

on a robot system. Even for tasks of moderate complexity the size of generated automata

can exceed the available memory. In the next section we show how CFGs can be used to

create more compact, hierarchical representations of policies.

3.5.2 Hierarchically Compacted Context-Free Policies

To address the potentially large state spaces produced by regular automatization, we can

instead use a context-free representation. Even though the language is regular, a context-

free representation can reduce the necessary storage requirements by representing repeated

subgoals in a hierarchy. Rather than duplicating a policy fragment to achieve the subgoal

in a finite-state automaton, we store the fragment once and reference it though a grammar

nonterminal symbol.

3.5.2.1 Automatic Hierarchization

The recursive structure of context-free languages compactly represents repeated subtasks.

This closely corresponds to the High Level Actions (HLA) used in Hierarchical Task Net-

works (HTN) [62]. HTN generally focuses on efficiently finding a single plan given a

pre-determined hierarchy. Our goal is to compactly represent a policy without requiring

manual hierarchical decomposition.

We induce a hierarchization of the domain by identifying repeated submachines in an

initial automaton, see Fig. 41. A submachine is an automaton containing a subset Q′ of

overall states Q and the edges corresponding only to Q′. The submachine defines a language

to achieve a portion of the overall task.

58

a
c

a

c
b

d d a
c

c

db

b

a d

b

start

(a)

〈S〉 → 〈X〉〈Y〉|〈Y〉〈X〉
〈X〉 → ab|ba

〈Y〉 → cd|dc

(b)

Figure 41: Example of repeated submachines. (a), finite automaton. (b), context-free

grammar for the same language. The repeated elements of the automaton are represented

by grammar nonterminals 〈X〉 and 〈Y〉. Duplicate states for repeated submachines can be

removed by referencing the nonterminal for the submachine.

Definition 9 (Submachine). Given an automaton A = (Q,Z,E,q0,F), a submachine is an

automaton A′=(Q′,Z′,E ′,q′0,F
′) where Q′⊂Q, Z′=Z, E ′=

{
qi

z−→ q j ∈ E : qi ∈ Q′∧q j ∈ Q′
}

,

q′0 ∈ Q′, and

F ′ = {qi ∈ Q′ : qi
z−→ q j ∈ E ∧q j 6∈ Q′}.

To hierarchically compact the automaton, we find duplicated submachines to combine.

Finite automata have canonical representations [85] which we can order lexigraphically.

Thus, we count the number of occurrences of submachines in the original automaton using

a tree of submachines. A submachine appearing more than once is replaced at each occur-

rence in the initial automaton with a nonterminal symbol reference to the submachine. This

compacts the representation by storing equivalent submachines only once.

We describe the procedure to hierarchize an automaton A in algorithm 6. For a target

submachine size, we first collect sets of connected states in A, line 2. Then, we count

occurrences of the canonical automata represented by those components, line 6. Finally,

we return the set of repeated canonical automata, which are the submachines to compact.

To improve the efficiency of algorithm 6, we apply a branch-and-bound-like approach

to quickly discard subcomponents of state which have multiple exit nodes that transition to

states outside the subcomponent. Components with a single exit node will have only one

59

non-start with an edge to a state not in the component:

∣∣∣{qi ∈ Q′−
{

q′0
}

: qi
z−→ q j ∈ E ∧q j 6∈ Q′}

∣∣∣= 1 (6)

We can check whether this condition will be violated before building the full compo-

nent by considering the number of successors of states in the component. If the current

component size, plus the successors of all but a candidate exit node exceed k, then a full

component of size k cannot have a single exit:

f (qi) =
∣∣∣{qk 6∈ Q′ : qi

z−→ qk ∈ E ∧¬∃q j ∈ Q′,
(

q j
z−→ qk ∈ E ∧qi 6= q j

)
}
∣∣∣ (7)

∣∣Q′
∣∣+
∣∣∣{qk 6∈ Q′ : qi

z−→ qk ∈ E ∧q j
z−→ qk ∈ E ∧qi,q j ∈ Q′∧qi 6= q j}

∣∣∣+

∑
qi∈Q′

f (qi)−max
qi∈Q′

f (qi)≤ k (8)

Hierarchically compacting repeated submachines will reduce the representational size

by the submachine size times the number of eliminated repetitions.

Proposition 3. Given a submachine A′ = (Q′,Z′,E ′,q′0,F
′) which appears k times in orig-

inal automaton A, removing A′ from A will reduce the number of states by (k−1)|Q′|−2k.

Algorithm 6: FA-Hierarchization

Input: A = (Q,Z,E,qo,F) : Finite Automaton

Input: k : Submachine Size

Output: H : Submachines

/* Identify K-Components */

1 foreach q ∈ Q do

2 Kq←{p : p⊂ Q∧|p|= k∧ p has at most one exit node} ;

/* Count Occurrences of Canonical Automata */

3 foreach Kq ∈ K do

4 foreach p ∈ Kq do

5 A← cannonicalize(p);
6 CA←CA +1 ;

/* Find Repeated Automata */

7 H←{A : CA > 1};

60

Proof. Initially, all occurrences of A′ in A require k|Q′| states. When A′ is removed, it must

be stored once, and each site expanding A′ must have a predecessor and successor state to

A′, totalling 2k+ |Q′| after removal. Then, k|Q′|− (2k+ |Q′|) = (k−1)|Q′|−2k.

3.5.2.2 Goal Independence

To further compact the automata state size, we consider the necessary conditions to produce

independent solutions to different subgoals. Informally, subgoals are independent if we can

develop plans and policies for one subgoal without negating other subgoals. Independent

subgoals can thus be solved by concatenating plans and policies, turning a potential product

of automata states into merely a sum.

Definition 10 (Weakly Independent Goals). Goals φ1 is weakly independent of φ2 over set

of states Θ if for all θ in Θ, there exists a plan p1 from θ to φ1 and there exists plan p2

from the postconditions of p1 to φ2 such that no states along p2 entail ¬φ1.

Definition 11 (Strongly Independent Goals). Goals φ1 is strongly independent of φ2 over

set of states Θ if for all θ in Θ, there exists a plan p1 from θ to φ1 and for all plans p2 from

the postconditions of p1 to φ2, no states along p2 entail ¬φ1.

Weak Independence states that it is possible to solve goal φ1, then solve φ2 without

violating φ1. Strong Independence states that solving φ2 never violates φ1.

We can modify algorithm 5 to incorporate the check for independence. First, generate

the automaton A1 from Θ to φ1. Then, generate the automaton A2 from accept(A1) to φ2

while constraining φ1 to hold in all states. We can express the constraint by changing the

initial state partitioning to be Q←{φ2∧φ1,¬φ2∧φ1}.

Proposition 4. If φ1 is weakly independent of φ2 over Θ, A1 is the automaton to achieve

φ1, and A2 is the automaton to achieve φ2, then the size of the automaton A12 to achieve

φ1∧φ2 is |A12|= |A1|+ |A2|.

61

Algorithm 7: Hierarchical Policy Grammar Generation

Input: D : Planning Domain

Input: Θ : State set

Input: Γ : Goals

Input: ς : Constraints

Input: H : High-level action library

Output: G : Planning Grammar

/* Check for high-level action */

1 if 〈Γ,Θ,ς〉 ∈ H then

2 return 〈γ,Θ,ς〉;
/* Check if we can independently solve a subgoal */

3 if ∃γ ∈ Γ, indep(γ,Γ\γ) then

4 G1← recurse(D,Θ,γ,ς ,H) ; /* Recurse on subgoal */

5 H← H ∪G1 ; /* Add subgoal solution to library */

6 return G1∪ recurse(D,accept(G1) ,Γ\γ,ς ∧ γ,H);

7 else

/* Dependent subgoal, cannot hierarchically decompose */

8 Return the automaton to solve goal Γ, subject to constraint ς ;

Combining the independence definitions and induced hierarhical actions from algo-

rithm 6, we introduce algorithm 7 to produce hierarhical grammars for a logical domain.

This algorithm recursively constructs the hierarchical context-free grammar by applying

the inferred high-level actions when possible, solving for independent goals when pos-

sible, and otherwise construction the minimized finite automaton solution. grammar for

hierarchical planning. Initially, we check for an existing grammar fragment for the current

goals, line 1. Otherwise, we check if a subgoal can be solved for independently, line 3.

If so, then we recurse on only that subgoal and recurse on the remaining subgoals. If no

subgoal is independent, we compute the automaton to simultaneously solve all subgoals,

line 7.

3.5.3 Alternative Outcomes and Faults

In real-world systems, failures happen. Reliably executing manipulation tasks depends on

handling errors and faults. Typical approaches for logical task planning identify a single

62

execution path, without considering faults. This eases computation, but presents a chal-

lenge when the robot must respond to unexpected conditions. The principal challenge in

explicitly representing policies for logical domains is handling the state space that is po-

tentially in the number of propositions. We can address this challenge by using a linguistic,

hierarchical representation for manipulation task policies. Using a language-based pol-

icy representation, we can compactly encode desired execution, potential faults, and the

appropriate response.

We consider two types of errors and how they may be handled. First, we consider

subtask or action failure, such as a missed grasp, where a chosen action does not produce

the desired effect. Second, we consider uncontrollable events, such a force limits, where

some transition occurs unpredictable or unavoidably. In both of these cases, we can use a

language-based approach to continue and recover.

3.5.3.1 Subtask Failure

Manipulation subtasks may not always be executed correctly. For example, grasps may

miss, objects may be dropped, and parts may not align. To reliably execute an overall task,

a robot should gracefully handle these errors. We consider the issue of subtask failure by

extending the logical planning domain to include alternative effects of actions.

Definition 12 (Alternative Propositional Planning Domain). D = (Φ,K,S0,Γ), where Φ is

the finite set of propositions, and K is the set of actions. Each Ki = (α,β ,κ,E), where

α ⊆ Φ is the set of propositions which must be true before execution, β ⊆ Φ is the set of

propositions which must be false before execution, κ is the action symbol, and E is the set

of potential effects of the action (a,d) where a⊆Φ is the set of propositions made true by

execution, and d ⊆ Φ is the set of propositions made false by execution. A state S is an

assignment of propositions Φ. A set of states Θ corresponds to a boolean formula over Φ.

S0 is the initial state. The goal condition Γ is a list of subgoals in Φ×{true, false}.

This variation on planning domains can be readily used with the techniques introduced

63

in subsection 3.5.1. The key difference is to consider the alternative effects when using the

variation of Hopcroft’s algorithm to generate the initial minimum state automaton. When

computing the predecessor states of some set, we must consider whether any alternative

effect of each action leads to the current set. If so, then that action and effect denotes a

valid predecessor. Once we have this initial automaton, then we can directly apply the

previous methods for computing hierarchical decompositions and solving for independent

subgoals.

3.5.3.2 Uncontrollable Events

While a robot can choose which discrete action to attempt, some discrete events may be

uncontrollable. These events may represent system faults, hardware limits, or actions of

other agents or humans. Controllable events may be blocked by a supervisor, while uncon-

trollable events may not. Control in the presense of uncontrollable events is well studied in

the context of discrete event systems. Now, we relate this approach to logical task planning.

In general, we can test if system G is controllable with regard to specification S by

considering prefixes on the controlled system G′ which may be followed by an uncontrolled

event. The prefixes of X are given as X̃ . All prefixes of the controlled system G′ followed

by an uncontrollable event which are prefixes of the original system G must also exist in

G′:

G′ = G∩S G̃′Zuc∩ G̃⊆ G̃′ (9)

By representing logical planning domains using language, we can directly apply this re-

sult to uncontrollable events within those domains. The planning domain itself corresponds

to system G and the goal corresponds to a specification S which is the set of all strings lead-

ing to the desired state. Then, we can apply (9) to check if this goal is achievable given the

uncontrollable events.

64

✬

✫

✩

✪

(d e f i n e (domain bimanual−move)

(: a c t i o n g r a s p− l e f t

(: p r e c o n d i t i o n (not h o l d i n g− l e f t))

(: e f f e c t (or (not h o l d i n g− l e f t) h o l d i n g− l e f t)))

(: a c t i o n g r a s p− r i g h t

(: p r e c o n d i t i o n (not h o l d i n g− r i g h t))

(: e f f e c t (or (not h o l d i n g− r i g h t) h o l d i n g− r i g h t)))

(: a c t i o n l i f t− l e f t

(: p r e c o n d i t i o n (not heavy)

(not h o l d i n g− r i g h t) h o l d i n g− l e f t)

(: e f f e c t (or l i f t e d heavy)))

(: a c t i o n l i f t− l e f t− r i g h t

(: p r e c o n d i t i o n h o l d i n g− l e f t) (: e f f e c t l i f t e d))

(: a c t i o n move

(: p r e c o n d i t i o n l i f t e d) (: e f f e c t moving))

(: a c t i o n l i m i t

(: p r e c o n d i t i o n moving) (: e f f e c t l i m i t))

(: a c t i o n d e s t i n a t i o n

(: p r e c o n d i t i o n moving) (: e f f e c t d e s t i n a t i o n))

(: a c t i o n r e t r a c t

(: p r e c o n d i t i o n l i m i t) (: e f f e c t (not l i m i t))))

GRASP-R

GRASP-L

LIMIT
DEST

MOVE

LIFT-L-R

LIFT-L
GRASP-R

GRASP-L MOVE

RETRACT

start

Figure 42: Example grasping domain for bimanual manipulation and the corresponding

policy automaton. Faults include failed grasps, heavy objects require lifting with two hands,

and limits which require stopping the motion.

3.5.4 Logical Domain Examples

Now we demonstrate this approach on two example domains. First, we show the automata

for the classic Sussman Anomaly example. Then, we consider a furniture assembly task

which induces many hierarchical subtasks.

3.5.4.1 Sussman Anomaly Revisited

The Sussman Anomaly is a minimal example domain demonstrating nonserializable goals

[135], see Fig. 43. The goals in the Sussman anomaly domain are not strongly independent

(see 11). Treating the goals independently may result in a suboptimal plan or even a cycle.

We can, however, construct the minimum state automaton.

65

(MOVE B A G)

(MOVE B C G)

(MOVE A B C)

(MOVE B G C)

(MOVE A C G)
(MOVE A G C)

(MOVE C G A)
(MOVE A G B)

(MOVE C G B)

(MOVE A G B)

(MOVE B A G)

(MOVE A C B)
(MOVE A B G)

(MOVE B A C)

(MOVE C B G)

(MOVE A G C)

(MOVE B G C)

(MOVE C G A)

(MOVE C B A)

(MOVE B C A)

(MOVE A C G)

(MOVE C A B)

(MOVE B G A)

(MOVE B G A)

(MOVE C B G)

(MOVE C A G)

(MOVE B C G)

(MOVE C G B)

(MOVE C A G)

(MOVE A B G)

122B

121D124F

start

61C

54A

8CC

64E
A4D

A29

10CE

10AA

114B 1119

B A

C

Start

C

B

A

Goal

Figure 43: Sussman Anomaly and Finite Automaton. State labels are hexadecimal binary

encoding of propositions: [(CLEAR A), (CLEAR B), (CLEAR C), (CLEAR G), (ON A

B), (ON A C), (ON A G), (ON B A), (ON B C), (ON B G), (ON C A), (ON C B), (ON C

G)].

3.5.4.2 Robot Assembly Tasks

Next, we consider a logical domain for assembling furniture pieces. Furniture assembly

is particularly well suited for demonstrating the introduced policy generation algorithms

because this domain presents large number of different combinations of actions, while at the

same time containing a strong hierarchy of actions. A brute force approach enumerating all

possible plans would be too costly, but there is potential for a compact task representation

of identification of hierarchies and dependencies among actions.

Fig. 3.5.4.2 depicts the assembly domain used in the following experiments. A set

of furniture elements, namely rods, brackets and sheets can be connected together through

screws to assemble different furniture pieces. Each of the elements has a set of connections,

represented in the figure by blue spheres. To connect rods to each other, a single screw is

needed. To connect a rod to a sheet, a metal bracket and five screws are needed. We define

the actions to align parts and connect screws in Fig. 45.

Within this assembly domain, we consider the task of assembling a table with four legs.

Each leg is connected to table surface using a bracket. Four screws connect the bracket

66

Rods Brackets Sheets Screws

Figure 44: The assembly domain used in our experiments. The goal of this task is to

connect furniture elements together in order to assemble a complete piece of furniture, e.g.,

a table. Each furniture element has a set of connection points (blue spheres) through which

it can be connected to other elements. Rods can be connected to each other using a single

screw. In order to connect a rod to a sheet, a metal bracket and five screws are needed.

Table 4: State Space Reduction via State Minimization and Hierarchization.
Representation Size

Sussman Enumerated States 213 = 8192

Sussman Minimum State Regular Form 13

Table Enumerated States 289 = 618970019642690137449562112

Table Minimum State Regular Form 3321

Table Hierarchical Context-Free Form 183

to the surface and one screw connects the leg to the bracket. From the actions operating

on 89 propositions, we produce the minimum state regular automaton and a hierarchical

context-free representations. Fig. 46 shows an n inferred high-level action to align the

screw holes on the bracket and table surface. Building this, Fig. 47 aligns and screws the

bracket. Similarly, Fig. 48 aligns and screws a rod. The top-level of the induced hierarchy is

shown in Fig. 49. From the initial 89 propositions, we infer a final hierchical representation

containing 183 states across all levels. The sizes of these representations are summared in

Table 4.

3.6 Relationship of Grammars and Other Representations

The Motion Grammar builds on a number of advances in linguistic control. This subsection

relates our approach to several similar methods: Petri Nets, Hybrid Automata, MDLe,

67

✬

✫

✩

✪

(d e f i n e (domain assembly)

(: a c t i o n (sc rew x x−i y y−j)

(: p r e c o n d i t i o n

(f r e e x) (c l e a r x−i) (c l e a r y−j) (a l i g n e d x−i y−j))

(: e f f e c t (not (f r e e x)) (not (f r e e y))

(not (c l e a r x−i)) (not (c l e a r y−j))

(sc rewed x−i y−j)))

(: a c t i o n (a l i g n x x−i y−j)

(: p r e c o n d i t i o n

(f r e e x) (c l e a r x−i) (c l e a r y−j))

(: e f f e c t (a l i g n e d x−i y−j))))

Figure 45: Logical actions for the assembly domain. Two pieces are assembled by screw-

ing together their respective connection points. Before screwing together, the connections

points must be aligned. To align points, the object itself must not be screwed down, i.e., it

is free to move.

ALIGN-0-1-0

ALIGN-0-3-2

ALIGN-0-4-3

ALIGN-0-3-2
ALIGN-0-4-3

ALIGN-0-4-3

ALIGN-0-1-0

ALIGN-0-3-2

ALIGN-0-1-0

ALIGN-0-3-2

ALIGN-0-1-0

ALIGN-0-2-1

ALIGN-0-3-2

ALIGN-0-2-1

ALIGN-0-3-2

ALIGN-0-2-1

ALIGN-0-2-1

ALIGN-0-3-2

ALIGN-0-2-1

ALIGN-0-1-0

ALIGN-0-1-0

ALIGN-0-1-0

ALIGN-0-4-3

ALIGN-0-4-3

ALIGN-0-1-0

ALIGN-0-4-3

ALIGN-0-4-3

ALIGN-0-2-1

ALIGN-0-2-1

ALIGN-0-4-3

ALIGN-0-3-2

ALIGN-0-2-1

11

10

13

1215

14

start

1

0

3

2

5

4

7

6

9

8

ALIGN-BRACKET-0

Figure 46: A high-level action to align all screw holes on a bracket.

68

(a)

ALIGN-BRACKET-0 SCREW-BRACKET-010 2start

BRACKET-0

(b)

Figure 47: A high-level action to align and screw and bracket to the table surface. Note

that the edge labels in (b) are high-levels actions as well.

Maneuver Automata, Linear Temporal Logic, and the C Programming Language.

3.6.1 Petri Nets

Petri Nets are a modeling technique for discrete event systems based on a bipartite graph

that represents the structure and dependencies of event firing. They are often used to model

concurrent systems while CFGs generally represent a sequential structure. The languages

that can be represented by a Petri Net are distinct from the Context-Free set. The language

of some string followed by its reverse,
{

wwR|w ∈ Z∗
}

, is Context-Free, but it is not a Petri

Net language. The language of sequences of equal numbers of a, b, and c, {anbncn}, is not

Context-Free but can be represented by a Petri Net. However, the Petri Net languages are

a strict superset of the Regular set and a strict subset of the Context-Sensitive set [143]. In

consequence, the syntactic class of systems which can be modeled by a Petri Net is distinct

from those modeled by the Context-Free Motion Grammar.

69

(a)

ALIGN-ROD-0-0-BRACKET-0-0 SCREW-ROD-0-0-BRACKET-0-010 2start

ROD-0

(b)

Figure 48: A high-level action to align and screw a rod to a bracket.

ROD-3

BRACKET-1

BRACKET-3 ROD-1

ROD-2ROD-2

BRACKET-2

BRACKET-0

ROD-2

BRACKET-3

ROD-1

ROD-0

BRACKET-3
BRACKET-0

BRACKET-1

ROD-1

ROD-1

ROD-0

BRACKET-2BRACKET-2

BRACKET-3

BRACKET-1

BRACKET-3

ROD-0BRACKET-1

ROD-2

ROD-2

BRACKET-2

ROD-0

BRACKET-0

ROD-3

ROD-3

BRACKET-0

BRACKET-1

ROD-3

BRACKET-0

ROD-1

BRACKET-3

ROD-1

ROD-0BRACKET-1
BRACKET-0

BRACKET-2

ROD-0

ROD-1

ROD-2

BRACKET-0

ROD-3BRACKET-3

BRACKET-3

ROD-0

ROD-3

ROD-1

BRACKET-2

BRACKET-1

ROD-3 ROD-2

ROD-2

BRACKET-1

BRACKET-0

ROD-3

BRACKET-2

ROD-0
BRACKET-2

24

25

26

27
20

21

22

23

28

29
1

0

3

2

5

4

7

6

9

8
start

11

10

13

12

15

14

17

1619

18

30

Figure 49: Top-Level Automaton for table assembly, incorporating High Level Actions

from Fig. 46.

3.6.2 Hybrid Automata

Hybrid Automata represent a system with both event and time-driven dynamics. The sys-

tem has a number of modes q ∈Q. Each mode qi is governed by some differential equation

fi. Transitions between modes occur in response to discrete events. The modes Q are gen-

erally finite [6, 81], so we can represent these transitions with a Finite Automaton. Many

descriptions of Hybrid Automata also define jump sets or reset conditions which discontin-

uously change state x; this is not a feature we consider in this analysis.

A Hybrid Automaton with finite control states or modes Q can be transformed into an

70

q1

ẋ = f1(x)

q2

ẋ = f2(x)

q3

ẋ = f3(x)

x ∈R2

x ∈R1

x ∈R3

(a) Hybrid Automaton

PRODUCTION SEMANTIC RULES

〈Q1〉→[x ∈R2]Q2 ẋ = f1(x)
〈Q2〉→[x ∈R1]Q1 ẋ = f2(x)

| [x ∈R3]Q3 ẋ = f2(x)
〈Q3〉→ε ẋ = f3(x)

(b) Motion Grammar

Figure 50: Example of Hybrid Automata to Motion Grammar Conversion

equivalent Motion Grammar. This is possible because every Finite Automaton is equivalent

to a Regular Grammar, and Regular Grammars are a subset of Context-Free Grammars. An

example of this process for a three-state system is shown in Fig. 50. The algorithm to

perform this transformation is given by Algorithm 8. Because the Motion Grammar is

Context-Free, the reverse is not always possible, and there are Motion Grammars, such as

Fig. 20, with no equivalent finite mode Hybrid Automaton.

Algorithm 8: HA-to-GM(Q,Σ,E,F)

Input: Q : set of discrete states

Input: Σ : alphabet of tokens

Input: E : set of edges, Q×Q

Input: F : set of continuous dynamics functions associated with each state in Q

1 foreach qi ∈ Q do

2 Create nonterminal 〈Qi〉;
3 foreach σi ∈ Σ do

4 Create token [σi];

5 foreach e j ∈ E, e j : qi×σ j 7→ qk do

6 Create production Qi→
[
σj

]
Qk with semantic rule ẋ = fi(x);

3.6.3 MDLe

The MDLe is a Modeling Language with a Context-Free grammar [87]. Each string in the

MDLe represents some control program. While the modeling (subsection 3.1.2) language

MDLe is Context-Free, each of MDLe control programs can parse only a Regular Language

system language. This is in contrast to the Motion Grammar which describes the System

71

Language for a Context-Free System.

Theorem 1. The System Language recognized by an MDLe string is Regular.

Proof. Given that an MDLe controller is represented by a string in the MDLe language,

we prove that the resulting System Language is regular by providing an algorithm to trans-

form any MDLe string, Σ, into a Finite Automaton, A = (S,E,d) that accepts the System

Language Lg. MDLe string Σ is composed of tokens [(], [)], [,], controllers u ∈ U , and

interrupts ξ ∈ B′. Algorithm 9 creates the automaton A corresponding to Σ. Notice that any

u or ξ which appears multiple times in Σ results in multiple states in the FA.

The resulting Finite Automaton encodes the evaluation rules for the MDLe string. Since

we can transform Σ to a Finite Automaton, Σ must recognize a Regular System Language.

Algorithm 9: MDLe-to-FA(Σ,U,B′)
Input: Σ : MDLe specification string

Input: U : set of controllers

Input: B′ : set of interrupts

/* Create States */

1 S = Σ−{[(] , [)] , [,]};
/* Create Transitions */

2 foreach s ∈ S do

3 if s ∈U then

4 foreach ξi enclosing s in Σ do

5 Create a transition

(
s

ξi=1−−→ ξi

)
;

6 if s ∈ B′ then

7 Create a transition
(

s
ε−→ r
)

, where r is the next σi following s in Σ such that r ∈ S;

Two examples of this conversion procedure are shown in Fig. 51, one simple case and

one more complicated case. Unlike the transformation to Hybrid Automata in [87], we

do not restrict repeated controllers in Σ to a single state in our system language Finite

Automata. Notice also that there is ambiguity in the case of simultaneously active interrupt

functions. [87] specifies that this is resolved via precedence among the different interrupts.

72

Σ = (u1,ξ1)(u2,ξ2)(u1,ξ1)

u1 ξ1 u2 ξ2 u1 ξ1
[ξ1 = 1] [ξ2 = 1] [ξ1 = 1]ε ε

Σ = ((u1,ξ1)(u2,ξ2),ξ3)

u1 ξ1 u2 ξ2 ξ3
[ξ1 = 1]

[ξ2 = 1]

[ξ3 = 1]

[ξ3 = 1]

ε ε

Figure 51: Example Transform: MDLe to Finite Automata

Corollary 1. Every MDLe string can be translated to a Motion Grammar.

Proof. The Motion Grammar is a Context-Free grammar for the System Language, and we

can translate every MDLe string to a Finite Automaton accepting the System Language.

Finite Automata are equivalent to Regular Grammars. Regular Grammars are a subset of

Context-Free Grammars.

From Corollary 1, we also observe that the Motion Grammar can control a broader

class of systems than the MDLe. MDLe controllers accept only Regular Languages while

the Motion Grammar accepts Context-Free languages with LL(1) semantics, which include

all Regular Languages. Thus, the Motion Grammar can describe systems that the MDLe

cannot.

3.6.4 Maneuver Automata

There are some important similarities between the Maneuver Automaton and the Motion

Grammar. The Maneuver Automaton represents a hybrid system moving between a set of

trim trajectories q ∈ Q using a motion library of maneuvers σ ∈ Σ [68]. This system is

represented as a Finite Automaton with states Q and tokens Σ. It is possible to transform

this representation into a grammar suitable for online control of the system. An example

of this process is shown in Fig. 52. First, the Maneuver Automaton, 52(a) is rewritten

73

q1 q2

q3

σ1

σ2σ3
〈q1〉 → [σ1]〈q2〉
〈q2〉 → [σ2]〈q3〉
〈q3〉 → [σ3]〈q1〉

(a) Offline Grammar

〈q′1〉 → [x ∈R1] | [x ∈R1]〈σ ′1〉
〈σ ′1〉 → κ1〈q′2〉
〈q′2〉 → [x ∈R2] | [x ∈R2]〈σ ′2〉
〈σ ′2〉 → κ2〈q3〉
〈q′3〉 → [x ∈R3] | [x ∈R3]〈σ ′3〉
〈σ ′3〉 → κ3〈q′1〉

(b) Online Grammar

Figure 52: Maneuver Automaton→ Online Grammar.

as a Regular Grammar, Go in 52(a), with one production of the form 〈qi〉 →
[
σj

]
〈qk〉 to

indicate each transition in the automaton. We then transform this offline grammar into

an online grammar Gn according to Algorithm 10. Entry into a trim state is marked by a

region of the continuous state space x ∈R. The controller for some maneuver σ is given

by a semantic rule κσ .

Algorithm 10: Go-to-Gn(Go)

/* Productions from states */

1 foreach 〈qi〉 in Go do

2 Create production 〈q′i〉 →
[
x ∈Rqi

]
;

/* Productions from transitions */

3 foreach 〈qi〉 →
[
σj

]
〈qk〉 in Go do

4 Create production 〈q′i〉 →
[
x ∈Rqi

]
〈σ ′j 〉 ;

5 Create production 〈σ ′j 〉 → κσj
〈q′k〉;

We also note that an arbitrary Maneuver Automaton cannot be directly transformed

into a Motion Grammar. The Maneuver Automaton does not include information about

how long to hold in trim states q or when to begin maneuvers σ . Thus, it does not represent

a policy and it can be transformed only to a grammar that is not Semantically LL(1). Thus,

Claim 1 indicates that it cannot be a Motion Grammar.

Even though we cannot directly transform a Maneuver Automaton to a Motion Gram-

mar, this transformation is possible by adding the additional information necessary for

74

q1 q2

¬x x

x

¬x

Figure 53: Example of equivalence between Büchi Automata and Linear Temporal Logic

formula ✷✸x.

LL(1) Semantics, such as by establishing precedence levels between conflicting produc-

tions or extending the representation to include tokens such as timeouts for coasting times.

By augmenting the Maneuver Automaton with the additional information to achieve a pol-

icy, we can then derive a corresponding Motion Grammar.

3.6.5 Linear Temporal Logic

Linear Temporal Logic (LTL) is an extension to propositional logic that describes the be-

havior of discrete systems over an infinite time horizon. This is an often convenient notation

to specify various system properties. Every statement in LTL can be represented as a Büchi

automaton; an example is Fig. 53. Büchi automata are a variation on Regular automata that

describe infinite length strings [13]. We can restate classical automata over finite length

strings as a special case of automata over infinite length strings by looping through the

accept state of a classical automaton [84, p.131].

Definition 13 (Stutter Extension). The stutter extension of finite string σ accepted by au-

tomaton A which halts with accept state qn is the ω-run σ ,(qn,ε,qn)
ω [84].

Alternatively, we can specify that some LTL property α holds only until a particular ter-

minating condition, $, by replacing all ✷α with α∪$. Because of the correspondence

between LTL and formal language, we may also use LTL formulas to describe correctness

of the Motion Grammar. One algorithm for checking Context-Free systems with LTL is

given by [63].

75

3.6.6 The C Programming Language

The C programming language is a Turing-Complete computational model while the Motion

Grammar is Context-Free. Rice’s theorem means that for an arbitrary C program, we can

guarantee nothing, not even that it halts! Because the Motion Grammar is restricted to

Context-Free computation, the Earley parser [59] means online parsing will have worst case

polynomial runtime. Furthermore, Theorem 2 means that for an arbitrary Motion Grammar,

we can always verify it against an arbitrary Regular specification. This makes clear the

trade-off we have made: sacrifice computational power to guarantee runtime performance

and verifiability. As a practical matter, though, any Motion Grammar may be transformed

into a C program since all Context-Free languages are Turing-Recognizable.

76

CHAPTER IV

ANALYZING LANGUAGE MODELS

Using these specified linguistic models, we consider what kinds of reasoning about the

system are possible. First, we discuss completeness and correctness of the model. Then,

we develop a calculus of rewrite rules and apply these to the composition of semantic maps

and manipulation rules. Finally, we discuss the impact of language class on system design.

4.1 Model Guarantees

4.1.1 Completeness

For a robot to be reliable, it must respond to any feasible situation. This requires a policy.

For a Motion Grammar model GM of system F to represent a policy, it must include the

set of all paths that the system can take. This property is given by the simulation relation

F � GM, “GM simulates F .” The concrete definition of a path depends on type of system we

are dealing with. For discrete systems, a path is the sequence of states and transitions the

system takes. For continuous systems, a path is the trajectory though its state space [74].

For the hybrid systems we consider here, paths and simulation have both continuous and

discrete components. Using 3 for path Ψ, we define simulation as follows,

Definition 14. Given GM and system F with x(t),x′(t),u(t),u′(t) ∈XF ,XGM
,UF ,UGM

for

time t and initial conditions x0,x
′
0 ∈XF ,XGM

.

Then F �c GM ≡ (x0 = x0
′∧u(t) = u′(t) =⇒ x(t) = x′(t)).

Definition 15. Given GM and system F then F �d GM ≡ L(F)⊆ L(GM)

Relation F �c GM shows that F and GM follow the same continuous trajectories. We

match these trajectories exactly because a Motion Grammar must represent a policy and

have LL(1) semantics – at each point along the path, GM must specify a unique input u.

77

Thus, Def. 14 precludes grammars which specify infeasible trajectories of the physical

system, such as moving to unreachable configurations, because such a grammar would not

contain the true system trajectory. When the system F’s x(t) does not match the grammar

GM’s x(t) for the specified input u, this does not satisfy �c.

Relation F �d GM shows that the language of the system is a subset of the language of

Motion Grammar. Note that for events which represent region entry, F �d GM is implied

by F �c GM. We define �d separately in order to model some events as purely discrete

with no continuous-domain component.

Definition 16. Given GM and system F then complete{GM} ≡ F � GM ≡ F �c GM ∧F �d

GM

Relation F � GM means that GM is a faithful model of F which captures relevant system

behavior, that all feasible paths are represented by GM. Proving simulation between arbi-

trary systems is a difficult problem. In the purely discrete Context-Free case, it is undecid-

able [86, p.203]. However, we can always disprove completeness with a counterexample:

for x and y, a path of x not defined by y would prove x 6� y. Our main concern, though,

is not simulation between any two systems but that our model GM simulate the physical

system we wish to control. In this work, we approach simulation and completeness as a

modeling problem. We match the productions of the model GM to the operating modes and

events of F , though we do have the freedom to specify input u and define new regions or

switching points as is convenient.

In addition to providing a policy for the robot, a complete Motion Grammar has another

important use: the grammar is a discrete abstraction for the entire system. We can use this

abstraction to prove that the modeled system is correct.

4.1.2 Correctness

Given a policy for the robot, it is crucial to evaluate the correctness of that policy. We

define the correctness of a language specified as a Motion Grammar, L(GM), by relating

78

it to a constraint language, Lr. While L(GM) for a given problem integrates all problem

subtasks, as shown in subsection 5.3.3, the constraint language targets correctness with re-

spect to a specific criterion. Criteria can be formulated for general tasks, including safe

operation, target acquisition, and the maintenance of desirable system attributes. By ju-

diciously choosing the complexity of these languages, we can evaluate whether or not all

strings generated by our model GM are also part of language Lr.

Definition 17. A Motion Grammar GM is correct with respect to some constraint language

Lr when all strings in the language of GM are also in Lr: correct{GM,Lr} ≡ L(GM)⊆ Lr.

This approach to verifying correctness provides a model-based guarantee on behavior,

ensuring proper operation of the discrete abstraction represented by GM. This verification

of the model GM ensures correctness of the underlying physical system F to the extent that

GM is complete, 16. If we suppose system F contains some hybrid path ψbad with discrete

component σbad and that ψbad is not in GM – that is, GM is not complete – then checking

L(GM) ⊆ Lr gives no information about whether σbad ∈ Lr. On the other hand, when GM

does contain the set of all feasible system paths, verifying GM ⊆ Lr ensures correctness

of all these paths. Thus, a complete model is necessary in order to meaningfully verify

correctness.

The question of correct{GM,Lr} is only decidable for certain language classes of L(GM)

and Lr. Hence, the formal guarantee on correctness is restricted to a limited range of

complexity for both systems and constraints. We show decidability and undecidability for

combinations of Regular, Deterministic Context-Free, and Context-Free Languages.

Lemma 2. Let LR, LD, and LC be the Regular, Deterministic Context-Free, and Context-

Free sets, respectively, and let R ∈LR, D,D′ ∈LD, and C,C′ ∈LC. Then,

1. C ⊆C′ is undecidable. [86, p.203]

2. R⊆C is undecidable. [86, p.203]

3. C ⊆ R is decidable. [86, p.204]

79

Table 5: Decidability of correct{GM,Lr} by language class.

Lr ∈LR Lr ∈LD Lr ∈LC

L(GM) ∈LR yes yes no

L(GM) ∈LD yes no no

L(GM) ∈LC yes no no

4. R⊆ D is decidable. [86, p.246]

5. D⊆ D′ is undecidable. [86, p.247]

Corollary 2. Based on LR ⊂ LD ⊂ LC, the results from [86] extend to the following

statements on decidability:

1. D⊆ R and R⊆ R are decidable.

2. D⊆C is undecidable.

3. C ⊆ D is undecidable.

Combining these facts about language classes, the system designer can determine which

types of languages can be used to define both the grammars for specific problems and

general constraints.

Theorem 2. The decidability of correct{GM,Lr} for Regular, Deterministic Context-Free,

and Context-Free Languages is specified by Table 5.

Proof. Each entry in Table 5 combines a result from Lemma 2 or Corollary 2 with Defini-

tion 17.

Theorem 2 ensures that we can prove the correctness of a Motion Grammar with regard

to any constraint languages in the permitted classes. We are limited to Regular constraint

languages except in the case of a Regular system language which allows a Deterministic

Context-Free constraint. Regular constraint languages may be specified as Finite Automata,

Regular Grammars, or Regular Expressions since all are equivalent. We can also use Linear

Temporal Logic as described in subsection 3.6.5.

80

To evaluate correct{GM,Lr}, consider L(GM)⊆Lr as, “Does L(GM) contain any string

not in Lr?” which gives equation (10) [13, p.163].

L(GM)∩Lr
?
= /0

(10)

We can explicitly evaluate (10) by computing the Regular Lr [86,

p.59], intersecting this with L(GM) [86, p.135], then testing the Context-

Free result for emptiness [66]. These algorithms are implemented in the

Motion Grammar Kit.

4.2 Discussion of Language Class

We now discuss the impact of Formal Language classes on the system. The language class

we use for our robot model determines our ability to execute, verify, and even represent our

system. We discuss how these classes relate to assembly languages, and how we can design

our language to operate within those classes which are suitably efficient and verifiable.

4.2.1 Chomsky Hierarchy of Languages

The formal languages classes form a hierarchy of increasing representative power and de-

creasing verifiability. The more general a language class, the less we can verify about the

properties of languages within that class. The typical classes of this hierarchy are the Reg-

ular, Context-Free, Context-Sensitive, and Recursively-Enumerable Sets. Table 5 shows

that for robotic systems, Regular and Context-Free sets permit both formal verification and

efficient execution. The Context-Sensitive and Recursively-Enumerable sets do not. Thus,

we have focused our efforts on producing models which are Context-Free or Regular.

4.2.2 Limits of Language Class

To understand the restrictions on language class and symbol selection, let us consider a

simplified version of assembly, the task of connecting m independent screws, bars, and

nuts, shown in 54(a). For each item, we must place a screw s, a bar b, and a nut n. We

must insert the elements for any given item in order, and we must finish each item we start.

Beyond that, we can construct items in any order. A few example strings in this language

81

of Multiple Screw Assembly (MSA) we have just described are as follows,

• sbnsbnsbn (build one at a time)

• sssbbbnnn (insert all of a given symbol at a time)

• ssbsbnnbn (interleaved)

Now, we will show that MSA is not a Context-Free language using the pumping lemma.

The pumping lemma is defined as follows [86],

Lemma 3 (Pumping Lemma). Let L be a CFL. There is a constant m called the pumping

length depending only on L such that if z is in L, and |z| ≥ m, we may write z = uviwxiy

subject to

1. |vx| ≥ 1

2. |vwx| ≤ m

3. ∀i≥ 0, uviwxiy ∈ L

Theorem 3. MSA is not Context Free.

Proof. Proof by contradiction. Assume MSA is Context Free. Let m be the pumping

length. Let z = smbmnm. Given z = uvwxy, vx must contain equal number of s, b and n.

Otherwise, when we pump z to uv2wx2y, there would be incomplete items. Since |vx| ≥ 1,

vx must contain at least one of each symbol s, b, and n. For vx to contain at least one s and

at least one n, vwx must straddle the bm occurring in the middle of z. Thus, vwx = sabmna

and a ≥ 1. But if vwx = sabmna, then |vwx| > m, violating condition 2 of the pumping

lemma. This is a contradiction, so MSA is not Context-Free.

Theorem 4. MSA is Context Sensitive.

82

Proof. We prove by that MSA is context-sensitive by providing the following Linear Bounded

Automaton (LBA) to recognize MSA. The input alphabet is the set Zi = {b,s,n,$}. The

tape alphabet is the set Zt = {s,b,n,e}. Initially, the tape contains e in the first cell. On each

input s, scan the tape from left to right until e is found. Then replace the e with s and write

an e in the next right cell. On each input b, and n, scan the tape from left to right looking

for the matching s, or b respectively. Replace the tape symbol with the input symbol. If

no matching symbol is found, reject. On input $ (end of input), scan the tape from left to

right. If any symbol besides n or e is found, reject. Otherwise, accept.

4.2.3 Language Classes and Symbol Design

Theorem 3 demonstrates the challenges when we restrict ourselves to policy representations

which are efficient and fully decidable. The limited pushdown memory of a Context-Free

systems permits decidability of a number of properties, yet it also limits the kind of sys-

tems we can represent. It may seem that even simple tasks with repeated actions cannot

be modeled as Context-Free languages. However, this really illustrates the critical point of

selecting appropriate language symbols. By selecting the appropriate set of language sym-

bols, we can still represent these systems and achieve both computational efficiency and

formal verifiability.

For automation systems with sensors, we can adopt a technique typical in behavior-

based robotics that “the world is its own best model [20].” When we cannot store a nec-

essary symbol in a verifiable automaton, we instead retrieve that symbol from a sensor, or

at least from a source external to our formal language. Here, this approach is not merely

a convenience or expedient, but mathematical necessity. The language classes with prop-

erties that are always decidable and efficiently parsable have limited representative power.

If our desired dynamics are outside of that language class, part of our system description

must necessarily come from outside of the language. By modifying the representation in

this way, we can still verify the simplified linguistic model. It is only the non-Context-Free

83

(a) MSA Instance

〈A〉 → [s]〈A〉
|
[
s′
]
[b]〈A〉

|
[
b′
]
[n]〈A〉

| [e]

(b) Augmented Grammar

Figure 54: Multiple Screw Construction and a Context-Free Augmented Grammar.

dynamics which we cannot – and in the general case never can – verify.

We can apply this approach to the MSA problem by assuming a sensor which can detect

the presence of partial items. Thus, we augment the token set to Z = {s,b,n}∪{s′,b′,e}

where s′ and b′ indicate an uncovered s and b respectively, and e indicates no uncovered s

or b. Then, we can model the system according to the grammar in 54(b).

We have also incorporated this idea into the symbol design for our object assembly lan-

guage. Each connection symbol oi× c j×ok× cℓ in subsection 3.4.1 includes information

about both the current world state and the next action to take. Thus, the assembly language

is represented using only a Context-Free memory ensuring that we can both verify and

efficiently execute the grammar.

4.3 Unpredictable Events

Robotic systems contain many sources of uncertainty. Linguistic approaches such as the

Motion Grammar are well suited for addressing unpredictable events within the discrete

dynamics. This occurs when at some point in time, the next token or discrete event is

unknown. Other common sources of uncertainty include sensor noise, model error, and

classification error.

A complete Motion Grammar (16) addresses unpredictable events by representing a lin-

guistic policy over all feasible events. For example, in the human-robot chess match, the

robot safely responds to the uncertain event of the human entering the workspace (subsub-

section 3.2.5.1). Such a complete grammar defines a language which contains all strings of

84

events which may occur, thus representing a policy to respond to those events.

Uncertainty due to sensor noise was an issue present in our human-robot chess imple-

mentation. To address this, we incorporated a Kalman Filter into the semantic rules K. This

effectively attenuated the noise due to electromagnetic interference for the strain gauges in

the wrist force-torque sensor. While Kalman Filters often operate well in practice, they do

not guarantee robustness [58]. Additionally, error in state estimation may result in an event

triggering due to estimated state which would not trigger due to actual state. When this is

possible, additional grammar productions to handle the erroneous triggering are necessary.

Thus, while our implementation was tolerant of the noise present in the system, further

work is needed to formally address sensor noise.

One issue which we do not currently address in the Motion Grammar is multiple hy-

pothesis state estimation such as that performed by a particle filter. This is important for

applications such as visual tracking of humans. Extensions to the Motion Grammar such as

stochastic or parallel parsing could address multiple hypothesis estimation. In addition, one

could also preprocess the sensor data, though this will exist outside of the guaranteed model

that the Motion Grammar provides. This type of uncertainty requiring multiple hypothesis

estimation remains as another area for improvement.

4.4 Implementation Model Checking

A particular advantage of using formal language as an intermediate representation in a

software synthesis pipeline is the ability to model check not just an abstracted model, but

the actual structure used to generate the code. We apply this to the Nao speed control

domain introduce in section 3.3. We verify that the computation defined by the derived

grammar Ĝ properly represents the possible step sequences from the Motion Transition

graph Fig. 25. Since the productions of Ĝ are the union of those of Gp and Gstep, we verify

that Gp represents a valid sequence of parameter settings and steps, knowing that each

〈step〉 in Ĝ will be properly decomposed by Gstep.

85

First, we consider the overall structure of Gp, ensuring that each string in Gp is series of

fixed speed steps, {setparam i}〈step〉, connected by transition steps, {setparam i j}〈step〉,

and followed by [HALT]. This property is defined by the following regular expression Sa,

S f =
⋃

i∈Vs

(
{setparam i}〈step〉({setparam i}〈step〉)∗

)

St =
⋃

i× j∈Es

({setparam i j}〈step〉)

Sa = (St |ε)
(
S f St

)∗ (
S f |ε

)
[HALT] (11)

where (Es×Vs) is the speed graph Γs and ε is the empty string. Note that S f represents one

or more steps at a single fixed speed and St represents a single transition step.

Second, we consider the speed transitions sequences in Gp to ensure that it contains no

unstable paths according to the edges of Γs. For every {setparam i} and {setparam i j},

we determine the valid predecessors and successors from the edges Es of Γs,

pred(i, j) = {{setparam i}} (12)

pred(j) = {{setparam i, j} : i× j ∈ Es} (13)

succ(i, j) = {{setparam j}} (14)

succ(i) = {{setparam i, j} : i× j ∈ Es} (15)

(16)

Then, we find the invalid predecessors and successors by removing those valid ones

from the token set Zp of grammar Gp,

Snp(i, j) =
⋃

z∈(Zp−[HALT]−〈step〉−pred(i,j))

z (17)

Sns(i, j) =
⋃

z∈(Zp−[HALT]−〈step〉−succ(i,j))

z (18)

86

Next, we produce specifications to ensure that Gp contains no invalid transitions. For

fixed speed i or transition i× j, the specification is the complement of a string which in-

cludes and unstable transition to or from that i or i× j.

Sp(i) = .∗Snp(i)〈step〉{setparam i} .∗ (19)

Sp(i, j) = .∗Snp(i, j)〈step〉{setparam i j} .∗ (20)

Ss(i) = .∗ {setparam i}〈step〉Sns(i).∗ (21)

Ss(i, j) = .∗ {setparam i j}〈step〉Sns(i, i).∗ (22)

From these specifications, we now formally verify that Gp is structurally valid and

contains no unstable paths.

Proposition 5. Gp is structurally valid and contains no unstable paths, that is:

Gp ⊆ Sa and

∀i ∈Vs, (Gp ⊆ Sp(i)∧Gp ⊆ Ss(i)) and

∀i× j ∈Vs×Vs, (Gp ⊆ Sp(i, j)∧GP ⊆ Ss(i, j))

Proof. We verify this claim mechanically based on the model checking equation (10). Each

specification Sa, p(i), Ss(i), Sp(i, j), and Ss(i, j) is converted to a finite automaton A. Then,

A is intersected with Gp. In all cases, the result is the /0.

The software to perform this verification is implemented in the Motion Grammar Kit.

A critical point about this check is that it verifies not just an abstract model of the

system, but the concrete representation – the data structure containing Ĝ – of computation

to physically control the system. We use this same representation to synthesize the control

software.

4.5 Motion Grammar Calculus

We introduce a calculus of rewrite rules for Motion Grammars [44].

87

4.5.1 Tokenization and Reachability

Tokens are instantaneous events which drive the discrete system dynamics. In this section,

we focus on a particular type of event: entry into some region of interest within the con-

tinuous state space X . Thus, the string of tokens in Z represents an abstracted path of

the system through X . Additionally, we will assume a fully observable system such that

x(t) ∈X is known for all t.

4.5.1.1 Region Tokens

There are different types of regions in X that may be relevant. In [159], position and

velocity regions are used to produce robot trajectories. Here, we consider the general case

of any region of interest in state space. The region for an event may be an area where the

underlying dynamics of the system change, such as at a contact or impact. Regions may

also be areas where we want our input to the system to abruptly change, such as a mobile

robot reaching a way-point and switching to a new trajectory. A new token or event is

generated when the system enters into the region.

Definition 18. The token set Z is a set of regions representing a complete partition of the

state space X . For [x ∈Ri] ∈ Z,

• Ri∩R j = /0, i 6= j, regions are nonoverlapping.

•
⋃|Z|

i=1 Ri = X , regions cover the entire state space.

Note that it is trivial to relax this condition by splitting overlapping regions. We use the

non-overlapping formulation to simplify our analysis.

Tokenization is the process of breaking up the unstructured observation into a stream

of tokens or events. This is the first step our controller must take to parse the observation.

Because tokenization is implemented via digital logic or software, we use a discrete-time

formulation. Based on 18, we define tokenization as follows,

88

Definition 19. A new token is generated when the system crosses the boundary between two

regions. In discrete time, when xk−1 ∈Ri∧ xk ∈R j ∧ i 6= j, token
[
x ∈Rj

]
is appended to

the input tape.

At each time step tk, a discrete-time controller must compute which region it is in. If

the region has changed since the previous step tk−1, then the controller parses the token

associated with the new region. One way to perform this tokenization is to express a region

as bounded by codimension-1 manifolds M given as the level-set for some scalar function,

M = {x : s(x) = 0} (23)

Since the manifold is composed of all points where scalar s(x) = 0, the sign(s(x)) indicates

the side of the manifold, and consequently the region, of any system state.

4.5.1.2 Conservative Reachability with Barrier Certificates

By defining tokens as regions, we can use the continuous dynamics to predict the discrete

dynamics. This will be used in subsection 4.5.4, to transform the grammar. Observe that

since tokens are regions, the set of discrete tokens which may be generated is equivalent

to the set of reachable regions of continuous state. This problem has previously been ad-

dressed by others such [130] using Hamilton-Jacobi-Isaacs Partial Differential Equations

(HJI PDE) to compute the backwards reachable set, and this method is indeed directly ap-

plicable to the Motion Grammar. However, it can often be very difficult to solve these HJI

PDEs. If there are no known analytic solutions for the particular PDE of interest, it is often

necessary to resort to numerical methods. The method of barrier certificates [148] instead

considers behavior only along a specific boundary within the state space. This approach

should be easier to evaluate and is directly applicable to our chosen method of tokenizing

the state space.

We apply barrier certificates to the Motion Grammar using the Lie derivative along

region boundaries. Consider the autonomous system dynamics given by smooth function

89

ẋ = f (x). Let the boundary between Ri and R j be given by the codimension-1 manifold

M , c = s(x). The normal vector to M at point x is ∇s(x). To determine if the system

will cross M at point x, we relate the direction of ∇s(x) and f (x) using the sign of the Lie

derivative, L f s,

Theorem 5. Let M = {x : s(x) = 0}. If L f s(x)< 0 ∀x ∈M , the system will never cross

M . If ∃x ∈M , L f s(x)> 0, the system may cross M .

Proof. Consider some p ∈M . Then L f s(p) = ∇s(p) · f (p) = ‖∇s(p)‖‖ f (p)‖cosθ ,

where θ is the angle between ∇s(p) and f (p). When cosθ > 0, the system moves off

M in the direction of increasing s(x). When cosθ < 0, the system moves off M in the

direction of decreasing s(x). Since sign(cosθ) = sign
(
L f s

)
we can use sign

(
L f s

)
to test

which side of M the system will move to from p. If there is no p for which L f s > 0, then

the system cannot move off the manifold to cross it. If there is any p for which L f s > 0,

then from that p, the system will move off the manifold and thus cross it.

Theorem 5 thus shows whether one region is directly reachable from another based on

system dynamics ẋ = f (x). It is conservative because it only says whether a boundary

crossing occurs based on the local condition. The crossing occurs when both L f s > 0, and

the global dynamics brings x to the local neighborhood of the boundary.

We can express L f s only along M by parameterizing M by some v ∈ R
n−1, where

X ∈ R
n.

M = {x : x = φ(v)} (24)

For example, if M is a hyperplane, then φ(v) = Mv, where M is a n× (n−1) matrix.

If M is a hypersphere, the φ can be defined to transform spherical coordinate vector v to

Cartesian coordinates x. Then, we consider sign
(
L f s [φ (v)]

)
to determine if the boundary

may ever be crossed.

90

R1

p

∇s

ẋ = f (x)

L f s(x)< 0

Figure 55: A region given by 1= x2

22 +y2 and tangent planes by 1+ x0
2

22 +y0
2 = 2x0

22 x+2y0y.

The system evolves by ẋ =−x, indicating that it stays within R1 at the boundary.

4.5.1.3 Reachability Example

Consider a region bounded by an ellipse centered on the origin as shown in Fig. 55.

M ≡ c =
x1

2

a1
2
+

x2
2

a2
2

(25)

∇s(x) =

[
x1

a1
2

x2

a2
2

]
(26)

4.5.1.4 System 1

Consider time-driven dynamics ẋ = −x. This gives us L f s = − x1
2

a1
2 − x2

2

a2
2 . Since this is

always negative, the system will not cross the boundary.

4.5.1.5 System 2

Consider time-driven dynamics ẋ =

[
y− x −x− y

]T

. This gives us L f s = x1x2

a1
2 − x1x2

a2
2 −

x1
2

a1
2 − x2

2

a2
2 . We can use a parameterization of the manifold by v, x =

[
a1 cosv a2 sinv

]
to

rewrite L f s = a2
a1

cvsv− a1
a2

cvsv−1. From this, we see that if a1
a2

> 1+
√

2 or a2
a1

> 1+
√

2,

the Lie derivative will be positive for some values of v meaning that the system will cross

the boundary from some, but not all v.

4.5.1.6 Additional Event Types

In addition to the region-based events of Def. 18-19 which result from the controllable con-

tinuous dynamics, we can model events resulting from uncontrollable continuous dynamics

91

or purely-discrete dynamics as well. Such events may include faults, limit conditions, and

even human actions or spoken words. All can be included as tokens in the grammar. In this

paper however, we focus on the controllable region-entry events because it is by appropri-

ately controlling these events that we can transform the grammar to achieve correctness.

4.5.2 Process to Derive Correct Grammars

To transform a grammar which describes the system into a grammar that correctly controls

the system, we must consider which transformations are possible. Only certain transfor-

mations of the grammar are valid. We are particularly concerned with ensuring that our

transformations maintain the property that the derived grammar GM
′ is complete – that

GM
′ describes all paths that were possible in the original grammar GM, because GM is an

accurate representation of the hybrid system by definition. We show examples of trans-

formations that lead to complete and incomplete GM
′. Third, we define completeness and

present a method for determining whether a class of transformations results in complete de-

rived grammars, GM
′. Finally, in subsection 4.5.4, we use this method to prove that certain

transformations are valid for all Motion Grammars, forming a calculus that can be used to

transform a Motion Grammar to a correct Motion Grammar.

4.5.2.1 Example of Complete and Incomplete Derivations

To illustrate the types of transformations which are and are not possible, consider the trivial

system in 56(a). Here, a ball is dropped from height x0 = 1. Its collision with the ground is

perfectly inelastic, so it will stop as soon as it reaches x = 0. An initial grammar describing

this system is shown in 56(b). From inspection, we can remove the expansion for 〈H〉 and

still have the valid grammar G ′a in 56(c). This is because the initial region for 〈H〉, x ≥ 2,

is unreachable from the production for 〈S〉. However, if we remove the production for 〈G〉

as well, 56(d), then we no longer have a valid grammar. This is because G and G ′b are

describing different sets of paths. Namely, G ′b takes a single path – tunneling to the center

of the Earth – while G stops at x = 0. Thus, we see that there must be a specific relation

92

x̂g

x = 1

x = 0

(a) System

〈S〉 → [x = 1]{ẋ =−mg}〈A〉
〈A〉 → 〈G〉|〈H〉
〈G〉 → [x = 0]{ẋ = 0}
〈H〉 → [x≥ 2]{ẋ =−mg}

(b) Initial Grammar, G

〈S〉 → [x = 1]{ẋ =−mg}〈G〉
〈G〉 → [x = 0]{ẋ = 0}

(c) Simulating Grammar, G ′a

〈S〉 → [x = 1]{ẋ =−mg}

(d) Non-Simulating Grammar, G ′b

Figure 56: A dropped ball with a perfectly-inelastic collision. Examples of simulating

and nonsimulating grammars. G � G ′a, G 6� G ′b

between initial and derived grammars in order to maintain a faithful representation of the

system. This specific relation is the simulation, G � G ′.

4.5.3 Completeness and a Simulation Lemma

A complete derived system model G′ represents everything the initial system G could do.

Slightly more formally, G′ describes the set of all paths that the initial system G could take.

This property is given as the simulation G�G′. The reverse may not hold. That is, G′ may

be able to take paths which G cannot. The concrete definition of a path depends on type of

system we are dealing with. For discrete Transition Systems, a path is the sequence states

and transitions the system takes. For continuous systems, a path is a trajectory though its

state space. Simulation paths for a variety of systems are detailed in [74].

This simulation relations 14 and 14 show that GM and GM
′ follow the same path pro-

vided that GM is given the same initial conditions and inputs as GM
′. The initial condi-

tions are the first token of the starting nonterminal. For example, if 〈A〉 begins with token

[x ∈R], the initial condition of 〈A〉 is R. It is critical that GM and GM
′ are given the same

input. The input u the our only way to influence the path of the system to make it correct.

93

To shorten the notation, let GM|u′,x′0 be Motion Grammar GM subject to initial condition x′0

and input u′, and likewise for the language LGM |u′,x′0 . We merge the simulation and correct-

ness definitions as follows:

Lemma 4. GM �c GM
′∧u(t)= u′(t)∧x0 = x′0∧correct

{
GM
′,L′

s

}
=⇒ correct

{
GM|x′

0
,u′ ,L

′
s

}
,

where L
′
s,L
′
GM

,L′
GM |u′,x′0

⊆ Z′∗.

Proof. From Def. 14, GM �c GM
′ ∧ u(t) = u′(t)∧ x0 = x′0 =⇒ x(t) = x′(t). From Def.

19, x(t) = x′(t) =⇒ L
′
GM

= L
′
GM |u′,x′0

. From Def. 17 and Def. 14, L′
GM

= L
′
GM |u′,x′0

∧

correct{GM,L′
s
} =⇒ correct

{
GM|x′

0
,u′ ,L

′
s

}

From this, we can determine allowable derivations based on simulation �c, initial state

x0, and input u. Note that since derivations need not preserve the discrete token set Z, we

must specify the correctness language L
′
s over token set Z′. With 4, we can now identify a

set of symbolic transformations to apply to any Motion Grammar.

4.5.4 Rewrite Rules

To derive grammars for safe, Context-Free systems, we introduce a calculus of symbolic

transformation rules for constructing a correct hybrid controller. This process begins with

some initial model the hybrid system. The rules then rewrite the model step-by-step, al-

ways adhering to the simulation relation and 4 so that the correctness of the derived model

implies correctness for our system. Thus we effectively change the system language until

it satisfies our specification. Through this derivation process, we modify the behavior of

the system to make it correct.

In each rule, we start with some grammar GM and derive a grammar GM
′. A rule is

valid only if correct
{
GM
′,L′

s

}
=⇒ correct

{
GM|x′

0
,u′ ,L

′
s

}
, which we will prove using 4.

In the notation for these rules, we specify some precondition on the structure of elements

of the production set P, and then specify the resulting token set Z′, nonterminal set V ′ and

production set P′.

94

4.5.4.1 Input

First, consider the very simple transformation of specifying an input u to illustrate this

process. When the continuous dynamics are in the form ẋ = f0(x,u), we can always specify

an input u.

Transform 1. Given p = A→ α f0(x,u)β , define f (x) = f0(x,g(x)). Then the new produc-

tion set is P′ = P− p∪{A→ α f (x)β}.

Proof. For this transform to be allowable, it must satisfy the preconditions of 4. Namely

we must have GM �c GM
′∧u(t) = u′(t)∧ x0 = x′0. Using GM

′ to control the system means

our input is given by u′(t). Since we do not change the start symbol S, the initial condition

x0 = x′0. Finally, in the modified production p, ẋ′ = f (x) = f0(x,g(x)) = f0(x,u
′(t)), so

ẋ′ = ẋ|u′ . Thus, x0 = x′0∧ ẋ′ = ẋ|u′ =⇒ x(t) = x′(t) =⇒ GM �c GM
′. Thus, we satisfy the

preconditions of 4 and can use correct
{
GM
′,L′

s

}
to decide correct{GM,L′

s
}.

4.5.4.2 Token Splitting

A region represented by a token can be split into two regions, creating two new tokens. We

then create new productions for these new regions.

Transform 2. Given some ζ0 = [x ∈R0]∈Z, create tokens ζ1 = [x ∈R1] and ζ2 = [x ∈R2]

such that R1∪R2 = R0∧R1∩R2 = /0 and update token set Z′ = Z− ζ0∪{ζ1,ζ2}. The

new nonterminal set is V ′ = V ∪{A0,A1,A2,A3,A4}. The new production set is P′ = P−

{(A→ α1ζ0κα2) ∈ P}∪{(A→ α1A0) ,(A0→ A1|A2) : (A→ α1ζ0κα2) ∈ P}∪{(A1→ ζ1κA3) ,(A2→ ζ2

{(A3→ A2|α2) ,(A4→ A1|α2) : (A→ α1ζ0κα2) ∈ P}.

Proof. Following the form of the proof for Transform 1, we need to show that x(t) =

x′(t). Since we have not modified the continuous dynamics, we need only show that the

discrete dynamics of GM
′ permit the same paths as in GM. In GM, for some production

A→ α1ζ0κα2, the system may pass from the region of α1 into R0 and then on to the

region of α2. When we split R0, there are six cases to consider: Rα1
→R1, Rα1

→R2,

95

R1→Rα2
, R2→Rα2

, R1→R2, R2→R1. These cases are handled respectively by the

added productions A0→ A1, A0→ A2, A3→ α2, A4→ α2, A3→ A2, and A4→ A1. Thus

all paths from GM and matched by GM
′, so GM �c GM

′.

4.5.4.3 Adjacency Pruning

If two regions in state space are not adjacent, then the system may not pass directly between

them. Thus we can eliminate productions which allow this to happen.

Transform 3. For p1 = A→ rAκAB, B→ β1| . . . |βn, if rA is not adjacent to R0(βn) WLOG,

then P′ = P− p1∪{A→ rAκAB′}∪{B′→ β1| . . . |βn−1}

Proof. To show x(t) = x′(t), we prove by contradiction. We can say that x(t) = x′(t) if and

only if the removed production is unreachable, that is, the system GM will never pass from

rA to R0(βn). Now, assume x(t) 6= x′(t). Then GM must pass from rA to R0(βn). Since

these two regions are not adjacent, this is a contradiction. Thus, we must have x(t) = x′(t),

so GM �c GM
′.

4.5.4.4 Barrier Pruning

The continuous dynamics f provide information that may be used to remove grammar

productions. Using Theorem 5, we can show whether the system following ẋ = f (x) may

cross into any of the regions specified in the grammar.

Transform 4. For p1 = A→ rAκAB, B→ β1| . . . |βn, if WLOG L f s(p)< 0 for all p along

the level set s(x) = 0 which borders regions rA and R0(βn), then P′ = P− p2.

Proof. To show x(t) = x′(t), we prove by contradiction. We can say that x(t) = x′(t) if

and only if the removed production is unreachable, that is, the system GM will never pass

from rA to R0(βn). Now, assume x(t) 6= x′(t). Then GM may pass from rA to R0(βn). By

Theorem 5 and L f s(p)< 0∀p∈ {x : s(x) = 0}, this is a contradiction. Thus, we must have

x(t) = x′(t), so GM �c GM
′.

96

4.5.4.5 Bounce Pruning

If the system in moving from region r1 to region r2 will immediately reenter r1, then we can

eliminate productions showing that the system will pass through r2 into some third region.

Transform 5. Given productions p1 =A→ r1κAB, p2 =B→ r2κBC, and p3 =C→ r1κBα ,

if LκB
s21(x)> 0 ∀x∈{x : s21(x) = 0}, then P′=P− p1− p2∪{(A→ r1κAB′) ,(B′→ r2κBr1κBα)}

Proof. To show x(t) = x′(t), we must account for the removed productions by proving the

system will not pass from r1 to r2 to some other region in R0(C)− r1. Instead, the system

must immediately return to r1 from r2. This is given directly by Theorem 5 and the Lie

derivative LκB
s21(x)> 0 ∀x ∈ {x : s21(x) = 0}, indicating that under mode κB this system

will move off s12(x) =−s21(x) = 0 in the direction of r1. Thus, p2 will expand nonterminal

C with p3, according to the sequence given by the additional productions in P′.

4.5.5 Using the Calculus to Enforce Correctness

These rules provide important capabilities to work with hybrid models. Transform 1 allows

us to specify the input to the robot to drive toward desired tokens. Transform 2 allows us to

introduce new surfaces where we can discretely switch control inputs. Transform 3, Trans-

form 4, and Transform 5 allow us to remove productions from the grammar. We can use this

to satisfy a correctness constraint by eliminating certain bad productions causing the con-

straint violation. Thus, we can systematically produce a grammatical model implementing

correct operation.

4.5.6 Safe Regions and New Switching Surfaces

Using our conservative reachability test from Theorem 5 and the rewrite rules of subsec-

tion 4.5.4, we can identify safe operating regions and consequently switching surfaces to

maintain safe operation. Consider the example in Fig. 57 where there is some region with

good and bad exit boundaries. Here, we wish to ensure that the system will cross the good

97

M1M ′

M2

Figure 57: Splitting the region based on ẋ = f (x) at each boundary.

manifold bounding R0, M1, and that it will not cross the other bad other manifold M2. As-

sume the continuous dynamics in R0 are ẋ= f0(x,u) and we have some controller u= g(x),

so that we can write the resulting system as the smooth function ẋ = f0(x,g(x)) = f (x).

Then we can consider the Lie derivatives along each manifold M1 and M2, L f s1 and

L f s2 respectively. If both L f s1 and L f s2 are positive, then for x close to M1 and M2, the

system will cross both the safe and the unsafe boundaries. To indicate the safe subregion

of R0, we introduce a new boundary M ′ separating M1 and M2. M ′ bounds the region

of inevitable collision. By always staying to one side of M ′, we can be assured that by

applying input function u = g(x), we will not cross the unsafe boundary.

For this boundary notion to be useful during the online control of the system, we must

be able to quickly test during each control cycle on which side of the boundary the system

currently resides. If we express the manifold as M ′ = {x : s(x) = 0}, then the sign of s(x)

will give the current side of the manifold. Thus, we must find some representation for s(x)

to evaluate in our control program.

We can describe the boundary between safe and unsafe regions based on the idea that

boundary M ′ is composed of the family of integral curves leading to the intersection of

the safe and unsafe exit surfaces. That is, for every point along M ′, the system dynamics

ẋ = f (x) will drive x to the intersection of the two exit surfaces M1 and M2. This descrip-

tion leads to the following two geometric properties of M ′ = {x : s(x) = 0}. First, the

gradient of s(x) is orthogonal to the system vector field f (x). Second, the gradient of s(x)

is orthogonal to the intersection MC of our two exit surfaces M1 and M2.

Theorem 6. ∇s(x)⊥ f (x)

98

Proof. Consider some point p on M ′, s(p) = 0. Point p moves according to ṗ = f (p), and

d
dt

s(p) = 0. d
dt

s(p) = ∂ s
∂ p

T d p
dt

= (∇s)(f) = 0. Since the inner product of ∇s(x) and f (x) is

always zero, they must be orthogonal.

Theorem 7. Let Mc =
{

x : x = p(v),v ∈ R
n−2
}

, then ∇s(x)⊥ ∂ p
∂vi

.

Proof. Since Mc ⊂M ′, ∂ s(p(v))
∂vi

= 0. Then
∂ s(p(v))

∂vi
= ∂ s

∂ p

T ∂ p
∂vi

= (∇s)
(

∂ p
∂v

)
.

From Thm. 6 and 7, we can derive ∇s by finding the vector that satisfies the two

orthogonal relations. For any vector ξ , we can find a vector ξ ′ orthogonal to ψ = f (x) or

ψ = ∂ p
∂v

using a projection.

ξ ′ = ξ −projψξ = ξ − 〈ξ ,ψ〉
‖ψ‖2

ψ (27)

Thus, we form ∇s by symbolically applying the Gram-Schmidt procedure.

∇s = ℓ−proj f (x)ℓ−proj ∂ p
∂v1

ℓ− . . .−proj ∂ p
∂vn−2

ℓ (28)

Equation (28) is useful when we can express ∇p in a form that does not include any v. For

example, when Mc is linear, p(v) = Mv and ∇p = M. Then, with ∇s known, we can solve

the following initial value problem to find s(x),

s0 = g(0)
∂ s

∂xi
= (∇s)i (29)

While (28) provides an analytic form for the gradient, solving (29) is nontrivial. Approxi-

mations such as a Taylor series or Padé approximant can be directly computed from (28).

4.5.7 Example Derivation

We now demonstrate this derivation approach with a simple example. Consider a mobile

robot moving in one dimension, x1, with a battery, x2, that discharges as it moves. There is

a recharging station at the zero position. When the battery level falls to zero, the robot can

no longer operate. The continuous state space and initial grammar are shown in 58(a). The

initial grammar for this system is given in 58(c).

99

x1

x2

Rs

Rm

Rd

(a) Initial Regions

x1

x2 Rs+

Rs−
Rm+

Rm−

Rd

(b) Derived Regions

〈S〉 → [s]
{

ẋ =
[
u ks

]T}〈M〉 (30)

〈M〉 → [m]
{

ẋ =
[
u −|u|

]T}〈N〉 (31)

〈N〉 → 〈S〉 | 〈D〉 (32)

〈D〉 → [d]{ẋ = 0} (33)

(c) Initial Grammar

Figure 58: Initial grammar for 1-dimensional battery robot.

Because we want the robot to keep operating, its battery should never run down. This

constraint is expressed in LTL:

Gs =✷(¬ [d]) (34)

The initial grammar does not satisfy (34). For example, the grammar generates the string

[s] [m] [d], which violates the constraint. Thus, we must apply our transformations to the

grammar in order to make it correct.

There are two main ideas to satisfying (34). First, the robot must not go far too from

the charger, ensuring that it has enough charge to return. Second, the robot must wait in the

charger to recharge. We apply these ideas in the derivation:

1. In (31), apply Transform 2 to split [m]. See new regions in 58(b).

100

〈M〉 →
✘✘✘✘✘✘✘✘✘✘✘✘

[m]

{
ẋ =

[
u −|u|

]T
}
〈N〉 (35)

| 〈M1〉|〈M2〉 (36)

〈M1〉 → [m+]

{
ẋ =

[
u −|u|

]T
}
〈M3〉 (37)

〈M2〉 → [m−]
{

ẋ =
[
u −|u|

]T
}
〈M4〉 (38)

〈M3〉 → 〈M2〉|〈N〉 (39)

〈M4〉 → 〈M1〉|〈N〉 (40)

2. Duplicate (37) and replace in (40).

〈M〉 → 〈M1〉|〈M2〉 (41)

〈M1〉 → [m+]

{
ẋ =

[
u −|u|

]T
}
〈M3〉 (42)

〈M2〉 → [m−]
{

ẋ =
[
u −|u|

]T
}
〈M4〉 (43)

〈M3〉 → 〈M2〉|〈N〉 (44)

〈M′1〉 → [m+]

{
ẋ =

[
u −|u|

]T
}
〈M3〉 (45)

〈M4〉 → ✟✟✟〈M1〉〈M′1〉|〈N〉 (46)

3. In (43) and (45), apply Transform 1 to specify input u =−x.
. . .

〈M2〉 → [m−]
{

ẋ =
[
−x −|x|

]T
}
〈M4〉 (47)

〈M′1〉 → [m+]

{
ẋ =

[
−x −|x|

]T
}
〈M3〉 (48)

. . .

To simplify notation: κ− ≡
{

ẋ =
[
−x −|x|

]T
}

.

4. Consider the Lie derivative between [m+] and [m−] according to κ−. M : −1.5x1 + x2 = ε , x =
[
1.5v v+ ε

]T

, v > 0, ∇s =
[
−1.5 1

]T

, Lκ−s|M = 1.52v+ v+ ε , always positive. In (47), (46),

(48), apply Transform 5,

101

〈M〉 → 〈M1〉|〈M2〉 (49)

〈M1〉 → [m+]

{
ẋ =

[
u −|u|

]T
}
〈M3〉 (50)

〈M2〉 → [m−]
{

ẋ =
[
u −|u|

]T
}
〈M4〉 (51)

〈M3〉 → ✟✟✟〈M2〉〈M′2〉|〈N〉 (52)

〈M′1〉 → [m+]

{
ẋ =

[
u −|u|

]T
}
〈M3〉 (53)

〈M4〉 → 〈M′1〉|〈N〉 (54)

〈M2〉 → [m−]
{

ẋ =
[
−x −|x|

]T
}
〈M4〉 (55)

〈M′1〉 → [m+]

{
ẋ =

[
−x −|x|

]T
}
〈M3〉 (56)

〈M′2〉 → [m−]κ− [m+]κ−〈M3〉 (57)

Thus, when the system moves from [m+] to [m−], it will switch to mode κ− to return to the charging

station.

5. Apply Transform 3 and Transform 4.

〈M〉 → 〈M1〉|〈M2〉 (58)

〈M1〉 → [m+]

{
ẋ =

[
u −|u|

]T
}
✟✟✟〈M3〉〈M′3〉 (59)

〈M2〉 → [m−]
{

ẋ =
[
u −|u|

]T
}
〈M4〉 (60)

〈M3〉 → 〈M′2〉|〈N〉 (61)

〈M′3〉 → 〈M′2〉|〈S〉 (62)

〈M′1〉 → [m+]

{
ẋ =

[
u −|u|

]T
}
✟✟✟〈M3〉〈M′3〉 (63)

〈M4〉 → 〈M′1〉|〈N〉 (64)

〈M2〉 → [m−]
{

ẋ =
[
−x −|x|

]T
}
〈M4〉 (65)

〈M′1〉 → [m+]

{
ẋ =

[
−x −|x|

]T
}
〈M3〉 (66)

〈M′2〉 → [m−]κ− [m+]κ−✟✟✟〈M3〉〈S〉 (67)

6. Switch now to (30) and split [s].

102

〈S〉 →
✘✘✘✘✘✘✘✘✘✘
[s]

{
ẋ =

[
u ks

]T
}
〈M〉 (68)

| S〈S1〉|〈S2〉 (69)

〈S1〉 → [s+]

{
ẋ =

[
u ks

]T
}
〈S3〉 (70)

〈S2〉 → [s−]
{

ẋ =
[
u ks

]T
}
〈S4〉 (71)

〈S3〉 → 〈S2〉|〈M〉 (72)

〈S4〉 → 〈S1〉|〈M〉 (73)

7. Give input u =−x.

〈S〉 → 〈S1〉|〈S2〉 (74)

〈S1〉 → [s+]

{
ẋ =

[
u ks

]T
}
〈S3〉 (75)

〈S2〉 → [s−]
{

ẋ =
[
u ks

]T
}
〈S4〉 (76)

〈S3〉 → 〈S2〉|〈M〉 (77)

〈S4〉 → 〈S1〉|〈M〉 (78)

8. Consider Lie derivative between [s−] and [m] according to

{
ẋ =

[
−x ks

]T
}

:

• M : s(x) = x1 =±ε , x =
[
±ε v

]T

, v > 0

• ∇s =
[
±1 0

]T

• Lκ−s|M =−ε always negative

Consider Lie derivative between [s+] and [s−] according to

{
ẋ =

[
u ks

]T
}

:

• M : s(x) =−x2 =−k, x =
[
v −k

]T

, |v|< ε

• ∇s =
[
±0 −1

]T

• Lκ−s|M =−ks always negative

9. Apply Transform 4.

〈S〉 → 〈S1〉|〈S2〉 (79)

〈S1〉 → [s+]

{
ẋ =

[
u ks

]T
}
✟✟〈S3〉〈M〉 (80)

〈S2〉 → [s−]
{

ẋ =
[
−x ks

]T
}
✟✟〈S4〉〈S1〉 (81)

103

10. Combine 〈S〉 and 〈M〉.
〈S〉 → 〈S1〉|〈S2〉 (82)

〈S1〉 → [s+]

{
ẋ =

[
u ks

]T
}
〈M〉 (83)

〈S2〉 → [s−]
{

ẋ =
[
−x ks

]T
}
〈S1〉 (84)

〈M〉 → 〈M1〉|M2 (85)

〈M1〉 → [m+]

{
ẋ =

[
u −|u|

]T
}
〈M3〉′ (86)

〈M2〉 → [m−]κ−〈M4〉 . . . (87)

11. Apply Transform 3.

. . .〈M〉 → 〈M1〉✟✟✟|〈M2〉 . . . (88)

12. Remove unreferenced and singleton productions.✬

✫

✩

✪

〈S〉 → 〈S1〉|〈S2〉

〈S1〉 → [s+]

{
ẋ =

[
u ks

]T
}
〈M1〉

〈S2〉 → [s−]
{

ẋ =
[
−x ks

]T
}
〈S1〉

〈M1〉 → [m+]

{
ẋ =

[
u −|u|

]T
}
〈M′3〉

〈M′3〉 → 〈M′2〉|〈S〉

〈M′2〉 → [m−]κ− [m+]κ−〈S〉

We have derived a grammar which guarantees the robot will never discharge. Note that

within the production for 〈M〉, we have produced a safe operating region as given in sub-

section 4.5.6.

4.6 Composing Mapping and Manipulation

In this section, we combine semantic maps with hybrid control models, generating a di-

rect link between action and environment models to produce a control policy for mobile

manipulation in unstructured environments. First, we generate a semantic map for our

environment and design a base model of robot action. Then, we combine this map and ac-

tion model using the Motion Grammar Calculus to produce a combined robot-environment

model. Using this combined model, we apply supervisory control to produce a policy for

104

the manipulation task. We demonstrate this approach on a Segway RMP-200 mobile plat-

form

Semantic mapping and hybrid control are both effective approach within robotics. Se-

mantic mapping produces detailed models of unstructured environments [134, 139, 175,

178, 179]; however, this approach provides no direct link to robot action. Hybrid mod-

els combine continuous and discrete robot dynamics to efficiently and verifiably represent

robot action [6, 14, 42, 43, 45, 81]; however, there is no automatic method to produce

control models for large, complicated systems. While superficially, it appears that seman-

tic mapping and hybrid control are fundamentally different approaches, they are actually

closely related. The topological graph of a semantic map and the discrete event system of a

hybrid control model are both instances of formal language. Thus, we propose to combine

the linguistic representations of semantic maps and robot action models to produce an effi-

cient and verifiable control policy for mobile manipulation in unstructured environments.

This work focuses on the application domain of service robots in human environments.

Previously, we developed new techniques for mapping using Semantic SLAM [134, 179]

and for hybrid systems using our Motion Grammar [42, 43, 45]. Here, we integrate these

approaches to produce a combined robot-environment action model. Then, we apply es-

tablished methods in supervisory control [25] to derive a robot control policy for a mobile

manipulation task. This control design approach formally guarantees that the resultant pol-

icy satisfies the task specification. Finally, we demonstrate of this approach on a Segway

RMP-200 mobile robot.

Simultaneous Localization and Mapping (SLAM) is the concurrent pose estimation of

both the robot and objects in its environment. This is a well studied area with many use-

ful results. Smith and Cheeseman [163] proposed one of the first solutions to the SLAM

problem using the Extended Kalman Filter (EKF) to jointly represent the landmark posi-

tions along with the robot pose. Folkesson and Christensen developed GraphSLAM [67],

an efficient solution to the SLAM problem which preserves landmark independence and

105

is able to find loop closures through nonlinear optimization. Semantic SLAM augments a

map with semantically relevant object labels. In this work, we utilize the Semantic SLAM

method of Trevor and Nieto [134, 178, 179] to compose a map and hybrid controller.

There are several related techniques and alternative approaches for the service robotics

domain. Topp and Christensen, [175, 176], provide a separation of regions relating to a

user’s view on the environment and detection of transitions between them. O’Callaghan

[139] developed a new statistical modeling technique for building occupancy maps by pro-

viding both a continuous representation of the robot’s surroundings and an associated pre-

dictive variance employing a Gaussian process and Bayesian learning. In this work we fo-

cus on integrating robot mapping with hybrid control methods. The notion of affordances

originated in Psychology [71] to describe interaction between agents and environments

and has previously provided inspiration for robotics research [155]. We rather focus our

approach on direct symbol manipulation techniques with clear algorithmic implementation.

Simultaneous Localization and Mapping (SLAM) is the concurrent execution of both

Localization and Mapping on a robot. Localization means determining the current po-

sition of the robot based on observations. Mapping means determining the positions of

objects in the environment based on observations. Typical SLAM implementations com-

bine odometry and other geometric measurements such as point clouds or camera features

to simultaneously produce an estimate of the position of both the robot and objects. Using

this technique, the robot models unstructured environments.

We use an existing mapping system to identify surfaces and connected free spaces in the

world [178, 179]. We use the surfaces, such as walls and tables, to localize the robot based

on its relative position to these object. We represent free spaces as Gaussian regions in R
3

with mean at the center of the free space and standard deviation indicating the dimensions

of the free space [134]. Topological connections between these Gaussian regions indicate

connected free spaces in the environment. For example, a door or hallway between two

rooms would connect the Gaussian regions for those rooms.

106

Policy G′Supervisor G∩SSystem G

Spec. S

MGC G0 ❀ G

Map M

Action G0

Figure 59: Sequence of operations to generate policy.

HALLKITCHEN

BEDROOM

GARAGE

LIVING ROOM

BATHROOM

(a) Semantic Map M

〈S〉 → [room]〈S〉
| [object] [pick]〈S′〉

〈S′〉 → [room]〈S′〉
| [place]〈S〉

(b) Base Grammar G0

Figure 60: Example of Semantic Map M and base manipulation grammar G0. This map

represents the Georgia Tech Aware Home.

We then extend the metric and topological information of the map surfaces and con-

nected Gaussians with additional semantic information by labeling each of the Gaussian

regions. These Semantic Maps provide useful information for navigation and localization

of the robot. In addition, the semantic content of the map permits higher-level reasoning

about the spatial regions of the environment. We exploit this semantic information in our

composition of the map with a grammar for robot action.

4.6.1 Composing Maps and Grammars

We produce the control policy for the robot by composing a semantic map and a base action

grammar, following Fig. 59. We will explain this approach using the example map for the

Georgia Tech Aware home, 60(a), and the base grammar for mobile manipulation, 60(b).

First, we convert the map graph into a grammar for the map language. Then, we compose

the map grammar and the action grammar using the Motion Grammar Calculus (MGC) to

model the robotic system operating within the mapped environment. Finally, we produce a

task policy by applying a supervisory controller to this system model.

107

BATHROOM
BEDROOM
GARAGE

KITCHEN
HALL LIVING ROOM

LIVING ROOM

HALL

10 32start

(a) Map Automaton

✬

✫

✩

✪

〈0〉 → [hall]〈1〉
〈1〉 → [bathroom]〈0〉

| [bedroom]〈0〉
| [garage]〈0〉
| [livingroom]〈2〉

〈2〉 → [hall]〈1〉
| [kitchen]〈3〉

〈3〉 → [livingroom]〈2〉

(b) Map Grammar

Figure 61: Representing maps with formal language.

To better analyze the semantic map, we first represent this map using formal language.

The Gaussian free space regions of the map are arranged in a graph, indicating connectivity

between these regions. The graph for the Aware Home is 60(a). This graph is equivalent to

a Regular Language representing the set of all traces through the map.

Definition 20. Let Map M = (N,V), where N is a finite set of location symbols, and V ⊂

N×N is the set of adjacent symbols ni→ n j.

We can transform any Map M into a regular grammar. We note that when analyzing

Finite Automata, the language symbols are typically given along transitions [4, 86] wheres

in a map, location symbols mark a state. For regular languages, these two conventions –

terminal language symbols on states and terminal language symbols on edges – are equiva-

lent. algorithm 11 transforms the state terminal map to an edge terminal automaton. Then,

we can directly convert this automaton to a Regular Grammar.

We demonstrate the conversion for the map in 60(a). First, we apply algorithm 11 to

produce a FSM from the map graph. Since the output of this algorithm is a Nondeterminisic

Finite Automaton with more than the minimum necessary number of states, we convert

the NFA to a DFA [4, p152] and minimize the number of DFA states with Hopcroft’s

Algorithm [4, p180]. This result is 61(a). Note that in this example, we save two states

over the original map in 60(a). Finally, we convert the FSM to the Regular grammar in

61(b).

108

Algorithm 11: State to Edge Symbols

Input: Q ; // Initial States

Input: E : Q×Q ; // Initial Edges

Output: Q′ ; // Final States

Output: Z′ ; // Edge Symbols

Output: E ′ : Q′×Z′×Q′ ; // Final Edges

1 Z′ = Q;

2 Q′ = E ;

3 E ′ = /0;

4 forall the q ∈ Q do

5 forall the (ei = Q→ q) ∈ E do

6 forall the (e j = q→ Q) ∈ E do

7 E ′ = E ′∪ ei
q−→ e j

4.6.2 Composition using the Motion Grammar Calculus

In order to semantically merge the robot and environment models, we apply our Motion

Grammar Calculus (MGC) rewrite rules. According to these rules, we extend our action

grammar with each map symbol while maintaining only those transitions allowed by the

map. While supervisory control can only operate to restrict system G using existing sym-

bols, the MGC crucially describes how to introduce new symbols into G. There are two

relevant rewrite rules from the MGC that we use here.

By applying these transforms, we can introduce the map symbols into the action gram-

mar while preserving the validity of the model. Each derivation step maintains the com-

pleteness of the model according to the path of the hybrid system. By assuming that the

initial model is complete, this ensures that all derived models are also complete.

In addition to these two transforms, we also use the first() and follow() sets [4] to define

initial and adjacent symbols. The first() set defines all terminals which may begin some

derivation of a grammar symbol. The follow() set defines all terminals which may appear

immediately to the right of some symbol in a grammatical derivation [4][p221].

Definition 21 (First Set). Define first(X) for some grammar symbol X to be the set of

terminals which may begin strings derived from X.

109

Definition 22 (Follow Set). Define follow(X) for grammar symbol X to be the set of termi-

nals a that can appear immediately to the right of X in some sentential form.

Note that for map grammars such as 61(b), the follow set for each terminal symbol is

equivalent to the adjacent nodes in the map graph 60(a).

Proposition 6. Given a grammar G representing some map M, follow(z) of some terminal

symbol z of G represents the set of all map locations adjacent to z.

Algorithm 12 describes how we apply these transforms to compose the Map and Ac-

tion grammars. First, we introduce all map symbols into the action grammar by repeatedly

splitting the initial terminal symbol of the action grammar by direct application of Trans-

form 2. Next, we prune out productions indicating transitions between non-adjacent map

locations. To prune these productions, we apply Transform 3 by intersecting the grammar

with sets of allowable transitions. The disallowed transitions are indicated by the regular

expression L = (.∗z1ZA
∗z2.
∗) in line 8 of algorithm 12. The complement of this regular

expression defines all paths which do not move directly from z1 to z2. Since z1 and z2 are

non-adjacent, intersecting with L will preserve only paths which do not contain the disal-

lowed transition. The result is a grammar which contains the original action model and all

permissible transitions from the semantic map.

We apply algorithm 12 to combine the map grammar, 61(b), with the base grammar for

mobile manipulation, 60(b). In this process, the initial nonterminal of the base grammar,

[room], is repeatedly split into all the symbols of the semantic map. Then all transitions be-

tween non-adjacent map symbols are pruned away. This produces the combined grammar

of 67(a).

4.6.3 Supervisory Control

Finally, we use supervisory control to produce the policy G′ from our system model G and

task specification S, [25, p133]. This application of supervisory control will permit only

110

Algorithm 12: Composing Map and Action Grammars

Input: (ZM,VM,PM,SM) ; // Map Grammar

Input: (ZA,VA,PA,SA) ; // Action Grammar

Output: (Z,V,P,S) ; // Combined Grammar

1 (Z,V,P,S)← (ZA,VA,PA,SA) ;

/* Add map symbols by splitting first(SA) */

2 z0 = first(SA);
3 forall the z ∈ ZM do

4 (Z,V,P,S)← Transform 2 to split z0 into z and z0

/* Prune non-adjacent map symbols */

5 forall the z1 ∈ ZM do

6 forall the z2 ∈ ZM do

7 if z2 6∈ follow(z1) then

8 (Z,V,P,S)← (Z,V,P,S)∩L{.∗z1ZA
∗z2.∗} ;

those transitions of the model G which are also contained in specification S. We represent

this as the intersection,

G′ = G∩S (89)

Given that G is Context-Free and S is Regular, we use the algorithm defined in [86, p135]

to produce Context-Free G′, ensuring that we can efficiently execute the policy given by

G′. This algorithm operates on a Context-Free language model for system G and a Regular

language specification for correct operation S with the assumption that we can block any

undesirable transitions in G. The corrected system language, then, is G′ = G∩S, where G′

is also Context-Free. We note in addition that to prune non-adjacent regions permitted by

Transform 3 in algorithm 12, we apply this same language intersection operation.

4.6.4 Mobile Manipulation Demonstration

We implemented this approach on a Segway RMP-200 mobile platform as shown in Fig. 62.

This platform is equipped with an ASUS Xtion PRO LIVE camera, providing RGBD in-

formation for plane and surface extraction and with a UTM-30LX Hokuyo laser used to

label the spatial regions as Gaussian models. It includes a Schunk parallel jaw gripper to

111

(a) Aware Home (b) RIM Center (c) Picking

Figure 62: Segway RMP-200 mobile platform in the Georgia Tech Aware, the RIM Cen-

ter, and picking a soda can.

manipulate objects. We conducted the experiments in the Georgia Tech Aware Home [102]

and RIM center.

For both of the home and office environments, we first drove the robot through each area

collecting 3D point clouds, laser, and odometry. Our mapper extracts planes and surfaces

in the environment, building the map and localizing the robot. During the navigation, the

robot partitions the environment into Gaussian regions. This produces the Gaussian map in

Fig. 63. Then, we annotate the Gaussian regions of the map with semantic labels. The result

is a graph, shown previously for the Aware Home in 60(a) and also for the RIM center in

Fig. 64. This resulting map is suitable for both human interpretation and automatic symbol

manipulation.

Next, we apply the method described in subsection 4.6.1 to generate the symbolic model

for the robot in each of the environments. For the Aware home, this model is given in 67(a),

and for the RIM center in Fig. 64. For the Aware Home, we asked the robot to peform the

following task, Collect a soda from the kitchen and bring it to the bedroom, expressed as

the specification in 67(b). For the RIM Center, we apply a similar supervisor in 65(b) to

collect a soda from kitchen and bring it to library.

The policy for the task in the RIM environment, 65(c), is more complicated than for

the Aware Home, 67(c). This is because the RIM map contains multiple paths between

all rooms. Thus, all these possible paths are captured in the control policy grammar. The

112

Figure 63: Generated Semantic Maps for the Aware Home. In the map, black shows

3D robot model, gray shows point clouds, yellow shows connected Gaussian regions (blue

edges), and red shows the surfaces.

(a) RIM Map

OFFICE

FOYER

STUDENT HALL

KITCHEN

LIBRARY
FRONT HALL

(b) RIM Graph

LIBRARY

STUDENT HALL

KITCHEN
OFFICE

FOYER
FRONT HALL

FOYERFRONT HALL

KITCHEN

OFFICE

STUDENT HALL

LIBRARY

STUDENT HALL

start 10

3
2

5

4

(c) RIM FSM

Figure 64: Generated Semantic map of Georgia Tech RIM Center and the equivalent

graph and Finite Automata forms.

113

✬

✫

✩

✪

〈S0〉 → [s]〈S〉
〈S〉 → [r]〈R〉 | [o]〈O〉 | [k]〈K〉 | [pick]〈S′〉
〈O〉 → [s]〈S〉 | [f]〈F〉 | [pick]〈O′〉
〈K〉 → [s]〈S〉 | [f]〈F〉 | [pick]〈K′〉
〈F〉 → [o]〈O〉 | [k]〈K〉 | [l]〈L〉 | [pick]〈F′〉
〈L〉 → [f]〈F〉 | [r]〈R〉 | [pick]〈L′〉
〈R〉 → [l]〈L〉 | [s]〈S〉 | [pick]〈R′〉
〈S′〉 → [r]〈R′〉 | [o]〈O′〉 | [k]〈K′〉

| [place]〈S〉
〈O′〉 → [s]〈S′〉 | [f]〈F′〉 | [place]〈O〉
〈K′〉 → [s]〈S′〉 | [f]〈F′〉 | [place]〈K〉
〈F′〉 → [o]〈O′〉 | [k]〈K′〉 | [l]〈L′〉

| [place]〈F〉
〈L′〉 → [f]〈F′〉 | [r]〈R′〉 | [place]〈L〉
〈R′〉 → [l]〈L′〉 | [s]〈S′〉 | [place]〈R〉

(a) Uncontrolled: G

• Let R = {[s] , [k] , [o] , [f] , [l] , [r]}

• Pick object in kitchen:

S0 = .∗ [k] (¬R)∗ [pick] .∗

• Place object in library:

S1 = .∗ [l] [place]$

• Move the object only once:

S2 = (¬ [place])∗ [place]¬([pick])∗

• Let X = (¬ [x])∗ [x] (¬ [x])∗

• Don’t revisit rooms:

S3 =
⋂
[x]∈R X (([pick] | [place])X)∗

(b) Supervisor: S✬

✫

✩

✪

〈S0〉 → [s]〈S〉
〈S〉 → [k]〈K〉 | [r]〈R〉 | [o]〈OL〉
〈K〉 → [pick]〈K′〉
〈R〉 → [l]〈OL〉
〈OL〉 → [f]〈F〉
〈F〉 → [k]〈K〉
〈K′〉 → [f]〈F′〉 | [s]〈S′〉
〈F′〉 → [l]〈L′〉 | [o]

[
O′
]

〈S′〉 → [r]〈R′〉
〈O′〉 → [s]〈S′〉
〈R′〉 → [l]〈L′〉
〈L′〉 → [place]

(c) Controlled: G′

Figure 65: Grammars for the Uncontrolled and Controlled mobile manipulator in the

RIM Center. Notice how the policy captures all possible paths through the environment

that satisfy the specification.

114

Living Room

Kitchen

Hall
Bedroom

[h]

START

[l]

[k][object][pick]

[l] [h]

[b][place]

[h]

HALT

Figure 66: Path of the robot following controller in 67(c) and (91), shown as robot enters

the living (green oval). Solid blue lines show the map connections between rooms, and

dotted red lines show the robot path.

result is the nine strings represented by the following regular expression,

G′ = (k|rl f k|ol f k) [pick] (f l| f osrl|srl) [place] (90)

These generated policies direct the robot along the path to complete the specified task.

For the Aware Home, the robot fetches the object from the kitchen and delivers it to the

bedroom, illustrated in Fig. 66. This figure shows the path of the robot, both as a trajectory

though the map and as the sequence of language symbols.

4.6.5 Discussion

In this approach, we combine a Semantic Map and a Motion Grammar using the Motion

Grammar Calculus (MGC). This ensures the validity of our final system model because

each transform of the MGC preserves completeness of the model. Then, applying a super-

visory controller guarantees that the final policy is correct with regard to the specification.

Thus, the overall approach is correct-by-construction in the sense that the final system

model is guaranteed by the MGC to simulate our initial system, and the resultant policy

satisfies the supervisory control specification.

115

The defining characteristic of this method is the uniform representation of the set of all

robot paths as a language with an explicit grammar. This representation allows iterative

development of the grammatical control policy by the progressive application of MGC

transformations and supervisory control specifications. At each step of this derivation, the

mechanical application of the MGC transforms and supervisory control ensures that we

maintain a valid model of the system. Furthermore, because the policy for each task is

itself a grammar, we can compose multiple individual task policies to produce a system to

perform each of those tasks, all within the same grammatical framework. We expect these

capabilities for incremental design and policy composition to be useful as we extend our

work to multiple tasks and more complicated systems with larger grammars.

While search-based motion planning could perform some of the tasks in this paper,

there are certain advantages given by our linguistic formulation and use of supervisory

control for policy generation. Random-sampling planners such as RRTs and PRMs assume

a continuous search space, while our application domain includes discrete features for de-

tecting and manipulating objects. General search based planning assumes an explicit goal

state and produces a plan to reach that state. In contrast, the linguistic approach considers

the set of acceptable paths and produces a policy to stay within that set of paths.

We use supervisory control of the grammar in 67(a) to perform the desired mobile

manipulation task. To instruct the robot to bring an object from the kitchen to the human

in the bedroom, we construct our supervisor according to the regular expressions in 67(b).

Thus, our controlled system is,

G′ = G∩
4⋂

i=0

Si = [h] [l] [k] [object] [pick] [l] [h] [b] [place] [h] (91)

116

✬

✫

✩

✪

〈S0〉 → [h]〈H〉
〈H〉 → [r]〈R〉 | [b]〈B〉 | [o]〈O〉

| [d]〈D〉 | [l]〈L〉 | [object] [pick]〈H′〉
〈B〉 → [h]〈H〉 | [object] [pick]〈B′〉
〈O〉 → [h]〈H〉 | [object] [pick]〈O′〉
〈R〉 → [h]〈H〉 | [object] [pick]〈R′〉
〈D〉 → [h]〈H〉 | [object] [pick]〈D′〉
〈L〉 → [h]〈H〉 | [k]〈K〉 | [object] [pick]〈L′〉
〈K〉 → [l]〈L〉 | [object] [pick]〈K′〉
〈H′〉 → [r]〈R′〉 | [b]〈B′〉 | [o]〈O′〉

| [d]〈D′〉 | [l]〈L′〉 | [place]〈H〉
〈B′〉 → [h]〈H′〉 | [place]〈B〉
〈O〉 → [h]〈H′〉 | [place]〈O〉
〈R〉 → [h]〈H′〉 | [place]〈R〉
〈D〉 → [h]〈H′〉 | [place]〈D〉
〈L′〉 → [h]〈H′〉 | [k]〈K′〉 | [place]〈L〉
〈K′〉 → [l]〈L′〉 | [place]〈K′〉

(a) Uncontrolled: G

• Let R = {[h] , [r] , [o] , [d] , [l]}

• Pick object in kitchen:

S0 = .∗ [k] (¬R)∗ [pick] .∗

• Place object in bedroom:

S1 = .∗ [b] [place] .∗

• Move the object only once:

S2 = (¬ [place])∗ [place]¬([pick])∗

• Let X = (¬ [x])∗ [x] (¬ [x])∗

• Don’t revisit rooms:

S3 =
⋂
[x]∈R X (([pick] | [place])X)∗

• End in the hallway: S4 = .∗ [h]$

(b) Supervisor: S✬

✫

✩

✪

〈S0〉 → [h]〈H〉
〈H〉 → [l]〈L〉
〈L〉 → [k]〈K〉
〈K〉 → [object] [pick]〈K′〉
〈K′〉 → [l]〈L′〉
〈L′〉 → [h]〈H′〉
〈H′〉 → [b]〈B′〉
〈B′〉 → [place]〈B′′〉
〈B′′〉 → [h]

(c) Controlled: G′

Figure 67: Grammars for the Uncontrolled and Controlled mobile manipulator in the

Aware Home.

117

CHAPTER V

PLATFORM MODELS FOR MANIPULATION

Underlying the linguistic models discussed so far are a set of control modes. For our manip-

ulation experiments, we develop control modes to track motions in workspace, focusing on

online response. To reach target workspace positions, we introduce a multi-waypoint inter-

polation scheme that provides more direct paths than previous methods. Integrating visual

feedback from cameras requires kinematic registration between the camera and manipula-

tor. Typically, registration is viewed as a static task: it is computed offline and assumed

to be constant. In reality, camera registration changes during operation due to external

perturbations, wear and tear, or even human repositioning. For example, during the recent

DARPA Robotics Challenge trials, impacts from falls resulted in camera issues which sig-

nificantly affected the robot behavior for some teams [95]. Fig. 68 shows additional use

cases which may change the camera pose. The pose registration process should be treated

as a dynamic task in which the involved parameters are continuously updated.

Camera Perturbation Controlled Motion Uncontrolled Motion

vision

kinematics

registration

vision

kinematics

registration

CS f

BS f

BSC

Figure 68: Use cases for online camera registration. We combine the visual and kinematic

pose estimates of end effector and filter the result to estimate the camera pose in robot body

frame.

118

5.1 Spherical Parabolic Blends for Workspace Trajectories

Tasks such as screwing in a light bulb or turning a doorknob impose constraints on the mo-

tion: rotation must occur along a single fixed axis. For such tasks, we focus on moving with

straight-line translation and constant-axis rotation. A common way to specify motions is to

provide a sequence of n workspace points for the robot to move through. While generating

smooth trajectories from waypoints for both joint-space and the Euclidean-space transla-

tions is well studied, the task of continuously transitioning between constant-axis rotations

is more challenging. We present a new method to transition through a sequence of constant-

axis rotations based on parabolic blending of spherical linear interpolation (SLERP) seg-

ments.

The proposed method generates a robot trajectory through a sequence of waypoints

such that the axis of rotation remains constant between waypoints and rotational velocity is

continuous. Compared to typical approaches for interpolation of robot workspace orienta-

tions, this method provides a constant rotational axis between waypoints, is invariant to the

local reference frame, and avoids gimbal lock. Compared to classic SLERP, this method

transitions through multiple waypoints without stopping whereas SLERP is point-to-point.

Compared to typical methods for quaternion splines, this method provides a constant axis

of rotation between waypoints. We discuss the application of quaternion interpolation to

robot inverse kinematics (see subsection 5.1.1). Then, we derive the equations for spherical

parabolic blends to produce our desired trajectories (see subsection 5.1.2), summarizing the

trajectory generation algorithm (see subsection 5.1.3). Finally, we demonstrate this method

on simulated and physical robot manipulators (see subsection 5.1.4).

Joint-space interpolation is a well studied research topic [37, 112, 113]. However,

because the workspace orientations, SO(3), are non-Euclidean, these joint-space methods

are not directly applicable to orientation interpolation, particularly when we are concerned

with the path taken between waypoints.

A related approach is to apply task constraints while planning a joint-space path [16, 78,

119

113, 170, 171]. We are considering a different problem: computing a workspace trajectory

from a given sequence of waypoints. This enables correcting tracking errors directly in the

workspace space (see subsubsection 5.1.3.2).

Typical methods for interpolating robot workspace orientations use Euler angles or ro-

tation vectors (the rotation axis scaled by the rotation angle or equivalently the logarithm

of the rotation). Interpolating the rotation vector representation [37, p217] varies the angle

of rotation, which can produce undesirable paths, see Fig. 71. Euler angle approaches must

contend with singularities (gimbal lock). Another approach is to vary the angle of a relative

axis-angle orientation [161, p187], though this alone does not address continuity through

waypoints. Instead, the quaternion representation is well suited for orientation interpolation

as it avoids singularities with Euler angles and provides better paths than rotation vectors.

Spherical Linear Interpolation (SLERP) [160] interpolates between two quaternions

along the unit, 4-dimensional hyper-sphere. SLERP has been applied to robot manipulation

[1, 3, 35]. SLERP provides the desired constant axis of rotation, but is point-to-point,

stopping at the beginning and end of each segment. We improve upon this by transitioning

through a sequence of waypoints without stopping.

There is a large body of work on quaternion splines. The primary application domain

for these approaches has been computer animation where the intermediate path may not

be rigidly constrained compared to the end-effector of a physical robot. Consequently,

methods such as quaternion Bezier curves [103, 160], SQUAD [39], and quaternion cubic

splines [97] do not provide a constant axis of rotation. A key difference in our approach

from these previous methods is that we explicitly differentiate between the interpolation

parameter u and time t. By considering du/dt, we can provide a smooth path with constant

rotational axis for the bulk of the motion.

120

Figure 69: Demonstrating spherical blending for a screwing task on a bimanual Schunk

LWA4 manipulator with Schunk SDH hands.

Trajectory

Generation

Trajectory

Evaluation

Workspace

Control

Jointspace

Control

V

x1, . . . ,xn

params. (xr, ẋr) φ̇r

Figure 70: Layers of abstraction going from a sequence of waypoints to inputs at each

manipulator axis.

121

(a) (b) (c)

(d) (e) (f)

Figure 71: Comparison of rotation vector [37, p217] and Spherical Linear Interpolation.

In (a)-(c), interpolating the axis angle representation can give undesirable intermediate ori-

entation (b). In (d)-(f), Spherical Linear Interpolation maintains a constant axis of rotation.

5.1.1 SLERP for Inverse Kinematics

Spherical Linear Interpolation (SLERP) interpolates between an initial and final unit quater-

nion on the unit sphere [160]. SLERP can be computed as:

slerp(q1,q2;u), q1
sin((1−u)θ)

sinθ
+q2

sin(uθ)

sinθ
(92)

where q1 and q2 are the beginning and end points of the interpolation, interpolation param-

eter u varies in [0,1], and θ = cos−1 (q1 ·q2).
1 To track this interpolation in real-time, we

compute u as a function of time.

We build upon SLERP to ensure smoothness of the path by considering the deriva-

tives. Note that we must distinguish between the derivative with respect to interpolation

1A more accurate form is θ = 2atan2(|q1−q2| , |q1 +q2|).

122

parameter u and with respect to time t.

dq

dt
=

dq

du

du

dt
(93)

For a constant q1 and q2, the SLERP derivative is:

dq

du
(u) = q1

−θ cos((1−u)θ)

sinθ
+q2

θ cos(uθ)

sinθ
(94)

Given dq/dt, we can directly compute angular velocity as:

ω = 2
dq

dt
⊗q∗ (95)

where q∗ is the conjugate of q and ⊗ is the quaternion multiplication operation.

This is then readily applied to robot workspace control via the Jacobian pseudo-inverse:

φ̇r = (J+)

ẋ

ω

 (96)

where J is the manipulator Jacobian, φ̇r is the computed reference joint velocities and ẋ is

the desired translational velocity. For a robust, practical implementation, further consider-

ations in (96) are also possible to correct position error and handle configurations near joint

singularities [133].

However, we still need a method to compute du/dt and ensure continuity of dq/dt

To simplify notation, we will sometimes write the time derivative dα
dt

as α̇ .

5.1.2 Derivation of Spherical Parabolic Blends

SLERP is useful for robots because it provides a constant axis of rotation during the motion.

However, this constant axis of rotation introduces difficulties if we want to follow a path

with waypoints. Consider the path from qi via q j to qk. If we SLERP from qi to q j and q j

to qk, the path from i to j will have one axis of rotation and the path from j to k will have a

different axis of rotation. This would produce a discontinuity in rotational velocity at point

j, which could not be suitably followed by a physical robot. Thus, we must transition from

the axis i j to axis jk, maintaining C1 continuity:

123

Definition 23 (Differentiability class). A function f (t) is Ck continuous if its derivatives

f ′, f ′′, . . . , f (k) exist and are continuous.

In the constant-axis, linear region from qi to q j, we compute the orientation and its

derivative via SLERP.

u =
t− ti

t j− ti
(97)

q(t) = slerp
(
qi,q j;u

)
(98)

du

dt
=

1

t j− ti
(99)

dq

dt
=

dq

du
(u)

du

dt
(100)

where ti and t j are the times to reach orientations qi and q j, respectively.

Around point q j, we smoothly change the axis of rotation from that of i j to that of

jk. Over some blending interval tb, we “stretch” the i j interpolation past t j and the jk

interpolation before t j, ramping the interpolation parameters ui j and u jk over this time. To

compute the actual q in this region, we perform a third and final interpolation between the

computed values for qi j and q jk.

For this blend region around q j, we compute the interpolation parameters by ramping

down u̇i j, ramping up u̇ jk.

ti j = t j− ti (101)

∆t = t− (t j− tb/2) (102)

üi j =−
1

ti jtb
(103)

u̇i j(t) =
1

ti j
+∆tüi j (104)

ui j(t) =
ti j− tb/2

ti j
+

∆t

ti j
+

üi j

2
(∆t)2 (105)

ü jk =
1

tb
(
tk− t j

) (106)

u̇ jk(t) = ∆tü jk (107)

u jk(t) =
ü jk

2
(∆t)2 (108)

124

where ui j and u jk are the interpolation parameters from qi to q j and from q j to qk, respec-

tively, and tb is the blending period around q j.

Then, we blend the two trajectories:

qi j(t) = slerp
(
qi,q j;ui j(t)

)
(109)

q jk(t) = slerp
(
q j,qk;u jk(t)

)
(110)

q(t) = slerp
(
qi j(t),q jk(t);u j(t)

)
(111)

Now, we return to computing the time derivitive of SLERP, with the complication that

the interpolation points in this case vary over time. This will let us derive the interpolation

parameter for the blend region, u j(t), such that angular velocity is continuous. We can

more precisely write the SLERP formula as:

q(t) = q1(t)
sin((1−u(t))θ(t))

sinθ(t)
+q2(t)

sin(u(t)θ(t))

sinθ(t)

= q1(t)a(t)+q2(t)b(t) (112)

where u(t) and θ(t) are time varying functions, and a(t) and b(t) are substituted variables

for the coefficients of q1(t) and q2(t).

Then, the time derivative is:

dq

dt
(t) = q̇1(t)a(t)+q1(t)ȧ(t)+ q̇2(t)b(t)+q2(t)ḃ(t) (113)

The values of q̇1 and q̇2 can be computed from dq/du in (94) and u̇. We differentiate to

find ȧ(t) and ḃ(t), dropping the parameter t for brevity.

ca = cos(θ (1−u)) sa = sin(θ (1−u))

cb = cos(θu) sb = sin(θu)

ȧ =
ca

(
θ̇(1−u)− u̇θ

)

sinθ
− θ̇ cos(θ)sa

sin2 θ
(114)

ḃ =

(
θ̇u+θ u̇

)
cb

sinθ
− θ̇ cos(θ)sb

sin2 θ
(115)

From (114) and (115) we can compute u j(t) to ensure that angular velocity is continu-

ous. For this, we must ensure that the angular velocity at the beginning of the blend equals

125

the angular velocity at the end the preceding linear segment and that angular velocity at the

end of the blend equals that at the beginning of the following linear segment:

q̇ j(t j− tb/2) = q̇i j(t j− tb/2) (116)

q̇ j(t j + tb/2) = q̇ jk(t j + tb/2) (117)

At the beginning of the blend segment around j where t = t j− tb/2, we know u j = 0,

so we can simplify the coefficients of q̇ j in (113) as follows:

q̇ j(t j− tb/2) = q̇i j +qi jȧ+q jkḃ j (118)

ȧ j(t j− tb/2) = ḃ j(t j− tb/2) =
u̇ jθ

sinθ
(119)

Thus, if we have u̇ j(t j− tb/2) = 0, then the coefficients ȧ and ḃ will be zero and (116)

will be satisfied. A similar property holds at the end of the blend region, so we must have

u̇ j(t j − tb/2) = u̇ j(t j + tb/2) = 0. We satisfy this property by computing u j based on a

constant second derivative:

ü j =
4

t2
b

(120)

u j(t) =

t ≤ t j 0.5ü j (∆t)2

t > t j 1−0.5ü j

(
t j + tb/2− t

)2
(121)

From (121), we compute u j(t) for (111) and u̇ j for (93). Fig 72 plots values of ui j, u jk

and u j over the linear and blend regions.

Now, we find θ̇ . To simplify, we assume that q1(t) and q2(t) are unit quaternions.

θ(t) = cos−1 (q1(t) ·q2(t))

θ̇(t) =−q1(t) · q̇2(t)+ q̇1(t) ·q2(t)√
1− (q1(t) ·q2(t))

2
(122)

Combining (113) - (122), we compute the quaternion derivative dq/dt, and with (95),

we find the angular velocity ω in the blend region.

126

0

0.2

0.4

0.6

0.8

1

0 2.5 5 7.5 10
u

t(s)

t j + tb/2t j− tb/2

t j

ui j
u jk
u j

Figure 72: SLERP u values over linear and blend regions. ui j is the interpolation param-

eter between points i and j, which ramps down during the blend. u j is the interpolation

parameter for the blend region around j when ramps up, then down during the blend. u jk

is the interpolation parameter between points j and k, which ramps up during the blend.

5.1.3 Generating and Tracking Trajectories

Following the derivation in subsection 5.1.2, we summarize generating trajectory parame-

ters from a sequence of waypoints, computing reference workspace velocities, and finding

corresponding reference joint velocities.

5.1.3.1 Generation

Given a sequence of orientations qi, waypoint times ti, and blend times tbi: (q0, t0, tb0),(q1, t1, tb1) . . . ,(qn, tn,

1. Add virtual waypoints at q = q0 at time t0+ tb/2 and q = qn at tn− tb/2 to the trajec-

tory to provide blending for initial and final points.

2. For every triplet of orientations, qi, q j, and qk, compute üi j, ü jk, and ü j according to

(103), (106), and (120).

5.1.3.2 Tracking

To track a generated trajectory, alternate between a sequence of blend and linear regions.

Around each waypoint q j from t j− tb/2 to t j + tb/2, blend orientations. From t j + tb/2 to

tk− tb/2, SLERP from q j to qk.

127

Note that there is no linear region between q0 and the virtual waypoints at t0+ tb/2, nor

between the virtual waypoints at tn− tb/2 and qn.

Linear Regions: For the linear region between qi and q j:

1. u̇i j =
1

t j−ti

2. Compute ui j(t) = (t− ti) u̇i j

3. Compute q(ui j) according to (92)

4. Compute q̇(ui j) according to (94) and (93)

5. Compute ω(t) according to (95)

Blend Regions: For the blend region between qi, q j, and qk:

1. Compute u̇i j, ui j, u̇ jk, u jk, u̇ j, and u j according to (104), (105), (107), and (108).

2. Compute qi j = slerp
(
qi,q j;ui j

)
and q jk = slerp

(
q j,qk;u jk

)

3. Compute q̇i j q̇ jk according to (94) and (93).

4. Compute q(u j) = slerp
(
qi j,q jk;u j

)

5. Compute q̇(u j) from (122), (114), (115), and (113).

6. Compute ω(t) according to (95)

5.1.3.3 Workspace Control

Now, we apply a singularity-robust Jacobian inverse kinematics to obtain joint velocities

from the generated workspace trajectory [133]. To provide acceptable performance near

joint singularities, we compute the damped pseudo-inverse of the Jacobian as follows:

J+ =
min(m,n)

∑
i=0

si

max(si
2,smin

2)
viu

T
i (123)

128

where J = USV T is the singular value decomposition of J and smin is a selected constant

for the minimum acceptable singular value.2

We compute the damped-least squares solution for feed-forward velocity and feedback-

position control:

φ̇r = J+

ẋr

ωr

− kxe

= J+

ẋr

ωr

− kx

x− xr

ln(q⊗q∗r)

 (124)

where e is the position error.

In addition, for redundant manipulators with more than six degrees of freedom, we use

the null-space projection to help avoid joint limits by directing the joint positions towards

a nominal zero point.

φ̇r = J+

ẋr

ωr

− kx

x− xr

ln(q⊗q∗r)

− kφ (J

+J− I)(φ −φ0) (125)

where kx is the workspace position error gain, kφ is the null-space projection gain, and φ0

is the nominal zero configuration.

We then use joint-level velocity control to track the reference joint velocities φ̇r.

5.1.4 Trajectory Experiments

5.1.4.1 Simulation

We first demonstrate these trajectories on a kinematically simulated Schunk LWA3 robot

with 7 Degrees of Freedom (DOF). Fig. 73 shows the workspace orientation and derivative

through a sequence of orientations. From this, we can see that orientation is C1 continu-

ous. Between each of the waypoints, we have an accelerating segment, a constant-velocity

segment, and a decelerating segment.

2On the Schunk LWA4 in Fig. 69, a reasonable value for smin is .01.

129

-0.4

-0.2

0

0.2

0.4

0 5 10 15 20 25

an
g

u
la

r
v
el

o
ci

ty
(r

ad
s−

1
)

time (s)

x
y
z

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2
2.5

0 5 10 15 20 25

p
o

si
ti

o
n

(r
ad

)

time (s)

0
1
2
3
4
5
6

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

0 5 10 15 20 25

v
el

o
ci

ty
(r

ad
s−

1
)

time (s)

0
1
2
3
4
5
6

(a) (b) (c)

(d) (e) (f) (g) (h) (i)

Figure 73: Simulated trajectory through the following waypoints specified in XZY Euler

Angles: (−π/2,0,π), (−π/2,π/10,π), (−π/2,−π/10,−π), (π,−π/10,−π), (π,0,π).
Interpolation is performed on the quaternion representation. (a) Workspace Angular Veloc-

ity. (b) Joint Position. (c) Joint Velocity. (d)-(i) Via Orientations.

Torso

Left LWA4Left SDH Right LWA4 Right SDH

Ctrl PCConsole

Figure 74: Block Diagram of robot manipulator hardware components. The control PC

communicates with the servo controllers over several CAN buses.

5.1.4.2 Physical Implementation

We validate our trajectory generation approach on a physical Schunk LWA4 arm with

Schunk SDH hand for a screwing task, Fig. 69. The LWA4 is a 7 DOF arm that offers

a shorter distance between wrist point and end-effector than the LWA3. Fig. 74 gives an

overview of the major physical system components. Our real-time software runs on Xeon

E3-1270v2 PC under Linux 3.4.18-rt29 PREEMPT RT, and is implemented as multiple

operating system processes communicating using the Ach interprocess communication li-

brary [46]. Fig. 75 summarizes the real-time software components.

130

filterd

l hand state

state

t can402

r ftd

r can402

r arm inputr hand input

shell

r sdhiod

l arm state

r ft

r arm state

l ftd

l can402

l ft

torso input

r hand state

torso state

ctrld

l hand inputl arm input

cmd

l sdhiod

Figure 75: Block diagram of real-time software components. Gray ovals are user-space

driver processes, green ovals are controller processes, and rectangles are Ach channels.

(a) (b) (c)

(d) (e) (f)

Figure 76: Physical Screwing Task. (a)-(e), trajectory waypoints. (f), the inserted screw.

131

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

0 5 10 15 20 25 30 35 40 45

o
ri

en
ta

ti
o

n

time (s)

x
y
z

w

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55

0 5 1015202530354045

tr
an

sl
at

io
n

(m
)

time (s)

x
y
z

-0.3
-0.25

-0.2
-0.15

-0.1
-0.05

0
0.05
0.1

0.15

0 5 1015202530354045

v
el

o
ci

ty
(r

ad
s−

1
)

time (s)

x
y
z

-0.03
-0.025
-0.02

-0.015
-0.01

-0.005
0

0.005

0 5 1015202530354045

v
el

o
ci

ty
(m

s−
1
)

time (s)

x
y
z

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

0 5 10 15 20 25 30 35 40 45
p

o
si

ti
o

n
(r

ad
)

time (s)

0
1
2
3
4
5
6

-0.4

-0.2

0

0.2

0.4

0 5 10 15 20 25 30 35 40 45

an
g

u
la

r
v
el

o
ci

ty
(r

ad
s−

1
)

time (s)

0
1
2
3
4
5
6

(a) (b) (c)

(d) (e) (f)

Figure 77: Plots of positions and velocities for physical screwing task. (a) Workspace

orientation. (b) Workspace translation. (c) Workspace rotational velocity. (d) Workspace

translational velocity. (e) Joint positions. (f) Joint velocity

Table 6: Time to compute reference parameters per control cycle. Average of 10 million

evaluations on an Intel Xeon E5-1620.

Linear Region 0.39 µs

Blend Region 1.3 µs

We generate and execute a trajectory to screw together the wooden pieces. Because of

the SDH’s kinematic configuration, it grasps the screw such that the screw axis is offset

from the last wrist axis. Thus, we cannot turn the screw by rotating only the last joint but

must instead consider the entire arm. The provided waypoints to insert the screw are shown

in Fig. 76, and the generated trajectory in workspace and joint space is plotted in Fig. 77.

This trajectory aligns, inserts, and turns the screw in one continuous, non-stop motion.

132

5.1.4.3 Computational Performance

This method is computationally efficient. The generation phase to pre-compute parameters

requires O(n) time, where n is the number of waypoints. The tracking phase requires O(1)

time during each control cycle. Tracking does require evaluating a few transcendental

functions during each control cycle; however, for modern CPUs at typical real-time control

rates, e.g., one kilohertz, this is not a significant factor. Table 6 shows evaluation times on

the order of one microsecond for a recent Intel CPU.

5.2 Online Registration of Single Arm and Camera

To address changes in camera pose during operation, we propose an online camera reg-

istration method that combines (1) visual tracking of features on the manipulator, (2) a

novel expectation-maximization inspired algorithm for pose filtering and tracking, and (3)

an special Euclidean group constrained extended Kalman filter. Our key insight is to use

the robot body as a reference for the registration process. By tracking known patterns or

objects on the robot, we can continuously collect evidence for the current camera pose.

However, naı̈ve filtering of these pose estimates can lead to large variances in the calcu-

lated poses. The challenge is obtaining sufficient accuracy for manipulation through the

online registration. To address this challenge, we combine pose filtering and manipulator

control, incorporating camera registration into our manipulation feedback loop.

This section presents a method for online registration and manipulation that combines

object tracking, pose filtering, and visual servoing. First, we use perceptual information to

identify the pose of specific features on the end-effector of the controlled robot (see sub-

subsection 5.2.1.1). Then, we perform an initial fit to find offsets of the features on the

robot, (see subsubsection 5.2.1.2). A special Kalman filter is, then, used in conjunction

with median filtering in order to perform online registration of the camera (subsubsec-

tion 5.2.1.3). In our evaluation (see subsection 5.2.3), we investigate the accuracy of the

proposed method by applying it to robot grasping and manipulation tasks.

133

Typical camera registration methods collect a set of calibration data using an exter-

nal reference object, compute the calibration, then proceed assuming the calibration is

static. OpenCV determines camera registration from point correspondences, typically us-

ing a chessboard [141]. Pradeep, et. al, develop a camera and arm calibration approach

based on bundle adjustment and demonstrate it on the PR2 robot [147]. This approach

requires approximately 20 minutes to collect data and another 20 minutes for computation,

a challenge for handling changing pose online.

Visual servo control incorporates camera feedback into robot motion control [28, 29].

The two main types of visual servoing are image-based visual servo control (IBVS), which

operates on features in the 2D image, and position-based visual servo control, which oper-

ates on 3D parameters. Both of these methods assume a given camera registration. While

IBVS is locally stable with regard to pose errors, under PBVS, even small pose errors can

result in large tracking error [28]. Our proposed method addresses these challenges by

correcting the camera registration online. In our experiments we show the importance of

treating the registration process as a dynamic task. Furthermore, we show that our online

registration achieves millimeter positioning accuracy of the manipulator. This is particu-

larly important for grasping tasks performed using multi-fingered robot hands [15]. During

such grasping tasks, inaccuracies in perception and forward kinematics often lead to prema-

ture contact between one finger and the object. As a result of the ensuing object movement,

the intended grasp might not be satisfactorily executed or may fail altogether.

Other recent work has explored online visual parameter identification. [105] tracks a

robot arm to identify encoder offsets. This method assumes a given camera registration,

but is also tolerant of some registration error. In contrast, our work identifies the camera

registration online, but does not explicitly consider encoder offsets. [79] considers biman-

ual arm and object tracking with vision and tactile feedback. Though the hardware and im-

plementation differ from work presented in this paper, similar accuracy is obtained. [173]

uses maps generated from a Simultaneous Localization and Mapping (SLAM) algorithm

134

to calibrate a depth sensor. In our approach, unlike typical environments for SLAM, the

object to which we are trying to register our camera – the manipulator – will necessarily be

in motion.

5.2.1 Technical Approach

We determine the pose registration between the camera and the manipulator by visually

tracking the 3D pose of the arm. We identify the pose of texture or shape features on the

arm and fit a transformation based on the corresponding kinematic pose estimates of those

features. To obtain sufficient accuracy for manipulation, we combine several methods to fit

and filter the visual pose estimates before servoing to the target object. This estimation and

control loop is summarized in Fig. 78.

For computational reasons, we used the dual quaternion representation for the special

Euclidean group S E (3). Compared to matrices, the dual quaternion has lower dimen-

sionality and is more easily normalized, both advantages for our filtering implementation.

The relevant dual quaternion equations are summarized in appendix B. We represent the

dual quaternion S for a transformation implicitly as a tuple of a rotation quaternion q and

BΩe,r = ln
(

BSe,a⊗
(

BSC⊗CSo

)−1
)

Position Servo

φ̇r = J+
(
−kx

[
ẋ

ω

])
− kφ (J

+J− I)φ

Workspace Control

ROBOT

Feature Detector

EKF
(

BSC

)

Registration Filter

EKF
(

CSo

)

Object Filter

med
(

BS0⊗CS−1
f0

. . .
)

Median filter

Ω

φ̇ (joint velocity)

image

φ (angles)

BSC

CS f0 . . .
CS fn

(feature poses)(target pose)

CSo

BSC
CSo

Figure 78: Block Diagram of Control System. 3D poses for features are detected from

visual data. The median camera transform is computed over all features and then Kalman

filtered. With this registration, the robot servos in workspace to a target object location.

135

translation vector v: S =
(

q , v
)
. This requires only seven elements. For Euclidean trans-

formations, we use the typical coordinate notation where leading superscript denotes the

parent frame and following subscript denotes the child frame, i.e., xSy gives the origin of

y relative to x. The transformation aSb followed by bSc is given as the dual quaternion

multiplication aSb⊗ bSc =
aSc.

5.2.1.1 Feature Estimation

To use the robot body as a reference for camera registration, it is important to identify

and track body parts, e.g., the end-effector, in 3D. These 3D poses can be estimated

with marker-based [150] and model-based approaches [31], see Fig. 79. Marker-based

approaches require attaching fiducials to known locations on the robot, such as the fingers.

Model-based tracking, on the other hand, requires accurate polygon meshes of the tracked

object. In our implementation, we use the ALVAR library [150] for marker-based tracking.

For model-based tracking, we use the approach from [31]. In each frame, the 3D pose of

the object is computed by projecting a 3D CAD model into the 2D image. After projec-

tion, we identify salient edges in the model and align them with edges in the 2D image.

A particle filter is then used to filter the pose estimates over time. Both marker-based and

model-based tracking provide 3D pose estimates of tracked features, but with frequent out-

liers and noise. Markers have the advantage of being easy to deploy, while model-based

tracking can deal with partial occlusions of the scene.

5.2.1.2 Offset Identification

To improve the accuracy of kinematic pose estimates for features, we initially perform a

static expectation-maximization-like [53] procedure, based on the following model:

BSk⊗ kS f =
BSC⊗CS f (126)

where BSk is the measured nominal feature pose in the body frame determined from encoder

positions and forward kinematics, kS f is the unknown static pose offset of the feature due to

136

Figure 79: Marker-based tracking (left) and model-based tracking (right).

inaccuracy of manual placement, BSC is the unknown camera registration in the body frame,

and CS f is the visually measured feature pose in the camera frame. These transforms are

summarized in Fig. 68, with BSk⊗ kS f combined as BS f .

As an initialization step, we iteratively fix either kS f or BSC in (126) and solve for the

other using Umeyama’s algorithm [181]. This gives us the relative transforms for the fea-

tures kS f which we assume are static.

5.2.1.3 Filtering

To compute the online registration, where BSC is changing, we combine median and Kalman

filtering. The median filter is applied independently at each time step to reject major outliers

in the estimated feature poses. Compared to weighted least squares methods, the median

requires no parameter tuning and is especially resistant, tolerating outliers in up to 50%

of the data [75]. Given the median at each step, the Kalman filter is applied over time to

generate an optimal registration estimate under a Gaussian noise assumption.

Based on (126), each observed feature on the robot gives on estimate for the camera

registration BSC:

BSk⊗ kS f ⊗ (CS f)
−1 = BSC (127)

137

5.2.1.4 Median Filtering

At each time step, we find the median registration over all observed features. Each ob-

served feature gives a candidate registration BSC. First, we collect a set Q of the orientation

candidates:

Q =
{
(BqC)i | (BSk)i⊗ kS f ⊗ (CS f)

−1
i

}
(128)

Then, we compute the median of the candidate orientation registrations Q. To find this

median, the structure of rotations in S O(3) offers a convenient distance metric between

two orientations: the angle between them. Using this geometric interpretation, the median

orientation q̂ is the orientation with minimum angular distance to all other orientations.

B̂qC = argmin
qi∈Q

n

∑
j=0

| ln(q∗i ⊗q j)| (129)

The median translation x̂ is the conventional geometric median, the translation with

minimum Euclidean distance to all other translations. First, we find the set of candidate

translations Z by rotating the feature translation in camera frame Cv f and subtracting from

the body frame translation Bv f :

Z =
{

zi | zi =
Bv f ,i− B̂qC⊗Cv f ,i⊗ B̂qC

∗}
(130)

Then, we compute the geometric median of the candidate translations by finding the

element with minimum distance to all other elements:

B̂vC = argmin
zi∈Z

n

∑
j=0

|zi− z j| (131)

Then, the median transform is the combination of the orientation and translation parts:

B̂SC =
(

B̂qC, B̂vC

)
(132)

5.2.1.5 Kalman Filtering

Next, we use an Extended Kalman filter (EKF) to attenuate noise over time, taking care

to remain in the S E (3) manifold. Similar Kalman filters are discussed in [32, 116]. The

138

quasi-linearity of quaternions means the EKF is suitable for orientation estimation in this

application [114].

To filter S E (3) poses, we consider state x composed of a quaternion q , a translation

vector v, and the translational and rotational velocities, v̇ and ω:

x = (q ,v) = [qx,qy,qz,qw,vx,vy,vz, v̇x, v̇y, v̇z,ωx,ωy,ωz]

The measurement z is the pose:

z = (q ,v) = [qx,qy,qz,qw,vx,vy,vz]

The general EKF prediction step for time k is:

x̂k|k−1 = f (ˆxk−1) (133)

Fk−1 =
∂ f

∂x

∣∣∣∣
x̂k−1|k−1

(134)

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 +Qk−1 (135)

where x̂ is the estimated state, f (x) is the process model, F is the Jacobian of f , P is the

state covariance matrix, and Q is the process noise model.

The process model then integrates the translational and rotational velocity, staying in

the S E (3) manifold using the dual quaternion exponential of the twist Ω:

Ω(ω, v̇,v) =

ω, v×ω + v̇

f (x) = exp

(
∆t

2
Ω

)
⊗ (q, v) (136)

Now, we find the process Jacobian F . The translation portion is a diagonal matrix of

the translational velocity. For the orientation portion, we find the quaternion derivative q̇

from the rotational velocity:

q̇ =
1

2
ω⊗ q (137)

139

This quaternion multiplication can be converted into the following matrix multiplica-

tion:

1

2
ω⊗ q =

1

2
Mr(q)ω

Mr(q) =

qw qz −qy

−qz qw qx

qy −qx qw

−qx −qy −qz

(138)

Note that we omit the w column of the typical quaternion multiplication matrix because the

w element of rotational velocity ω is zero.

This gives the following process 13×13 Jacobian F :

F =

I4×4 0 1
2∆tMr

(
q
)

0

0 I3×3 0 ∆tI3×3

0 0 I3×3 0

0 0 0 I3×3

(139)

Now we consider the EKF correction step. The general form is:

ẑk = h(x̂k|k−1) (140)

Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

(141)

yk = v(zk, ẑ) (142)

Sk = HkPk|k−1HT
k +Rk (143)

HkPk|k−1 = SkKT
k (144)

x̂k|k = p(x̂k|k−1,Kkyk) (145)

Pk|k = (I−KkHk)Pk|k−1 (146)

where z is the measurement, h is the measurement model, H is the Jacobian of h, ẑ is the

estimated measurement, R is the measurement noise model, and K is the Kalman gain, v

140

is a function to compute measurement residual, and p is a function to compute the state

update.

We compute the EKF residuals and state updates using relative quaternions to remain in

S E (3) without needing additional normalization. The observation h(x) is a pose estimate:

h(x) = (q,v)

H = I7×7 (147)

We compute the measurement residual based on the relative rotation between the mea-

sured and estimated pose:

v(z, ẑ) = (yq,yv)

yq = ln
(
zq⊗ ẑ∗q

)
⊗q

yv = zv− ẑv (148)

where yq is the orientation part of the residual and yv the translation part. Note that that

ln
(
zq⊗ ẑ∗q

)
corresponds to a velocity in the direction of the relative transform between

the actual and expected pose measurement and that we can consider yq as a quaternion

derivative. Then, the update function will integrate the pose portion of y, again using the

exponential of the twist. First, we find the twist corresponding to the product of the Kalman

gain K and the measurement residual y:

(Ky)φ = (Ky)q⊗q∗

Ω(Ky,v) =
(
(Ky)φ ,v× (Ky)φ +(Ky)v

)

(149)

Then, we integrate estimated pose using the exponential of this twist:

(x(q,v))k|k = exp

(
∆t

2
Ω

)
⊗ (q,v) (150)

Finally, the velocity component of innovation y is scaled and added:

(xω,v̇)k|k = xω,v̇ +(Ky)ω,v̇ (151)

141

5.2.2 Registered Visual Servoing

We use the computed camera registration BSC to servo to a target object according to the

control loop in Fig. 78. This is position-based visual servoing, incorporating the dynam-

ically updated registration. First, we compute a reference twist B
e,re f from the position

error using camera pose BSC and object pose CSo:

BSe,re f =
BSC⊗CSob j (152)

BΩe,re f = ln
(

BSe,act⊗ BS−1
e,re f

)
(153)

Then, we find the reference velocity for twist BΩe,re f :

ẋ

ω

=

D(BΩe,re f)− (2D(BSe)⊗R(BSe)

−1)×R(BΩe,re f)

R(BΩe,re f)

 (154)

where R(X) is the real part of X and D(X) is the dual part of X .

Finally, we compute joint velocities using the Jacobian damped least squares, also using

a nullspace projection to keep joints near the zero position:

φ̇r = J+

−kx

ẋ

ω

− kφ (J

+J− I)φ (155)

where J is the manipulator Jacobian matrix, J+ is its damped pseudoinverse, kx is a gain

for the position error, and kφ is a gain for the joint error.

5.2.3 Single Arm and Camera Experiments

We implement this approach on a Schunk LWA4 manipulator with SDH end-effector, see

Fig. 68, and use a Logitech C920 webcam to track the robot and objects. The Schunk

LWA4 has seven degrees of freedom and uses harmonic drives, which enable repeatable

positioning precision of±0.15mm [72]. However, absolute positioning accuracy is subject

to encoder offset calibration and link rigidity. In practice, we achieve±1cm accuracy when

using only the joint encoders for feedback. The Logitech C920 provides a resolution of

142

-1

-0.5

0

0.5

0 10 20 30 40
q
u
at

er
n
io

n

time (s)

x
y
z

w

(a)

-0.5

0

0.5

1

1.5

0 10 20 30 40

tr
an

sl
at

io
n

(m
)

time (s)

x
y
z

(b)

-1

-0.5

0

0.5

0 10 20 30 40

q
u
at

er
n
io

n

time (s)

x
y
z

w

(c)

-0.5

0

0.5

1

1.5

0 10 20 30 40

tr
an

sl
at

io
n

(m
)

time (s)

x
y
z

(d)

Figure 80: Registration while camera is bumped (8 s), rotates (15 s) and translated (24 s).

camera is bumped. (a)-(b) registration from raw visual pose estimates of one feature. Con-

tains many outliers. (c)-(d) filtered registration. Outliers and noise eliminated.

1920x1080 at 15 frames per second. To measure ground-truth distances, we used a Bosch

DLR165 laser rangefinder and a Craftsman 40181 vernier caliper.

We initially test the convergence and resistance of our approach while moving the cam-

era. With the camera mounted on a tripod, we compute the filtered registration while the

camera is perturbed, rotated, and translated.

The resulting registrations under moving camera are plotted in Fig. 80. The visual pose

estimates contain frequent outliers in addition to a small amount of noise. The filtered

registration removes the outliers and converges within 5 s.

To demonstrate the suitability of this approach for manipulation tasks, we test the po-

sitioning accuracy attainable with this online registration. As shown in Fig. 81, we place

a marker on a table, measure linear distance to the marker with a laser ranger, servo the

end-effector to the visually estimated marker position using the control loop in Fig. 78, and

measure the distance to the end-effector which should be directly over the marker.

143

L
a
s
e
r

5
6

0
.1

0
m

m

Figure 81: Experimental setup for evaluating the positioning accuracy during camera

registration. A cube was placed on a marker and the distance to a laser ranger was captured.

Subsequently, the cube was placed in the hand of the robot, which, then, servoed to the

position of the marker. Again, the distance was measured using the laser ranger.

The resulting position accuracy achievable with online registration is summarized in

Table 7. For an ideal camera placement with close, direct view of the end-effector (i.e. the

angle δ between the camera and the markers is 45◦ or less), positioning accuracy is in the

submillimiter range. Larger camera distances and angles, resulted in positioning error of

1−2 mm.

Finally, we test the pre-grasp positioning accuracy of this method as shown in Fig. 82.

We place an object, in particular, a cup, at a variety of locations on the table, servo the

end-effector to the visually detected object position using the control loop in Fig. 78, and

then measure the distance of each finger to the object using a vernier caliper.

The results of the pre-grasp positioning are summarized in Table 8. A small number of

trials resulted in centimeter-level error for objects placed near the edge of the image frame.

Table 7: Positioning experiment results. Average and standard deviation [mm] of mea-

sured difference between commanded position and object location.

Setup Average Stdev

δ ≤ 45◦ 0.5mm 0.52mm

δ > 45◦ 1.5mm 1.26mm

Data Average Stdev

All 5.8mm 8.5mm

Inliers 3.3mm 2.3mm

Table 8: Pre-grasp experiment re-

sults. Average and standard devi-

ation [mm] of measured difference

between object and end-effector po-

sition

144

Figure 82: Pre-grasp experiment: using the introduced camera registration, the open robot

hand is servoed to the position of a glass. The distances between the fingers and the glass

are then measured. Since the glass is rotationally symmetric, the distances of both used

robot fingers should be identical in the ideal case.

Ommitting these outliers, the average positioning error of the pre-grasp configuration was

3.3mm.

5.3 Online Registration of Multiple Arms and Cameras

Bimanual manipulation requires accurate coordination of both end-effectors. To perform

smooth and accurate bimanual manipulation, we extend the single camera and arm registra-

tion to include (1) visual tracking of the manipulators, (2) co-estimation of poses for cam-

eras and end-effectors using a the special Euclidean group median and extended Kalman

filter, and (3) continuous geometric interpolation on the special Euclidean group. The key

insight is to combine perception and control online, using the robot body frame as a refer-

ence.

5.3.1 Asynchronous Pose Co-Estimation

Each camera image provides pose measurements for visible end-effector features. To re-

duce estimation latency, we process and filter the measurements from each camera asyn-

chronously as they arrive rather than collecting images from all cameras at a fixed timestep.

The kinematic chain through the manipulator, feature, and camera is defined as:

bSwi
⊗wiSw′i

⊗w′iS fp
= bSc j

⊗ c jS fp
(156)

145

erSeℓ (t1)

Relative Trajectory eℓSwℓ
= eℓSw′ℓ

⊗w′ℓSwℓ
bSwℓ

= bSer ⊗ erSeℓ ⊗ eℓSwℓ
˙bSwℓ

= bSer ⊗ ˙erSeℓ ⊗ eℓSwℓ

J+
([

ẋr

ωr

]
− kx

[
x− xr

ln(q⊗q∗r)

])
− kφ (J

+J− I)φ

Workspace Control

Sr, Ṡr

erSeℓ ,
˙erSeℓ

ROBOT

Feature Detector

(bSwi
)−1⊗ bSc j

⊗ c jS fℓ ⊗ (w′iS fℓ)
−1

bSwi
⊗wiSw′i

⊗w′iS fℓ ⊗ (c jS fℓ)
−1

median
((

w̃iSw′i

)
0
. . .
)

median
((

b̃Sc j

)
0
. . .
)

w̃iSw′i

b̃Sc j

EKF
(

wiSw′i

)

EKF
(

bSc j

)

wiSw′i

bSc j

φ̇r (joint velocity)

image

c jS f0 . . .
c jS fn

ŵiSw′i
, b̂Sc j

Figure 83: Block diagram of the control system. 3D feature poses c jS fp
are detected from

visual data. Instantaneous wrist offsets w̃iSw′i
and camera registrations b̃Sc j

are computed.

Then the median of these poses is taken over a sliding window and subsequently Kalman-

filtered. The filtered poses are used to track a relative left-right workspace trajectory, and

the Jacobian damped-least squares gives the reference joint velocities φ̇r.

Frame Source:
Encoders
Visions
Filter

bSwr

wrSw′r

bSc0

w′rS f3

c0S f3

w′rSer

Figure 84: Kinematic frames for one arm, camera, and feature.

146

where bSwi
is the encoder-measured pose of wrist i in body frame, wiSw′i

is the estimated

offset pose of wrist i, w′iS fp
is the encoder-measured transform from wrist i to feature p

on the hand, bSc j
is the estimated pose registration of camera j, and c jS fp

is the visually-

measured pose feature p in camera j. For a depiction of the setup see Fig. 84.

Based on (156), we produce measurements for wrist offset wiSw′i
and camera registration

bSc j
:

w̃iSw′i
= (bSwi

)−1⊗ b̂Sc j
⊗ c jS fp

⊗ (w′iS fp
)−1 (157)

b̃Sc j
= bSwi

⊗ ŵiSw′i
⊗w′iS fp

⊗ (c jS fp
)−1 (158)

where w̃iSw′i
is the wrist offset measurement from this image and feature, b̃Sc j

is the cam-

era registration measurement, ŵiSw′i
is the currently estimated wrist offset, and b̂Sc j

is the

currently estimated camera pose.

We apply median and extended Kalman filtering in the special Euclidean group S E (3)

to the measurements for wrist offset w̃iSw′i
and camera registration b̃Sc j

, similar to the ap-

proach in [40]. First, to reject outliers, we compute the median measurement over a sliding

time window. Then, we use an extended Kalman Filter over time to compute optimal pose

estimates under a Gaussian noise assumption.

5.3.2 Control: Bimanual Workspace Trajectories

To perform smooth, bimanual motion, we compute a relative workspace trajectory between

the two manipulators, transform the relative pose and velocity of the trajectory to the body

frame, then compute joint velocities using the Jacobian damped least squares pseudoin-

verse.

We compute a relative trajectory trajectory for the two end-effectors using the spherical

parabolic blends to provide a straight-line, constant-axis, and continuous-velocity workspace

path for the end-effector.

From the relative reference pose erSeℓ and velocity ˙erχel
between the left and right end-

effectors, we control the left arm in workspace, by first converting the relative pose and

147

velocity to the body frame, then computing the Jacobian damped-least-squares inverse

kinematics solution.

The left-arm wrist pose bSwℓ
follows directly from the kinematic chain through the right

arm:

bSwℓ
= bSer

⊗ erSeℓ⊗ eℓSwℓ

eℓSwℓ
= eℓSw′ℓ

⊗w′ℓSwℓ
(159)

Next, we compute the body-frame feedforward reference velocity, ˙aχb. Since there

is only one changing frame, erSeℓ , we could find the corresponding body frame motion

by rotating the velocity. However, the typical computation is notationally cumbersome

[37, p140].3 Instead, we find an elegant and more general solution by merely taking the

derivative of the pose:

bSwℓ
= bSer

⊗ erSeℓ⊗ eℓSwℓ

⇒ ˙bSwℓ
=�

��✒
0

˙bSer
⊗ (erSeℓ⊗ eℓSwℓ

)+ bSer
⊗ d

dt
(erSeℓ⊗ eℓSwℓ

)

⇒ ˙bSwℓ
= bSer

⊗
(

erSeℓ⊗✟✟✟✯
0

˙eℓSwℓ
+ ˙erSeℓ⊗ eℓSwℓ

)

⇒ ˙bSwℓ
= bSer

⊗ ˙erSeℓ⊗ eℓSwℓ
(160)

where ✁✁✕
0

S indicates that S cancels to zero, and we assume the right arm and left fingers are

stationary (0 = ˙bSer
= ˙eℓSwℓ

). Note that relative motion with both arms moving could be

computed by including the nonzero derivative ˙bSer
in the computation.

3The complexity of the velocity transformation notation in [37, p140] stems from its representation using

Gibbs’s vector calculus which decouples the quaternion multiplication into separate dot and cross products.

Hamilton’s and Study’s classical quaternion and dual quaternion notation is simpler and more elegant for

this kinematic computation. A similar computation is also possible using transformation matrices and their

derivatives, but these matrices are more difficult to normalize than quaternions, increasing numerical error.

148

Velocity and the dual quaternion derivative are related as follows:

dR(S)

dt
=

1

2
ω⊗R(S)

dD(S)

dt
=

1

2

(
ẋ⊗R(S)+ x⊗ dR(S)

dt

)
(161)

where R(S) is the real part of S, D(S) is the dual part of S, ω is rotational velocity, and x is

translation.

Finally, we compute reference joint velocities using the Jacobian damped least squares

with a nullspace projection to keep joints near the zero position:

φ̇r = J+

ẋr

ωr

− kx

x− xr

ln(q⊗q∗r)

− kφ (J

+J− I)φ (162)

where x is the actual translation, q is the actual orientation quaternion, xr is the reference

translation, qr is the reference orientation quaternion, ω is the actual rotational velocity, ωr

is the reference rotational velocity, kx is the workspace position error gain, kφ is the null-

space projection gain, and φ is the configuration. We then use joint-level velocity control

to track the reference joint velocities φ̇r. A block diagram depicting the components of the

control system and their interplay can be found in Fig. 78.

5.3.3 Multiple Arm and Camera Experiments

We implement this approach on a pair of Schunk LWA4 manipulators with SDH end-

effectors, and use a pair Logitech C920 webcams to track the robot and objects. Our

estimation and control software is implemented as a distributed system using the Ach real-

time communication library [48]. The Schunk LWA4 has seven degrees of freedom and

uses harmonic drives, which enable repeatable positioning precision of ±0.15mm [72].

However, absolute positioning accuracy is subject to encoder offset calibration and link

rigidity. In practice, we achieve ±15mm accuracy when using only the joint encoders for

feedback, as can be seen in Fig. 85. The Logitech C920 provides a resolution of 1920x1080

at 15 frames per second. To measure ground-truth distances, we use a ruler and meter-stick.

149

Figure 85: Manipulation error using only encoders for position feedback. Without using

visual feedback, there is a 15mm relative positioning error between the two end-effectors.

Figure 86: Testing relative positioning accuracy by aligning the end-effectors. Incorpo-

rating visual feedback and online registration reduces manipulation error from 15mm to

≈ 2mm.

150

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

q
u

at
er

n
io

n
,
q

time (s)

x
y
z

w

-0.5

0

0.5

0 1 2 3 4 5 6 7 8 9 10

tr
an

sl
at

io
n

,
x

time (s)

x
y
z

Figure 87: Relative trajectory of erSeℓ between left and right end-effectors for pen-

capping. The trajectory has constant acceleration, constant velocity, and constant decel-

eration segments.

Table 9: Positioning Test Results (mm)
Mean Std. Dev.

encoder visual encoder visual

No Offset 16.5 2.2 0.5 0.94

shoulder: 15◦ 155 2.8 0.6 0.78

shoulder: 30◦ 280 1.3 0 0.95

shoulder & elbow: 15◦ 240 0.95 0 1.1

To test the relative positioning accuracy of our implementation, we servo the end-

effectors to a reference zero relative alignment, Fig. 86, and then measure the actual relative

error between the two end-effectors. We conduct this test using only encoder feedback, then

with visual feedback. We also repeat the test injecting encoder error of 15◦ at the initial

shoulder joint, 30◦ at the shoulder, and 15◦ at both the shoulder and elbow. The results of

this test are summarized in Table 9.

In addition, we use this method to perform the pen-capping task show in Fig. 84 and the

object hand off task shown in Fig. 88. The relative trajectory of erSeℓ for the pen-capping

task is plotted in Fig. 87

151

Figure 88: An object hand-off task.

5.4 Discussion

There are a number of error sources we must handle in this system. For the kinematics,

error from encoder offsets in the arm, imprecise link lengths, and flexing of links all con-

tribute inaccurate kinematic pose estimates. For perception, error from inaccurate camera

intrinsics, imprecise fiducial sizes, offsets in object models, and noise in the image all con-

tribute to error in visual pose estimates. To achieve accurate manipulation, we must account

for these potential sources of error.

The key point of the servo loops in Fig. 78 and Fig. 83 is that we depend not on mini-

mizing absolute error, but on minimizing relative error. We are minimizing error between

end-effector pose Se and target pose So. Because we continually update the camera reg-

istration, we effectively minimize this error in the image. As long as there is distance

between camera frame poses CSe and CSo, we will move the end-effector towards the target,

and as long as the visual distance estimate is zero when we reach the target, the arm will

stop at the target. Thus, even if there is absolute registration error due to, e.g., unmodeled

lens distortion, it is only necessary that relative error between visual estimates of the end-

effector and target be small and converge to zero. The relative error between end-effector

and target is crucial in manipulation, and our technique is well suited to minimizing this

152

error.

The position of the tracked features on the robot has an important effect on error cor-

rection. Kinematic errors between the robot body origin and the tracked features, e.g.,

due to flex or encoder offsets, are incorporated into the camera registration and handled

through the servo loop. Error between the observed features and the end-effector cannot

be corrected. Thus, it is better to track features as close to the end-effector as possible.

Consequently, we placed the fiducial markers on the fingers of the SDH end-effector.

The principal challenge in the implementation stems from observing the robot pose

using small, ≈ 3cm, markers. While marker translation is reliably detected, outliers in

orientation are frequent. Ample lighting improves detection but does not eliminate outliers.

The median pose, (129)-(131), was effective at eliminating outliers from visual estimates.

Alternative methods for combining orientations estimates include Davenport’s q-method

[126] and the Huber loss function [90]. In contract to these other methods, the median has

no parameters such as thresholds which require adjustment. Thus, it is especially suited to

this online registration application where outlier frequency may vary depending on camera

placement, lighting, etc. A potential challenge is that the direct computation of (129) leads

to an O(n2) algorithm in the number of orientations. However, for the small number of

poses we consider at each step here, the computation time is negligible. On a Xeon E5-

1620 CPU, computing the median of 32 orientations requires 30µs.

One source of error for manipulation that we do not address is error in grasping. Be-

cause we track only the robot hand, any error in the relative pose between the hand and

grasped object is not corrected. In reality, when grasping an object, the object itself be-

comes the robot’s end-effector. Thus, to accurately manipulate in-hand objects, it would

be better to track the objects themselves. Since a grasped object is likely to be partially

occluded, model-based tracking such as [31], which is robust to occlusions, is a potential

approach.

A crucial additional consideration in manipulation is force and tactile sensing. Using

153

visual feedback without force and tactile sensing already reduces the error to a few mil-

limeters and allows the robot to perform tasks such as pen capping and object hand-off.

However, considering the generated contact forces during the manipulation would further

improve performance and allow even more accurate operation, in particular during the post-

contact phase. This is a key area for improvement in this approach.

154

CHAPTER VI

MODELING AND PROGRAMMING CONCURRENCY

While the linguistic approach used so far operates serially, we must also consider con-

currency of the underlying robot hardware, which contains many networked components

operating in parallel. In addition, it is desirable to limit the potential scope of errors which

occur outside the formally verifiably linguistic framework. We can address both of these

issues by adopting a multi-process software design. In a real-time, multi-process system,

it is critical to communicate the latest data sample with minimum latency. There are many

communication approaches intended for both general purpose and real-time needs [89, 136,

149, 158, 167]. Typical methods focus on reliable communication or network-transparency

and accept a trade-off of increased message latency or the potential to discard newer data.

By focusing instead on the specific case of real-time communication on a single host, we

reduce communication latency and guarantee access to the latest sample. We present a new

Interprocess Communication (IPC) library, Ach,1 which addresses this need, and discuss

its application for real-time, multiprocess control on three humanoid robots (Fig. 89).

There are several design decisions that influenced this robot software and motivated de-

velopment of the Ach library. First, to utilize decades of prior development and engineer-

ing, we implement our real-time system on top of a POSIX-like Operating System (OS)2.

This provides us with high-quality open source platforms such as GNU/Linux and a wide

variety of compatible hardware and software. Second, because safety is critical for these

1Ach is available at http://www.golems.org/projects/ach.html. The name “Ach” comes

from the common abbreviation for the motor neurotransmitter Acetylcholine and the computer networking

term “ACK.”
2POSIX is IEEE standard 1003.1 for a portable operating system interface. It enables software portability

among supporting operating systems such as GNU/Linux, MacOSX, Solaris, and QNX.

155

http://www.golems.org/projects/ach.html

Figure 89: Hubo, Golem Krang, and Nao: Existing Robotic Systems where Ach provides

communications between hardware drivers, perception, planning, and control algorithms.

robots, the software must be robust. Therefore, we adopt a multiple process approach over

a single-process or multi-threaded application to limit the potential scope of errors [162].

This implies that sampled data must be passed between OS processes using some form of

Interprocess Communication (IPC). Since general purpose IPC favors older data [167] (see

section 6.1), while real-time control needs the latest data, we have developed a new IPC

library.

This article discusses a POSIX Interprocess Communication (IPC) library for the real-

time control of physical processes such as robots, describes its application on three different

156

humanoid platforms, and compares this IPC library with a variety of other communication

methods. This library, called Ach, provides a message-bus or publish-subscribe commu-

nication semantics – similar to other real-time middleware and robotics frameworks [136,

149] – but with the distinguishing feature of favoring newer data over old. Ach is formally

verified, efficient, and it always provides access to the most recent data sample. To our

knowledge, these benefits are unique among existing communications software.

6.1 Review of POSIX IPC

POSIX provides a rich variety of IPC that is well suited for general purpose information

processing, but none are ideal for real-time robot control. Typically, a physical process such

as a robot is viewed as a set of continuous, time-varying signals. To control this physical

process with a digital computer, one must sample the signal at discrete time intervals and

perform control calculations using the sampled value. To achieve high-performance control

of a physical system, we must process the latest sample with minimum latency. This dif-

fers from the requirements of general computing systems which focus on throughput over

latency and favor prior data over latter data. Thus, for robot control, it is better to favor

new data over old data whereas nearly all POSIX IPC favors the old data. This problem

is typically referred to as Head of Line (HOL) Blocking. The exception to this is POSIX

shared memory. However, synchronization of shared memory is a difficult programming

problem, making the typical and direct use of POSIX shared memory unfavorable for de-

veloping robust systems. Furthermore, some parts of the system, such as logging, may

need to access older samples, so this also should be permitted at least on a best-effort basis.

Since no existing implementation satisfied our requirements for low-latency exchange of

most-recent samples, we have developed a new open source IPC library.

The three main types of POSIX IPC are streams, datagrams, and shared memory. We

review each of these types and consider why these general-purpose IPC mechanisms are

not ideal for real-time robot control. Table 10 contrasts the response of each method to a

157

full buffer, and Table 11 summarizes the pros and cons of each method. A thorough survey

of POSIX IPC is provided in [167].

6.1.1 Streams

Stream IPC includes pipes, FIFOs, local-domain stream sockets, and TCP sockets. These

IPC mechanisms all expose the file abstraction: a sequence of bytes accessed with read

and write. All stream-based IPC suffers from the HOL blocking problem; we must read

all the old bytes before we see any new bytes. Furthermore, to prevent blocking of the read-

ing or writing process, we must resort to more complicated nonblocking or asynchronous

I/O.

6.1.2 Datagrams

6.1.2.1 Datagram Sockets

Datagram sockets perform better than streams in that they are less likely to block the sender.

Additionally, some types of datagram sockets can multicast packets, efficiently transmitting

them to multiple receivers. However, datagram sockets give a variation on the HOL block-

ing problem where newer messages are simply lost if a buffer fills up. This is unacceptable

since we require access to the most recent data.

6.1.2.2 POSIX Message Queues

POSIX Message Queues are similar to datagram sockets and also include the feature of

message priorities. The downside is that it is possible to block if the queue fills up. Consider

a process that gets stuck and stops processing its message queue. When it starts again, the

process must still read or flush old messages before getting the most recent sample.

6.1.3 Shared Memory

POSIX shared memory is very fast and one could, by simply overwriting a variable, always

have the latest data. However, this provides no recourse for recovering older data that may

have been missed. In addition, shared memory presents synchronization issues which are

158

notoriously difficult to solve [101], making direct shared memory use less suitable for

safety critical real-time control.

The data structure which Ach most closely resembles is the circular array. Circular

arrays or ring buffers are common data structures in device drivers and real-time programs,

and the implementation in Ach provides unique features to satisfy our requirements for

a multi-process real-time system. Typical circular buffers allow only one producer and

one consumer with the view that the producer inserts data and the consumer removes it.

Our robots have multiple producers and multiple consumers writing and reading a single

sequence of messages. A message reader cannot remove a message, because some other

process may still need to read it. Because of this different design requirement, Ach uses

a different data structure and algorithm in order to perform real-time IPC among multiple

processes.

6.1.4 Further Considerations

6.1.4.1 Nonblocking and Asynchronous IO approaches

There are several approaches that allow a single process or thread to perform IO opera-

tions across several file descriptions. Asynchronous IO (AIO) may seem to be the most

appropriate for this application. However, the current implementation under Linux is not

as mature as other IPC mechanisms. Methods using select/poll/epoll/kqueue are widely

used for network servers. Yet, both AIO and select-based methods only mitigate the HOL

problem, not eliminate it. Specifically, the sender will not block, but the receiver must read

or flush the old data from the stream before it can see the most recent sample.

6.1.4.2 Priorities

To our knowledge, none of the stream or datagram forms of IPC consider the issue of

process priorities. Priorities are critical for real-time systems. When there are two readers

that want the next sample, we want the real-time process, such as a motor driver, to get the

data and process it before a non real-time process, such as a logger, does anything.

159

Table 10: Full Buffer Semantics

Method Action on full buffer

Stream Block sender, or Error

Datagram Drop newest message, or Error

Message Queue Block sender, or Error

Ach Drop oldest message

Table 11: POSIX IPC Summary, pros and cons for real-time

Method Pro Con Examples

Streams Reliable, Ordered Head-of-Line Blocking pipes, TCP, Local Socket

Datagrams Multicast, no sender blocking Full buffer blocks or discards new data UDP, Local Socket

Message Queues Can avoid blocking sender Full buffer blocks or discards new data POSIX Message Queues

Shared Memory Fast Last only, Synchronization issues POSIX Shared Mem., mmap

Asynchronous I/O No blocking Immature, favors old data POSIX Asynchronous I/O

Nonblocking I/O No blocking Must retry, favors old data O NONBLOCK

Multiplexed I/O Handles many connections Receiver must read/discard old data select, poll, epoll, kqueue

6.1.5 General, Real-Time, Robotics Middleware

In addition to the core POSIX IPC mechanisms, there are many messaging middlewares

and robot software architectures. However, these are either not Open Source or not ideal

for our multi-process real-time domain. Many of these approaches build on an underlying

POSIX IPC method, inheriting that method’s strengths and weaknesses. Furthermore, our

benchmark results for some of these methods (see Fig. 95) show that they impose noticeable

overhead compared to the underlying kernel IPC.

Most middleware addresses general purpose rather than real-time communication. The

Message Passing Interface (MPI) is ubiquitous in high-performance computing, but its fo-

cus is on maximizing message throughput for networked clusters [73]. The robot control

domain centers around minimizing sample latency on a single host. The Advanced Mes-

sage Queuing Protocol (AMQP) [184] is a network message distribution middleware fo-

cused on business applications; it does not address low-latency real-time systems. ZeroMQ

provides IPC based on TCP and local-domain sockets which have the HOL blocking con-

dition. Remote Procedure Call (RPC) methods such as ONC RPC [164] allow synchronous

160

point-to-point communication but they do not directly allow efficient communication be-

tween multiple senders and receivers and also do not address HOL blocking.

Several frameworks and middleware focus on real-time control or robotics. The Oro-

cos Real-Time Toolkit [22] and NAOqi [2] are two architectures for robot control, but they

do not meet our requirements for flexible IPC. iRobot’s Aware2.0 [92] is not open source,

and Microsoft Robotics Studio [128] is not open source and does not run on POSIX sys-

tems. ROS [149] provides open source TCP and UDP message transports, which suffer

from the aforementioned HOL blocking problem. CORBA [137] provides object-oriented

remote procedure call, an event notification service, and underlies the OpenRTM middle-

ware [10]; our benchmark results (see Fig. 95) show that TAO CORBA [158], a popular

implementation, gives poor messaging performance compared to alternatives.

In contrast, Data Distribution Service [136] and LCM [89] are publish-subscribe net-

work protocols. LCM is based on UDP multicast which efficiently uses network bandwidth

to communicate with multiple subscribers. However, UDP does drop newer packets when

the receiving socket buffer is full. These protocols may be complementary to the efficient

and formally verified IPC we present here.

In conclusion, none of these middlewares met our needs for an open source, light-

weight, and non-HOL blocking IPC. However, the design of Ach facilitates integration

with some of these other frameworks (see subsection 6.3.2 and subsection 6.3.3).

6.2 The Ach IPC Library

Ach provides a message bus or publish-subscribe style of communication between multiple

writers and multiple readers. A real-time system has multiple Ach channels across which

individual data samples are published. Messages are sent as byte arrays, so arbitrary data

may be transmitted such as floating point vectors, text, images, and binary control mes-

sages. Each channel is implemented as two circular buffers, (1) a data buffer with variable

sized entries and (2) an index buffer with fixed-size elements indicating the offsets into

161

the data buffer. These two circular buffers are written in a channel-specific POSIX shared

memory file. Using this formulation, we solve and formally verify the synchronization

problem exactly once and contain it entirely within the Ach library.

The Ach interface consists of the following procedures:

• ach create: Create the shared memory region and initialize its data structures

• ach open: Open the shared memory file and initialize process local channel coun-

ters

• ach put: Insert a new message into the channel

• ach get: Receive a message from the channel

• ach close: Close the shared memory file

Channels must be created before they can be opened. Creation may be done directly by

either the reading or writing process, or it may be done via the shell command, ach mk

channel name, before the reader or writer start. This is analogous to the creation of

FIFOs with mkfifo called either as a shell command or as a C function. After the channel

is created, each reader or writer must open the channel before it can get or put messages.

6.2.1 Channel Data Structure

The core data structure of an Ach channel is a pair of circular arrays located in the POSIX

shared memory file, Fig. 90. It differs from typical circular buffers by permitting multiple

consumers to access the same message from the channel. The data array contains variable

sized elements which store the actual message frames sent through the Ach channel. The

index array contains fixed size elements where each element contains both an offset into

the data array and the length of that data element. A head offset into each array indicates

both the place to insert the next data and the location of the most recent message frame.

Each reader maintains its own offset into the index array, indicating the last message seen

162

index head index free data head data free

2 3

4 1 /0 /0

I0 I1 I2 I3

/0 a0 a1 a2 a3 b0 /0 /0

D0 D1 D2 D3 D4 D5 D6 D7

header

index array

data array

Figure 90: Logical Memory Structure for an Ach shared memory file. In this example, I0

points to a four byte message starting at D1, and I1 points to a one byte message starting

at D5. The next inserted message will use index cell I2 and start at D6. There are two free

index cells and three free data bytes. Both arrays are circular and wrap around when the

end is reached.

by that reader. This pair of circular arrays allows readers to find the variable size message

frames based on the index array offset and the corresponding entry in the data array.

Access to the channel is synchronized using a mutex and condition variable. This allows

readers to either periodically poll the channel for new data or to wait on the condition

variable until a writer has posted a new message. Using a read/write lock instead would

have allowed only polling. Additionally, synchronization using a mutex prevents starvation

and enables proper priority inheritance between processes, important to maintaining real-

time performance.

6.2.2 Core Procedures

Two procedures compose the core of ach: ach put and ach get.

6.2.2.1 ach put

The procedure ach put inserts new messages into the channel. It is analogous to write,

sendmsg, and mq send. The procedure is given a pointer to the shared memory region

for the channel and a byte array containing the message to post. There are four broad steps

163

Procedure achput

Input: c : ach channel ; // shared memory file

Input: b : byte array ; // message buffer

Input: n : integer ; // length of message

Output: status : integer ; // status code

1 if n > length(c.data array) then return OVERFLOW;

2 LOCK(c); // take the mutex

/* Get a index entry */

3 if 0 = c.index free then

4 c.data f ree+= c.index array[c.index head].size;

5 c.index f ree← 1;

/* Make room in data array */

6 i← (c.index head + c.index f ree) % c.index cnt;

7 while c.data free < n do

8 c.data f ree+= c.index array[i].size;

9 c.index f ree++;

10 i← (i+1) % c.index cnt;

/* Copy Buffer */

11 if c.data size - c.data head ≥ n then

/* Simple Copy */

12 MEMCPY(c.data array+ c.data head, b, n);

13 else

/* Wraparound Copy */

14 e← c.data size− c.data head;

15 MEMCPY(c.data array+ c.data head, b, e);

16 MEMCPY(c.data array, b+ e, n− e);

/* Modify Counts */

17 c.index array[c.index head].size = n;

18 c.index array[c.index head].o f f set = c.data head;

19 c.data head← (c.data head +n) % length(c.data array);
20 c.data f ree−= n;

21 c.index head← (c.index head +1) % c.index cnt;

22 c.index f ree−−;

23 UNLOCK(c); // release the mutex

24 NOTIFY(c); // wake readers on cond. var.

25 return OK;

to the procedure:

1. Get an index entry. If there is at least one free index entry, use it. Otherwise, clear the oldest

index entry and its corresponding message in the data array.

2. Make room in the data array. If there is enough room already, continue. Otherwise, repeatedly

164

free the oldest message until there is enough room.

3. Copy the message into data array.

4. Update the offset and free counts in the channel structure.

6.2.2.2 ach get

The procedure ach get receives a message from the channel. It is analogous to read,

recvmsg, and mq receive. The procedure takes a pointer to the shared memory region,

a storage buffer to copy the message to, the last message sequence number received, the

next index offset to check for a message, and option flags indicating whether to block

waiting for a new message and whether to return the newest message bypassing any older

unseen messages. There are four broad steps to the procedure:

1. If we are to wait for a new message and there is no new message, then wait. Otherwise, if

there are no new messages, return a status code indicating this fact.

2. Find the index entry to use. If we are to return the newest message, use that entry. Otherwise,

if the next entry we expected to use contains the next sequence number we expect to see, use

that entry. Otherwise, use the oldest entry.

3. According to the offset and size from the selected index entry, copy the message from the

data array into the provided storage buffer.

4. Update the sequence number count and next index entry offset for this receiver.

6.3 Case Studies

6.3.1 Dynamic Balance on Golem Krang

Golem Krang, Fig. 91, is a dynamically balancing, bi-manual mobile manipulator designed

and built at the Georgia Tech Humanoid Robotics Lab [169]. All the real-time control for

Krang is implemented through the Ach IPC library. This approach has improved software

robustness and modularity, minimizing system failures and allowing code reuse both within

Krang with other projects [47] sharing the same hardware components.

165

Ctrl PC

Torso PRLLeft Arm Right Arm

IMULeft Drive Right Drive

BMS

E-STOP

Router

Console PC

Gamepad

E-Stop Button

Key
WIFI

Ethernet

CAN

RS232

RF

Figure 91: Block diagram of electronic components in Golem Krang. Blocks inside the

dashed line are onboard and blocks outside are offboard. Control software runs on the

Pentium-M Control PC under Ubuntu Linux, which communicates over eight Controller

Area Network (CAN) buses to the embedded hardware. The arms are Schunk LWA3s with

ATI wrist force-torque sensors and Robotiq adaptive grippers. The torso is actuated using

three Schunk PRL motor modules. The wheels are controlled using AMC servo drives.

The battery management system (BMS) monitors the lithium cells.

wheel state

amciod

balanced

l hand state

w pciodl robotiqd

imud

waist state

r ftd

r arm inputwaist inputr hand input

r robotiqd

controld

imu

l arm state

r ft

r arm state

l ftd

cmd

nav

wheel input

l pciod

r hand state

r pciod

l arm input

l ft

l hand input

Figure 92: Block diagram of primary software components on Golem Krang. Gray ovals

are user-space driver processes, green ovals are controller processes, and rectangles are

Ach channels. Each hardware device, such as the IMU or LWA3, is managed by a separate

driver process. Each driver process sends state messages, such as positions or forces, over a

separate state channel. Devices that take input, such as a reference velocity, have a separate

input channel.

166

The software for Krang is implemented as a collection of processes communicating

over Ach channels, Fig. 92. In this design, providing a separate state Ach channel for

each hardware device ensures that the current state of the robot can always be accessed

through the newest messages in each of these channels. Additionally, splitting the control

into separate balanced, for stable balancing, and controld, for arm control, processes

promotes robustness by isolating the highly-critical balance control from other faults. This

collection of driver and controller daemons communicating over Ach channels implements

the real-time, kilohertz control loop for Golem Krang.

This design provides several advantages for control on Krang. The low overhead and

suitable semantics of Ach communication permits real-time control under Linux using mul-

tiple processes. In several cases, Krang contains multiple identical hardware devices. The

message-passing, multi-process design aids code reuse by allowing access to duplicated

devices with multiple instances of the same daemon binary – two instances of the ftd

daemon for the F/T sensors, two instances of the robotiqd daemon for the grippers, and

three instances of the pciod daemon for two arms and torso. The relative independence of

each running process makes this system robust to failures in non-critical components. For

example, an electrical failure in a waist motor may stall the w pciod process, but – with-

out any additional code – the balanced controller and amciod driver daemons continue

running independently, ensuring that the robot does not fall. Thus, Ach helps enhance the

safety of this potentially dangerous robot.

6.3.2 Speed Regulation on Nao

The Aldebaran Nao is a 0.5m, 5kg bipedal robot with 25 degrees-of-freedom (DOF). It

contains an on-board Intel Atom PC running a GNU/Linux distribution with the NAOqi

framework to control the robot. User code is loaded into the NAOqi process as dynamic

library modules. We used Ach to implement Human-Inspired Control [145] on the Nao

[49]. The Human-Inspired Control approach achieves provably stable, human-like walking

167

on robots by identifying key parameters in human gaits and transferring these to the robot

through an optimization process. To implement this approach, real-time control software

to produce the desired joint angles must run on the NAO’s internal computer.

The NAOqi framework provides an interface to the robot’s hardware; however, it presents

some specific challenges for application development – and for the implementation of

Human-Inspired Control in particular. NAOqi is slow and memory-intensive, consuming

at idle 15% of available CPU time and 20% of available memory. Additionally, real-time

user code must run as a callback function, which is awkward for the desired controller

implementation. Using Ach to move the controller to a separate process improves the im-

plementation.

A multi-process software design, Fig. 93, addresses these challenges with NAOqi and

enhances the robustness and efficiency of Human-Inspired Control on the Nao. Each pro-

cess runs independently, so an error in a non-critical process, such as logger/debugger,

cannot affect other processes, eliminating a potential failure. The user processes can be

stopped and started within only a few seconds. In contrast, NAOqi takes about 15 seconds

to start. The independence of processes means NAOqi need not be restarted so long as

libamber is unchanged. Since libamber is a minimal module, only interfacing with

the Ach channels and accessing the Nao’s hardware, it can be reused unmodified for differ-

ent applications on the Nao. Different projects can run different controller processes, using

Ach and libamber to access Nao’s hardware, all without restarting the NAOqi process.

In addition, using standard debugging tools such as GDB is much easier since the user code

can be executed within the debugger independently of the NAOqi framework. Thus, con-

verting the NAO’s control software to a multi-process design simplified development and

improved reliability.

168

libamber

DCM

logger/

debugger

trajectorGenerator

motionParser

Supervisor

Generator

NAOqimotionControl
chan ctrl

chan feedchan vel

chan super

Figure 93: Block diagram of primary software components on Nao. Solid blocks are

real-time processes, and dashed blocks are non-real-time processes. NAOqi loads the

libamber module to communicate over Ach channels. The motionControl process

performs feedback control while the logger/debugger process records data from the

Ach channels. The Supervisor Generator process performs high-level policy gen-

eration for speed control.

hubo-ach-ros filter hubo-daemon

CANfeedforwardref

feedback

planner

rviz
rFeedback

rFeedforward Key

CAN

Ach

ROS

Figure 94: Block diagram of feedback loop integrating Hubo-Ach and ROS. The

planner process computes trajectories, and the rviz process displays a 3D model of

Hubo’s current state. The hubo-ach-ros process bridges the Ach channels with ROS

topics. The filter process smooths trajectories to reduce jerk. Hubo-daemon commu-

nicates with the embedded motor controllers.

6.3.3 Reliable Software for the Hubo2+

The Hubo2+ is a 1.3m tall, 42kg full-size humanoid robot, produced by the Korean Ad-

vanced Institute of Science and Technology (KAIST) and spinoff company Rainbow Inc.

[30]. It has 38 DOF: six per arm and leg, five per hand, three in the neck, and one in the

waist. Sensors include three-axis force-torque sensors in the wrists and ankles, accelerom-

eters in the feet, and an inertial measurement unit (IMU). The sensors and embedded motor

controllers are connected via a Controller Area Network to a pair of Intel Atom PC104+

computers.

Hubo-Ach3 is an Ach-based interface to Hubo’s sensors and motor controllers [120].

3Available under permissive license, http://github.com/hubo/hubo-ach

169

http://github.com/hubo/hubo-ach

This provides a conventional GNU/Linux programming environment, with the variety of

tools available therein, for developing applications on the Hubo. It also links the embedded

electronics and real-time control to popular frameworks for robotics software: ROS [149],

OpenRAVE, and MATLAB.

Reliability is a critical issue for software on the Hubo. As a bipedal robot, Hubo must

constantly maintain dynamic balance; if the software fails, it will fall and break. A multi-

process software design improves Hubo’s reliability by isolating the critical balance code

from other non-critical functions, such as control of the neck or arms. For the high-speed,

low-latency communications and priority access to latest sensor feedback, Ach provides

the underlying IPC.

Hubo-Ach handles CAN bus communication between the PC and embedded electron-

ics. Because the motor controllers synchronize to the control period in a phase lock loop

(PLL), the single hubo-daemon process runs at a fixed control rate. The embedded con-

trollers lock to this rate and linearly interpolate between the commanded positions, provid-

ing smoother trajectories in the face of limited communication bandwidth. This commu-

nication process also avoids bus saturation; with CAN bandwidth of 1 Mbps and a 200Hz

control rate, hubo-daemon utilizes 78% of the bus. Hubo-daemon receives position

targets from a feedforward channel and publishes sensor data to the feedback chan-

nel, providing the direct software interface to the embedded electronics. Fig. 94 shows an

example control loop integrating Hubo-Ach and ROS.

Hubo-Ach is in use for numerous projects at several research labs. Users include groups

at MIT, WPI, Ohio State, Purdue, Swarthmore College, Georgia Tech, and Drexel Univer-

sity. These projects primarily revolve around the DARPA Robotics Challenge (DRC)4 team

DRC-Hubo5. The DRC includes rough terrain walking, ladder climbing, valve turning, ve-

hicle ingress/egress and more.

4http://www.theroboticschallenge.org/

5http://drc-hubo.com/

170

http://www.theroboticschallenge.org/
http://drc-hubo.com/

Hubo-Ach helps the development of reliable, real-time applications on the Hubo. Sep-

arating software modules into different processes increases system reliability. A failed

process can be independently restarted, minimizing the chance of damage to the robot. In

addition, the controllers can run at fast rates because Ach provides high-speed, low-latency

communication with hubo-daemon. Hubo-Ach provides a C API callable from high-

level programming languages, and it integrates with popular platforms for robot software

such as ROS and MATLAB, providing additional development flexibility. Hubo-Ach is a

validated and effective interface between the mechatronics and the software control algo-

rithms of the Hubo full-size humanoid robot.

6.4 Performance and Discussion

6.4.1 Formal Verification

We used the SPIN Model Checker [84] to formally verify Ach. Formal verification is a

method to enhance the reliability of software by first modeling the operation of that soft-

ware and then checking that the model adheres to a specification for performance. SPIN

models concurrent programs using the Promela language. Then, it enumerates all possi-

ble world states of that model and ensures that each state satisfies the given specification.

This can detect errors that are difficult to find in testing. Because process scheduling is

non-deterministic, testing may not reveal errors due to concurrent access, which could later

manifest in the field. However, because model checking enumerates all possible process

interleavings, it is guaranteed to detect concurrency errors in the model.

We verified the ach put and ach get procedures using SPIN. Our model for Ach

checks the consistency of channel data structures, ensures proper transmission of message

data, and verifies freedom from deadlock. Model checking verifies these properties for all

possible interleavings of ach put and ach get, which would be practically impossible

to achieve through testing alone. By modeling the behavior of Ach in Promela and verifying

its performance with SPIN, we eliminated errors in the returned status codes and simplified

171

our implementation, improving the robustness and simplicity of Ach.

6.4.2 Benchmarks

We provide benchmark results of message latency for Ach and a variety of other kernel

IPC methods as well as the LCM, ROS, and TAO CORBA middleware6. Latency is often

more critical than bandwidth for real-time control as the amount of data per sample is

generally small, e.g., state and reference values for several joint axes. Consequently, the

actual time to copy the data is negligible compared to other sources of overhead such as

process scheduling. The benchmark application performs the following steps:

1. Initialize communication structures

2. fork sending and receiving processes

3. Sender: Post timestamped messages at the desired frequency

4. Receivers: Receive messages and record latency of each messaged based on the

timestamp

We ran the benchmarks under two kernels: Linux PREEMPT RT and Xenomai. PRE-

EMPT RT is a patch to the Linux kernel that reduces latency by making the kernel fully

preemptible. Any Linux application can request real-time priority. Xenomai runs the real-

time Adeos hypervisor alongside a standard Linux kernel. Real-time applications commu-

nicate through Adeos via an API skin such as RTDM, ITRON, or POSIX; these applications

are not binary compatible with Linux applications, though the POSIX skin is largely source

compatible.

Fig. 95 shows the results of the benchmarks, run on an Intel Xeon 1270v2 under both

Linux PREEMPT RT and Xenomai’s POSIX skin. We used Linux 3.4.18 PREEMPT RT,

6Benchmark code available at http://github.com/ndantam/ipcbench

172

http://github.com/ndantam/ipcbench

One Receiver - PREEMPT RT

Two Receivers - PREEMPT RT

One Receiver - Xenomai

Two Receivers - Xenomai

0 5 10 15 20 25 30 35 40 45 50

TAO Procedure

LCM

Localhost TCP

Localhost UDP

Local Datagram Socket

Local Stream Socket

Pipe

Message Queue

Ach

Mean 99% Max

0 100 200 300 400 500 600 700

TAO Event

ROS TCP

ROS UDP

0 5 10 15 20 25 30 35 40 45 50

LCM

UDP Multicast

Ach

0 100 200 300 400 500 600 700

TAO Event

ROS TCP

ROS UDP

0 5 10 15 20

Localhost UDP

Message Queue

Ach

0 5 10 15 20

Ach

Time (µs)

10−1 100 101 102

10−2

100

Control Cycle Frequency (kHz)

M
es

sa
g

e
L

at
en

cy
/

C
y

cl
e

P
er

io
d

Mean 99% Max

100 101 102

10−2

10−1

100

Hops

M
es

sa
g

e
L

at
en

cy
/

C
y

cl
e

P
er

io
d

Ach Latency, 0.1 - 100 kHz Cycles

Ach Latency, 1 - 512 Hops, 1kHz

Figure 95: Message Latency for Ach, POSIX IPC, and common middleware. “Mean”

is the average over all messages, “99%” is the latency that 99% of messages beat, and

“Max” is the maximum recorded latency. Right-side plots show the limits of Ach perfor-

mance on Linux PREEMPT RT, with a 100 = 1 latency ratio indicating latency of an entire

cycle. The upper plot shows the latency ratio for various control cycle frequencies. The

discontinuity above 50kHz occurs due to transmission time exceeding the cycle period and

consequent missed messages. The lower plot shows the latency ratio resulting from passing

the message through multiple intermediate processes.

173

20 40 60 80 100 120 140 160 180 200 220 240 260

TAO Event

TAO Procedure

Local Stream Socket

TCP

ROS

UDP Multicast

LCM

Local Datagram Socket

UDP

Ach

Message Queue

Pipe

Source Lines of Code

Figure 96: Source Lines of Code for each Benchmarked Method

Xenomai 2.6.2.1/RTnet 0.9.13/Linux 3.2.217, Ach 1.2.0, LCM 1.0.0, ROSCPP 1.9.50, and

TAO 2.2.1 with ACE 6.2.1. We benchmarked one and two receivers, corresponding to

the communication cases in section 6.3. Each test lasted for 600 s, giving approximately

6× 105 data points per receiver. These results show that for the use cases in section 6.3,

where communication is between a small number of processes, Ach offers a good balance

of performance in addition to its unique latest-message-favored semantics.

As an approximate measure of programmer effort required for each of these methods,

Fig. 96 summarizes the Source Lines of Code8 for the method-specific code in the bench-

mark program. Counts include message and interface declarations and exclude generated

code. To give a more fair comparison, we attempted to consistently check errors across

all methods. Most methods have similar line counts, with sockets usually requiring a small

amount of extra code to set up the connection. The pipe code is especially short because the

file descriptors are passed through fork; this would not work for unrelated processes. The

networked methods in the test do not consider security, which would necessarily increase

7While we were able to test RTnet’s loopback performance, the RTnet driver for our Ethernet card caused

a kernel panic. Similar stability issues with Xenomai were noted in [21]
8Measured using http://www.dwheeler.com/sloccount/

174

http://www.dwheeler.com/sloccount/

complexity of networked real-world applications, while Ach, Message Queues, and Lo-

cal Domain Sockets implicitly control local data access based on user IDs. TAO CORBA

stands out with several times more code than the other methods. It is also notable that the

higher-level frameworks in this test did not result in significantly shorter communication

code than direct use of kernel IPC.

6.4.3 Discussion

The performance limits illustrated in Fig. 95 indicate the potential applicability of Ach. The

latency ratio compared to hop count is particularly important because it bounds the mini-

mum granularity at which the control system can be divided between processes. On our test

platform, significant overhead, i.e., exceeding 25% of the 1 kHz control cycle, is incurred

when information must flow serially through approximately 32 processes. This cost is im-

port to consider when dividing computation among different processes. For higher control

rates, our test platform reaches 25% messaging overhead at approximately 10 kHz—. For

the robots in section 6.3, the embedded components, particularly the CAN buses, effec-

tively limit control rates to 1 kHz or lower; Ach is not the bottleneck for these systems.

However, implementing systems that do require 10 kHz or greater control rates would be

difficult with Ach on Linux PREEMPT RT. These performance considerations show the

range of systems for which this software design approach is suitable.

In addition to performance considerations, it is also critical to note the semantic dif-

ferences between communication methods. The primary unique feature of Ach is that

newer messages always supersede older messages. The other message-passing methods

give priority to older data, and will block or drop newer messages when buffers are full.

CORBA also differs from the other methods by exposing a remote procedure call rather

than a message-passing interface, though the CORBA Event Service layers message pass-

ing on top of remote procedure call. Selecting appropriate communication semantics for

an application simplifies implementation.

175

Some of the benchmarked methods also operate transparently across networks. This

can simplify distributing an application across multiple machines, though this process is not

seamless due to differences between local and network communication [154]. Processes

on a single host can access a unified physical memory which provides high bandwidth

and assumed perfect reliability; still, care must be taken to ensure memory consistency

between asynchronously executing processes. In contrast, real-time communication across

a network need not worry about memory consistency, but must address issues such as

limited bandwidth, packet loss, collisions, clock skew, and security. With Ach, we have

focused on efficient, latest-message-favored communication between a few processes on a

single host. We intend the Ach double-circular-buffer implementation to be complementary

to, and its message-passing interface compatible with, networked communication. This

meets the communication requirements for systems such as those in section 6.3.

An important consideration in the design of Ach is the idea of Mechanism, not Policy

[162]. Ach provides a mechanism to move bytes between processes and to notify callers of

errors. It does not specify a policy for serializing arbitrary data structures or handling all

types of errors. Such policies are application dependent and even within our own research

groups have changed across different applications and over time. This separation of policy

from mechanism is important for flexibility.

This flexibility is helpful when integrating with other communication methods or frame-

works. To integrate with ROS on Hubo (see subsection 6.3.3), we created a separate

process to translate between real-time Ach messages and non-real-time ROS messages.

This approach is straightforward since both Ach and ROS expose a publish/subscribe mes-

sage passing interface. On the other hand, NAOqi exposes a callback interface. Still,

we can integrate with this (see subsection 6.3.2) by relaying Ach messages within the

NAOqi callback. In general, integrating Ach with other frameworks requires serializing

framework data structures to send over an Ach channel. However, since Ach works with

raw byte arrays, it is possible directly use existing serialization methods such as XDR,

176

Boost.Serialization, ROS Genmsg, Google Protocol Buffers, or contiguous C structures.

Achieving real-time bounds on general-purpose computing systems presents an overall

challenge. The Linux PREEMPT RT patch seamlessly runs Linux applications with signif-

icantly reduced latency compared to vanilla Linux, and work is ongoing to integrate it into

the mainline kernel. However, it is far from providing formally guaranteed bounds on la-

tency. Xenomai typically offers better latency than PREEMPT RT [21] but is less polished

and its dual kernel approach complicates development. There any many other operating

systems with dedicated focus on real-time, e.g., VxWorks, QNX, TRON. In addition to op-

erating system selection, the underlying hardware can present challenges. CPU frequency

scaling, which reduces power usage, can significantly increase latency. On x86/AMD64

processors, System Management Interrupts9 preempt all software, including the operat-

ing system, potentially leading to latencies of hundreds of microseconds. A fundamental

challenge is that general purpose computation considers time not in terms of correctness

but only as a quality metric – faster is better – whereas real-time computation depends on

timing for correctness [115]. These issues are important in overall real-time system design.

9http://www.intel.com/design/processor/manuals/253669.pdf

177

http://www.intel.com/design/processor/manuals/253669.pdf

Procedure achget

Input: c : ach channel ; // shared memory file

Input: b : byte array ; // storage for message

Input: n : integer ; // size of b

Input: s : integer ; // last seq. num. seen

Input: i : integer ; // next index to read

Input: ow : boolean ; // wait for new message?

Input: ol : boolean ; // get newest msg.?

Output: integer × integer ; // size, status

Output: s : integer ; // new last seq. num.

Output: i : integer ; // new next index

1 LOCK(c); // take the mutex

2 if c.seq num = s∧ow then

3 WAIT(c); // condition variable wait

4 if c.last seq = s∨0 = c.last seq then

5 UNLOCK(c);

6 return (0×STALE); // no entries

/* Find index array offset, j */

7 if ol then

/* newest index */

8 j← (c.index head + c.index cnt−1) % c.index cnt;

9 else if ¬ol ∧ c.index array[i].seq num = s+1 then

10 j← i; // next index

11 else

/* oldest index */

12 j← (c.index head + c.index f ree) % c.index cnt;

/* Now read frame from data array */

13 x = c.index array[j];
14 if x.size > n then

15 UNLOCK(c);

16 return (x.size×OV ERFLOW);

17 if x.o f f set + x.size < c.data size then

18 MEMCPY(b, c.data array+ x.o f f set, x.size);

19 else

20 e = c.data size− x.o f f set;

21 MEMCPY(b, c.data array+ x.o f f set, e);

22 MEMCPY(b+ e, c.data array, x.size− e);

23 s′← s;

24 s← x.seq num;

25 UNLOCK(c);

26 i← (i+1) % c.index cnt;

27 if x.seq num > s′+1 then

28 return (x.size×MISSED);
29 else

30 return (x.size×OK);

178

CHAPTER VII

EXECUTING LANGUAGE MODELS

In this section, we consider the issues that arise in the execution of the linguistic models

we have developed. We describe the properties and constraints in online parsing for control

as opposed to the more typical parsing domain of program translation. Then, we present

a variation on the LL(1) parsing algorithm that enables generation of real-time, bounded

memory parsers.

7.1 Online Parsing

We describe the linguistic properties of the Motion Grammar that arise from the online

parsing of the system language. While a translating parser such as a compiler is typically

given its input as a file, a Motion Parser must act token-by-token continually driving the

system. This temporal constraint restricts the ability of the Motion Parser to lookahead

and backtrack. Thus, we cannot apply an arbitrary Syntax-Directed Definition to an online

system but are instead restricted on the type of parser we may use and the allowable or-

dering of attribute semantics. We now consider the issues of discrete vs. continuous time,

selection of productions during parsing, and computation of attributes.

7.1.1 Discrete vs. Continuous Time

The continuous dynamics of a system may be modeled and controlled in either continuous

or discrete time. For the purpose of modeling, these representations are functionally equiv-

alent. Discrete time models can approximate continuous time by using a sufficiently short

timestep, and continuous time models can represent discrete time using timeout events. For

implementation on a microprocesser, we must ultimately adopt a discrete time representa-

tion; however, this can be obtained by simply discretizing the continuous-time model. The

179

✗
✖

✔
✕

〈A〉 → [a]{u = 1}〈B〉
| [a]{u = 1}〈C〉

(a) Semantically LL(1)

✗
✖

✔
✕

〈A〉 → [a]{u = 1}〈B〉
| [a]{u = 2}〈C〉

(b) Not Semantically LL(1)

Figure 97: Examples grammar fragments that are and are not Semantically LL(1)

Syntax-Directed Definition of the Motion Grammar can thus be written in either continuous

or discrete time as is convenient.

7.1.2 Selecting Productions and Semantic Rules

We next compare the Motion Grammar to the LL(1) class of grammars. LL(1) grammars

can be parsed by recursively descending through productions, picking the next production

to expand using only a single token of lookahead and without backtracking [4, p.222].

While we could satisfy the Motion Grammar’s temporal constraint by restricting to an

LL(1) grammar, we can relax this restriction slightly. The actual requirement is not that

the Motion Parser must immediately know which production it is expanding. Instead, the

parser must immediately provide some input to the robot. Thus the parser may use addi-

tional lookahead, but only if all productions it is deciding between have identical semantic

rules. This way, the parser can immediately execute the semantic rule, and use some ad-

ditional lookahead to figure which production it is really expanding. We describe this

property as Semantically LL(1).

Definition 24. A Syntax-Directed Definition is Semantically LL(1) if for all strings in its

language, the correct semantic rule to execute can be determined using a single token of

lookahead and without backtracking.

Claim 1. A Motion Grammar must be Semantically LL(1).

Proof. The Motion Parser derived from the Motion Grammar, GM, must be able to imme-

diately provide the system with an input u ∈ U in response to each token, and it cannot

change the value of inputs already sent. Suppose that GM were not Semantically LL(1).

180

This would mean it could use multiple tokens of lookahead or backtrack before deciding

on a semantic rule to calculate u. Since u must be known before more tokens are accepted

and previous u values cannot be changed, this a contradiction. Thus GM must be Semanti-

cally LL(1).

The Semantically LL(1) property is useful because it allows grammars to be parsed

in real-time. Examples of grammars that do and do not satisfy this property are given in

Fig. 97. In addition, Fig. 17 is an example of a grammar that is not LL(1) but is Semanti-

cally LL(1). This property also permits ambiguous grammars – where multiple parse trees

may exist for a given string. This is acceptable because the output of the parser, u sent to

the robot, will be the same regardless of which parse tree is selected, and thus the particular

resolution of the ambiguity is irrelevant.

When designing our Motion Grammar, we must ensure LL(1) semantics. This is pos-

sible with any strictly LL(1) grammar. Non-LL(1) grammars will contain conflicts where

two alternative productions may begin with the same token [4, p.222]. If for any conflict,

all productions contain the same semantic rules, then the grammar is Semantically LL(1).

Generation of efficient parsers for LL(k) and LL(*) grammars is discussed in [142]. If the

intended Motion Grammar is not Semantically LL(1), we must either rework the gram-

mar or instruct the parser as to the appropriate precedence levels so that it can resolve any

conflicting productions.

7.1.3 Attribute Inheritance and Synthesis

Now we consider the structure of the attribute semantics in the Motion Grammar. Attributes

are the additional values attached to tokens and nonterminals in an SDD. For the Motion

Grammar, these represent the continuous domain values x, z, and u. In our SDD, the at-

tributes of some given nonterminal are calculated from the attributes of other tokens and

nonterminals; this introduces a dependency graph into the syntax tree. We must ensure that

the dependency graph has no cycles or we will not be able to evaluate the SDD [4, p.310].

181

The temporal nature of the Motion Grammar constrains the attribute dependencies even fur-

ther; during parsing, we only have access to information from the past because the future

has not happened yet. Attributes can be described as either synthesized or inherited based

on their dependencies. Synthesized attributes depend on the children of the nonterminal

while inherited attributes depend on the nonterminal’s parent, siblings, and other attributes

of the nonterminal itself. The temporal constraint of the Motion Grammar corresponds to

a particular class of SDDs called L-attributed definitions for the left-to-right dependency

chain. A nonterminal X in an L-attributed definition may only have attributes that are syn-

thesized or are inherited with dependencies on inherited attributes of X’s parent, attributes

of X’s siblings that precede it in the production, or on X itself in ways that do not result in

a cycle [4, p.313].

Claim 2. A Motion Grammar must have L-attributed semantics.

Proof. We must determine the attributes in a single pass because parsing is online, so

the past cannot be changed, and the future is unknown. Let the inherited attributes of

nonterminal V be V.h, and let its synthesized attributes be V.s. For all productions p = A→

X1X2 . . .Xn, consider the attributes of Xi. While expanding Xi, A.h are known. All X j, j < i

in this production have already been expanded because they represent past action, so X j.h

and X j.s are also known. However, Xk, k > i represent future actions, so Xk.h and Xk.s are

unknown. This also means that A.s is unknown because its value may depend on Xk.h and

Xk.s. Consequently, Xi.h may only depend on A.h, X j.h, and X j.s. Xi.s may depend on

attributes from its children because they will be known after Xi has been expanded. These

constraints on attributes synthesis and inheritance correspond to L-attributed definitions.

7.2 Real-Time LL(1) Parser Generation

There is a rich literature on parser-generation to draw upon [4]; however, online parsing

for real-time control presents a few challenges compared to traditional applications such as

182

compilers.

• Compilers can look forward and backward in the input file, while a Motion Parser

must provide immediate input to the system without seeing the future.

• Parse trees that represent the structure of program source code have limited depth

based on size of the source code, while parse trees for a Motion Grammar may be

arbitrarily large since the system may run arbitrarily long.

To handle these constraints, we place some restrictions on the grammar and perform some

optimizations when generating the parser. We can conservatively satisfy these two parsing

requirements with the LL(1) class of grammars [4, p.222]. LL(1) grammars require only

one symbol of lookahead, need no backtracking, and operate on a single left-to-right scan of

the input string. They can be parsed with constant O(1) time at each step. LL(1) grammars

are rich enough for most programming language constructs [4, p.223] and for a broad class

of robotic systems.

7.2.1 Bounding Memory Use

The deeply recursive nature of grammatical productions is another issue in online parsing.

In these grammars (Fig. 29), concatenation and looping are implemented recursively, as

nonterminals at the end of some parent production. If the goal were to build an explicit

parse tree for some input file, this would present no issue. However, building such a parse

tree, either as an explicit data structure or implicitly through recursive function calls, during

a long running robot control operation could exhaust all memory in the computer. Thus we

must avoid building such a large tree or call stack in memory.

We can avoid this arbitrarily large memory use with tail call optimization (TCO), as

used in functional programming languages like Scheme and ML.1 A tail call is when some

function returns a value returned by another function it calls; an example is Fig. 98. The

1Though the language standards do not mandate it, certain compilers for certain other languages – e.g.,

183

(d e f i n e (some− func t ion a b)

(a− t a i l− c a l l (a n o t h e r− c a l l a) b))

Figure 98: A tail recursive function in the Scheme programming language. Function

some-function immediately returns the value returned by a-tail-call.

optimization is for the tail-called function to reuse the stack frame of its parent function,

avoiding additional memory usage for a fresh stack frame by converting the call machine

instruction into a jump. We perform a similar optimization in our parser generator. When-

ever some parent production has a nonterminal in the final position of its body, there is no

need to continue in the parent after expanding the child. Thus, we jump – goto in C –

to the code for that nonterminal rather than recursively expanding it. TCO limits memory

usage for the deeply recursive Motion Parser.

Claim 3. When tail recursion is optimized to a jump, call stack use by tail-recursive calls

is constant.

Proof. A jump instruction does not create a new stack frame, and thus cannot grow the call

stack.

A formal semantics for and proof of 3 is given by [132].

Claim 4. Consider grammar productions of the form p = A→ x1 . . .xn B, where each xi is

a terminal and B is a nonterminal. An LL(1) parser with TCO requires constant space to

expand each production of the form p.

Proof. Expanding each xi requires constant space as we must only check that xi matches

the next symbol in the input string. Expanding B requires constant space according on 3

GCC for C and SBCL for Common Lisp – will perform TCO when given certain optimization options. How-

ever, this optimization is not always performed, so it cannot be depended upon for correctness. For parser

generators emitting code in a language that guarantees TCO, e.g., Scheme, it is unnecessary to explicitly op-

timize tail calls within the parser generator itself. However, languages such as Scheme are garbage-collected,

which presents additional issues for real-time control.

184

because B is expanded with a tail call.

Claim 5. Consider grammar productions of the form p = A→ x1 . . .xi Bxi+1 . . .xnC, where

each xi is a terminal and B and C are nonterminals. If every production for B is of the form

B→ y1 . . .yn or B→ y1 . . .yn D, where y1 . . .yn are terminals and D is a nonterminal, then

p can be expanded with constant space.

Proof. Every terminal x1 . . .xn can be expanded in constant space. From 4, every produc-

tion for B can be expanded in constant space. From 3, the C in the tail position of p requires

no additional stack space. Therefore, p can be expanded in constant space.

Claim 6. Ĝ can be parsed in constant space.

Proof. Every production of Ĝ is of the form given in 3 or 5, which can be parsed in constant

space. Therefore, Ĝ can be parsed in constant space.

7.2.2 Parser Implementation

We now implement LL(1) parser generation to construct a Motion Parser. To generate

standard C, we need to optimize tail calls to goto. Since C goto can only target a label in

the same function, we must implement our parser as a single function. As a design choice,

we use the C call stack for the context-free parsing stack, which is simpler to implement

than maintaining an explicit stack data structure. Consequently, the parsing function is

self-recursive. The nonterminals and productions in the parsing function are arranged in a

jump table, represented as a C switch-case with one case for each nonterminal and

each production. The block for each nonterminal first identifies which production for that

nonterminal to expand, based on the set of initial terminals possible for that nonterminal.

We then expand each symbol in that production. For nonterminals not in the tail position,

we recursively call the parsing function and switch to the appropriate case in the jump

table for that nonterminal. For tail nonterminals, we directly jump to the case for that

nonterminal. With this design, we can parse arbitrarily long strings for tail-recursive LL(1)

grammars while using a bounded amount of memory.

185

1 i n t s u p e r m g p a r s e

2 (m g c o n t e x t t * c o n t e x t ,

3 m g s u p e r v i s o r t a b l e t * t a b l e , i n t i)

4 { / / . . .

5 c as e 42 4 :

6 n o n t e r m l p 0 s p d o t s p g 1 r p :

7 / / (STEP TIME−ZERO STEP−1)

8 i f (((m g s u p e r v i s o r a l l o w (t a b l e , 5)) &&

9 (0 == (t i m e z e r o (c o n t e x t)))))

10 {
11 (t a b l e−>s t a t e) =

12 (m g s u p e r v i s o r n e x t s t a t e (t a b l e , 5)) ;

13 c as e 42 5 :

14 p r o d l p l p 0 s p d o t s p \
15 g 1 r p s p t i m e z e r o r p :

16 goto n o n t e r m l p 1 s p d o t s p g 1 r p ;

17 }
18 re turn −1;

19 / / . . .

20 }

Figure 99: Example of parsing code

Fig. 99 shows a fragment of the generated parser, corresponding to the first production

of Fig. 29. This parser first calls time zero, line 10. Notice the goto in line 16, im-

plementing the tail recursive expansion. The full generated code for the 504 production

grammar amounts to 4,606 lines of lines of C code. When compiled with gcc 4.7.2 -O2,

this produces 12,013 lines of AMD64 assembly.

7.2.3 Online Supervision

We implement online supervisory control with a minor extension to our LL(1) parser gen-

erator. Effectively, we execute the LL(1) parser for the initial grammar Ĝ in parallel with

the supervisory Finite Automaton Sc, transitioning only when both allow it [86, p.135].

Before the parser checks any terminal symbol or executes any semantic rule, it first ensures

that the action is allowed from the current state of supervisor Sc. After reading the terminal

or executing the semantic rule, the parser updates the state of Sc for the transition on that

symbol. The result is implements the supervised system, G′ = Ĝ∩S.

186

12
14

16

16

15

1615
14

15

12

16

1613

11
13

15

10

14
13

start

(a) Ascending

14
14

11

11

13
10

12

12

13

10

12

11

13

12

11
16

10

11

15

10

10

start

(b) Descending

Figure 100: Monotonically ascending and descending Speed Finite Automata, Am

(STEP 10 12)
(STEP 11 12)(STEP 11)(STEP 10 11)

(STEP 12)
start

Figure 101: Ascending FA with transition steps, At

We apply this approach to perform speed controlled walking on the Nao. We algorith-

mically derive the specification for a supervisor to take the NAO between any two speeds

via an optimal sequence of steps. Then, we provide this supervisor to our parser. By

following the generated supervisor, the parser performs speed control.

To generate the supervisor, we first start with the speed FA Gs as in Fig. 26 and trans-

form it to an FA with monotonically ascending or descending speeds, Fig. 100. This ensures

that the robot will continually increase or decrease in speed. We produce these monotonic

FA by repeatedly intersecting the speed FA Gs with a languages Sm to enforce ordering for

each terminal symbol. For terminal y, this ordering language Sm is given by the regular

expression,

Sm = {x : x < y}∗ y{x : x > y}∗ (163)

This specification ensures that all symbols before y in the string are less than y and all

symbols after y in the string are greater than y, enforcing an ascending constraint. The

reverse enforces a descending constraint. By applying an Sm for each speed, we produce

the monotonic FA Am in Fig. 100.

Next, we insert the transition steps into the monotonic FA Am. The result At for the

187

(SETPARAM 10 11)

STEP

(SETPARAM 11)

HALT

STEP

start

Figure 102: Supervisor for transitioning from 10 to 11 cm/s. Here, STEP corresponds to

the union of all terminals in Fig. 29

ascending case is shown in Fig. 101.

From At , we find an optimal sequence of steps σ to reach a desired speed. Each tran-

sition [step i] and [step i j] in At (Fig. 101) is assigned a cost based on its stability margin.

Then, we apply Djikstra’s Algorithm [36, p.595] to identify the minimum cost path to the

target speed. For Fig. 101, this gives the following two steps

σ = [step 10 17] [step 17] (164)

From the string σ in (164), we generate a regular expression Sc for the supervisor.

Initially, let Sc be 〈step〉∗, which here denotes the union of all terminal symbols in Fig. 29.

For each [step a b] in σ , we concatenate to Sc the expression [setparam a b]〈step〉∗. For the

last symbol in σ , indicating the target speed, concatenate ([setparam a] 〈step〉)∗ [HALT].

The result for (164) is the following regular expression, show as an FA in Fig. 102.

S = 〈step〉∗ [setparam 10 17]〈step〉∗ [setparam 17]

([setparam 17]〈step〉∗)∗ [HALT] (165)

Theorem 8. Every σ in G′ is stable. G′ contains no unstable paths.

Proof. From 5, every σ ∈ Ĝ is stable. Since G′ ⊆ Ĝ, every σ in G′ is also in Ĝ. Since,

σ ∈ Ĝ implies σ is stable, every σ ∈ G′ must stable.

188

CHAPTER VIII

CONCLUSION AND FUTURE WORK

This thesis has developed a pipeline for robot policy specification, analysis, and execution

through the use of language and grammars. Using formal language as the intermediate

representation for robot policies, we implement various previously disparate techniques –

including logical planning, learning from demonstration, and semantic mapping for mo-

bile manipulation – as instances of this approach. These techniques provide alternative

ways to automatically specify robot behavior. This formal language framework connects

these specification approaches with the large body of work on discrete event and hybrid

systems, providing tools for policy verification. In our primary application domain of robot

manipulation, we develop techniques for workspace interpolation and online camera regis-

tration. To communicate with embedded hardware and tolerate software errors outside the

formally-modeled system, we develop a new real-time IPC system. Finally, we consider

the execution properties of hierarchical policies represented as context-free grammars and

introduce a variation on the LL(1) parsing algorithm.

8.1 Contributions

The contributions of this thesis are as follows.

8.1.1 Integrate specification, analysis, and execution

This thesis develops a formal language framework to combine system specification, anal-

ysis, and execution. The key insight is to use grammars and automata as an intermediate

representation. We translate various approaches for policy specification, e.g. logical plan-

ning domains and human demonstrations, into a linguistic representation, apply analysis

189

techniques such as model checking and supervisory control, and synthesize control soft-

ware for the robot.

8.1.2 Data-Driven Specification

This thesis demonstrates data driven approaches for specification. We apply human-inspired

control, which generates control modes for bipedal walking from human data, and from this

generated formal model, synthesize software to run the robot. We also frame learning from

demonstration for an assembly task as a grammatical inference problem, and use visual

analysis of assembly demonstrations to generate automata for the task.

8.1.3 Logical Domain Policies

This thesis gives a method to produce minimum finite-state policies for logical planning

domains. We modify Hopcroft’s finite automata minimization algorithm to directly convert

the logical domain to the minimized automaton, without require an intermediate automaton.

8.1.4 Hierarchical Policy Compaction

This thesis further reduces the memory usage of logical policies by inferring hierarchies.

From the finite automataon, we find repeated submachines and combine these machines

together. This process can even operate recursively to find multiple levels of hierarchy.

8.1.5 Generating Real-Time Software

This thesis presents a method to generate software directly from the previously developed

formal models. We modify the classic LL(1) parser generation algorithm – which tradition-

ally focused on program translation – to operate in real-time and with bounded memory

use.

190

8.1.6 Real-Time Communication

This thesis presents a high-performance, real-time, communication library, Ach, based on a

double circular-buffer data structure. The Ach library provides the unique feature of latest-

message-favored semantics with multiple senders and receivers. Our benchmark results

show that Ach offers significantly lower latency than popular robotics middleware such as

TAO-CORBA and ROS, and notably that it has lower latency than even direct use of Linux

sockets.

8.1.7 Direct, Nonstop Workspace Interpolation

This thesis presents a new method for multi-point workspace interpolation in the manipula-

tion domain. Classic approaches take either indirect paths or are point to point. Our method

blends subsequent linear spherical interpolation phases to transition through a sequence of

waypoints with continuous, nonstop motion.

8.2 Future Work

There are many ways to build on this work. Modeling with probabilities can help perfor-

mance in the absence of complete information, and stochastic grammars have been suc-

cessful for activity recognition. Coupling this approach with grammars for online control

could accommodate imperfect perception over whole tasks. This would be a special class

of POMDPs, but grammars help represent task structure and the efficient parsing algo-

rithms may help make the problem tractable. In section 3.4, we applied a simple form

a grammatical inference to transfer human demonstrations to robot policies. Extending

the approach using more advanced stochastic or querying inference algorithms would en-

able learning policies for more complex tasks. Recursive process algebras, which extend

grammars with operators for concurrency, may be useful for reasoning about multi-robot

systems but would require addressing challenges such as limited communication and dis-

tributed computation. General software verification approaches may be useful for hybrid

191

dynamical systems. Type-checking in particular is appealing given its efficiency and may

be useful for representing conditions like reachability or reducing the state space by en-

coding some information as types. A type system could also be developed to encode time

constraints. Time is generally considered distinctly from program correctness, yet it is vital

for correct real-time systems. Testing software for cyber-physical systems is challenging

because it is often critical to avoid any failures on the actual system. Testing in simula-

tion is an alternative, but producing sufficiently accurate simulations is a challenge itself.

When linguistic policies are difficult to construct, searching through simulation-preserving

languages is an option; our rewrite rules in [44] are one basis for this.

Developing applications for real-world environments also means addressing software

systems challenges where end-to-end guarantees may be impractical. While our Ach IPC

library has lower latency than Linux sockets, there are still challenges with many processes

and connections. Better synchronization using futexes, a lock-free approach, or transac-

tional memory could improve concurrency, and an in-kernel implementation could support

I/O multiplexing and improve robustness. Dynamic memory allocation is a challenge for

real-time control since typical allocators introduce unpredictable pauses, and allocation er-

rors can be catastrophic. Completely avoiding dynamic allocation, though, can excessively

restrict software development. Existing real-time allocators, such as TLSF, have room for

improvement in efficiency and error handling.

192

APPENDIX A

FORMAL LANGUAGE

Grammars define languages. For instance, C and LISP are computer programming lan-

guages, and English is a human language for communication. A formal grammar defines a

formal language, a set of strings or sequences of discrete tokens.

Definition 25 (Context-Free Grammar, CFG). G = (Z,V,P,S) where Z is a finite alphabet

of symbols called tokens, V is a finite set of symbols called nonterminals, P is a finite set of

mappings V 7→ (Z∪V)∗ called productions, and S ∈V is the start symbol.

The productions of a CFG are conventionally written in Backus-Naur form. This fol-

lows the form A→ X1X2 . . .Xn, where A is some nonterminal and X1 . . .Xn is a sequence of

tokens and nonterminals. This indicates that A may expand to all strings represented by the

right-hand side of the productions. The symbol ε is used to denote an empty string. For

additional clarity, nonterminals may be represented between angle brackets 〈〉 and tokens

between square brackets [].

Grammars have equivalent representations as automata which recognize the language

of the grammar. In the case of a Regular Grammar – where all productions are of the form

〈A〉 → [a]〈B〉, 〈A〉 → [a], or 〈A〉 → ε – the equivalent automaton is a Finite Automaton

(FA), similar to a Transition System with finite state. A CFG is equivalent to a Pushdown

Automaton, which is an FA augmented with a stack; the addition of a stack provides the

automaton with memory and can be intuitively understood as allowing it to count.

Definition 26 (Finite Automata, FA). M = (Q,Z,δ ,q0,F), where Q is a finite set of states,

Z is a finite alphabet of tokens, δ : Q×Z 7→Q is the transition function, q0 ∈Q is the start

state, F ∈ Q is the set of accept states.

193

Definition 27 (Acceptance and Recognition). An automaton M accepts some string σ if

M is in an accept state after reading the final element of σ . The set of all strings that M

accepts is the language of M, L(M), and M is said to recognize L(M).

Regular Expressions [86] and Linear Temporal Logic (LTL) [13] are two alternative no-

tations for finite state languages. The basic Regular Expression operators are concatenation

αβ , union α|β , and Kleene-closure α∗. Some additional common Regular Expression no-

tation includes α which is the complement of α , the dot (.) which matches any token, and

α? which is equivalent to α|ε . Regular Expressions are equivalent to Finite Automata and

Regular Grammars. LTL extends propositional logic with the binary operator until ∪ and

unary prefix operators eventually ✸ and always ✷. LTL formula are equivalent to Büchi

automata, which represent infinite length strings, termed ω-Regular languages. We can also

write ω-Regular Expressions by extending classical Regular expressions with infinite rep-

etition for some α given as αω . These additional notations are convenient representations

for finite state languages.

Any string in a formal language can be represented as a parse tree. The root of the tree

is the start symbol of the grammar. As the start symbol is recursively broken down into

tokens and nonterminals according to the grammar syntax, the tree is built up according to

the productions that are expanded. The production A→ X1 . . .Xn will produce a piece of

the parse tree with parent A and children X1 . . .Xn. The children of each node in the parse

tree indicate which nonterminals or tokens that node expands to in a given string. Internal

tree nodes are nonterminals, and tree leaves are tokens. The parse tree conveys the full

syntactic structure of the string.

An example CFG and parse tree are given in Fig. 103 for a loading and unloading task.

In production (166), the system will repeatedly perform [load] operations until receiving

a [full] token from production (167). Then the system will perform [unload] operations of

the same number as the prior [load] operations. This simple use of memory is possible with

Context-Free systems. Regular systems are not powerful enough.

194

✗
✖

✔
✕

〈T〉 → [load]〈T〉 [unload] (166)

| [full] (167)

(a) Grammar

〈T〉

[load] 〈T〉

[load] [full] [unload]

[unload]

(b) Parse Tree

Figure 103: Example Context-Free Grammar for a load/unload task and parse tree for

string “[load] [load] [full] [unload] [unload]”

While grammars and automata describe the structure or syntax of strings in the lan-

guage, something more is needed to describe the meaning or semantics of those strings.

One approach for defining semantics is to extend a CFG with additional semantic rules that

describe operations or actions to take at certain points within each production. Additional

values computed by a semantic rule may be stored as attributes, which are parameters as-

sociated with each nonterminal or token, and then reused in other semantic rules. The

resulting combination of a CFG with additional semantic rules is called a Syntax-Directed

Definition (SDD) [4, p.52].

195

APPENDIX B

DUAL QUATERNIONS

Quaternions are a convenient representation for spatial motion that provides some compu-

tational advantages over other methods.

The straightforward definitions of many quaternion quantities, particularly exponen-

tials, logarithms, and derivatives, contain singularities where a denominator goes to zero.

We can avoid computational problems at these points by computing key factors near the

singularity using a Taylor series, though this may require some careful rearrangement of

terms to identify suitable factors and series.

A Taylor series evaluated near point a is:

f (x) =
∞

∑
n=0

f (n)(a)

n!
(x−a)n

= f (a)+
f ′(a)
1!

(x−a)+
f ′′(a)

2!
(x−a)2 +

f (3)(a)

3!
(x−a)3 + . . . (168)

To evaluate the infinite series to machine precision, we only need to compute up the

term below floating point round-off.

The resulting approximation is a polynomial which can be efficiently evaluated using

Horner’s Rule, Algorithm 13. The coefficients are the terms
f (n)(a)

n! and the indeterminate

variable is x− a. Note than many Taylor series have zero coefficents for the odd or even

terms. We can produce a more compact Horner polynomial by omitting the zero coef-

ficients, using (x− a)2 as the indeterminate variable, and perhaps multiplying the whole

result by (x−a).

We adopt the following abbreviations to condense notation:

196

Algorithm 13: Horner’s Rule

Input: b0,b1, . . .bn : Coefficients

Input: z : Indeterminate Variable

Output: y : Result

1 y← bn

2 y← bn−1 + zy

3 y← bn−2 + zy

4 . . .

5 y← b0 + zy

• Quaternions are typeset as q .

• Dual Quaternions are typeset as S .

• Vectors are typeset as~x.

• Matrices are typeset as A.

• Time derivatives of variable x are given as ẋ.

• Sines and cosines are abbreviated as s and c.

B.1 Quaternions

Quaternions are an extension of the complex numbers, using basis elements i , j , and k

defined as:

i2 = j 2 = k 2 = ijk =−1 (169)

From (169), it follows:

jk =−k j = i (170)

ki =−ik = j (171)

ij =−ji = k (172)

A quaternion, then, is:

q = w+ xi + yj + zk (173)

197

Table 12: Algebraic Quaternion Properties
Associative p⊗ (q⊗ r) = (p⊗q)⊗ r

Distributive p⊗ (q+ r) = p⊗q+ p⊗ r

NOT Commutative p⊗q 6= q⊗ p

Conjugate Mul. (p⊗q)∗ = q∗⊗ p∗

Conjugate Add. (p+q)∗ = q∗+ p∗

B.1.1 Representation

We represent a quaternion as a 4-tuple of real numbers:

q = w+ xi + yj + zk

= (x y z w)

= (qv, w) (174)

Historically, qv is called the vector part of the quaternion and qw the scalar part.

It is convenient to define quaternion operations in terms of vector and matrix operations,

so we also the whole quaternion as a column vector. This also provides an in-memory

storage representation.

~q = [x y z w]T (175)

~qv = [x y z]T (176)

A alternate convention stores terms in wxyz order, so when using different software

packages, it is sometimes necessary to convert between orderings.

B.1.2 Multiplication

From the definition of the basis elements (169), we obtain a formula for quaternion multi-

plication.

198

B.1.2.1 Cross and dot product definition

We define quaternion multiplication in terms of cross products and dot products of its ele-

ments:

q⊗ p =

~qv×~pv +qw~pv + pw~qv

qw pw−~qv ·~pv

 (177)

B.1.2.2 Matrix definition

Expanding the above terms, we can express quaternion multiplication as matrix multipli-

cation:

q⊗ p =

QL~p =

qw −qz qy qx

qz qw −qx qy

−qy qx qw qz

−qx −qy −qz qw

~p =

PR~q =

pw pz −py px

−pz pw px py

py −px pw pz

−px −py −pz pw

~q =

qx pw +qy pz +qw px−qz py

qz px +qw py +qy pw−qx pz

qw pz +qz pw +qx py−qy px

−(qy py +qx px +qz pz−qw pw)

(178)

This matrix form is more suitable for efficient implementation computation using SIMD

instructions.

199

B.1.2.3 Properties

Quaternion multiplication is associative and distributive, but it is not commutative.

B.1.2.4 Pure Multiplication

When multiplying by a pure quaternion, i.e., zero scalar part, we can simplify:

q⊗ (v,0) =

qw −qz qy

qz qw −qx

−qy qx qw

−qx −qy −qz

v =

qyvz

qzvx

qxvy

−qxvx

−

qzvy

qxvz

qyvx

qyvy

+

qwvx

qwvy

qwvz

−qzvz

(179)

(v,0)⊗q =

qw qz −qy

−qz qw qx

qy −qx qw

−qx −qy −qz

v =

vyqz

vzqx

vxqy

−vxqx

−

vzqy

vxqz

vyqx

vyqy

+

vxqw

vyqw

vzqw

−vzqz

(180)

(u,0)⊗ (v,0) =

uyvz−uzvy

uzvx−uxvz

uxvy−uyvx

−uxvx−uyvy−uzvz

=

u× v

−u · v

 (181)

200

R

ℑ

qw

|qv|
φ

Figure 104: Imaginary Plane for Quaternions

Thus, the case of multiplying two pure quaternion simplifies to the commonly used

cross (×) and dot (·) products.

B.1.3 Norm

|q|=
√
~q ·~q (182)

A unit quaternion has norm of one.

B.1.4 Conjugate

q∗ = (−qv, qw) (183)

B.1.5 Inverse

q−1 =
q∗

~q ·~q (184)

Note that for unit quaternion, the inverse is equal to the conjugate.

B.1.6 Exponential

The exponential shows the relationship between quaternions and complex numbers. Recall

Euler’s formula for complex numbers:

eiθ = cosθ + isinθ (185)

201

which relates the exponential function with angles in the complex plane. Similarly for

quaternions, we can consider the angle between the real and imaginary parts, Fig. 104,

yielding some useful trigonometric ratios for analyzing quaternion functions:

φ = atan2(|qv| ,qw) (186)

sinφ =
|qv|
|q| (187)

cosφ =
qw

|q| (188)

The quaternion exponential is:

eq = eqw

(
qv

sin |qv|
|qv|

, cos |qv|
)

(189)

When |qv| approaches zero, we can use the Taylor series approximation:

sinθ

θ
= 1− θ 2

6
+

θ 4

120
− θ 6

5040
+ . . . (190)

For a pure quaternion, the exponential simplifies to:

qw = 0 =⇒

eq =
(

qv
sin |qv|
|qv| , cos |qv|

)

|eq |= 1

(191)

B.1.7 Logarithm

To compute the logarithm, first consider the angle between the vector and scalar parts of

the quaternion.

φ = cos−1

(
qw

|q|

)
= sin−1

(|qv|
|q|

)
= atan2(|qv| ,qw) (192)

The atan2 form to compute φ is generally best for numerical stability.

lnq =

(
φ

|qv|
qv, ln(|q|)

)
(193)

202

When |qv| approaches zero, we can compute
φ
|qv| as follows:

φ

|qv|
=

φ
|q|
|qv|
|q|

=

φ
|q|

sinφ
=

φ
sinφ

|q| (194)

Then,
φ

sinφ can be approximated by Taylor series:

θ

sinθ
= 1+

θ 2

6
+

7θ 4

360
+

31θ 6

15120
+ . . . (195)

For a unit quaternion, the logarithm simplifies to:

∣∣q
∣∣= 1 =⇒ ln(q) =

(
φ

sinφ
qv, 0

)
(196)

B.1.8 Power

q t = et lnq (197)

B.1.9 Pure Exponential Derivative

The derivative of the exponential for a pure quaternion is:

φ = |qv|=
√

qv ·qv (198)

φ̇ =
d |qv|

dt
=

qv · q̇v

φ
(199)

eq =

(
sinφ

φ
qv, cosφ

)
(200)

(
deq

dt

)

w

=−sinφφ̇ =−(qv · q̇v)
sinφ

φ
(201)

(
deq

dt

)

v

=
s

φ
q̇v +

(
φ̇ c

φ
− φ̇ s

φ 2

)
qv =

s

φ
q̇v +

(
c

φ 2
− s

φ 3

)
(qv · q̇v)qv =

s

φ
q̇v +

(
c− s

φ

φ 2

)
(qv · q̇v)qv (202)

203

Then, we handle the singularity for φ = 0 using (190) and the following:

c

φ 2
− s

φ 3
=−1

3
+

φ 2

30
− φ 4

840
+

φ 6

45360
+ . . . (203)

B.1.10 Unit Logarithm Derivative

The derivative of the unit quaternion logarithm is:

φ̇ = |qv| q̇w−qw
d |qv|

dt
= |qv| q̇w−qw

qv · q̇v

sinφ
=

s q̇w−
cqv · q̇v

s
(204)

d lnq(t)

dt
=

(
φ

s
q̇v +

(
φ̇

s
− φφ̇ c

s2

)
qv, 0

)
(205)

This form has a singularity at φ = 0. We can handle one factor with (195) and the other

as follows:

φ̇

s
− φφ̇ c

s2
= q̇w−

q̇wφ c

s
− qv · q̇vc

s2
+

qv · q̇vφ c2

s3
=

q̇w

(
1− φ

s
c

)
+qv · q̇v

(
φ c2

s3
− c

s2

)
(206)

φ c2

s3
− c

s2
=−1

3
+

φ 2

30
+

53φ 4

2520
+

367φ 6

75600
+ . . . (207)

Thus, for small φ , we use the Taylor series for
sinφ

φ (190),
φ

sinφ (195), and
φ c2

s3 − c
s2 (207).

Note that since
sinφ

φ ≈ 1 near φ = 0, we can safely compute
φ

sinφ = 1/ sinφ
φ , which should

be more efficient that a second Taylor series evaluation.

Alternatively, one could also compute the Jacobian ∂ lnq
∂q

[56].

B.1.11 Unit Quaternion Angle

We can compute the angle between the vector forms of two unit quaternion as follows:

204

Table 13: Storage Requirements for Orientation Representations
Representation Storage

Quaternion 4

Axis-Angle 4

Rotation Vector 3

Euler Angles 3

Rotation Matrix 9

Table 14: Computational Requirements for Orientation Representations
Representation Chain Rotate Point

Quaternion 16 multiply, 12 add 15 multiply, 15 add

Rotation Matrix 27 multiply, 18 add 9 multiply, 6 add

∠(~q1,~q2) = cos−1 (~q1 ·~q2) =

2 atan2(|q1−q2| , |q1 +q2|) (208)

The atan2 form is more accurate [96].

B.1.12 Product Rule

Because quaternion multiplication is a linear operation, the product rule applies:

d

dt

(
q1⊗ q2

)
= q̇1⊗ q2 + q1⊗ q̇2 (209)

B.2 Representing Orientation

A unit quaternion (
∣∣q
∣∣= 1) can represent an angular orientation.

B.2.1 Rotating a vector

We can rotate point v by unit quaternion q by computing v′ = rot
(

q ,v
)
= q⊗ v ⊗ q∗. Note

that v is augmented with 0 in it’s w position to perform the quaternion multiplication oper-

ation. Given this 0 value, the computation can be simplified to the following:

205

v′ = rot
(

q ,v
)
=

q⊗ v⊗ q∗ = 2~qv× (~qv× v+qwv)+ v (210)

which we can rewrite in a more SIMD-friendly form as:

a = qv× v+qwv

b = qv×a

v′ = b+b+ v (211)

B.2.2 Chaining rotations

Rotations q1 and q2 are chained by multiplying the two quaternions: q1⊗ q2 .

B.2.3 Angular Derivatives

Rotational velocity ω is related to the quaternion derivative as follows:

q̇ =
1

2
ω⊗ q (212)

ω = 2q̇⊗ q∗ (213)

Rotational acceleration ω̇ is related to the quaternion derivative as follows:

q̈ =
1

2

(
ω̇⊗ q +ω⊗ q̇

)
(214)

ω̇ = 2
(

q̈⊗ q∗+ q̇⊗ q̇∗
)

(215)

B.2.4 Axis-Angle

The axis-angle form, a = (û,θ) represents rotation by angle θ around unit axis û. We

can also normalize the representation by scaling the axis by the angle v = θ û, which is

sometimes called the rotation vector form.

206

Rotation vectors are related to unit quaternions through the exponential and logarithm.

q =

(
ûsin

θ

2
, cos

θ

2

)
= e

θ
2 û =

(
v

|v| sin
|v|
2
, cos

|v|
2

)
= e

v
2 (216)

θ = 2cos−1 (qw) = 2tan−1 (|qv| ,qw) = 2 |lnq| (217)

û =

θ 6= 0 qv

sin θ
2

θ = 0 0

=
lnq

|lnq| (218)

v = 2lnq (219)

The rotation vector and quaternion derivatives are related as follows, substituting y = v
2 ,

ẏ = v̇
2 , and φ = |y|:

φ̇ =
y · ẏ
φ

(220)

q̇w =−φ̇ sinφ = (y · ẏ) sinφ

φ
(221)

q̇v =
sinφ

φ
ẏ− φ̇ sinφ

φ 2
y+

φ̇ cosφ

φ
y =

sinφ

φ
ẏ+

(
cosφ − sinφ

φ

φ 2

)
(ẏ · y)y (222)

When φ goes to zero, we can approximate
sinφ

φ with the series in (190) and the other

singular factor as:

cosφ − sinφ
φ

φ 2
=−1

3
+

φ 2

30
− φ 4

840
+

φ 6

45360
+ . . . (223)

B.2.5 Spherical Linear Interpolation

Spherical Linear Interpolation, SLERP, interpolates between two quaternions. SLERP can

be understood geometrically by considering a relative orientation in the axis-angle form.

207

Consider the relative quaternion qr between two endpoints, q1⊗qr = q2, given in axis angle

form (ûr,θr). To interpolate between q1 and q2, we apply the q(τ) = q1⊗qs(τ), where qs

is a rotation about ûr with angle θs varying from 0 to θr as τ varies from 0 to 1. We can

compute the rotation vector form of qs from that of qr as vs = τvr.

Composing definitions for quaternion and rotation vector conversion and quaternion

exponents:

q(τ) = q1⊗ exp
(
τ ln
(

q1
∗⊗ q2

))
= q1⊗

(
q1
∗⊗ q2

)t
(224)

To interpolate in the shorter direction, e.g., −π
2 vs. +3π

2 , scale q1
∗⊗ q2 so it has a

positive scalar element.

A more efficient computation for SLERP [160] is:

φ = |∠(~q1,~q2)| (225)

θ =

φ > π
2 π−φ

φ ≤ π
2 φ

(226)

q(τ) =

φ > π
2

sinθ−τθ
sinθ q1− sinτθ

sinθ q2

φ ≤ π
2

sinθ−τθ
sinθ q1 +

sinτθ
sinθ q2

(227)

B.2.6 Integration

Euler or Runge-Kutta integration of quaternion derivatives would not preserve the unit

constraint, introducing error. We can instead integrate a constant rotational velocity with:

q1 = exp

(
ω∆t

2

)
⊗ q0 (228)

= exp
(
∆t q̇⊗ q∗0

)
⊗ q0 (229)

208

B.2.7 Finite Difference

Based on (228), we can compute a finite difference velocity ω∆ between two orientations:

ω∆ = 2ln
(

q1⊗ q∗0
)

(230)

q̇∆ = ln
(

q1⊗ q∗0
)
⊗ q0 (231)

B.3 Dual Quaternions and Euclidean Transforms

Dual quaternions are convenient for representing Euclidean transformations. Formally,

dual quaternions are the generalization of quaternions to dual number.

B.3.1 Dual Numbers

Dual numbers are similar to complex numbers, but the square of the dual element ε is zero:

z̃ = a+bε (232)

ε 6= 0 (233)

ε2 = 0 (234)

If we consider the Taylor series of f (a+bε) at point a, we obtain the following prop-

erty:

f (a+bε) = f (a)+b f ′(a)ε (235)

This lets us define a few functions for dual numbers:

cosa+bε = cosa− sinabε (236)

sina+bε = sina+ cosabε (237)

exp(a+bε) = ea + eabε (238)

√
a+bε =

√
a+

b

2
√

a
ε (239)

209

B.3.2 Representation

Dual quaternions are quaternions with dual numbers for elements.

S =

x̃i + ỹj + z̃k + w̃ =

(rx +dxε)i +(ry +dyε)j +(rz +dzε)k +(rw +dwε) =

(rxi + ryj + rzk + rw)+(dxi +dyj +dzk +dw)ε =

r + d ε (240)

For computation, it is convenient to represent dual quaternion S factored into the sepa-

rate real and dual parts r and d :

S = r + d ε

=

r , d

 (241)

B.3.3 Construction

We can produce a dual quaternion for some transformation represented by the rotational

quaternion q, and the translation vector v as follows:

r = q (242)

d =
1

2
v⊗ r (243)

Translation v is augmented with 0 as the scalar element for the quaternion multiply. The

real part r represents orientation, and the dual part d represents translation. Note that the

real part r will be a unit quaternion while the dual part d has no such restriction.

To extract the translation, we do:

v = 2d ⊗ r ∗ (244)

210

B.3.4 Multiplication

Multiplication is defined in terms of the standard quaternion multiply, performed over both

real and dual parts:

A⊗B =

ar ⊗ br , ar ⊗ bd + ad ⊗ br

 (245)

B.3.5 Matrix Form

We can also represent the dual quaternion multiplication as a matrix multiply. Based on

(178):

A⊗B =

ar ⊗ br

ar ⊗ bd + ad ⊗ br

=

AL
~B =

Ar,L 0

Ad,L Ar,L

~B =

BR
~A =

Br,R 0

Bd,R Br,R

~A (246)

B.3.6 Conjugate

S∗ =

sr

∗, sd
∗

 (247)

B.3.7 Exponential

We derive the dual quaternion exponential by expanding (189) using dual arithmetic:

φ = |rv| (248)

k = rv ·dv (249)

eS = ew̃

(

s

φ
rv, c

)
,

(
s

φ
dv +

c− s
φ

φ 2
krv, −

s

φ
k

)
 (250)

211

where w̃ = rw +dwε .

Then, to handle the singularity at φ = 0, we use (190) and:

cosφ − sinφ
φ

φ 2
=−1

3
+

φ 2

30
− φ 4

840
+

φ 6

45360
+ . . . (251)

B.3.8 Logarithm

We derive the dual quaternion logarithm by expanding (193) using dual arithmetic:

φ = atan2(|rv| ,rw) (252)

k = rv ·dv (253)

α =
rw− φ

|rv| |r|
2

|rv|2
(254)

(lnS)r =

(
φ

|rv|
rv, ln |r|

)
(255)

(lnS)d =

(
kα−dw

|r|2
rv +

φ

|rv|
dv, k+

rwdw

|r|2

)
(256)

To handle the singularity at |rv|= 0, we apply (194) and (195) to handle
φ
|rv| . Then, we

rewrite α as:

rw− φ
|rv| |r|

2

|rv|2
=

rw

|rv|2
− φ |r|2

|rv|3
=

rw |r|2

|rv|2 |r|2
− φ |r|3

|rv|3 |r|
=

1

|r|

(
rw

|r|
|r|2

|rv|2
−φ
|r|3

|rv|3

)
=

1

|r|

(
cosφ

sin2 (φ)
− φ

sin3 (φ)

)
(257)

This gives the Taylor series:

c

s2
− φ

s3
=−2

3
− 1

5
φ 2− 17

420
φ 4− 29

4200
φ 6 + . . . (258)

212

B.3.9 Chaining Transforms

Transforms are chained by multiplying the dual quaternions.

B.3.10 Transforming a point

We can transform a point v by constructing a dual quaternion for translation v and identity

rotation, and chaining it onto the transform, then extracting the resulting translation:

S ′ = S ⊗

(0, 1) ,

1

2
v

 (259)

v′ = 2s ′d⊗ s ′∗r (260)

This reduces to:

v′ = (2sd + sr⊗ v)⊗ s∗r (261)

B.3.11 Derivatives

B.3.11.1 Product Rule

Because dual quaternion multiplication is a linear operation, the product rule applies:

d

dt
(S1⊗ S2) = Ṡ1⊗ S2 + S1⊗ Ṡ2 (262)

B.3.11.2 Angular Velocity

Angular velocity computation is identical to the single unit quaternion case:

ṙ =
1

2
ω⊗ r (263)

ω = 2ṙ ⊗ r ∗ (264)

B.3.11.3 Translational Velocity

We find the equation for the derivative of the dual part by differentiating (243),

ḋ =
1

2
(v̇⊗ r + v⊗ ṙ) (265)

213

Translational velocity comes from differentiating (244):

v̇ = 2(ḋ ⊗ r ∗+ d ⊗ (ṙ)∗) (266)

B.3.12 Integration

To integrate dual quaternions, we first introduce the twist, Ω:

Ω =

(ω, 0) , (v̇+ v×ω, 0)

 (267)

where ω is angular velocity, v is translation, and v̇ is translational velocity.

Then, integration of a constant velocity is given by:

S1 = exp

(
Ω∆t

2

)
⊗ S0 (268)

B.4 Implicit Dual Quaternions

We can implicitly represent the dual quaternion for a Euclidean transform by storing orien-

tation quaternion r and translation vector v:

E = (r , v) (269)

This form allows more efficient computation for some operations.

B.4.1 Chaining transforms

From dual quaternion multiplication (245), we derive the multiplication formula for the

implicit form:

Cv = 2Cd⊗C∗r =

2(Ar⊗Bd +Ad⊗Br)⊗ (Ar⊗Br)
∗ =

2

(
Ar⊗

Bv⊗Br

2
+

Av⊗Ar

2
⊗Br

)
⊗B∗r ⊗A∗r =

(Ar⊗Bv +Av⊗Ar)⊗A∗r =

Ar⊗Bv⊗A∗r +Av

214

This is equivalent to rotating Bv by Ar, then adding Av. Thus, we chain transforms with:

Cr = Ar⊗Br (270)

Cv = rot(Ar,Bv)+Av (271)

B.4.2 Transforming points

To transform point p, we first rotate it by the given orientation r, then add the translation v

p′ = rot(r, p)+ v (272)

B.4.3 Conjugate

From the dual quaternion conjugate (247) for S = (r,d):

(S∗)v = 2(S∗)d⊗ ((S∗)r)
∗ =

2d∗⊗ (r∗)∗ =

2(
1

2
v⊗ r)∗⊗ r =

(v⊗ r)∗⊗ r =

r∗⊗ v∗⊗ r =

− rot(r∗,v)

Thus, to find the conjugate translation, we rotate v by r∗ and negate.

B.4.4 Derivatives

The transform chaining in (271) is not linear, so we cannot apply the product rule. Instead,

we directly differentiate (271):

d

dt

Si

r1

v1

⊗Si

r2

v2

=

Si

ṙ1⊗ r2 + r1⊗ ṙ2

v̇1 + q̇1⊗ v2⊗q∗1 +q1⊗ v̇2⊗q∗1 +q1⊗ v2⊗ q̇∗1

(273)

215

B.5 History

Quaternions were invented in the mid-nineteenth century by William Rowan Hamilton,

who spent the rest of his life exploring their properties. They quickly found use among

physicists; Maxwell’s equations were originally formulated using quaternions.

Around the turn of the twentieth century, Josiah Gibbs published his Vector Analysis,

presented as a simplification over quaternions. The chief distinction was the invention

of the dot and cross product operators, splitting quaternion multiplication into two sepa-

rate operations. Eventually, Gibbs’s notation overtook quaternions as the representation of

choice among physicists and engineers.

Though quaternions may have lost the overall popularity contest to Gibbs’s vector anal-

ysis, their useful numerical properties mean quaternions still have some role to play.

216

REFERENCES

[1] ABB, Operating manual, RobotStudio, 5.15k ed., 2013. Document ID:

3HAC032104-001.

[2] AGÜERO, C., CAÑAS, J., MARTÍN, F., and PERDICES, E., “Behavior-based itera-

tive component architecture for soccer applications with the NAO humanoid,” in 5th

Workshop on Humanoids Soccer Robots. Nashville, TN, USA, 2010.

[3] AHN, J.-S., CHUNG, W.-J., and JUNG, C.-D., “Realization of orientation interpola-

tion of 6-axis articulated robot using quaternion,” Journal of Central South Univer-

sity, vol. 19, no. 12, pp. 3407–3414, 2012.

[4] AHO, A., LAM, M., SETHI, R., and ULLMAN, J., Compilers: Principles, Tech-

niques, & Tools. Pearson, 2nd ed., 2007.

[5] ALLEN, J. F. and FERGUSON, G., “Actions and events in interval temporal logic,”

Journal of logic and computation, vol. 4, no. 5, pp. 531–579, 1994.

[6] ALUR, R., COURCOUBETIS, C., HENZINGER, T., and HO, P., “Hybrid automata:

An algorithmic approach to the specification and verification of hybrid systems,”

Hybrid Systems, pp. 209–229, 1993.

[7] ALUR, R., DANG, T., ESPOSITO, J., HUR, Y., IVANCIC, F., KUMAR, V., MISHRA,

P., PAPPAS, G., and SOKOLSKY, O., “Hierarchical modeling and analysis of embed-

ded systems,” Proceedings of the IEEE, vol. 91, no. 1, pp. 11–28, 2003.

[8] AMES, A. D., “First steps toward automatically generating bipedal robotic walking

from human data,” in Robotic Motion and Control 2011, vol. 422 of LNICS, pp. 89–

116, Springer, 2012.

217

[9] AMES, A. D., COUSINEAU, E. A., and POWELL, M. J., “Dynamically stable

bipedal robotic walking with NAO via human-inspired hybrid zero dynamics,” in

Hybrid Systems: Computation and Control, (Beijing), pp. 135–44, April 2012.

[10] ANDO, N., SUEHIRO, T., KITAGAKI, K., KOTOKU, T., and YOON, W., “RT-

middleware: distributed component middleware for RT (robot technology),” in In-

telligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Con-

ference on, pp. 3933–3938, IEEE, 2005.

[11] ARGALL, B., CHERNOVA, S., VELOSO, M., and BROWNING, B., “A survey of

robot learning from demonstration,” Robotics and Autonomous Systems, vol. 57,

no. 5, pp. 469–483, 2009.

[12] BACCHUS, F. and YANG, Q., “Downward refinement and the efficiency of hierar-

chical problem solving,” Artificial Intelligence, vol. 71, pp. 43–100, 1993.

[13] BAIER, C., KATOEN, J., and OTHERS, Principles of Model Checking. MIT Press,

Cambridge, MA, 2008.

[14] BELTA, C. and KUMAR, V., “Abstraction and control for groups of robots,” IEEE

Transactions on Robotics, vol. 20, no. 5, pp. 865–875, 2004.

[15] BEN AMOR, H., KROEMER, O., HILLENBRAND, U., NEUMANN, G., and PE-

TERS, J., “Generalization of human grasping for multi-fingered robot hands,” in

Proceedings of the International Conference on Robot Systems (IROS), 2012.

[16] BERENSON, D., SRINIVASA, S. S., FERGUSON, D., and KUFFNER, J. J., “Manipu-

lation planning on constraint manifolds,” in Intl. Conf. on Robotics and Automation,

pp. 625–632, IEEE, 2009.

[17] BILLARD, A., CALINON, S., DILLMANN, R., and SCHAAL, S., Handbook of

Robotics Chapter 59: Robot Programming by Demonstration. Springer, 2007.

218

[18] BLUM, A. L. and FURST, M. L., “Fast planning through planning graph analysis,”

Artificial intelligence, vol. 90, no. 1, pp. 281–300, 1997.

[19] BROCKETT, R., “Formal languages for motion description and map making,”

Robotics, vol. 41, pp. 181–191, 1990.

[20] BROOKS, R., “Elephants don’t play chess,” Robotics and autonomous systems,

vol. 6, no. 1-2, pp. 3–15, 1990.

[21] BROWN, J. H. and MARTIN, B., “How fast is fast enough? Choosing between

Xenomai and Linux for real-time applications,” tech. rep., Rep Invariant Systems,

2010. https://www.osadl.org/fileadmin/dam/rtlws/12/Brown.

pdf.

[22] BRUYNINCKX, H., SOETENS, P., and KONINCKX, B., “The real-time motion con-

trol core of the Orocos project,” in Intl. Conference on Robotics and Automation,

vol. 2, pp. 2766–2771, IEEE, 2003.

[23] BRZOZOWSKI, J., “Canonical regular expressions and minimal state graphs for def-

inite events,” Mathematical theory of Automata, vol. 12, pp. 529–561, 1962.

[24] CABALAR, P., OTERO, R. P., CABARCOS, M., and BARREIRO, A., “Introducing

planning in discrete event systems,” in Computer Aided Systems Theory, pp. 146–

159, Springer, 1997.

[25] CASSANDRAS, C. and LAFORTUNE, S., Introduction to Discrete-Event Systems.

Springer, 2nd ed., 2008.

[26] CHAMPARNAUD, J., KHORSI, A., and PARANTHOËN, T., “Split and join for mini-

mizing: Brzozowskis algorithm,” Proc. of PSC, vol. 2, pp. 96–104, 2002.

219

https://www.osadl.org/fileadmin/dam/rtlws/12/Brown.pdf
https://www.osadl.org/fileadmin/dam/rtlws/12/Brown.pdf

[27] CHAO, C., CAKMAK, M., and THOMAZ, A., “Towards grounding concepts for

transfer in goal learning from demonstration,” in Intl. Conf. on Development and

Learning, 2011.

[28] CHAUMETTE, F. and HUTCHINSON, S., “Visual servo control, part I: Basic ap-

proaches,” Robotics and Automation Magazine, vol. 13, no. 4, pp. 82–90, 2006.

[29] CHAUMETTE, F. and HUTCHINSON, S., “Visual servo control, part II: Advanced

approaches,” Robotics and Automation Magazine, vol. 14, no. 1, pp. 109–118, 2007.

[30] CHO, B.-K., PARK, S.-S., and HO OH, J., “Controllers for running in the humanoid

robot, Hubo,” in Intl. Conf. on Humanoid Robots, 2009.

[31] CHOI, C. and CHRISTENSEN, H. I., “Robust 3D visual tracking using particle fil-

tering on the special Euclidean group: A combined approach of keypoint and edge

features,” The International Journal of Robotics Research, vol. 31, no. 4, pp. 498–

519, 2012.

[32] CHOUKROUN, D., BAR-ITZHACK, I. Y., and OSHMAN, Y., “Novel quaternion

Kalman filter,” Trans. on Aerospace and Electronic Systems, vol. 42, no. 1, pp. 174–

190, 2006.

[33] CIMATTI, A., CLARKE, E., GIUNCHIGLIA, E., GIUNCHIGLIA, F., PISTORE, M.,

ROVERI, M., SEBASTIANI, R., and TACCHELLA, A., “NuSMV 2: An opensource

tool for symbolic model checking,” in Computer Aided Verification, pp. 359–364,

Springer, 2002.

[34] September 2012. http://clang.llvm.org/features.html.

[35] CORKE, P. I., Robotics, Vision & Control: Fundamental Algorithms in Matlab.

Springer, 2011.

220

[36] CORMEN, T., LEISERSON, C., RIVEST, R., and STEIN, C., Introduction to algo-

rithms. MIT press, 2001.

[37] CRAIG, J., Introduction to Robotics: Mechanics and Control. Pearson, 3rd ed.,

2005.

[38] CRESSWELL, S. and CODDINGTON, A. M., “Compilation of LTL goal formulas

into PDDL,” in European Conference on Artificial Intelligence, 2004.

[39] DAM, E. B., KOCH, M., and LILLHOLM, M., Quaternions, interpolation and ani-

mation. Datalogisk Institut, Københavns Universitet, 1998.

[40] DANTAM, N., AMOR, H. B., CHRISTENSEN, H., and STILMAN, M., “Online cam-

era registration for robot manipulation (presented),” in International Symposium on

Experimental Robotics, 2014.

[41] DANTAM, N., HEREID, A., AMES, A., and STILMAN, M., “Correct software syn-

thesis for stable speed-controlled walking,” in RSS, IEEE, 2013.

[42] DANTAM, N., KOLHE, P., and STILMAN, M., “The motion grammar for physical

human-robot games,” in ICRA, IEEE, 2011.

[43] DANTAM, N. and STILMAN, M., “The motion grammar: Linguistic perception,

planning, and control,” in RSS, IEEE, 2011.

[44] DANTAM, N. and STILMAN, M., “The motion grammar calculus for context-free

hybrid systems,” in ACC, 2012.

[45] DANTAM, N. and STILMAN, M., “The motion grammar calculus for context-free

hybrid systems,” in ACC, IEEE, 2012.

[46] DANTAM, N. and STILMAN, M., “Robustness and efficient communication for real-

time multi-process robot software,” in Humanoids, IEEE, 2012.

221

[47] DANTAM, N. and STILMAN, M., “The motion grammar: Analysis of a linguistic

method for robot control,” Transactions on Robotics, vol. 29, no. 3, pp. 704–718,

2013.

[48] DANTAM, N., LOFARO, D., HEREID, A., OH, P., AMES, A., and STILMAN,

M., “Multiprocess communication and control software for humanoid robots (ac-

cepted),” Robotics and Automation Magazine, 2014.

[49] DANTAM, N. T., HEREID, A., AMES, A., and STILMAN, M., “Correct software

synthesis for stable speed-controlled robotic walking,” in Robotics: Science and

Systems, June 2013.

[50] DE GIACOMO, G. and VARDI, M. Y., “Automata-theoretic approach to planning

for temporally extended goals,” in Recent Advances in AI Planning, pp. 226–238,

Springer, 2000.

[51] DE LA HIGUERA, C., Grammatical Inference. Cambridge University Press, 2010.

[52] DE LUCA, A., ALBU-SCHAFFER, A., HADDADIN, S., and HIRZINGER, G., “Col-

lision detection and safe reaction with the DLR-III lightweight manipulator arm,” in

IROS, pp. 1623–1630, IEEE/RSJ, 2006.

[53] DEMPSTER, A. P., LAIRD, N. M., and RUBIN, D. B., “Maximum likelihood from

incomplete data via the EM algorithm,” Journal of the Royal Statistical Society,

Series B, vol. 39, no. 1, pp. 1–38, 1977.

[54] DEREMER, F., “Simple LR(k) grammars,” Communications of the ACM, vol. 14,

no. 7, pp. 453–460, 1971.

[55] DEREMER, F. and MAC., M. I. O. T. C. P., Practical translators for LR(k) lan-

guages. PhD thesis, Massachusetts Institute of Technology, 1969.

222

[56] DIEBEL, J., “Representing attitude: Euler angles, unit quaternions, and rotation

vectors,” tech. rep., Stanford University, 2006. http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.110.5134.

[57] DING, J., GILLULA, J., HUANG, H., VITUS, M., ZHANG, W., TOMLIN, C.,

GILLULA, J., HOFFMANN, G., HUANG, H., VITUS, M., and OTHERS, “Toward

reachability-based controller design for hybrid systems in robotics,” in 9th Inter-

national Symposium on Artificial Intelligence, Robotics and Automation in Space,

vol. 45, pp. 2526–2536, 2011.

[58] DOYLE, J. C., “Guaranteed margins for lqg regulators,” IEEE Trans. on Automatic

Control, vol. 23, no. 4, pp. 756–757, 1978.

[59] EARLEY, J., “An efficient context-free parsing algorithm,” Communications of the

ACM, vol. 13, no. 2, pp. 94–102, 1970.

[60] EKVALL, S. and KRAGIC, D., “Learning task models from multiple human demon-

strations,” in ROMAN, pp. 358–363, IEEE, 2006.

[61] Electronic Industries Alliance, Interchangeable Variable Block Data Format for

Positioning, Contouring, and Contouring/Positioning Numerically Controlled Ma-

chines, February 1979.

[62] EROL, K., HENDLER, J., and NAU, D. S., “Htn planning: Complexity and expres-

sivity,” in AAAI, vol. 94, pp. 1123–1128, 1994.

[63] ESPARZA, J., KUCERA, A., and SCHWOON, S., “Model checking LTL with regular

valuations for pushdown systems,” Information and Computation, vol. 186, no. 2,

pp. 355–376, 2003.

[64] FAINEKOS, G., GIRARD, A., KRESS-GAZIT, H., and PAPPAS, G., “Temporal logic

motion planning for dynamic robots,” Automatica, vol. 45, no. 2, pp. 343–352, 2009.

223

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.5134
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.5134

[65] FIKES, R. E. and NILSSON, N. J., “Strips: A new approach to the application of

theorem proving to problem solving,” Artificial intelligence, vol. 2, no. 3, pp. 189–

208, 1972.

[66] FINKEL, A., WILLEMS, B., and WOLPER, P., “A direct symbolic approach to

model checking pushdown systems,” Electronic Notes in Theoretical Computer Sci-

ence, vol. 9, pp. 27–37, 1997.

[67] FOLKESSON, J. and CHRISTENSEN, H., “Graphical SLAM - a self-correcting map,”

Intl. Conf. on Robotics and Automation, 2004.

[68] FRAZZOLI, E., DAHLEH, M., and FERON, E., “Maneuver-based motion planning

for nonlinear systems with symmetries,” IEEE Trans. on Robotics, vol. 21, no. 6,

pp. 1077–1091, 2005.

[69] FU, K., Syntactic Pattern Recognition and Applications. Prentice-Hall, 1981.

[70] July 2010. http://gcc.gnu.org/gcc-3.4/changes.html.

[71] GIBSON, J. J., The senses considered as perceptual systems. Boston: Houghton

Mifflin, 1966.

[72] GMBH, S., “Dextrous lightweight arm LWA 4D, technical data.” http:

//mobile.schunk-microsite.com/en/produkte/produkte/

dextrous-lightweight-arm-lwa-4d.html.

[73] GROPP, W., LUSK, E., and SKJELLUM, A., Using MPI: portable parallel program-

ming with the message passing interface. MIT Press, Cambridge, MA, 1999.

[74] HAGHVERDI, E., TABUADA, P., and PAPPAS, G., “Bisimulation relations for dy-

namical, control, and hybrid systems,” Theoretical Computer Science, vol. 342,

no. 2-3, pp. 229–261, 2005.

224

http://mobile.schunk-microsite.com/en/produkte/produkte/dextrous-lightweight-arm-lwa-4d.html
http://mobile.schunk-microsite.com/en/produkte/produkte/dextrous-lightweight-arm-lwa-4d.html
http://mobile.schunk-microsite.com/en/produkte/produkte/dextrous-lightweight-arm-lwa-4d.html

[75] HAMPEL, F. R., RONCHETTI, E. M., ROUSSEEUW, P. J., and STAHEL, W. A.,

Robust statistics: the approach based on influence functions, vol. 114. John Wiley

& Sons, 2011.

[76] HAN, F. and ZHU, S., “Bottom-up/top-down image parsing by attribute graph gram-

mar,” in ICCV, vol. 2, 2005.

[77] HAREL, D., “On visual formalisms,” Communications of the ACM, vol. 31, no. 5,

pp. 514–530, 1988.

[78] HAUSER, K., “Fast interpolation and time-optimization on implicit contact subman-

ifolds,” in Robotics: Science and Systems, (Berlin, Germany), June 2013.

[79] HEBERT, P., HUDSON, N., MA, J., and BURDICK, J. W., “Dual arm estimation

for coordinated bimanual manipulation,” in Robotics and Automation (ICRA), 2013

IEEE International Conference on, pp. 120–125, IEEE, 2013.

[80] HELMERT, M., RÖGER, G., and KARPAS, E., “Fast downward stone soup: A base-

line for building planner portfolios,” in ICAPS 2011 Workshop on Planning and

Learning, pp. 28–35, 2011.

[81] HENZINGER, T., “The theory of hybrid automata,” in Logic in Computer Science,

pp. 278–292, IEEE, 1996.

[82] HOARE, C., “Report on the elliott algol translator,” The Computer Journal, vol. 5,

no. 2, pp. 127–129, 1962.

[83] HOFFMANN, J. and NEBEL, B., “The FF planning system: Fast plan genera-

tion through heuristic search,” Journal of Artificial Intelligence Research, vol. 14,

pp. 253–302, 2001.

[84] HOLTZMAN, G., The Spin Model Checker. Addison Wesley, Boston, MA, 2004.

225

[85] HOPCROFT, J., “An n log n algorithm for minimizing states in a finite automaton,”

Reproduction, pp. 189–196, 1971.

[86] HOPCROFT, J. and ULLMAN, J., Introduction to Automata Theory, Languages, and

Computation. Addison Wesley, Reading, MA, 1979.

[87] HRISTU-VARSAKELIS, D., EGERSTEDT, M., and KRISHNAPRASAD, P., “On the

structural complexity of the motion description language mdle,” in CDC, pp. 3360–

3365, IEEE, 2003.

[88] HRISTU-VARSAKELIS, D. and LEVINE, W., eds., Handbook of Networked and Em-

bedded Control Systems. Birkhauser, 2005.

[89] HUANG, A. S., OLSON, E., and MOORE, D. C., “LCM: Lightweight communi-

cations and marshalling,” in Intelligent Robots and Systems, pp. 4057–4062, IEEE,

2010.

[90] HUBER, P. J. and OTHERS, “Robust estimation of a location parameter,” The Annals

of Mathematical Statistics, vol. 35, no. 1, pp. 73–101, 1964.

[91] HYATT, R., “CRAFTY–chess program,” ftp://ftp.cis.uab.edu/pub/hyatt, 1996.

[92] IROBOT CORPORATION, “Aware 2.0.” http://www.irobot.com/gi/developers/Aware/.

[93] IVANOV, Y. and BOBICK, A., “Recognition of visual activities and interactions

by stochastic parsing,” IEEE Trans. on Pattern Analysis and Machine Intelligence,

vol. 22, no. 8, pp. 852–872, 2000.

[94] JOHNSON, S. and BELL TELEPHONE LABORATORIES, I., Yacc: Yet another

compiler-compiler. Bell Laboratories, 1975.

[95] JOO, S. and GREY, M., “DRC-Hubo retrospective,” January 2014. Personal Com-

munication.

226

[96] KAHAN, W., “How futile are mindless assessments of roundoff in floating-point

computation,” tech. rep., U.C. Berkeley, 2006. http://www.cs.berkeley.

edu/˜wkahan/Mindless.pdf.

[97] KANG, I. and PARK, F., “Cubic spline algorithms for orientation interpolation,”

International journal for numerical methods in engineering, vol. 46, no. 1, pp. 45–

64, 1999.

[98] KARAMAN, S. and FRAZZOLI, E., “Sampling-based motion planning with deter-

ministic µ-calculus specifications,” in Decision and Control, 2009 held jointly with

the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the

48th IEEE Conference on, pp. 2222–2229, IEEE, 2009.

[99] KASAMI, T., “An efficient recognition and syntax analysis algorithm for context-

free languages,” Tech. Rep. AFCRL-65-758, Air Force Cambridge Research Labo-

ratory, Bedford, MA, 1965.

[100] KAUTZ, H. and SELMAN, B., “Blackbox: A new approach to the application of

theorem proving to problem solving,” in AIPS98 Workshop on Planning as Combi-

natorial Search, vol. 58260, pp. 58–60, 1998.

[101] KELLY, T., WANG, Y., LAFORTUNE, S., and MAHLKE, S., “Eliminating concur-

rency bugs with control engineering,” Computer, vol. 42, no. 12, pp. 52–60, 2009.

[102] KIENTZ, J. A., PATEL, S. N., JONES, B., PRICE, E., MYNATT, E. D., and

ABOWD, G. D., “The Georgia Tech aware home,” in CHI ’08 extended abstracts on

Human factors in computing systems, CHI EA ’08, (New York, NY, USA), ACM,

2008.

[103] KIM, M.-J., KIM, M.-S., and SHIN, S. Y., “A general construction scheme for unit

quaternion curves with simple high order derivatives,” in Computer Graphics and

Interactive Techniques, pp. 369–376, ACM, 1995.

227

http://www.cs.berkeley.edu/~wkahan/Mindless.pdf
http://www.cs.berkeley.edu/~wkahan/Mindless.pdf

[104] KLAVINS, E., “A language for modeling and programming cooperative control sys-

tems,” in ICRA, vol. 4, pp. 3403–3410, IEEE, 2004.

[105] KLINGENSMITH, M., GALLUZZO, T., DELLIN, C., KAZEMI, M., BAGNELL, J.

A. D., and POLLARD, N., “Closed-loop servoing using real-time markerless arm

tracking,” in International Conference on Robotics And Automation (Humanoids

Workshop), May 2013.

[106] KLOETZER, M. and BELTA, C., “A fully automated framework for control of lin-

ear systems from temporal logic specifications,” IEEE Trans. on Automatic Control,

vol. 53, no. 1, pp. 287–297, 2008.

[107] KNOBLOCK, C. A., “Automatically generating abstractions for planning,” Artificial

intelligence, vol. 68, no. 2, pp. 243–302, 1994.

[108] KNUTH, D., “On the translation of languages from left to right,” Information and

control, vol. 8, no. 6, pp. 607–639, 1965.

[109] KOŠECKÁ, J. and BAJCSY, R., “Discrete event systems for autonomous mobile

agents,” Robotics and Autonomous Systems, vol. 12, no. 3, pp. 187–198, 1994.

[110] KOUTSOURAKIS, P., SIMON, L., TEBOUL, O., TZIRITAS, G., and PARAGIOS,

N., “Single view reconstruction using shape grammars for urban environments,” in

ICCV, 2009.

[111] KRESS-GAZIT, H., FAINEKOS, G., and PAPPAS, G., “Temporal-logic-based re-

active mission and motion planning,” IEEE Trans. on Robotics, vol. 25, no. 6,

pp. 1370–1381, 2009.

[112] KRÖGER, T., On-Line Trajectory Generation in Robotic Systems, vol. 58 of Springer

Tracts in Advanced Robotics. Berlin, Heidelberg, Germany: Springer, January 2010.

228

[113] KUNZ, T. and STILMAN, M., “Time-optimal trajectory generation for path fol-

lowing with bounded acceleration and velocity,” in Robotics: Science and Systems,

pp. 09–13, July 2012.

[114] LAVIOLA, J. J., “A comparison of unscented and extended Kalman filtering for

estimating quaternion motion,” in American Control Conference, vol. 3, pp. 2435–

2440, IEEE, 2003.

[115] LEE, E. A., “Computing needs time,” Communications of the ACM, vol. 52, pp. 70–

79, May 2009.

[116] LEFFERTS, E. J., MARKLEY, F. L., and SHUSTER, M. D., “Kalman filtering for

spacecraft attitude estimation,” Journal of Guidance, Control, and Dynamics, vol. 5,

no. 5, pp. 417–429, 1982.

[117] LEKAVỲ, M. and NÁVRAT, P., “Expressivity of strips-like and htn-like planning,”

in Agent and Multi-Agent Systems: Technologies and Applications, pp. 121–130,

Springer, 2007.

[118] LEWIS II, P. and STEARNS, R., “Syntax-directed transduction,” Journal of the ACM

(JACM), vol. 15, no. 3, pp. 465–488, 1968.

[119] LIVINGSTON, S. C., PRABHAKAR, P., JOSE, A. B., and MURRAY, R. M., “Patch-

ing task-level robot controllers based on a local µ-calculus formula,” in Robotics

and Automation (ICRA), 2013 IEEE International Conference on, pp. 4588–4595,

IEEE, 2013.

[120] LOFARO, D., Unified Algorithmic Framework for High Degree of Freedom Complex

Systems and Humanoid Robots. PhD thesis, Drexel University, College of Engineer-

ing, May 2013.

229

[121] LOZANO-PÉREZ, T. and BROOKS, R., “An approach to automatic robot program-

ming,” Tech. Rep. A.I. Memo 842, Massachusetts Intitute of Technology, 1985.

[122] LYGEROS, J., JOHANSSON, K., SIMIC, S., ZHANG, J., and SASTRY, S., “Dynami-

cal properties of hybrid automata,” IEEE Trans. on Automatic Control, vol. 48, no. 1,

pp. 2–17, 2003.

[123] LYONS, D. M. and ARBIB, M. A., “A formal model of computation for sensory-

based robotics,” Robotics and Automation, IEEE Transactions on, vol. 5, no. 3,

pp. 280–293, 1989.

[124] MALI, A. D. and KAMBHAMPATI, S., “Encoding htn planning in propositional

logic.,” in AIPS, pp. 190–198, 1998.

[125] MALY, M., LAHIJANIAN, M., KAVRAKI, L. E., KRESS-GAZIT, H., and VARDI,

M. Y., “Iterative temporal motion planning for hybrid systems in partially unknown

environments,” in ACM International Conference on Hybrid Systems: Computa-

tion and Control (HSCC), (Philadelphia, PA, USA), pp. 353–362, ACM, ACM,

08/04/2013 2013.

[126] MARKLEY, F. L., CHENG, Y., CRASSIDIS, J. L., and OSHMAN, Y., “Averaging

quaternions,” Journal of Guidance, Control, and Dynamics, vol. 30, no. 4, pp. 1193–

1197, 2007.

[127] MCCONNELL, S., Software estimation: demystifying the black art. Microsoft press,

March 2006.

[128] MICROSOFT CORPORATION, “Microsoft robotics studio.”

http://www.microsoft.com/robotics/.

230

[129] MINNEN, D., ESSA, I., and STARNER, T., “Expectation grammars: Leveraging

high-level expectations for activity recognition,” in Computer Vision and Pattern

Recognition, vol. 2, pp. II–626, IEEE, 2003.

[130] MITCHELL, I., BAYEN, A., and TOMLIN, C., “A time-dependent Hamilton-Jacobi

formulation of reachable sets for continuous dynamic games,” IEEE Trans. on Auto-

matic Control, vol. 50, no. 7, pp. 947–957, 2005.

[131] MOORE, D. and ESSA, I., “Recognizing multitasked activities from video us-

ing stochastic context-free grammar,” in National Conf. on Artificial Intelligence,

pp. 770–776, Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;

1999, 2002.

[132] MORRISETT, G., HARPER, R., and OTHERS, “Semantics of memory management

for polymorphic languages,” Higher-Order Operational Techniques in Semantics,

pp. 175–226, 1996.

[133] NAKAMURA, Y. and HANAFUSA, H., “Inverse kinematics solutions with singular-

ity robustness for robot manipulator control,” Journal of Dynamic Systems, Mea-

surement, and Control, no. 108, pp. 163–171, 1986.

[134] NIETO-GRANDA, C., ROGERS III, J. G., TREVOR, A. J. B., and CHRISTENSEN,

H. I., “Semantic map partitioning in indoor environments using regional analysis,”

in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, (Taiwan), pp. 1451–1456,

IEEE, Oct 2010.

[135] NILSSON, N. J., Artificial Intelligence: A New Synthesis. Morgan Kaufmann, 1998.

[136] The Object Management Group, Data Distribution Service for Real-time Systems,

1.2 ed., January 2007. http://www.omg.org/spec/DDS/1.2/.

231

http://www.omg.org/spec/DDS/1.2/

[137] The Object Management Group, Common Object Request Broker Architecture

(CORBA/IIOP), 3.1.1 ed., August 2011. http://www.omg.org/spec/

CORBA/3.1.1/.

[138] The Object Management Group, Systems Modeling Language (SysML), June 2012.

http://www.omg.org/spec/SysML/1.3/.

[139] O’CALLAGHAN, S., RAMOS, F. T., and DURRANT-WHYTE, H. F., “Contextual

occupancy maps using gaussian processes.,” in IEEE Intl. Conf. on Robotics and

Automation, pp. 1054–1060, IEEE, 2009.

[140] OGALE, A. S., KARAPURKAR, A., and ALOIMONOS, Y., “View-invariant mod-

eling and recognition of human actions using grammars,” in Dynamical vision,

pp. 115–126, Springer, 2007.

[141] OpenCV API Reference. http://docs.opencv.org/master/modules/

refman.html.

[142] PARR, T. and FISHER, K., “LL (*): the foundation of the ANTLR parser generator,”

in Proceedings of the 32nd ACM SIGPLAN conference on Programming language

design and implementation, pp. 425–436, ACM, 2011.

[143] PETERSON, J. L., Petri Net Theory and the Modeling of Systems. Prentice-Hall,

Englewood Cliffs, NJ, USA, 1981.

[144] PLAKU, E., KAVRAKI, L., and VARDI, M., “Falsification of ltl safety properties in

hybrid systems,” International Journal on Software Tools for Technology Transfer,

vol. 15, no. 4, pp. 305–320, 2013.

[145] POWELL, M. J., HEREID, A., and AMES, A. D., “Speed regulation in 3D robotic

walking through motion transitions between human-inspired partial hybrid zero dy-

namics,” in IEEE Intl. Conf. Robotics and Automation, (Karlsruhe), 2013.

232

http://www.omg.org/spec/CORBA/3.1.1/
http://www.omg.org/spec/CORBA/3.1.1/
http://docs.opencv.org/master/modules/refman.html
http://docs.opencv.org/master/modules/refman.html

[146] POWELL, M. J., SINNET, R. W., and AMES, A. D., “3D human-inspired robotic

walking: Optimization, speed regulation and implementation,” Intl. J. of Adv.

Robotic Systems, 2012. Submitted Aug. 2012, available upon request.

[147] PRADEEP, V., KONOLIGE, K., and BERGER, E., “Calibrating a multi-arm multi-

sensor robot: A bundle adjustment approach,” in Experimental Robotics, pp. 211–

225, Springer, 2014.

[148] PRAJNA, S. and JADBABAIE, A., “Safety verification of hybrid systems using bar-

rier certificates,” HSCC, pp. 271–274, 2004.

[149] QUIGLEY, M., GERKEY, B., CONLEY, K., FAUST, J., FOOTE, T., LEIBS, J.,

BERGER, E., WHEELER, R., and NG, A., “ROS: an open-source robot operat-

ing system,” in Intl. Conf. on Robotics and Automation, Workshop on Open Source

Robotics, IEEE, 2009.

[150] RAINIO, K. and BOYER, A., ALVAR – A Library for Virtual and Augmented Reality

User’s Manual. VTT Augmented Reality Team, December 2013.

[151] RAMADGE, P. J. and WONHAM, W. M., “Supervisory control of a class of dis-

crete event processes,” Analysis and Optimization of Systems, vol. 25, pp. 206–230,

January 1987.

[152] RATHER, E. D., COLBURN, D. R., and MOORE, C. H., “The evolution of forth,”

in ACM Sigplan Notices, vol. 28, pp. 177–199, ACM, 1993.

[153] RAWAL, C., TANNER, H. G., and HEINZ, J., “(sub)regular robotic languages,” in

Mediterranean Conf. on Control and Automation, IEEE, 2011.

[154] ROTEM-GAL-OZ, A., “Fallacies of distributed computing explained,” tech. rep.,

Sun Microsystems, 2006. http://www.rgoarchitects.com/Files/

fallacies.pdf.

233

http://www.rgoarchitects.com/Files/fallacies.pdf
http://www.rgoarchitects.com/Files/fallacies.pdf

[155] ŞAHIN, E., ÇAKMAK, M., DOĞAR, M., UĞUR, E., and ÜÇOLUK, G., “To afford

or not to afford: A new formalization of affordances toward affordance-based robot

control,” Adaptive Behavior, vol. 15, no. 4, pp. 447–472, 2007.

[156] SCHAAL, S., IJSPEERT, A., and BILLARD, A., “Computational approaches to mo-

tor learning by imitation,” Philosophical Transactions of the Royal Society of Lon-

don. Series B: Biological Sciences, vol. 358, no. 1431, pp. 537–547, 2003.

[157] SCHEWE, S., “Beyond hyper-minimisation—minimising dbas and dpas is np-

complete.,” in FSTTCS, pp. 400–411, 2010.

[158] SCHMIDT, D. C., LEVINE, D. L., and MUNGEE, S., “The design of the TAO real-

time object request broker,” Computer Communications, vol. 21, no. 4, pp. 294–324,

1998.

[159] SHIN, K. and MCKAY, N., “Minimum-time control of robotic manipulators with ge-

ometric path constraints,” IEEE Trans. on Automatic Control, vol. 30, no. 6, pp. 531–

541, 1985.

[160] SHOEMAKE, K., “Animating rotation with quaternion curves,” ACM SIGGRAPH

computer graphics, vol. 19, no. 3, pp. 245–254, 1985.

[161] SICILIANO, B., SCIAVICCO, L., VILLANI, L., and ORIOLO, G., Robotics: mod-

elling, planning and control. Springer Verlag, 2009.

[162] SILBERSCHATZ, A., GALVIN, P. B., and GAGNE, G., Operating system concepts.

J. Wiley & Sons, 2009.

[163] SMITH, R. and CHEESEMAN, P., “On the representation and estimation of spatial

uncertainty,” Intl. Journal of Robotics Research, vol. 5, pp. 56–68, Winter 1987.

[164] SRINIVASAN, R., RPC: Remote Procedure Call Protocol Specification Version 2.

Internet Engineering Task Force, August 1995. http://www.ietf.org/rfc/rfc1831.txt.

234

[165] SRIVASTAVA, S., IMMERMAN, N., and ZILBERSTEIN, S., “Applicability conditions

for plans with loops: Computability results and algorithms,” Artificial Intelligence,

vol. 191, pp. 1–19, 2012.

[166] STAIGER, L., “Finite-state ω-languages,” Journal of Computer and System Sci-

ences, vol. 27, no. 3, pp. 434–448, 1983.

[167] STEVENS, W. R. and RAGO, S. A., Advanced Programming in the UNIX Environ-

ment. Addison Wesley, Boston, MA, 2 ed., 2005.

[168] STILMAN, B., Linguistic Geometry: From Search to Construction. Kluwer Aca-

demic Publishers, 2000.

[169] STILMAN, M., OLSON, J., and GLOSS, W., “Golem Krang: Dynamically stable

humanoid robot for mobile manipulation,” in Intl. Conference on Robotics and Au-

tomation, pp. 3304–3309, IEEE, 2010.

[170] STILMAN, M., “Task constrained motion planning in robot joint space,” in Intl.

Conf. on Intelligent Robots and Systems, pp. 3074–3081, October 2007.

[171] STILMAN, M., “Global manipulation planing in robot joint space with task con-

straints,” Trans. on Robotics, vol. 26, no. 3, pp. 576–584, 2010.

[172] TABUADA, P. and PAPPAS, G. J., “Linear time logic control of discrete-time linear

systems,” Automatic Control, IEEE Transactions on, vol. 51, no. 12, pp. 1862–1877,

2006.

[173] TEICHMAN, A., MILLER, S., and THRUN, S., “Unsupervised intrinsic calibration

of depth sensors via SLAM,” in Robotics: Science and Systems (RSS), 2013.

[174] TELLEX, S., KNEPPER, R. A., LI, A., ROY, N., , and RUS, D., “Asking for help

using inverse semantics,” in Robotics: Science and Systems, June 2014.

235

[175] TOPP, E. A. and CHRISTENSEN, H. I., “Detecting region transitions for human-

augmented mapping,” IEEE Transactions on Robotics, pp. 1–5, 2010.

[176] TOPP, E. A. and CHRISTENSEN, H. I., “Topological modelling for human aug-

mented mapping,” in IEEE/RSJ Intl.er Conf. on Intelligent Robots and Systems,

pp. 2257–2263, Oct. 2006.

[177] TOSHEV, A., MORDOHAI, P., and TASKAR, B., “Detecting and parsing architecture

at city scale from range data,” in CVPR, IEEE, 2010.

[178] TREVOR, A. J. B., ROGERS III, J. G., and CHRISTENSEN, H., “Planar surface

slam with 3d and 2d sensors,” in IEEE Intl. Conf. on Robotics and Automation,

2012.

[179] TREVOR, A. J. B., ROGERS III, J. G., NIETO-GRANDA, C., and CHRISTENSEN,

H., “Tables, counters, and shelves: Semantic mapping of surfaces in 3d,” in IROS

Workshop on Semantic Mapping and Autonomous Knowledge Acquisition, 2010.

[180] ULUSOY, A., WONGPIROMSARN, T., and BELTA, C., “Incremental controller syn-

thesis in probabilistic environments with temporal logic constraints,” The Interna-

tional Journal of Robotics Research, p. 0278364913519000, 2014.

[181] UMEYAMA, S., “Least-squares estimation of transformation parameters between

two point patterns,” Pattern Analysis and Machine Intelligence, vol. 13, no. 4,

pp. 376–380, 1991.

[182] US FOOD AND DRUG ADMINISTRATION, “Medical device recall report, FY2003

to FY2012.”

[183] VIJAYKUMAR, R., VENKATARAMAN, S., DAKIN, G., and LYONS, D., “A task

grammar approach to the structure and analysis of robot programs,” in Workshop on

Languages for Automation, IEEE, 1987.

236

[184] VINOSKI, S., “Advanced message queuing protocol,” Internet Computing, IEEE,

vol. 10, no. 6, pp. 87–89, 2006.

[185] WANG, Y., KELLY, T., KUDLUR, M., LAFORTUNE, S., and MAHLKE, S., “Gadara:

Dynamic deadlock avoidance for multithreaded programs,” in Proceedings of the 8th

USENIX conference on Operating systems design and implementation, pp. 281–294,

USENIX Association, 2008.

[186] WINTER, D., “Cyber physical systems in aerospace – challenges and opportunities,”

in Safe and Secure Systems and Software Symposium, Air Force Research Labora-

tory, June 2011. Keynote.

[187] YOUNGER, D., “Recognition and parsing of context-free languages in time n3*,”

Information and control, vol. 10, no. 2, pp. 189–208, 1967.

237

	Titlepage
	Signatures
	Acknowledgements
	Table of Contents
	List of Figures
	Summary
	Chapter 1 — Introduction
	Challenges
	Approach
	Hierarchy of Abstraction
	Phases of System Design
	Specification
	Analysis
	Execution

	Assumptions
	Fully Observable
	Non-stochastic Events
	Serial Tasks
	Kinematic Manipulator Control

	Overview
	Contributions
	Outline

	Chapter 2 — Related Work
	Formal Language
	Discrete and Hybrid Systems
	Logical Planning
	Policy Specification Approaches

	Chapter 3 — Specifying Language Models
	The Motion Grammar
	Application of the Motion Grammar
	Languages, Systems, and Specifications

	Hierarchical Task Specification: Physical Human-Robot Games
	Tokenizing
	Parsing
	Syntax and Semantics
	Yamakuzushi
	Touching Pieces
	Sliding and Reacquiring Lost Pieces
	Selecting Target Pieces
	Deciding the Winner
	Complete Game

	Chess
	Guarded Moves
	Fallen Pieces
	Board Resetting
	Perception and Board Tokens
	Full Game

	Walking Speed Graphs
	Inferring Grammars for Small Object Assembly
	Assembly Language
	Human Activity to Event String
	Image Segmentation and Clustering
	Object Recognition and Tracking
	Structure Recognition
	Symbol Generation

	Event Strings to Robot Grammar
	Strings to Regular Expression
	Regular Expression to Nondeterministic Finite Automaton
	Nondeterministic Finite Automaton to Minimum Deterministic Finite Automaton

	Manipulation Grammar

	Logical Planning Domains
	Minimum Finite-State Regular Policies
	Hierarchically Compacted Context-Free Policies
	Automatic Hierarchization
	Goal Independence

	Alternative Outcomes and Faults
	Subtask Failure
	Uncontrollable Events

	Logical Domain Examples
	Sussman Anomaly Revisited
	Robot Assembly Tasks

	Relationship of Grammars and Other Representations
	Petri Nets
	Hybrid Automata
	MDLe
	Maneuver Automata
	Linear Temporal Logic
	The C Programming Language

	Chapter 4 — Analyzing Language Models
	Model Guarantees
	Completeness
	Correctness

	Discussion of Language Class
	Chomsky Hierarchy of Languages
	Limits of Language Class
	Language Classes and Symbol Design

	Unpredictable Events
	Implementation Model Checking
	Motion Grammar Calculus
	Tokenization and Reachability
	Region Tokens
	Conservative Reachability with Barrier Certificates
	Reachability Example
	System 1
	System 2
	Additional Event Types

	Process to Derive Correct Grammars
	Example of Complete and Incomplete Derivations

	Completeness and a Simulation Lemma
	Rewrite Rules
	Input
	Token Splitting
	Adjacency Pruning
	Barrier Pruning
	Bounce Pruning

	Using the Calculus to Enforce Correctness
	Safe Regions and New Switching Surfaces
	Example Derivation

	Composing Mapping and Manipulation
	Composing Maps and Grammars
	Composition using the Motion Grammar Calculus
	Supervisory Control
	Mobile Manipulation Demonstration
	Discussion

	Chapter 5 — Platform Models for Manipulation
	Spherical Parabolic Blends for Workspace Trajectories
	SLERP for Inverse Kinematics
	Derivation of Spherical Parabolic Blends
	Generating and Tracking Trajectories
	Generation
	Tracking
	Workspace Control

	Trajectory Experiments
	Simulation
	Physical Implementation
	Computational Performance

	Online Registration of Single Arm and Camera
	Technical Approach
	Feature Estimation
	Offset Identification
	Filtering
	Median Filtering
	Kalman Filtering

	Registered Visual Servoing
	Single Arm and Camera Experiments

	Online Registration of Multiple Arms and Cameras
	Asynchronous Pose Co-Estimation
	Control: Bimanual Workspace Trajectories
	Multiple Arm and Camera Experiments

	Discussion

	Chapter 6 — Modeling and Programming Concurrency
	Review of POSIX IPC
	Streams
	Datagrams
	Datagram Sockets
	POSIX Message Queues

	Shared Memory
	Further Considerations
	Nonblocking and Asynchronous IO approaches
	Priorities

	General, Real-Time, Robotics Middleware

	The Ach IPC Library
	Channel Data Structure
	Core Procedures
	ach_put
	ach_get

	Case Studies
	Dynamic Balance on Golem Krang
	Speed Regulation on Nao
	Reliable Software for the Hubo2+

	Performance and Discussion
	Formal Verification
	Benchmarks
	Discussion

	Chapter 7 — Executing Language Models
	Online Parsing
	Discrete vs. Continuous Time
	Selecting Productions and Semantic Rules
	Attribute Inheritance and Synthesis

	Real-Time LL(1) Parser Generation
	Bounding Memory Use
	Parser Implementation
	Online Supervision

	Chapter 8 — Conclusion and Future Work
	Contributions
	Integrate specification, analysis, and execution
	Data-Driven Specification
	Logical Domain Policies
	Hierarchical Policy Compaction
	Generating Real-Time Software
	Real-Time Communication
	Direct, Nonstop Workspace Interpolation

	Future Work

	Appendix A — Formal Language
	Appendix B — Dual Quaternions
	Quaternions
	Representation
	Multiplication
	Cross and dot product definition
	Matrix definition
	Properties
	Pure Multiplication

	Norm
	Conjugate
	Inverse
	Exponential
	Logarithm
	Power
	Pure Exponential Derivative
	Unit Logarithm Derivative
	Unit Quaternion Angle
	Product Rule

	Representing Orientation
	Rotating a vector
	Chaining rotations
	Angular Derivatives
	Axis-Angle
	Spherical Linear Interpolation
	Integration
	Finite Difference

	Dual Quaternions and Euclidean Transforms
	Dual Numbers
	Representation
	Construction
	Multiplication
	Matrix Form
	Conjugate
	Exponential
	Logarithm
	Chaining Transforms
	Transforming a point
	Derivatives
	Product Rule
	Angular Velocity
	Translational Velocity

	Integration

	Implicit Dual Quaternions
	Chaining transforms
	Transforming points
	Conjugate
	Derivatives

	History

	References

