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Abstract
In this paper a test for specification in functional regression with scalar response that
exploits semi-parametric principles is illustrated. Once the test statistics is defined,
its asymptotic null distribution is derived under suitable conditions. The finite sample
performances of the test are analyzed through a simulation study by using both the
asymptotic p-value and some bootstrap approaches. To appreciate the potentialities of
the method, an application to a spectrometric real dataset is performed.

Keywords Functional data · Single Index model · Goodness-of-fit test · Asymptotic
normality
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1 Introduction

The problem of specifying the link function that models the dependence structure
between two random elements is a very important task in many statistical regression
analysis. That problem could be hard to treat when a functional predictor X, that is a
random element taking values in a functional space, is used to explain the variability
of a real random variable (r.v.) Y . In this case, in fact, the link is described through
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a real valued operator r acting on a functional space and it is difficult to visualize it,
and consequently, to select a coherent specification. This kind of model is known as
functional regression model with scalar response:

Y = r [X ] + E (1)

where E is a centered random error uncorrelated with X. It has appeared in many
scientific domains and falls within themethodologies of the so-called functional statis-
tics. For a review on this relatively recent branch of statistics, see for instance the
monographes (Ferraty and Vieu 2006; Horvath and Kokoszka 2012) or (Ramsay and
Silverman 2005), or the papers that appeared in recent special issues (see, for instance,
Aneiros et al. 2022, 2019a, b).

The interest toward the checking of a specification of the regression operator for the
model (1) has produced a rich line of research on structural testing procedures. Only to
cite some examples, in Aneiros and Vieu (2013) the authors deal with testing linearity
in semi-functional partially linear regression models, in Bücher et al. (2011) a test for
the hypothesis of a specific parametric functional regression model is introduced, in
Cuesta-Albertos et al. (2019) a goodness-of-fit tests for the functional linear model is
illustrated, the paper (Delsol et al. 2011) tackles an omnibus goodness-of-fit tests in a
full nonparametric framework, finally the work (Patilea et al. 2016) provides a test for
the case of a functional response in the spirit of the smoothing test statistic considered
by Sheng (1996).

A useful help in the context of the model specification can come from the semi-
parametric regression approaches. Thanks to a projective strategy, it allows to visualize
a link function, combining the flexibility and the interpretability and, at the same
time, to avoid some dimensionality problems that can occur in the full nonparametric
context. Only to get a partial idea of the variety of techniques developed, one can see
a general presentation in Härdle et al. (2004) and, as examples for what concerns the
functional statistics, the papers Ferraty et al. (2013), Goia and Vieu (2015), Ling and
Vieu (2021) and Novo et al. (2019) and references therein.

The present paper explores the possibility to build a specification test by exploiting
the potential of the Single Functional Index Model (SFIM). This defines the relation-
ship between X and Y through an unknown real link function g acting on a projection
of the functional regressor along an unknown direction θ , constrained for identifiabil-
ity. Formally, let X be a random element valued in a Hilbert space H of real functions
defined over a compact interval T , equipped with an inner product 〈·, ·〉 and associated
norm ‖·‖, then r [X ] = g(〈θ, X〉), where g : R → R, θ ∈ H with ‖θ‖2 = 1 and
θ(t) > 0 for any fixed t ∈ T for identifiability (see e.g. Ait-Saïdi et al. 2008). So
far, various techniques have been introduced to estimate g and θ from samples drawn
from (X ,Y ) and the rate of convergence derived (see e.g. Jiang et al. 2020; Novo et al.
2019 or Shang 2020 for recent contributions).

The main interest in SFIM is that it makes possible to bring back an infinite dimen-
sional problem to a one dimensional framework and to visualize an estimate ĝ of g,
obtained from an observed dataset, that can suggest the nature of the link between X
and Y . This allows to postulate a target specification g0 for g, depending on some real
parameter, and then to check if it is compatible with the observed dataset at a given
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significance level. For instance, if the plot of ĝ exhibits a straightness shape, the lin-
earity of the regression model should be investigated. As a consequence, once the link
function is specified, the resulting model depends only on the functional parameter
θ and hence it is full parametric, with some practical and theoretical benefits in the
estimation step (for instance, a faster rate of convergence than in the semi-parmetric
case, a full interpretability of the link, good estimates for rather small sample sizes, no
smoothing parameters have to be introduced). By way of example, one can consider
the prediction of themoisture value for 80 samples of corn by using the first derivatives
of the corresponding Near-infrared (NIR) spectra measured over the wavelength range
1100–2498 nanometer (see the original spectra in the top panel of Fig. 1): an estimate
of the link function g is plotted in the bottom panel of Fig. 1 and one may wonder if
the hypothesis of a linear link is compatible with the empirical evidence.

The aim of this work is to define and operationalize a suitable specification test
procedure and then analyze its performances: given the SFIM framework, one wants
to test the null hypothesis that the link function g belongs to a family of possible
parametric functions:

G0 =
{

gβ
0 : R → R, β = (

β0, β1, . . . , βp
) ∈ R

d+1
}

d ≥ 1 integer

where the parameter β can be entirely specified or not, against the alternative that g
is not an element of G0. The main idea is to exploit the so-called conditional moment
test approach (see e.g. Newey 1985) based on the fact that, under the null hypothe-
sis the quantity E[EE[E |X ]w(X)], where w(X) is a suitable weight, is null, whereas
it is strictly positive under the alternative one. Therefore, by using a kernel regres-
sion approach, a test statistic belonging to the family of U-statistic is derived and
appropriately standardized, and, under suitable assumptions on the distribution of X
(in particular, expressed in terms of small-ball probability), the involved kernel, the
nature of the error, the behaviour of the estimator of the SFIMmodel used, it is proved
that its asymptotic null distribution is the Gaussian one. Thanks to the latter statement,
the p value of the test can be directly computed and an evaluation of the power of
the test, based on the asymptotic result, can be evaluated by means of Monte Carlo
experiments carried out on samples with finite sizes and under various experimental
conditions, that is nature of the link, sample size, variability of the error model. In
order to appreciate the robustness of the introduced test methodology, a comparison
with the results obtained when some standard bootstrap procedures are used is made.
Finally, to show how the test can be used for practical purposes, an application to the
prediction via SFIM model for the spectrometric dataset is performed and discussed.

The outline of the paper is as follows: the theoretical background, the basic principle
of the test and the test statistic are defined in Sect. 2. Theoretical properties of the test
statistic are discussed in Sect. 3: in particular in Sects. 3.1 and 3.1.1 the null distribution
of the test statistic is derived, whereas some remarks on consistency are provided in
Sect. 3.1.2. The performances of the test are analyzed in Sect. 4 and the bootstrap
approaches are described in Sect. 5. Finally the real world analysis is done in Sect. 6.
For the sake of readability, all the detailed proofs of the theoretical results are postponed
to the technical Appendix.

123



L. Chan et al.

1200 1400 1600 1800 2000 2200 2400

0.
0

0.
2

0.
4

0.
6

0.
8

Wavelength

Ab
so

rb
an

ce

0.21 0.22 0.23 0.24

9.
5

10
.0

10
.5

<θ,x>

g(
<θ

,x
>)

Moisture

Fig. 1 Spectrometric curves (top) and estimate of the link function (bottom)

2 Notations and test definition

Consider the random element (X ,Y ) defined on a probability space and mapping on
H × R, where H is a Hilbert space of real functions defined over a compact interval
T . From now on, one takes H = L2

[0,1] the space of square integrable real functions

defined over [0, 1], equipped with the natural inner product 〈g, h〉 = ∫ 1
0 g(s)h(s)ds

and associated norm ‖g‖2 = 〈g, g〉.
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Assume that the relation between Y and X is defined by the following SFIM:

Y = g(〈X , θ〉) + E (2)

where g : R → R is an unknown link function, θ ∈ H is an unknown direction such
that ‖θ‖2 = 1 and θ(t) > 0 for a fixed t, for identifiability, and E is a r.v. satisfying
E[E |X ] = 0 and E

[

E2|X] = σ 2 (see e.g. Ait-Saïdi et al. 2008).

2.1 The test principle

Define G0 = {gβ
0 : R → R, β ∈ R

d+1}, d ≥ 1 integer, be a known function,
measurable w.r.t. the σ -algebra generated by X, and depending on the parameter β =
(β0, β1, . . . , βd) ∈ R

d+1. Consider then the following hypothesis:

H0 : g ∈ G0 vs. H1 : g ∈ G1

where G1 is a set of real functions gβ
1 such that G1 ∩ G0 = Ø. If θ and β are fixed,

the hypotheses are simple, otherwise complex. To fix the ideas, the above setting
includes the possibility of testing the linearity of the regression by specifying G0 as
the set of affine functions gβ

0 (u) = β0 + β1u, with β0, β1 ∈ R, β1 
= 0. In practice,
the specification of the model under the null hypothesis could be done by a direct
inspection of the scatterplot between the observed values 〈X , θ〉 and those of Y or by
imposing an a priori model.

Consider:

E

[

(

g(〈X , θ〉) − gβ
0 (〈X , θ〉)

)2
w(X)

]

(3)

where g0 ∈ G0, and w is a positive weight function. By the SFIM assumption
(2), E[Y |X ] = g(〈X , θ〉) and this implies that

g(〈X , θ〉) − gβ
0 (〈X , θ〉) = E[E |X ]

where E = Y − gβ
0 (〈X , θ〉). Hence, (3) can be rewritten in the equivalent form:

E

[

E[E |X ]2w(X)
]

= E[EE[E |X ]w(X)].

Under the null hypothesis the latter is null, because of g(〈X , θ〉) =
g0(〈X , θ〉) a.s., whereas under the alternative it is strictly positive, because of
P(g0(〈X , θ〉) = g(〈X , θ〉)) < 1.

Thanks to the above principle, it is possible to implement a test procedure starting
from an empirical version of E[EE[E |X ]w(X)]: the null hypothesis is rejected if it is
significantly far from zero.
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2.2 The test statistic

Consider a sample (Xi ,Yi ), i = 1, . . . , n, of i.i.d. replications of (X ,Y ) and suppose
that θ and β are completely specified and equal to θ� and β� respectively. Take a
Nadaraya–Watson type nonparametric kernel estimate of E[E |X ] at the point Xi .
Subsequently, an empirical version of E[EE[E |X ]w(X)] can be written as follows

1

n

n
∑

i=1

Ei
n
∑

j=1, j 
=i

E j
K
(

δ
(

Xi , X j
)

/h
)

∑

j 
=i K
(

δ
(

Xi , X j
)

/h
)w(Xi ) (4)

where Ei = Yi −gβ�

0 (〈Xi , θ�〉),K is a kernel function, h is a bandwidth, which depends
on n, and δ is a semi-metric.

In order to derive a convenient expression for the test statistic in the SFIM frame-
work, some simplifications can be introduced. Firsly, as w can be chosen arbitrarily,
if one can assume that the projection r.v. 〈X , θ�〉 admits a strictly positive probability
density function fθ� , then a possible choice is w = fθ� . Since it is unknown, con-
sider the following cross-validated kernel estimate of fθ� based on the same kernel,
semi-metric and bandwidth as above:

fθ�,n(Xi ) = 1

(n − 1)h

n
∑

j=1, j 
=i

K

(∣

∣

〈

Xi − X j , θ�

〉∣

∣

h

)

.

Secondly, one can select the the projection semi-metric:

δ(X1, X2) = |〈X1 − X2, θ�〉|.

By plugging these choices in (4), the following simplified expression of the test statis-
tics follows:

Qn(θ�) = 1

n(n − 1)h

n
∑

i=1

n
∑

j=1, j 
=i

EiE j K
θ�

i j (5)

where K θ�

i j = K
(∣

∣

〈

Xi − X j , θ�

〉∣

∣/h
)

.
Invoking similar arguments as inSheng (1996) one canderive the following estimate

for the variance of n
√
hQn(θ�):

ν2n (θ�) = 2

n(n − 1)h

n
∑

i=1

n
∑

j=1, j 
=i

E2
i E2

j

(

K θ�

i j

)2
. (6)

This allows to obtain the standardized test statistic version n
√
hQn(θ�)/νn(θ�) that

can be used to test a simple null hypothesis.
When one deals with composite null hypothesis, θ and/or β are not specified and

some estimates of them have to be introduced. In particular, let ̂θ be an estimator of
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θ , one defines ̂Ei = Yi − gβ�

0 (〈Xi ,̂θ〉) and the resulting test statistic can be written as
follows:

Qn
(

̂θ
) = 1

n(n − 1)h

n
∑

i=1

n
∑

j=1, j 
=i

̂EîE j K
̂θ
i j (7)

where K̂θi j = K
(|〈̂θ, Xi − X j 〉|/h

)

. To obtain a suitable estimator̂θ for θ it is possible
to use, for instance, the first step of the approach proposed in Ferraty et al. (2013)
which combines a spline approximation of the functional coefficient θ and the one-
dimensional Nadaraya–Watson approach to estimate the link function in the SFIM
(2).

In the case of the parameter β is also not specified and an estimate ̂θ is available,
one has to consider some estimators ̂β of β that can be obtained through a least
square approach, by minimizing

∑n
i=1{Yi −gβ

0 (〈Xi ,̂θ〉)}2. In particular, if g0 is linear
affine, one regresses directly the observations Yi s against the projections

〈

Xi ,̂θ
〉

s. The
studentized versions of these test statistics are obtained by plugging in (6) the estimates
̂θ and ̂β.

3 Asymptotic behaviour of the test statistics

To define the critical region of the test, one needs the derivation of the null distribution
of the test statistics. To do this, one considers two scenarios, namely the simple null
hypothesis, where both parameters β and θ are completely specified, and the complex
one: they are discuss in Sects. 3.1 and 3.2 respectively. The study of the behaviour
under some alternative hypothesis concludes this section (see Sect. 3.3).

3.1 Simple null hypothesis

Suppose that g(〈θ, X〉) = gβ�

0 (〈θ, X〉) and that the direction θ is specified and equals
to θ�. Consider the following sets of assumptions; in what follows F[·] denotes the
Fourier transform.

Assumptions on the sample

S-i. (Xi ,Yi ), i = 1, . . . , n, of i.i.d. replications of (X ,Y )

Assumptions on the model

M-i. There exists the generating moments function of the error E ;
M-ii. There exists σ 2 and σ 2 such that 0 < σ 2 ≤ Var(E |X) ≤ σ 2 < ∞ almost

surely;
M-iii.1. There exist a constant C1 > 0 such that

1

C1
≤ E

[

fθ�(〈θ�, X〉)] ≤ C1.

M-iii.2. There exists C2 > 0, ε > 0 such that
∫

|x |≤ε
|F[ fθ�]|2(x)dx ≥ C2.
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M-iv. The function gβ�

0 is Lipschitz.

Assumptions on the Kernel function

K-i. The kernel K is a continuous density of bounded variation and with strictly
positive Fourier transform on the real line.

K-ii. As n diverges, h → 0 and
ln n

(nh2)λ
→ 0, for some λ ∈ (0, 1).

The main results are collected in the following theorem and its detailed proof is
postponed in the Appendix for the sake of readability. The role of the assumptions in
proving these results is discussed at the end of this section.

Theorem1 Under the assumptions S, M and K and when the null hypothesis H0 holds
true, one has:

(i) |Qn(θ�)| = OP

(

ln n

nh1/2

)

,

(ii)
1

ν2n (θ�)
= OP(1),

(iii) as n goes to infinity, n
√
hQn(θ�)/νn(θ�) ∼ N (0, 1).

According to statement (iii) in Theorem 1 if the null hypothesis H0 holds true,
the test statistics Tn = n

√
hQn(θ�)/νn(θ�) converges in law to a standard normal.

Consequently, the test given by I{Tn≥z1−a}, with zα the (1 − α)-th quantile of the
standard normal distribution, has an asymptotic level α.

To conclude the section, some remarks about the assumptions stated above are
added. Firstly, one can point out that M-i., M-iv. and K-i. are standard hypothesis
in the framework of nonparametric functional regression models (see for instance
Ferraty and Vieu 2006). In particular, the bounded variation condition K-i. is satisfied
by many well-known kernels, such as Gaussian or Epachnikov ones, and thanks to
this condition, the class of kernel functions subsequently considered is Euclidean, a
notion crucial for achieving the proofs and that is defined in the Appendix. In fact,
the latter notion together with the regularity condition M.iv, imposed on the link
function g0, allow to utilise an existing exponential inequality due to Major (2006).
To do this the conditional expectation of the squared errors and the squared kernel
need to be investigated. The boundedness condition of the conditional variance (see
M-ii.) allows one to bound the conditional errors below and above. The behaviour
of the squared kernel is studied through the properties of its Fourier transform. The
technical assumptions such as the positive Fourier transform on the real line K-i.,
the boundedness below and above of the density of the pdf fθ� (see M-iii.1), the
boundedness below of the restricted Fourier transform of the pdf fθ� (see M-iii.2)
allow one to establish the upper and lower bounds of the kernel and this verifies
a condition required for the Major’s exponential inequality. Note that the condition
M-iii.2 is satisfied by many random variables, such as Gaussian or exponential. The
existence of moment generating function of the error E (see M-i.), and the trade-off
between the sample size n and the bandwidth h (see K-ii.) permit to establish the
rate of convergence in statements (i) and (ii) of Theorem 1. Finally, the collection of
hypotheses further allows one to operate in a similar setting as in Lavergne and Patilea
(2008) to establish the asymptotic normality in statement (iii).
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3.2 Complex null hypothesis

Suppose that β is fixed and θ is estimated by ̂θ . Then one has to investigate the
behaviour of Qn(̂θ): to achieve the convergence results, the following set of extra
assumptions is needed.

Extra assumptions on the estimate

E-i. Takêθ belonging to a set �n of possible directions of interest which is such
that

#�n = n p, p > 0 and ‖θ − θ�‖ ≤ C

(

ln n

n

)r

for any θ ∈ �n

where # is the cardinality of a set, p = pn depends on n, and r > 0 depends on
some regularity assumption on the regression operator in (1) (see e.g. Ferraty
et al. 2013 or Novo et al. 2019).

E-ii. The bandwidth h satisfies: n1−2r h1/2 → 0.

Extra assumptions on the sample

S-ii. ‖Xi‖ is bounded.

Extra assumptions on the model

M-iii.1.bis There exist a constant C1 > 0 such that for any θ ∈ �n

1

C1
≤ E[ fθ (〈θ, X〉)] ≤ C1.

M-iii.2.bis There exists C2 > 0, ε > 0 such that for any θ ∈ �n ,
∫

|x |≤ε
|F[ fθ ]|2(x)dx ≥ C2.

Extra assumptions on the Kernel function

K-iii. p ≥ 1 increases to infinity with n and p3/2(ln n)−λ is bounded, for some
constant λ > 0.

Return to the expression of Qn
(

̂θ
)

and define the following decomposition

Qn
(

̂θ
) = 1

n(n − 1)h

n
∑

i=1

n
∑

j=1, j 
=i

(

Yi − g0
(〈

Xi ,̂θ
〉))(

Y j − g0
(〈

X j ,̂θ
〉))

K
̂θ
i j

= 1

n(n − 1)h

n
∑

i=1

n
∑

j=1, j 
=i

EiE j K
̂θ
i j+

+ 2
1

n(n − 1)h

n
∑

i=1

n
∑

j=1, j 
=i

Ei
(

g0
(〈

X j , θ�

〉)− g0
(〈

X j ,̂θ
〉))

K
̂θ
i j+

+ 1

n(n − 1)h

n
∑

i=1

n
∑

j=1, j 
=i

(

g0(〈Xi , θ�〉) − g0
(〈

Xi ,̂θ
〉))×
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× (

g0
(〈

X j , θ�

〉)− g0
(〈

X j ,̂θ
〉))

K
̂θ
i j

= ̂QA
n

(

̂θ
)+ 2̂QB

n

(

̂θ
)+ ̂QC

n

(

̂θ
)

The following result provides the asymptotic behaviour of each term in the previous
decomposition and it demonstrates that the leading term is ̂QA

n

(

̂θ
)

whilst the other two
terms are negligible with respect to the first one.

Theorem 2 Under Assumptions S, M, K and E and the null hypothesis H0 holds true,
one has:

(i)
∣

∣̂QA
n

(

̂θ
)∣

∣ = OP

(

p3/2 ln n

nh1/2

)

,

(ii)
∣

∣̂QB
n

(

̂θ
)∣

∣ = oP

(

p3/2 ln n

nh1/2

)

and
∣

∣̂QC
n

(

̂θ
)∣

∣ = oP

(

p3/2 ln n

nh1/2

)

,

(iii) as n goes to infinity, n
√
hQn

(

̂θ
)

/

νn
(

̂θ
) ∼ N (0, 1).

In what follows, a short discussion on the assumptions is reported. Firstly, note that
since ̂QA

n (̂θ) is the version of Qn(θ)when one deals with complex null hypothesis, the
argument to deduce the rate of convergence as in Theorem 2, statement (i), proceeds
very similarly to the simple null hypothesis situation. Hence, the sets of conditions
M and K on the models and on the kernel function respectively are still necessary
but with certain modifications or additions with respect to the simple null hypothesis
case, such as M-iii.1.bis and M-iii.2.bis. Extra assumption on the kernel, such as the
trade off between the dimension p and the sample size n, allows one to establish
the required result. More in detail, the fact that the kernel is a continuous density of
bounded variation and the regularity condition on the link function g0 (assumptions
K-i. and M-iv. respectively) allow to invoke an inequality of Sherman (see Sherman
1994). Secondly, the assumption E-i. is rather standard to derive a uniform rate of
convergence for the estimator of the link function in the SFIM (see, for instance, Novo
et al. 2019). It imposes that the space of possible directions is finite but it can grow up
to infinity as the sample size n increases and the direction of interest θ becomes closer
to θ� and consequently also for̂θ as it is an element of �n . The latter assumption, the
boundedness of X (assumption S-ii.) and the extra condition on the trade-off between
the sample size n and the bandwidth h (assumption E-ii.) combined with Sherman’s
inequality allowus to deduce the rate of convergence of the statement (ii) of Theorem2.

When β is also not specified, a least square estimate ̂β can be used as mentioned
previously. In that case, if β belongs to a compact subset of Rd+1, if the used estimate
achieves the rate n−r , 0 < r ≤ 1/2, and if there exists a positive constant C such

that for any fixed argument u, |gβ
0 (u)− gβ ′

0 (u)| ≤ C‖β −β ′‖, the result in Theorem 2

remains valid (see the proof in the Appendix). This is verified, for instance, when gβ
0

is a polynomial model.
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3.3 Some remarks on consistency

Consider the following alternative hypothesis:

H1 : g ∈ G1 =
{

g1 = gβ
0 + γnG, G : R → R, G /∈ G0

}

(8)

whereG is a smooth function andγn is a positive sequence tending to zero as n → +∞.
The following result provides the asymptotic behaviour of the test statistic under

the considered alternative hypothesis. For the sake of simplicity the case in which the
parameter β and the direction θ in the SFIM are completely specified (and equals to
β� and θ� respectively) is dealt with.

Theorem 3 Under the alternative hypothesis (8), the assumptions S, M and K of
Theorem 1, ifG is bounded variation and fθ� is continuous and bounded, andG fθ� 
= 0
a.s., and if γ 2

n h
−1/2 diverges as n goes to infinity, then the following statement holds:

n
√
hQn(θ�)/vn(θ�) −→ +∞ in probability as n → +∞. (9)

The proof of this result is deferred in Appendix.

4 Simulation study

In this section the finite sample properties of the test proposed are explored by evalu-
ating the empirical level and power under different experimental conditions. For each
setting, the empirical power is computed as the proportion of times in which the test
rejects the null hypothesis at the nominal level α (here α = 5%) over 1000 Monte
Carlo replications. The critical region of the test is based on the Gaussian approxi-
mation of the null distribution provided in Theorem 2: one rejects the null hypothesis
whenever the value of the studentized test statistics is greater than the quantile of order
1−α of the standard normal distribution. All the experiments are conducted using the
software R.

The data used in all the simulations are generated according to the following SFIM
model:

Yi = g(〈θ, Xi 〉) + σEi i = 1, . . . , n

with n = 50, 100, 200, corresponding to small and medium sample sizes.
For any i = 1, . . . , n, the functional covariate obeys to:

Xi (t) = 2ai t
2 + bi sin(2π t) + ci cos(4π t) t ∈ [0, 1]

where ai , bi , ci are i.i.d. uniform r.v.s over (−1, 1), so that the random curves are
centered andbounded so that assumptionS-ii. is satisfied; every trajectory is discretized
over a grid of 100 equispaced design points. A sample of 30 of such a functional data
is plotted in Fig. 2.
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Fig. 2 A sample of 30 curves X(t) randomly selected

For what concerns the functional coefficient, one uses the normalized direction:

θ(t) = √
2 sin(2π t) t ∈ [0, 1].

Due to the nature of the involved objects, the r.v.s 〈θ, Xi 〉 = √
2(bi/2 − ai/π)

are centered, symmetric, bounded, and with a strictly positive density fθ over
(

−(π + 2)/(
√
2π), (π + 2)/(

√
2π)

)

exhibiting a trapezoidal behavior over that

interval, satisfying in this way the assumption M.iii.1. In practice, since one works
with discretized curves, all the integrals 〈θ, Xi 〉 are approximated by summations.

About the error in the model, Ei are i.i.d. standard Gaussian r.v.s. and, to con-
trol the signal-to-noise ratio, the variability coefficient σ is defined by σ 2 =
ρ2Var(g(〈θ, X〉)), where the latter variance is estimated for each sample using the
data. Here ρ2 = 0.2 and 0.5 corresponding to a theoretical coefficient of determination
R2 of about 0.83 and 0.67, respectively. These choices guarantee that the assumptions
M.i. and M.ii. hold.

In all the experiments some composite hypotheses, with both β and θ unknown,
are tested. In particular, testing for linear and cubic link are analyzed in details (all
the tested functions satisfy the assumption M.iv.). Hence, to operationalize the test
procedure someestimate ofβ and θ and the evaluationof thebandwidthh are necessary.
For what concerns β, the standard OLS approach is used, whereas to estimate θ one
adopts the first step of the approach proposed in Ferraty et al. (2013). Here one uses
cubic splines with 10 internal knots and the Epanechnikov Kernel

K (u) = 3

4

(

1 − u2
)

|u| ≤ 1.
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The same kernel is also used in evaluating the test statistic: since the bandwidth h is
related to the estimate of fθ , it is selected by the unbiased cross-validation approach
that one uses in estimating that density. Due to the non parametric nature of the
test statistic, the selection of the bandwidth could have an impact on the results of
the simulation study. On the other hand, a systematic analysis of the effects on the
performances of the test caused by changing the bandwidth goes beyond the scope of
this work; therefore it is not performed.

4.1 Testing a linear affine link

Let β0, β1 ∈ R, β1 
= 0, u = 〈θ, x〉, θ unknown, |u| < (π + 2)/
(√

2π
)

and consider

the complex null hypothesis of a linear affine link:

H0 : g(u) = β0 + β1u

and the following alternatives:

H (1)
1 (γ ) : g(u) = β0 + β1u + γ

(

u
√
2π/(π + 2)

)2

H (2)
1 (γ ) : g(u) = β0 + β1u + γ sin

(

u
√
2π2/(π + 2)

)

H (3)
1 (γ ) : g(u) = β0 + β1u + γ cos

(

u
√
2π2/(π + 2)

)

where γ > 0, which controls the departure from the null hypothesis. To generate the
models under the null and the alternative hypotheses are used β0 = 0, β1 = 1 so that
E[g(U )] = 0 and γ = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.2, 1.4.

In order to appreciate the differences between the considered models, the shapes of
the functions g under the null and the alternative hypotheses with γ = 0.5 are drawn
in Fig. 3: one can note that the quadratic perturbation involved in H (1)

1 interest mainly

the tails of the distribution of the projected data 〈θ, x〉, the sinus in H (2)
1 the central

parts of the two halves of the interval, whereas the cosinus in H (3)
1 acts both on the

central part and the tails of the interval. Hence one expects that the test performs rather
well in the last case for any sample size n and ρ, also with γ close to zero. On the other
hand, it is expected that the performances are not so good, at least for small samples
and large ρ, for the first two alternatives H (1)

1 and H (2)
1 where a rather large sample

size is necessary to detect small deviations from the linearity.
The estimated powers varying γ for the different considered scenarios are repre-

sented in Figs. 4, 5 and 6. First, note that, despite an asymptotic approximation for
the null distribution is used, the empirical level is rather close to the theoretical one,
also for a relatively small sample size. Second, as expected, for any sample size n and
given ρ2, the further one moves away from the linearity by increasing γ , the greater is
the estimated power. In any case, the performances are very good when n = 200 and
ρ2 = 0.2, also with a relatively modest departure from the null hypothesis. Looking
at more in detail, the graphs support the previous comments that relate the nature of
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Fig. 4 Power curves for the alternatives H (1)
1 (γ ) varying γ and for ρ2 = 0.2 (left panel) and ρ2 = 0.5

(right panel). The grey line represents the nominal level, the dotted line n = 50, the dashed line n = 100,
and the solid line n = 200

the link functions and the power behaviour. In particular the alternatives in the family
indexed by H (3)

1 produce the best result also for γ rather small, whereas it appears

more complex to detect correctly H (1)
1 and H (2)

1 , at least for small γ , small samples
and a rather low signal-to-noise.
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Fig. 6 Power curves for the alternatives H (3)
1 (γ ) varying γ and for ρ2 = 0.2 (left panel) and ρ2 = 0.5

(right panel). The grey line represents the nominal level, the dotted line n = 50, the dashed line n = 100,
and the solid line n = 200

4.2 Testing a cubic link

Let β0, β1 ∈ R, β1 
= 0, u = 〈θ, x〉, θ unknown, |u| < (π + 2)/
(√

2π
)

. The second

experiment considers the following null hypothesis:

H0 : g(u) = β0 + β1u
3
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Fig. 7 Shapes of the link functions g under H0 (solid), H (1)
1 (1.5) (dahsed), H (2)

1 (2) (dotted), H (3)
1 (4)

(dotdash) and H (3)
1 (5) (longdash)

against the following alternatives

H1(γ ) : g(u) = β0 + β1
(

uγ
Iu>0 − |u|γ Iu≤0

)

γ 
= 3

where IA is the indicator function of the set A, and γ > 0 measures the departure
from the null hypothesis. To generate the models one uses β0 = 0, β1 = 1 and γ =
1, 1.5, 2, 2.5, 3.5, 4, 4.5, 5 (the behaviour of some link functions for some selected
values for γ are drawn in Fig. 7).

Also in this second experiment, the obtained results, visualized in Fig. 8, are gen-
erally rather good. One can note that the estimated level is slightly higher than the
nominal one, providing a liberal test in particular for relatively small sample size. For
any fixed n and ρ2, the estimated power increases coherently with the departure from
the null hypothesis. In particular it emerges that it is possible to better discriminate
situation with γ < 3 than γ > 3 where the test is slightly less efficient. Anyway, for
rather large samples the results obtained are good also for values of γ close to zero and
ρ2 = 0.5. In general, the results corroborate the fact that the Gaussian approximation
of the null distribution works reasonably well.

5 Some bootstrap procedures

Despite the use of the asymptotic null distribution in defining the critical region of the
test has proven capable of producing good results, one can explore the possibility to
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Fig. 8 Power curves for the alternatives H1(γ ) varying γ and for ρ2 = 0.2 (left panel) and ρ2 = 0.5 (right
panel). The grey line represents the nominal level, the dotted line n = 50, the dashed line n = 100, and the
solid line n = 200

estimate the threshold of the critical region by using the quantiles calculated through
some bootstrap algorithms. Since methods based on bootstrapping the pairs (Xi ,Yi )
are not adapted, approaches based on boostrapping residuals are adopted.

The general procedure is described in the steps below:

1. Estimate β and θ and then compute the errors under the null hypothesis ̂Ei and the
value of the test statistic Tn ;

2. Compute the bootstrap version T �
n of the test statistics by using the bootstrapped

errors ̂E�
i (see below for details);

3. Repeat step 2. a large number B of times and compute the (1 − α)-quantile τ �
α of

the distribution of T �
n ;

4. Compare Tn with τ �
α : if the value of Tn is larger than τ �

α reject the null hypothesis.

For what concerns step 2., both naive and wild bootstrap approaches are adopted:

(i) the naive bootstrap is based on a direct resampling with replacement of the esti-
mated errors ̂Ei , i = 1, . . . n;

(ii) the wild bootstrap errors are calculated as ̂E�
i = ̂Eiξi , where ξi are i.i.d. and

independent on (Xi ,Yi ). In the experiment three different distributions for ξi are
used:

(a) the Rademacher distribution with equiprobable values {−1, 1};
(b) the distribution suggested by Mammen (1993) with values

(

1 − √
5
)

/2

and
(

1 + √
5
)

/2 with associated probability
(√

5 + 1
)

/
(

2
√
5
)

and
(√

5 − 1
)

/
(

2
√
5
)

respectively;

(c) the standard Gaussian distribution.
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Table 1 Estimated level and powers for testing quadratic specification under different experimental condi-
tions when one uses the asymptotic null distribution (A), the naive bootstrap (N), the wild boostrap with
Rademacher (R), Mammen (M) or Gaussian (G) distributions

Hypothesis A N R M G

H1(1) 0.841 0.839 0.848 0.825 0.829

H1(1.5) 0.354 0.293 0.311 0.318 0.303

H1(2) : H0 0.064 0.051 0.047 0.052 0.047

H1(2.5) 0.210 0.196 0.197 0.170 0.186

H1(3) 0.655 0.616 0.599 0.605 0.584

To assess the performances of the test when the asympototic null distribution and the
bootstrap approaches are employed, an experiment similar to the one presented in
Sect. 4 is carried out, choosing B = 1000 in step 3. of the algorithm.

In particular let β0, β1 ∈ R, β1 
= 0, u = 〈θ, x〉, θ unknown, |u| <

(π + 2)/
(√

2π
)

. Consider the null hypothesis of a quadratic link:

H0 : g(u) = β0 + β1u
2

against the alternatives

H1(γ ) : g(u) = β0 + β1|u|γ γ 
= 2

where γ = 1, 1.5, 2.5, 3. For what concerns the data generation process, one fixes
n = 100, and β0 = 0, β1 = 1, and ρ2 = 0.2.

The estimated powers varying γ (when γ = 2 one deals with the null hypothesis),
on the base of 1000 MC replications, are collected in Table 1. The results obtained in
the different cases are very similar: it emerges that the test based on the asymptotic
distribution is slightlymore liberal than all the tests based on the bootstrap approaches;
for what concerns the estimated power it seems that the performances are very similar
in all the analyzed cases. In conclusion, the test that uses the quantiles of the standard
Gaussian performs quite well also when rather small samples are available.

6 Application to spectrometric data

An important task in domains like chemistry, medicine or food industry is to get the
composition of a given substance. Since chemical analysis is rather expensive and
require time, it is often preferred to estimate that composition by using spectrometric
curves that can be easily obtained as the absorption of a reflected light for various
wavelengths.

In this section one considers an example of such a modeling from food industry.
The dataset (available at https://www.eigenvector.com/data) consists of 80 samples of
corn to each of which corresponds both the values of moisture, oil, protein and starch
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contents obtained by chemical analysis and the spectrometric curve measured by NIR
spectrometers on the wavelength range 1100–2498 and discretized over an equispaced
mesh of 700 points (the set of these curves is reproduced in Fig. 1). The aim is tomodel
the chemical composition of the corn by using the spectrometric curves, or better, as
it is done in similar context, their derivatives.

A systematic study on this dataset has been carried out in Delsol (2013) where no
effect tests in functional regression were performed taking as explanatory variables
the original spectrometric curves and their successive derivatives, from the first to
the fourth order. According to the results in the cited paper, it emerges that the first
derivative has a significant effect onmoisture content, no significant effects are detected
for oil and starch content, whereas the effect of the fourth derivative on the protein is
not evident. On the other hand, the first derivative on the wavelength range 2010–2220
exhibits a significant effect on the protein content.

Starting from the latter evidences, one concentrates the attention on modelling by
a SFIM the moisture content by using as covariate the first derivative on the whole
wavelength range, and the protein content with covariate the first derivative on the
range 2010–2220. The estimated links g and directions θ , obtained by using the same
procedure adopted in Sect. 4 with cubic splines with 10 and 2 knots respectively, are
depicted in Fig. 9. Both graphs suggest that the link functions g in the SFIMs could be
specified linearly: therefore the test for linearity illustrated in Sect. 4.1 is performed.

In particular one wants to test the following model specification:

H0 : Y = β0 + β1(〈X , θ〉) + E

Since all the parameters involved (β0, β1 and θ ) are unknown, they must be estimated
from the data: thêθs are the formerly estimated directions plotted in Fig. 9, whereas ̂β0
and ̂β1 are the OLS estimated for the model under the null hypothesis with covariate
〈X ,̂θ〉. For the sake of completeness, the estimates obtained are as follows: ̂β0 =
18.57 and ̂β1 = −37.80 when the response is the moisture content, ̂β0 = 13.74 and
̂β1 = 20.91 when the response is the protein content. The behaviour of the residuals
of such a models, from which the test statistics are calculated, is shown in Fig. 10.

By using the asymptotic null distribution, the following results are achieved: the
p-value for the model having as response the moisture content is 0.695 whereas the
one when the response is the protein content equals 0.719. Hence, one can conclude
that in both cases the hypothesis of linearity of the link function appears compatible
with the empirical evidence.

Since one tests the linearity of the link functions, to complete the analysis, a com-
parison with the linearity test proposed byGarcia-Portugues et al. (2014) and available
in the R package fda.usc is performed. To be coherent with what is done above, one
uses the estimated method based on B-spline with the same number of elements of
the basis considered in the SFIM. For what concerns the model with response the
moisture content, the p-value is 0.217, whereas for the model having as response the
protein content, the p-value equals 0.224. In both cases, there is no reason to reject of
the hypothesis of linearity of the model: the latter results are then coherent with what
emerged by the proposed test.
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Appendix A: Proofs

In this appendix the detailed proofs of theorems 1 and 2 are provided. The results
are inspired by the ones in Patilea et al. (2019) and reported here for the sake of
completeness and to make the work self-contained as much as possible.

To derive the main results, some properties of the Euclidean class of functions are
considered; for more details, see Definition 2.7 and lemmas 2.13, 2.14 and 2.15 in
Pakes and Pollard (1989).

Let introduce the following notation, where x denotes a fixed element in H:

Kθ = {u −→ K (〈u − x, θ〉/h), h > 0}
K�n =

⋃

θ∈�n

Kθ = {u −→ K (〈u − x, θ〉/h), h > 0, θ ∈ �n}

It is possible to verify that the class of functionsKθ is Euclidean for a constant envelope
thanks to the bounded variation assumption K-i. together with the fact that 〈X , θ〉 is a
real-valued measurable map. Combining Lemma 22(ii) in Nolan and Pollard (1987)
and Lemma 2.15 of Pakes and Pollard (1989) allow to reach the conclusion. Similarly,
from Lemma 22(ii) in Nolan and Pollard (1987) the class K�n is Euclidean for a
constant envelope.

A.1: Proof of Theorem 1

Statement (i)
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Define EM,i = Ei I{|Ei |≤M} − E[Ei I{|Ei |≤M}|Xi ], where M depends on n and will be
specified below, and take θ = θ�. Let

UM,n(θ) = 1

n(n − 1)

n
∑

i=1

n
∑

j=1, j 
=i

EM,iEM, j K
θ�

i j (A1)

and QM,n(θ�) = UM,n(θ�)/h. The class of all functions Kθ� is Euclidean and by
assumption M-iv. together with Lemma 2.13 of Pakes and Pollard (1989), EM,i is
Euclidean and similarly for EM, j . Since the product of classes of Euclidean functions
is Euclidean (see Lemma 2.14(ii) of Pakes and Pollard 1989), then also the kernel of
the U-statistics in (A1) is.

Therefore, Theorem 2 in Major (2006) can be invoked and for any t > 0 one has

P

(

∣

∣UM,n(θ�)
∣

∣ ≥ th1/2 ln n

(n − 1)

)

≤ C1C2 exp

(

−C3

(

th1/2 ln n

M2σM

))

(A2)

provided that

nσ 2
M ≥ th1/2 ln n

M2σM
≥ C4

[

C5 + max

(

lnC2

ln n
, 0

)]3/2

ln

(

2

σM

)

(A3)

where C1, . . . ,C5 are some positive constants and

σ 2
M = E

[

(EM,1

M

)2(EM,2

M

)2

(K θ�

1,2)
2

]

.

One has to verify now condition (A3). To do this, apply the tower law to the definition
of σ 2

M to obtain:

σ 2
M = 1

M4E

[

(K θ�

1,2)
2
E

[

E2
M,1|X1

]

E

[

E2
M,2|X2

]]

.

The behaviour of E
[

(

EM,i
)2|Xi

]

, i = 1, 2 are investigated: thanks to assumption M-

ii., it is bounded above and belowby positive constants. It remains to studyE
[

(K θ�

1,2)
2
]

.

Apply the Fourier inversion theorem to the kernel (K θ�

1,2)
2 and since X1, X2 are

independent then

1

h
E

[

(K θ�

1,2)
2
]

= 1

2π
E

[∫

R

eit〈X1,θ�〉e−i t〈X2,θ�〉F[K (t)2]dt
]

= (2π)1/2
∫

R

|F[ fθ�(t)
]|2F[K (t)2]dt . (A4)
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ByFubini theorem and then applying the Plancherel theorem togetherwith assumption
K-i., one gets

∫

R

|F[ fθ�(t)
]|2F[K (t)2]dt ≤ C

∫

R

|F[ fθ�(t)
]|2dt = C

∫

R

fθ�(x)
2dx

where C is a constant and the latter is bounded by a constant by assumption M-iii.1.
On the other hand, (A4) is bounded from below: assumptions K-i. and M-iii.2. allow
to write

∫

R

|F[ fθ� (t)
]|2F[K (t)2]dt ≥ C3

∫

R

|F[ fθ� (t)
]|2dt ≥ C3

∫

|t |≤ε

|F[ fθ� (t)
]|2dt ≥ C4,

where C3,C4 are some constants.
Combining the above arguments, there exists a constant C > 0 such that 1/C ≤

σ 2
MM4/h ≤ C . Let

M4 = nh

(ln n)1+δ
→ ∞

with δ > 0 arbitrarily small, then σ 2
M ≤ C(ln n)1+δ/n, and therefore σ 2

M is of order
(ln n)1+δ/n → 0. For any t > 0, using the fact that 1/C ≤ σ 2

MM4/h, then the left
hand side inequality in (A3) holds provided n is large enough.

Since σ 2
MM4/h ≤ C there exists a positive constant C ′ such that

th1/2 ln n

M2σM
≥ C ′ ln n

which goes to infinity for sufficiently large t. Noting that ln(2/σM )/ ln n tends to a
non-negative constant as n → ∞, the right hand side inequality in (A3) holds.

Thanks toMajor inequality (A2), one deduces that |QM,n(θ�)| = OP(ln n/(nh1/2))
and the proof of Statement (i) is completed once one can prove that |Qn(θ�) −
QM,n(θ�)| = oP(ln n/(nh1/2)).

Note that Qn(θ�) − QM,n(θ�) = 2R1n + R2n , where

R1n = 1

n(n − 1)h

n
∑

i=1

n
∑

j=1, j 
=i

EM,i� j K
θ�

i j

and

R2n = 1

n(n − 1)h

n
∑

i=1

n
∑

j=1, j 
=i

ζiζ j K
θ�

i j ,
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where ζi = Ei I{|Ei |≥M}−E[Ei I{|Ei |≥M}|Xi ]. By assumptions S-i. andK-i., one deduces
that

hE[|R1n|] = E

⎡

⎣

∣

∣

∣

∣

∣

∣

1

n(n − 1)

n
∑

i=1

n
∑

j=1, j 
=i

EM,i� j K
θ�

i j

∣

∣

∣

∣

∣

∣

⎤

⎦

≤ CE[|EM,1�2|] ≤ 2CE[|E1|]E[|�2|].

Applying the Hölder inequality and Markov inequality, one obtains

E[|�2|] ≤ 2E[|E2|I{|E2|≥M}]
≤ 2E[|E2|m]1/mP(|E2| ≥ M)(m−1)/m

≤ 2E[|E2|m]M1−m .

Using assumption K-ii. and with the choice of m > 11 as in assumption M-i., one has
M1−m = o(h1/2 ln n/n). Moreover, since |R2n| is of smaller order of |R1n|. Invoke
the Markov inequality and the proof is concluded.

Statement (ii)
In what follows, the dependence on θ� is dropped if there is not any confusion.

Define

ν2n (θ�) = 1

n(n − 1)h

n
∑

i=1

n
∑

j=1, j 
=i

E2
i E2

j K
2
( |〈Xi − X j , θ�〉|

h

)

,

and its the theoretical counterpart

ν2 = 1

h
E

[

E2
1E2

2 K
2
( |〈X1 − X2, θ�〉|

h

)]

.

Define

κ(Zi , Z j ) = E2
i E2

j K
2
( |〈Xi − X j , θ�〉|

h

)

.

and

κ1(x) = E[κ(x, Z2)] = E

[

E2
x E2

2 K
2
( |〈x − X2, θ�〉|

h

)]

κ1(y) = E[κ(Z1, y)] = E

[

E2
1E2

y K
2
( |〈X1 − y, θ�〉|

h

)]

κ(x, y) = E2
x E2

y K
2
( |〈x − y, θ�〉|

h

)

.
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The centered Hoeffding decomposition allows to write:

h
(

ν2n − ν2
)

= 2

n

n
∑

i=1

(

κ1(Xi ) − hν2
)

+ 2

n(n − 1)

n
∑

i=1

n
∑

j 
=i, j=1

(

κ(Xi , X j ) − κ1(Xi ) − κ1(X j ) − hν2
)

= U1,n +U2,n

By using the same argument to prove that the kernel of (A1) is Euclidean, one
can deduce that U1,n and U2,n are Euclidean. Consequently, one can use (Major,
2006, Theorem 2) to derive

∣

∣U2,n
∣

∣ = OP

(

h1/2 ln n/n
)

and (Vaart and Wellner
1996, Theorem 2.14.9) to obtain

∣

∣U1,n
∣

∣ = OP

(

1/n1/2
)

. Gathering these rates of con-
vergence and by assumption K-ii. it follows that the difference between the empirical
version ν2n and its theoretical counterpart ν

2 is negligible, that is ν2n −ν2 = oP(1), and
then the behaviour of ν2 is investigated.

By using the tower law and the independence of X1, X2, deduce that

ν2 = 1

h
E

[

(K θ�

1,2)
2
E

[

E2
1 |X1

]

E

[

E2
2 |X2

]]

and thanks to assumption M-ii. one has:

σ 4

h
E

[

(K θ�

1,2)
2
]

≤ ν2 ≤ σ 4

h
E

[

(K θ�

1,2)
2
]

, (A5)

Exploiting the same arguments used to study the behaviour ofE
[

(K θ�

1,2)
2
]

in statement

(i), one gets that (A5) is bounded from above and below by positive constants. The
proof is completed gathering the results.

Proof of Statement (iii)
Given the symmetric matrix W with entries

Ii 
= j
Ki j

n(n − 1)h
.

Denote by Sp(W) the spectral radius and ‖W‖ the corresponding matrix norm. Given
the random variables An, Bn , the notation An � Bn in probability means that there
exists a constant C > 0 such that P(1/C ≤ An/Bn ≤ C) goes to 1 as n tends to
infinity.

By Lemma 2(i) in Guerre and Lavergne (2005) n
√
hQn/vn converges to a standard

normal conditionally to Xi if Sp(W)/‖W‖ goes to zero in probability. In particular
it is enough to show that Sp(W) = OP(1/n) and nh1/2‖W‖ � 1 in probability. The
proof of these two results can be found in Lemma 6.2 in Lavergne and Patilea (2008)
by using the assumptions K.i and K.ii.
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A.2 Proof of Theorem 2

Consider first the term ̂QA
n (̂θ). Once the following result is proved:

sup
θ∈�n

|Qn(θ)| = OP

(

p3/2 ln n

nh1/2

)

the same rate of convergence for ̂QA
n (̂θ) is achieved, sincêθ is assumed to be an element

of �n and recall for ̂QA
n (̂θ), Ei = Yi − gβ

0 (〈Xi , θ〉). The argument to deduce that
result proceeds almost identically to the simple hypothesis case by using assumptions
M.iii.1.bis and M.iii.2.bis instead of M.iii.1 and M.iii.2 respectively, and assumption
K.iii.

Define EM,i as in the proof of Statement (i) of Theorem 1 and

UM,n(θ) = 1

n(n − 1)

n
∑

i=1

n
∑

j=1, j 
=i

EM,iEM, j K
θ
i j (A6)

and QM,n(θ) = UM,n(θ)/h. The class of all functionsK�n is Euclidean and, by using
the same arguments to prove that (A1) is Euclidean, also the kernel of the U-statistics
in (A6) is. Therefore, Theorem 2 in Major (2006) can be invoked but now also taking
into consideration the properties of the space of directions �n where the estimatêθ is
assumed to be an element in it, and for any t > 0 one has

P

(

sup
θ∈�n

∣

∣UM,n(θ)
∣

∣ ≥ tp3/2h1/2 ln n

(n − 1)

)

≤ C1C2 exp

(

−C3

(

tp3/2h1/2 ln n

M2σM

))

(A7)

provided that

nσ 2
M ≥ tp3/2h1/2 ln n

M2σM
≥ C4

[

p + max

(

lnC2

ln n
, 0

)]3/2

ln

(

2

σM

)

(A8)

where C1, . . . ,C4 are some positive constants and

σ 2
M = sup

θ∈�n

E

[

(EM,1

M

)2(EM,2

M

)2

(K θ
1,2)

2

]

.

To verify condition (A8) one can evoke the same arguments used to prove Statement
(i) of Theorem 1 with

M4 = nh

p3/2(ln n)1+δ
→ ∞

and δ > 0 arbitrarily small. Thanks to Major inequality (A7), one concludes that
supθ∈�n

|QM,n(θ)| = OP(p3/2ln n/(nh1/2)).
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It remains to prove that supθ∈�n
|Qn(θ) − QM,n(θ)| = oP(p3/2ln n/(nh1/2)). To

do this, one follows steps which are similar as in the simple hypothesis case and then
they are omitted.

Turning the attention to the variance, by using assumptions M.iii.1.bis, M.iii.2.bis
and K.iii., the following result is deduced

sup
θ∈�n

1

ν2n (θ)
= OP(1).

Since the proof proceeds almost identically to the simple hypothesis case, it is omitted.
The main differences are in the Hoeffding decomposition where the results of the
second order U-statistic is now supθ∈�n

∣

∣U2,n
∣

∣ = OP

(

p3/2h1/2 ln n/n
)

and the first
order U-statistics is now supθ∈�n

∣

∣U1,n
∣

∣ = OP

(

p3/2/n1/2
)

.
The asymptotic normality is established by invoking Lemma 2(i) of Guerre and

Lavergne (2005), in fact, using the same technicalities as in Statement (iii) in Theo-
rem 1, the conditions in the aforementioned Lemma are satisfied.

In order to treat the terms ̂QB
n (̂θ) and ̂QC

n (̂θ) it is enough to investigate the behaviour
of supθ∈�n

̂QB
n (θ) and supθ∈�n

̂QC
n (θ). Without loss of generality, in what follows C

denotes any positive constant. Note preliminarily that by assumption E-i.,

E[‖θ − θ�‖|X1, . . . , Xn] ≤ C
(ln n)r

nr
.

Now consider the term ̂QB
n (θ). Denote W = (E, X ′)′ and κθ,h(Wi ,Wj ) =

Ei
(

g0
(〈

X j , θ�

〉)− g0
(〈

X j , θ
〉))

K θ
i j . As a consequence of assumptionM-iv. the class of

functions g0 is Euclidean (see Lemma 2.13 of Pakes and Pollard 1989). By assumption
K-i., the kernel K is of bounded variation and by Lemma 22(ii) in Nolan and Pollard
(1987) the class of all functions K is Euclidean. Since the product of two classes of
Euclidean functions is Euclidean (see Lemma 2.14(ii) of Pakes and Pollard 1989) then
κθ,h is Euclidean.

Apply the centered Hoeffding decomposition to ĥQB
n (θ) to obtain:

ĥQB
n (θ) = 2

n

n
∑

i=1

κ̃1(Wi ) + 2

n(n − 1)

n
∑

i=1

n
∑

j 
=i, j=1

(

κ̃θ,h − κ̃1(Wj )
)

= Un κ̃1 +Un κ̃θ,h,

where Un κ̃1 is the first order U-process associated with a kernel κ̃1(Wi ) =
E[κθ,h(Wi ,Wj )|Wi ],whereasUn κ̃θ,h is the secondorderU-process associatedwith the
kernel κ̃θ,h = κθ,h−κ̃1(Wi ).Moreover, note that κ̃1(Wj ) = E[κθ,h(Wi ,Wj )|Wj ] = 0.

One starts by investigating Un κ̃θ,h : from the argument above, κθ,h is Euclidean
and by Lemma 5 in Sherman (1994) the corresponding class of functions by taking
the conditional expectation is also Euclidean and conclude that κ̃θ,h is Euclidean as a
consequence of Lemma 2.14(i) in Pakes and Pollard (1989). By the triangle inequality,
one obtains

∣

∣κ̃θ,h
∣

∣ ≤ |κθ,h | + |̃κ1|. First, |κθ,h | is investigated: by the definition and
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the assumption M-iv. and the boundedness of the kernel:

∣

∣κθ,h
∣

∣ ≤ C |Ei |‖θ − θ�‖ ≤ C |Ei |
(

ln n

n

)r

.

Similarly, for what concerns the second addend one has

|̃κ1| ≤ E

[∣

∣

∣Ei
(

g0
(〈

X j , θ�

〉)− g0
(〈

X j , θ
〉))

K θ
i j

∣

∣

∣|Wi

]

≤ C |Ei |
(

ln n

n

)r

. (A9)

Hence, by putting the results together,
∣

∣κ̃θ,h
∣

∣ ≤ C |Ei |(ln n/n)r .
The Main Corollary in Sherman (1994) states that

E

[

sup
θ∈�n

|nUn κ̃θ,h |
]

≤ CE

⎡

⎣ sup
θ∈�n

⎛

⎝

1

2n(2n − 1)

n
∑

i=1

∑

j=1, j 
=i

κ̃2
θ,h

⎞

⎠

α⎤

⎦

1/2

where 0 < α < 1. Plugging in the right hand side of the inequality the bound obtained

for |̃κθ,h |, it canbe controlledbyC(ln n/n)rαE
[(|Ei |2

)α]1/2
.Byconcavity and Jensen’s

inequality, E
[(|Ei |2

)α] ≤ (E
[|Ei |2

]

)α , where E[|Ei |2] is bounded. Gathering the pre-
vious results one obtains

E

[

sup
θ∈�n

∣

∣nUn κ̃θ,h
∣

∣

]

≤ C

(

ln n

n

)rα

.

Finally, by invoking the Markov inequality,

sup
θ∈�n

∣

∣

∣nh−1/2Un κ̃θ,h

∣

∣

∣ = OP

(

1√
h

(

ln n

n

)rα)

. (A10)

The behaviourUn κ̃1 is now investigated. First, by using the fact that κθ,h is Euclidean,
the corresponding class of functions by taking the conditional expectation is also
Euclidean by (Sherman 1994, Lemma 5) and hence κ̃1 is. Then using the bound (A9)
and the Main Corollary in Sherman (1994), one achieves

E

[

sup
θ∈�n

|n1/2Un κ̃1|
]

≤ C

(

ln n

n

)2rα

E

[(

|Ei |2
)α]

.

Using similar arguments as above, one gets

sup
θ∈�n

∣

∣

∣nh−1/2Un κ̃1

∣

∣

∣ = OP

(

1√
h

(

ln n

n

)rα)

. (A11)
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By putting together (A10) and (A11), deduce that

sup
θ∈�n

∣

∣

∣nh1/2̂QB
n (θ)

∣

∣

∣ = OP

(√
h

(

ln n

n

)rα)

= oP(1).

Investigate now the behaviour of the term ̂QC
n (θ). Denote its kernel by

κC = (g0(〈Xi , θ�〉) − g0(〈Xi , θ〉))(g0
(〈

X j , θ�

〉)− g0
(〈

X j , θ
〉))

K θ
i j ,

Arguing as above with the boundedness of X S-ii., Lipschitz condition M-iv., deduce
that

|κC | ≤ C‖θ − θ0‖2 ≤ C
(ln n)2r

n2r
.

Recalling that g0 is Euclidean as well as the kernel K (see Nolan and Pol-
lard, 1987, Lemma 22(ii)), then κC is Euclidean (see Pakes and Pollard, 1989
Lemma 2.14(ii)). Therefore, it is possible to appeal to the Main Corollary of Sherman
(1994) and, as a consequence of the bound for |κC |

E

[

sup
θ∈�n

∣

∣

∣n̂QC
n (θ)

∣

∣

∣

]

≤ C

(

(ln n)4r

n4r

)
α
2

.

By Markov inequality

sup
θ∈�n

nh1/2
∣

∣

∣

̂QC
n (θ) − E

[

̂QC
n (θ)

]∣

∣

∣ = OP

(

h

(

(ln n)4r

n4r h1/α

)α/2
)

= oP(1)

Finally

∣

∣

∣E

[

̂QC
n (θ)

]∣

∣

∣ ≤ C‖θ − θ�‖2E
[

1

h
K
̂θ
i j

]

= O

(

(

ln n

n

)2r
)

= o

(

p3/2 ln n

nh1/2

)

.

Combining all the rates of convergence, the asymptotic normality follows directly.
In the case when β must be estimated by ̂β, one can follows similar steps as

developed before. In particular Qn(̂θ) can be developed as a sum of six terms; besides
̂QA
n , ̂Q

B
n and ̂QC

n one has the following three extra-terms:

̂QD
n =

n
∑

i=1

n
∑

j=1, j 
=i
Ei
{

gβ
0

(〈

θ, X j
〉)− g

̂β
0

(〈

θ, X j
〉)

}

K̂θi j

̂QE
n =

n
∑

i=1

n
∑

j=1, j 
=i
Ei
{

g
̂β
0

(〈

θ, X j
〉)− g

̂β
0

(〈

̂θ, X j
〉)

}

K̂θi j

̂QF
n =

n
∑

i=1

n
∑

j=1, j 
=i

{

gβ
0 (〈θ, Xi 〉) − g

̂β
0 (〈θ, Xi 〉)

}{

g
̂β
0

(〈

θ, X j
〉)− g

̂β
0

(〈

̂θ, X j
〉)

}

K̂θi j .
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The assumption S-ii., Lipschitzianity of g0, the rate of convergence of ̂β and the fact

that |gβ
0 (u) − gβ ′

0 (u)| ≤ C‖β − β ′‖, allow to use the Euclidean property on the
extra-terms to establish the claim.

A.3: Proof of Theorem 3

Firstly, note that Assumption M-ii. guarantees that the variance ν2n (θ�) is bounded
above and below. Secondly, consider then the following decomposition for Qn(θ�):

Qn(θ�) = 1

n(n − 1)h

n
∑

i=1

n
∑

j=1, j 
=i

(

Yi − gβ�

0 (〈Xi , θ�〉)
)(

Y j − gβ�

0

(〈

X j , θ�

〉)

)

K θ
i j

= 1

n(n − 1)h

n
∑

i=1

n
∑

j=1, j 
=i

EiE j K
θ�

i j +

+ 2
γn

n(n − 1)h

n
∑

i=1

n
∑

j=1, j 
=i

Ei G
(〈

X j , θ�

〉)

K θ�

i j +

+ γ 2
n

n(n − 1)h

n
∑

i=1

n
∑

j=1, j 
=i

G(〈Xi , θ�〉)G
(〈

X j , θ�

〉)

K θ�

i j

= Qa
n(θ�) + 2Qb

n(θ�) + Qc
n(θ�).

In what follows, if it is not strictly necessary, the dependency on θ� is dropped, since
θ� is fixed.

Since Qa
n is identical to Qn and the assumptions are the same as in Theorem 1,

one can invoke Major’s inequality and proceed with similar steps as in to the proofs
of statement (i) in Theorem 1. This leads to the asymptotic normality of n

√
hQa

n/νn

and then n
√
hQa

n is bounded in probability.
Concerning the term Qb

n , first define a new kernel κb
i j = Ei G

(〈

X j , θ�

〉)

K θ�

i j , with the
same argument used for the kernel ≤θ�,h in the proof of Theorem 2, statement (ii), the
kernel κb

i j is Euclidean and, by the bounded variation condition on the functionsG and

the kernelK , it follows that
∣

∣

∣κb
i j

∣

∣

∣ ≤ C |Ei |.Hence, themain corollary of Sherman (1994)

can be used on the U-statistic ˜Qb
n = hQb

n/γn and, together with the concavity property
and hence the Jensen’s inequality on the error Ei and by assumption M-i., one obtains
E
[∣

∣n˜Qb
n

∣

∣

] ≤ C . Finally, by the Markov inequality, nh1/2
∣

∣Qb
n

∣

∣ = OP

(

γnh−1/2
)

.
To study the behaviour of the last term Qc

n(θ), define the new kernel κc
i j =

G(〈Xi , θ〉)G(〈X j , θ
〉)

K θ
i j . By the bounded variation condition on the functions G

and K , it follows that
∣

∣

∣κc
i j

∣

∣

∣ ≤ C . Since the kernel κc
i j is Euclidean (see Pakes and

Pollard, 1989) Lemma 2.14 (ii), it is therefore possible to utilise the main corollary of
Sherman (1994) on the U-statistic ˜Qc

n = hQc
n/γ

2
n to derive E

[∣

∣n˜Qc
n

∣

∣

] ≤ C . By the
Markov inequality it holds nh1/2

∣

∣Qc
n − E

[

Qc
n

]∣

∣ = OP

(

γ 2
n h

−1/2
)

.
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Let study now a lower bound for E[|hQc
n|]. By definition

1

γ 2
n
E[Qc

n] = 1

h
E

[

G(〈X1, θ�〉)G(〈X2, θ�〉)K θ�

12

]

= 1

h

∫

R2
G(t1)G(t2)K

(

t1 − t2
h

)

fθ�(t1) fθ�(t2)dt1dt2 (A12)

Let u1 = (t1 − t2)/h and u2 = t2, and set Mθ� = G fθ� . Since the kernel K has unit

integral,G is bounded variation, and by the dominated convergence theorem, then one
can treat (A12) as follows

∫

R2
Mθ� (u1h + u2)Mθ� (u2)K (u1)du1du2

=
∫

R2
M2

θ�
(u2)K (u1)du1du2 +

∫

R2

(

Mθ� (u1h + u2) − Mθ� (u2)
)

Mθ� (u2)K (u1)du1du2

=
∫

R

M2
θ�

(x2)dx2

∫

R

K (x1)dx1 + o(1) =
∫

R

M2
θ�

(x2)dx2 + o(1) ≥ C + o(1)

where C = ∫

R
M2

θ�
(x2)dx2 > 0. One can conclude that for n large enough,

nh1/2E[|Qc
n|] ≥ Cγ 2

n h
1/2n(1 + o(1)).

Consider now the following decomposition:

nh1/2Qn = nh1/2Qa
n + nh1/2Qb

n + nh1/2(Qc
n − E[Qc

n]) + nh1/2E[Qc
n].

Thanks to the rates derived before one gets

∣

∣

∣nh1/2Qn

∣

∣

∣ =
∣

∣

∣nh1/2E[Qc
n]
∣

∣

∣

∣

∣

∣

∣

OP

(

1

γ 2
n nh

1/2

)

+ OP

(

1

γnnh

)

+ OP

(

1

nh

)

+ 1

∣

∣

∣

∣

=
∣

∣

∣nh1/2E[Qc
n]
∣

∣

∣(1 + oP(1)).

Since the lower bound for dominant term diverges as n → +∞, this concludes the
proof.
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