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Abstract—Recommendation can be reduced to a sub-problem
of link prediction, with specific nodes (users and items) and
links (similar relations among users/items, and interactions be-
tween users and items). However, the previous link prediction
algorithms need to be modified to suit the recommendation
cases since they do not consider the separation of these two
fundamental relations: similar or dissimilar and like or dislike.
In this paper, we propose a novel and unified way to solve
this problem, which models the relation duality using complex
number. Under this representation, the previous works can
directly reuse. In experiments with the MovieLens dataset and the
Android software website AppChina.com, the presented approach
achieves significant performance improvement comparing with
other popular recommendation algorithms both in accuracy and
coverage. Besides, our results revealed some new findings. First,
it is observed that the performance is improved when the user
and item popularities are taken into account. Second, the item
popularity plays a more important role than the user popularity
does in final recommendation. Since its notable performance, we
are working to apply it in a commercial setting, AppChina.com
website, for application recommendation.

Keywords—Recommender Systems, Link Prediction, Complex
Number, Data Sparsity.

I. INTRODUCTION

Information overload makes users difficult to get what
they want. Whereas information filtering tools, such as search
engines, can help find users’ interests, it is still facing a big
challenge of the requirement for users to specify in advance
what they are looking for [1][2]. Fortunately, recommender
systems [3][4] are in charge of this challenge to identify users’
needs, which attempt to predict interests by mining data on past
user-item interactions. Consequently, recommender systems
provide users items that they are not aware of or cannot access
by traditional keyword searching approaches. Nowadays, rec-
ommender systems have been successfully deployed in many
application settings, e.g., Amazon’s book recommendation,
movie recommendation for Netflix, music recommendation for
Pandora, and friend recommendation on Facebook.

An efficient recommender system can help customers
quickly find what they want, and save their time, which will
virtually improve customer experience [5], and promote sales
[6]. As the core of recommender systems, recommendation
algorithms usually take user attributes, item attributes and

user-item interactions (explicit ratings or implicit browsing,
purchasing or clicking-through activities, etc.) as input to
anticipate user interests [7]. As one of the most popular and
promising recommendation algorithm, collaborative filtering
(CF) [8][9] only takes advantage of user-item interactions to
make recommendations, which can be further classified as user
based [10] methods or item based [11] ones depending on
whether the neighborhoods are derived by identifying similar
users based on their overlapping interactions or similar items
based on the common users who ever have expressed interests
to them [12][13][14]. Despite its success, collaborative filtering
suffers from data sparsity problem [15][16], where sparse user-
item interactions lead to invalid neighbor clustering. To alle-
viate this problem, some variants are proposed [17][18][19].
Furthermore, the risk of this approach is that more and more
users will be exposed to a narrowing band of popular items,
while the unpopular ones that might be very relevant to users
will be overlooked [20]. In order to overcome these disad-
vantages, several attractive solutions are proposed. One is to
explore the structure of user-item interaction graphs to improve
recommendation performance [21][22][23]. More specifically,
the users and items are considered as nodes in a bipartite
graph, while their interactions are regarded as links. Under this
representation, the recommendation problem is converted to
finding future links for each user node, and thus can be reduced
to a link prediction problem. The link prediction [24][25] is a
fundamental problem that attempts to estimate the likelihood
of the existence of a link between two nodes based on observed
links and node attributes. In a typical link prediction scenario,
the nodes are symmetric and we do not care about which
node is the subject or object. However, there are two types of
nodes in a user-item graph: users and items. Moreover, three
types of links (user-user, user-item, and item-item) depending
on different endpoint combinations will coexist. We further
define the type of links between two users or items as similar
or dissimilar, while the type of links between users and items
as like or dislike. In this classical setting, it is much more
interesting to predict like or dislike links, as we typically would
not recommend users to users or items to items.

In this paper, we propose a novel and unified model to
address this task based on complex number. The similar or
dissimilar links are weighted by real numbers, while the like
or dislike ones are weighted by complex numbers. Due to the
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property of complex number j with j2 = −1, complex num-
bers provide a natural way to model the particularities of item
recommendations when reducing the recommendation problem
to a link prediction problem. Benefiting from this, previous
link prediction algorithms can be directly deployed without
any modifications. We examine the validity and efficiency of
this representation and demonstrate the performance of this
recommendation approach using two real-world datasets. One
of the datasets is collected from our commercial platform
where the proposed algorithm will be implemented in the near
future.

The rest of this paper is organized as follows. Section
II provides a detailed description of the proposed algorithm.
Section III describes experiments on two real-world datasets
and discusses the experimental results, followed by a final
section which summarizes the findings and proposes future
research directions.

II. PROPOSED ALGORITHM

The proposed algorithm in this paper is based on the magic
abstraction of recommendation to a link prediction problem.
Firstly, the subjects (or users) and objects (or items) in a
recommender system are regarded as nodes in the graph, while
the links of the graph are the relations between different types
of nodes, such as user-user, item-item similarities and user-
item interactions. Then the interest prediction between the
particular user and some item can be reduced to evaluating the
likelihood of existence of a link between them in the graph. As
the previous link prediction works just take one type of nodes
into account, we need to modify them before using them in
the recommendation scenario. With the proposed method, this
can be efficiently addressed by introducing complex number
into graph theory.

A. Basic Notation

In the typical link prediction approach based recommenda-
tion scenario, the input data are modelled as a directed graph
G=(V , E, ω) where the set of nodes V consists of all users U
and items I present in the system (V =U ∪ I), E is the set of
links that represent various relations among these nodes (E=U
× U ∪ U × I ∪ I × I), and ω contains all links’ weights.
Furthermore, any path is notated by (a1,a2,. . .,ak+1)(ai ∈ V ,
where i=1,2,. . .,k+1 and k is the length of this path), a1 and
ak+1 are two endpoints while ai(i=2,3,. . .,k) is the inner node,
and there are k links along this path ((ai,ai+1) ∈ E, where
i=1,2,. . .,k). When k=1, the length of the path is equal to one
and it is reduced to a link with no inner nodes. In addition, we
define Nu(i) as the set of items that are rated by user u and
Ni(u) as the set of users who have expressed interest to item i,
respectively. That is, Nu(i)={i |(u,i)∈ E,i ∈ I} and Ni(u)={u
|(u,i)∈ E,u ∈ U}. If two nodes are connected, this node-pair is
always connected by two links, one in each direction. Then the
recommendation is reduced to predicting whether a link will
exist between an item and a particular user in the graph. In
this paper, we calculate an estimated score that expresses how
relevant any item is to a particular user using link prediction
algorithm.

B. Triangle Closing

As we know, there are two types of relations among nodes
in the user-item graph, one is the similarity between two users
or two items and the other is the preference of the user on
an item with the notations of ωsimilar (user-user or item-
item links) and ωlike (user-item links), -ωlike (item-user links),
respectively, since it is necessary to distinguish the asymmetry
between user and item. That is, when there is a link with
weight ωlike from user u to item i, there is always a reverse
link with weight -ωlike from item i to user u and vice versa.
Here, ωlike and ωsimilar are normalized values and just the
weights’ notations. In this model, the principle of triangle
closing can be illustrated in Fig. 1.

Fig. 1. The multiplication rules lead to the triangle closing between like

and similar relationships.

The principle is two folds: users who have expressed
the same interest to (maybe many) common items might be
similar (see Fig. 1a); similar users will have similar interest to
the same item (see Fig. 1b); and user similarity is transitive
among users (see Fig. 1c). Analogously, items which are liked
by (maybe many) common users might be similar (see Fig.
1d); user tends to be interested in similar items (see Fig.
1e); and item similarity is also transitive among items (see
Fig. 1f). These are the core ideas of collaborative filtering
from another perspective. Consequently, these rules can be
expressed mathematically in the following way:

ωsimilar = −ω2
like (1)

ωlike = ωsimilar · ωlike (2)

ωsimilar = ω2
similar (3)

We thus have to find two nonzero constants ωsimilar and
ωlike that solve these equations. It is observed that the complex
numbers provide a natural way to solve these equations, when
we set ωlike=j and ωsimilar=1 where j is the imaginary unit
which squares to negative one. The above requirements then
correspond to the identities 1=-j2, j=1·j and 1=12.

Analogous multiplication rules with dislike and
dissimilar can be then derived by multiplying both
sides with -1. Under this representation, link with weight of
real number has the same type of endpoints, two users or
two items, and it is always a real number. The bigger the
value is, the more similar two endpoints will be. Furthermore,
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link with weight of imaginary number must be user-item or
item-user link depending on the sign and interest. However,
the weight’s modulus value can represent the degree of like
or dislike.

C. Extended Triangle Closing

With the basic triangle closings introduced in Section II-B,
it is provable to extend the multiplication rules to any length
of paths, where the basic triangle closing is equivalent to the
case of path length two. That is, the result of multiplication of
links’ weight along the path also just depends on the endpoints
but independent of the inner nodes.

Lemma 2.1. Given a path, if its endpoints are two users or
two items, the result of multiplication of all the links’ weights
along the path is a real number; while if the endpoints are
the user and item, respectively, the result must be a complex
number.

Lemma 2.2. If the graph is bipartite, there are only user-
item links. When the length of any path k is even, its endpoints
are two users or two items; while the endpoints will be a user
and an item, respectively, when path length k is odd.

D. Adjacency Matrix

Let G = (V,E) be an unweighted and undirected network,
and then its adjacency matrix is defined as A ∈ ℜ|V |×|V | given
by:

A(x, y) =

{

1 if(x, y) ∈ E

0 if(x, y) /∈ E
(4)

The adjacency matrix A is square and symmetric. As the
number of paths connecting two nodes can be derived by
computing the powers of matrices in unweighted networks,
the number of common neighbors between two nodes x and y
(x, y ∈ V ) can be formulated by the square of the adjacency
matrix: N(x, y) = A2(x, y) which implements the basic
triangle closing and can be interpreted as the number of paths
with length two between them. It has an important property:
the bigger the entry of the square of the adjacency matrix is,
the closer these two nodes will be. Equivalently, we can extend
the number of paths of any length k from node x to node y to
be represented by the entry Ak(x, y). Thus, the closeness of
two nodes can be measured by the weighted sum of powers
of the adjacency matrix A. An example of such a method to
combine these results is the matrix exponential:

eA = I +A+
1

2
A2 + . . . (5)

The contributions of this function are two folds: it takes
all paths between two nodes into account since all powers of
A are involved. Besides, short paths are given preference over
long paths because of the decreasing weights of the powers.
After using the real numbers to represent the user-user and
item-item relations, and the complex numbers to describe the
user-item interactions, respectively, the adjacency matrix A of
the user-item graph G is such that:

A(x, y) =



























1 if x similar y

−1 if x dissimilar y

j if x likes y or y dislikes x

−j if x dislikes y or y likes x

0 if (x, y) /∈ E

(6)

Where A(x, y) is the value of row x and column y
of matrix A. Generally, the matrix A can be denoted as:
[

AUU AUI

AIU AII

]

, where AUU , AII are the user and item similar-

ity matrices, and AUI , AIU are the user-item preference matri-
ces, and AIU=-AT

UI . Obviously, the similarity matrices are real
matrices, while the preference matrices are complex matrices.
In this paper, we ignore the relations among users/items, then
G is a bipartite graph and the adjacency matrix A can be

simplified to

[

0 AUI

−AT
UI 0

]

. In accordance with the definition

of adjacency matrix A(see Eq. (6)), each entry in the preference
matrix AUI only has three candidate values: j,−j and 0.

Therefore, we can further covert A to

[

0 jB
−jBT 0

]

where

B is a real matrix.

Based on the path counting in the unweighted and undi-
rected networks, the weighted path counting for paths of
length k can be similarly derived by Ak. If we only take the
relations between users and items into account, LEMMA 2.1
and LEMMA 2.2 can be further mathematically formulated as:

Ak =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

(BBT )n 0

0 (BTB)n

]

where k = 2n

j ·

[

0 (BBT )nB

−(BTB)nBT 0

]

where k = 2n+ 1

(7)

Thus, any sum of the powers of the adjacency matrix A
can be split into even and odd components, but only the odd
components are useful for final recommendation. Therefore,
the predictions can be generally applied to A giving:

P (A) = α1 · A
3 + α2 ·A

5 + α3 ·A
7 + α4 · A

9 + . . . (8)

To guarantee the shorter paths contribute more to the
predictions, {α1, α2, α3, . . .} is a decreasingly weighting se-
quence.

E. Recommendation

As the power sum of the adjacency matrix measures
the closeness among nodes, and each entry of the top-right
component expresses how relevant any item is to a particular
user. Therefore, top-N recommendation can be generated by
ranking items for each user with these estimated scores.

III. EVALUATION

In order to analyze the effectiveness of the proposed
algorithm, we have conducted extensive experiments on two
datasets using different algorithms and quality metrics.

A. Comparison Methods

Some of the most popular and classical recommendation
algorithms are adopted for comparison, which are always taken
as baseline methods. Several of them perform very well in the
accuracy of rating prediction. The detailed introduction is as
follows:
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Average Score: This method computes the average score
for each item, and then recommends the items with larger
scores to the users. Every user receives the same recommen-
dation list in this case, which indicates it a non-personalized
recommender algorithm.

Item Popularity: Each item’s popularity is measured by
the number of users who have rated it. Larger item popularity
means greater recommendation opportunities. Similarly, this is
also a non-personalized recommender algorithm since it shows
every user the same popular items. In this case, unpopular
items are overlooked.

Item based CF: This is a well-known memory based
collaborative filtering approach [11], which calculates the
similarity between two items with Pearson correlation mea-
surement. Easy to deploy and interpretability make it one of
the most popular recommender methods.

Slope One: This is also a family of algorithms used
for collaborative filtering [26]. Its simplicity makes it easy
to implement and its prediction results (Root Mean Square
Error, RMSE) are relatively accurate, while the storage and
computation consumption are very high.

Matrix Factorization model (MF) based Recommen-
dation: This is the state-of-the-art method, which is based
on the basic matrix factorization model [27]. The method
yields reasonable prediction accuracy but it is significantly
more computationally expensive than other methods due to
the requirement of iterative calculation.

Link Prediction Approach with Complex Number: It
is the proposed algorithm, which is based on link predic-
tion method with complex number representing the like and
dislike relations between users and items. After deriving the
adjacency matrix, the weighted power sum of the adjacency
matrix is computed firstly. Then we rank all items by their
estimated scores decreasingly for each user, and the candidate
recommendations are top-N items which have not yet been
rated by the particular user.

B. Datasets

The proposed algorithm and other comparison methods
were conducted on two real-world datasets: MovieLens1 and
AppChina2. The former is a publicly available movie rating
dataset, which were collected by GroupLens research from
MovieLens website, which consists of 100,000 ratings range
from 1 to 5 from 943 users on 1,682 movies. AppChina is an
Android software installation tool, which makes users conve-
niently download applications and games. Users’ operations
to applications, such as installation, updating and deleting,
were collected during the three-month period from May 1st,
2012 through July 31st, 2012. Then the rating of a particular
user on a certain application is modeled by aggregating this
information. The detailed introduction about how to yield the
ratings in 1-to-5 scale is not shown here for lack of space.
Finally, an available dataset with 99,295 ratings from 2,395
users on 2,486 applications is generated. Table I summarizes

1http://www.grouplens.org/
2http://www.appchina.com/

the statistical properties of these two datasets, where the
sparsity level [28] is derived as:

♯sparsity level = 1−
♯rating entries

♯total entries
(9)

TABLE I. PROPERTIES OF MOVIELENS AND APPCHINA
DATASETS.

Feature/Dataset Movielens AppChina

♯Users 943 2,395

♯Items 1,682 2,486

♯Total Ratings 100,000 99,295

♯Average User Popularity 106 41

♯Average Item Popularity 59 40

♯Sparsity Level 93.7% 98.3%

C. Testing Methodology

The testing methodology adopted in this paper is similar
to the one in [29]. For each dataset, ratings are split into two
subsets: training set and test set. The test set contains only 5-
stars ratings. Equivalently, only items relevant to the respective
users are contained in the test set. The detailed procedure used
to create the training set and the test set can be described as:
First, we randomly select 10% of items rated by each user
to form a temporary test set, while the temporary training set
contains the remaining ratings; Then the 5-stars ratings in the
temporary test set are further filtered out for the final test set,
and the rest of ratings in the temporary test set are merged
into the temporary training set for the final training set. In
this case, the training set is used to obtain estimated ratings
or recommendation scores for all user-item pairs.

Besides, the rating converting is needed for the adjacency
matrix generating of our proposed algorithm, where the ratings
in the training set are converted to -j or j depending on
whether the rating is less than 3 or not. That is, if the rating
is greater than or equal to 3, it is replaced by j, which means
that the user expresses like to the item; analogously, when
the rating is less than 3, -j is given to represent the dislike;
moreover, if the (u, i) pair isn’t contained in the training
set, the corresponding entry of the adjacency matrix gets
zero (see Eq. (6)). With this dataset partitioning, computing
the prediction error becomes less meaningful, so we only
care about how many relevant items in the test set can be
recommended to users. In addition, we also focus on the
overall ratio of recommended items to all users. Therefore,
the metrics hits rate [29] and coverage [30][31] are used to
measure the performance of the comparison methods. In the
case of the top-N recommendation, the overall hits rate and
coverage are defined by averaging all test cases:

hits rate(N) =
♯hits

|T |
(10)

coverage(N) =
| ∪u recommend(N, u)|

♯items
(11)

For each pair (u, i) in the test set, if the item i is contained
in the user u’s Top-N recommendation list, it will get one
hit. ♯hits is the overall hit and |T | is the number of test
pairs, so hits rate can reasonably represent the capability
to recommend relevant items to users. recommend(N, u) is
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the item set recommended to user u, therefore, coverage
corresponds to the percentage of items the system is able to
recommend. coverage can be usually used to detect algorithms
that, despite good accuracy, recommend only a small number
of items. To the best of our knowledge, a high coverage
value is not only desirable, but it is helpful to better trust
accuracy metric results [32]. These two metrics present the
same property that the bigger the values are, the better the
performance of the algorithm is.

D. Experimental Results

Intuitively, the more paths between two nodes and the
shorter these paths are, the more strong relation these two
nodes will have. Therefore, the first experiment was designed
to test link prediction approach based recommender algo-
rithms’ performances with different path lengths for recom-
mendation. For example, if the length is set to three, the
predicted score of user u to item i is the value of the number of
positive paths (the result of multiplication of all links’ weights
along the path is positive) with length three subtracting the
number of negative paths (the result of multiplication of all
links’ weights along the path is negative) with length three
from u to i regardless of other lengths of paths. Therefore,
the more positive paths from user u to item i and the less
negative paths between them, the greater opportunity i will get
to be recommended to u. We should note that the length must
be odd, and no less than three. As the similar consequence,
the results with top-60 recommendation are only given. Fig. 2
illustrates these results of the proposed method with length 3,
5, 7 and 9, respectively.

It shows that the hits rate and coverage decrease as
the path length increases on two datasets and the decreasing
speed tends to be slow as the path length becomes larger.
Experimentally, when the path length is greater than 9, the
performance almost remains unchanged. Moreover, the pro-
posed algorithm performs much better on MovieLens dataset
than on AppChina dataset since the latter is much sparser.
However, it still shows the attractive performance with length
3 for recommendation on AppChina dataset. At this point,
it is worth trying to aggregate separate results with different
path lengths to generate a global recommendation. A general
aggregating method can be simply formulated as:

f(B) =
+∞
∑

n=1

an · (BBT )nB (12)

Where B is the user-item preference matrix, and the value
of its entry (u, i) is 1, -1, or 0 depending on whether user
u likes, dislikes or do not express interest to item i. {an} is
a decreasing sequence of weighting factor which guarantees
that the estimated scores with short path length can contribute
more to the final predictions. Because the performance changes
a little when the length is greater than 9, the length 3, 5, 7
and 9 are only taken into account for aggregation. Here, we
design two comparative experiments using different sequences
of weighting factor for each dataset. Table II shows the details.

MovieLens_Normal is the geometric series of
weighting factor for the MovieLens recommendation,
while MovieLens_Improve is an improved one. The

(a)

(b)

Fig. 2. The hits rate and coverage comparison of the proposed algorithm
with different lengths of paths for recommendation.

TABLE II. TWO SERIES OF WEIGHTING FACTOR FOR EACH
DATASET.

Algorithm/Length
♯Length

= 3

♯Length
= 5

♯Length
= 7

♯Length
= 9

Movielens_Normal 10
−3

10
−5

10
−7

10
−9

Movielens_Improve 10
−3

10
−9

10
−14

10
−19

AppChina_Normal 10
−3

10
−5

10
−7

10
−9

AppChina_Improve 10
−3

10
−7

10
−12

10
−16

AppChina_Normal and AppChina_Improve are defined
similarly. Fig. 3 shows their results of top-10 to top-100
recommendation, respectively.

It is intuitive that the hits rate and coverage increase
when more items are recommended to users, and the experi-
mental results just confirm this conclusion. Fig. 3 also shows
the same result that the proposed algorithm performs better
on MovieLens dataset than on AppChina dataset as derived
above.

Moreover, the algorithms with improved series of weight-
ing factor outperform the ones with geometric series of
weighting factor on both datasets. In order to explain this
phenomenon, we deeply observe the entries’ values of different
power of the adjacency matrix. The result of respective average
value is given in Table III.

Obviously, the average value grows extremely fast as
the increasing of path length. Take MovieLens dataset
as an example, if we multiply the geometric series
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(a)

(b)

Fig. 3. The hits rate and coverage comparison of the proposed algorithm
with different weighting factor series.

TABLE III. AVERAGE VALUES OF MATRICES WITH
DIFFERENT PATH LENGTHS.

Dataset/Length
♯Length

= 3

♯Length
= 5

♯Length
= 7

♯Length
= 9

Movielens 6.91 × 10
2

1.71 × 10
7

1.99 × 10
11

3.37 × 10
15

AppChina 3.70 × 10
1

9.58 × 10
4

2.50 × 10
8

6.54 × 10
11

(10−3, 10−5, 10−7, 10−9) to the vector of the average value
(6.91×102, 1.71×107, 1.99×1011, 3.37×1015) shown in Table
III, it derives (6.91×10−1, 1.71×102, 1.99×104, 3.37×106)
which implies that the part of length 9 will dominate the final
estimated scores in this case of aggregation. Consequently,
the performance tends to be similar to the one only taking
length 9 into account. However, with the improved one, the
result of multiplication is (6.91 × 10−1, 1.71 × 10−2, 1.99 ×
10−3, 3.37 × 10−4) which guarantees that the result of less
length will contribute more to the final predictions. Naturally,
it will yield more accurate recommendation using the improved
weighting factor. Actually, each weighting factor must be less
than the reciprocal value of the maximum entry of its corre-
sponding power of the adjacency matrix. Because the proposed
algorithm can achieve high performance only with length 3, the
subsequent experiments for the proposed algorithm just take
length 3 into account and we refer to this method as Complex.

Fig. 4 shows the comparative hits rate and coverage of
the recommender algorithms introduced in Section III-A on
MovieLens dataset. We denote ItemBasedPear as the Item

based collaborative filtering with Pearson correlation method
for similarity measurement.

(a)

(b)

Fig. 4. The hits rate and coverage comparison of the comparison methods
on MovieLens. (The Average and Popular are two non-personalized methods
which recommend users the same items, so their coverages are the same with
two overlapping curves.)

Complex outperforms other methods by hits rate and
has relatively high coverage. ItemBasedPear suffers from
low hits rate, while its coverage is very high. The reason
is that it cannot make accurate recommendation when the
dataset is sparse, which results in low hits rate. In this
case, its coverage becomes less meaningful, since a high
coverage value is desirable only when the accuracy result is
comparable. Moreover, it is surprising that the one which only
recommends popular items to users obtained higher hits rate
than ItemBasedPear and Slop One. It is because of that the
popular items will have high probabilities to appear in the test
set using the random partition method.

Fig. 5 illustrates the similar results on AppChina dataset. It
can conclude that the proposed algorithm, Complex, not only
has higher recommendation accuracy, but also presents better
coverage.

Based on the basic link prediction approach based rec-
ommendation algorithm with complex number, we proposed
a series of improved algorithms. The basic one just takes
the number of paths and corresponding lengths between two
nodes into account, which is based on such an assumption
that the more the paths and the shorter the path lengths
are, the closer these two nodes will be. However, it does
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(a)

(b)

Fig. 5. The hits rate and coverage comparison of the comparison methods
on AppChina. (The Average and Popular are two non-personalized methods
which recommend users the same items, so their coverages are the same with
two overlapping curves.)

not distinguish the different importance of paths with the
same length. Intuitively, the paths with low degree (or pop-
ularity) nodes should contribute more to measure the close-
ness between two endpoints than those with high degree
nodes. Here, we proposed Complex_Item, Complex_User
and Complex_User&Item algorithms, respectively. These
improved algorithms are slightly different from the basic
Complex algorithm in the adjacency matrix modelling, while
the calculation of power of the adjacency matrix and the final
recommendation are the same. We define |Nu(i)| and |Ni(u)|
as the degree of user u and item i, respectively. Then, each
entry (u, i) of the adjacency matrix can be formulated in Table
IV.

TABLE IV. ENTRY COMPARISON OF COMPLEX NUMBER
BASED ALGORITHMS.

Entry/

Algorithm
Complex

Complex
_Item

Complex
_User

Complex
_User&Item

like j j√
Ni(u)

j√
Nu(i)

j√
Ni(u)·Nu(i)

dislike −j − j√
Ni(u)

− j√
Nu(i)

− j√
Ni(u)·Nu(i)

Fig. 6 shows the experimental results of four complex
number based algorithms by hits rate and coverage as the
number of recommended items for users ranges from 10 to
100 on MovieLens dataset (the similar results on AppChina
dataset are not given). These algorithms have the same property

that the hits rate and coverage increase as the growth of the
number of recommended items and the improved ones achieve
higher hits rate than Complex method. We can also find that
the recommended items will be more relevant to users when
user and item degree are taken into account, which is derived
from that Complex_User&Item method outperforms other
methods by hits rate.

(a)

(b)

Fig. 6. The hits rate and coverage comparison of the complex number
based algorithms on MovieLens dataset.

Moreover, it can be figured out that Complex_Item
obtains significantly better performance than Complex_User
by both hits rate and coverage, because user degree is less
meaningful than item degree due to user subjectivity. In real-
world cases, some users may have seen a lot of movies, but
they do not like to give comments. Hence accounting their
degrees small will be a big mistake. On the contrary, popular
items will get more ratings, while the unpopular ones will get
less. Therefore, item degree seems more believable. We should
note that despite Complex_User&Item method gets higher
hits rate than Complex_Item, whose coverage seems much
poorer.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a recommendation algorithm
based on link prediction approach with the weights in the
graph represented by complex number, which can efficiently
distinguish the similar between two users/items and the
like between user and item. Consequently, the previous link
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prediction methods can reuse without any modifications. Ex-
tensively experimental results show that the proposed algo-
rithm outperforms many popular algorithms on MovieLens
and AppChina datasets by two quality metrics: hits rate
and coverage. Moreover, it is experimentally verified that the
recommendation generated by less length of path can be more
efficient. We also point out that aggregating the results from
different lengths of path with the arbitrary weighting factor
series may be poor. In order to improve the performance of the
proposed algorithm, the user degree and item degree are taken
into account to distinguish the different importance of paths
with the same length. The experimental results are extremely
good and support that item degree is more valuable than user
degree.

As the power of matrix calculation is time and space
consumption when the users and items grow, it is essential
to parallelize this method so that it can run on AppChina.com
website for application recommendation in the future. More-
over, the improved complex number based algorithms achieve
relatively high performance, so it is no doubt that many other
magical factors remain to be developed to make our proposed
method more powerful.
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