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ABSTRACT

We present a novel method for simultaneous voicing and
speech detection based on a linked-HMM architecture, with
robust features that are independent of the signal energy.
Because this approach models the change in dynamics be-
tween speech and non-speech regions, it is robust to low
sampling rates, significant levels of additive noise, and large
distances from the microphone. We demonstrate the perfor-
mance of our method in a variety of testing conditions and
also compare it to other methods reported in the literature.

1. INTRODUCTION

As we move towards advanced applications in ubiquitous
environments, speech detection becomes an increasingly im-
portant problem. Being able to detect the presence of speech
and its boundaries is a key capability of an interactive sys-
tem: unless it knows when to listen, it will attempt to decode
environmental sounds. Furthermore, finding the voiced seg-
ments within the speech can give us a variety of additional
information, such as speaking rate and the boundaries of
pitch contours.

Our goal is to robustly identify the voiced and unvoiced
regions, as well as to group them into chunks of speech to
separate them from non-speech regions. Furthermore, we
want to do this in a way that is robust to low sampling rates,
far-field microphones, and ambient noise. Clearly, to work
in such broad conditions, we cannot depend on the spectral
visibility of the unvoiced regions. There has been a vari-
ety of work on trying to find the boundaries of speech, a
task known in the speech community as “endpoint detec-
tion.” Most of the earlier work on this topic has been very
simplistic as the speech recognition community tends to de-
pend on a close-talking, noise-free microphone situation.
More recently, there has been some interest in robustness
to noise, due to the advent of cellular phones and hands-
free headsets. For instance, there is the work of Junqua et
al. [1] which presents a number of adaptive energy-based
techniques, the work of Huang and Yang [2], which uses
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a spectral entropy measure to pick out voiced regions, and
later the work of Wu and Lin [3], which extends the work of
Junqua et. al by looking at multiple bands and using a neu-
ral network to learn the appropriate thresholds. Recently,
there is also the work of Ahmadi and Spanias [4], in which
a combination of energy and cepstral peaks are used to iden-
tify voiced frames, the noisy results of which are smoothed
with median filtering. The basic approach of these meth-
ods is to find features for the detection of voiced segments
(i.e., vowels) and then to group them together into utter-
ances. We found this compelling, but noted that many of
the features suggested by the authors above could be easily
fooled by environmental noises, especially those depending
on energy.

We thus set out to develop a new method for voicing
and speech detection which was different from the previ-
ous work in two ways. First, we wanted to make our low-
level features independent of energy, in order to be truly
robust to different microphone and noise conditions. Sec-
ond, we wished to take advantage of the multi-scale dynam-
ics of the voiced and unvoiced segments. Looking again at
the spectrograms, there is a clear pattern that distinguishes
the speech regions from silence. It is not in the low-level
features, certainly – the unvoiced regions often look pre-
cisely like the silence regions. In speech regions, though,
we see that voicing state is transitioning rapidly between
voiced (state value 1) and unvoiced/silence (state value 0),
whereas in the non-speech regions, the signal simply stays
in the unvoiced state. The dynamics of the transitions, then,
are different for the speech and non-speech regions. In prob-
abilistic terms, we can represent this as follows:

P (Vt = 1|Vt−1 = 1, St = 1) 6=

P (Vt = 1|Vt−1 = 1, St = 0) (1)

This is clearly more than the simple HMM can model, for in
it the current state can depend only on the previous state, not
on an additional parent as well. We must turn instead to the
more general world of dynamic Bayesian nets and use the
“linked HMM” model proposed by Saul and Jordan [5]. The
graphical model for the linked HMM is shown in figure 1.
The lowest level states are the continous observations from
our features, the next level up (Vt) are the voicing states,



and the highest level (St) are the speech states.
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Fig. 1. Graphical model for the linked HMM of Saul and
Jordan.

This model gives us precisely the dependencies we needed
from equation 1. Note that as in the simple HMM, excepting
the initial timestep 0, all of the states in each layer have tied
parameters. In a rough sense, the states of the lower level,
Vt, can then model the voicing state like a simple HMM,
while the value of the higher level St will change the tran-
sition matrices used by that HMM. This is in fact the same
model used by the vision community for modeling multi-
level dynamics, there referred to as switching linear dynam-
ics systems (as in [6]). Our case is nominally different in
that both hidden layers are discrete, but the philosophy is the
same. If we can afford exact inference on this model, this
can be very powerful indeed: if there are some places where
the low-level observations P (Ot|Vt) give good evidence for
voicing, the higher level state will be biased towards being
in a speech state. Since the speech state will have much
slower dynamics than the voicing state, this will in turn bias
other nearby frames to be seen as voiced, as the probability
of voicing under the speech state will be much higher than
in the non-speech state. We will see this phenomenon later
on in the results.
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Fig. 2. The clique structure for the moralized graph for the
linked HMM.

In our case, exact inference and thus learning are fairly
simple applications of the Junction Tree Algorithm [7], as
both of our sets of hidden states are discrete and binary.
The clique structure for the moralized, triangulated graph
of the model is shown in figure 2. The maximal clique
size is three, with all binary states, so the maximum table
size is 23 = 8. This is quite tractable, even though we
will have an average of two of these cliques per timestep.
Doing inference on the resulting junction tree is analagous
to the forward-backward algorithm HMM except for an ad-
ditional clique for each timestep. Thus we still only need
a single forward and backward pass to do exact inference.

Overall, we end up with 36 operations per timestep vs. 24
for a single-layer binary HMM.

2. FEATURES

We are using three features for the observations: the non-
initial maximum of the normalized “noisy” autocorrelation,
the number of autocorrelation peaks, and the normalized
spectral entropy. These are all computed on a per-frame ba-
sis – in our case, we are always working with 8 kHz speech,
with a framesize of 256 samples (32 milliseconds) and an
overlap of 128 samples (16 milliseconds) between frames.

2.1. Noisy Autocorrelation

The standard short-time normalized autocorrelation of the
signal s[n] of length N is defined as follows:

a[k] =

∑
N

n=k
s[n]s[n − k]

(
∑

N−k

n=0 s[n]2)
1

2 (
∑

N

n=k
s[n]2)

1

2

(2)

We define the set of autocorrelation peaks as the set
of points greater than zero that are the maxima between
the nearest zero-crossings, discounting the initial peak at
zero (a[0] is guaranteed to be 1 by the definition). Given
this definition, we see a small number of strong peaks for
voiced frames because of their periodic component. Un-
voiced frames, on the other hand, are more random in na-
ture, and thus result in a large number of small peaks. We
thus use both the maximum peak value and the number of
peaks as our first two features.

There is one significant problem to the standard normal-
ized autocorrelation, though – very small-valued and noisy
periodic signals will still result in strong peaks. We could
deal with this by simply cutting out frames that were below
a certain energy, but this would make us very sensitive to
the energy of the signal. We instead devised a much softer
solution, which is to add a very low-power Gaussian noise
signal to each frame before taking the autocorrelation. In
the regions of the signal that have a strong periodic compo-
nent, this has practically no effect on the autocorrelation. In
lower power regions, though, it greatly disrupts the struc-
ture of a low-power, periodic noise source. To estimate the
amount of noise to use, we use a two-pass approach – we
first run the linked-HMM to get a rough segmentation of
voicing and use the resulting non-speech regions to estimate
the signal variance during silence. We then add a Gaussian
noise signal of this variance to the entire signal and run the
segmentation again.

2.2. Spectral Entropy

Another key feature distinguishing voiced frames from un-
voiced is the nature of the FFT magnitudes. Voiced frames



have a series of very strong peaks resulting from the pitch
period’s Fourier transform P [w] multiplying the spectral en-
velope V [w]. This results in the banded regions we have
seen in the spectrograms and in a highly structured set of
peaks in the FFT. In unvoiced frames, on the other hand,
we see a fairly noisy spectrum, be it silence (with low mag-
nitudes) or a plosive sound (higher magnitudes). We thus
expect the entropy of a distribution taking this form to be
relatively high. This leads us the notion of spectral entropy,
as introduced by Huang and Yang [2].

We take this concept one step further and compute the
relative spectral entropy with respect to the mean spectrum.
This can be very useful in situations where there is a con-
stant voicing source, such as a loud fan or a wind blowing
across a microphone aperture. The relative spectral entropy
is simply the KL divergence between the current spectrum
and the local mean spectrum, computed over the neighbor-
ing 500 frames where m[w] is the mean spectrum:

Hr = −
∑

w

p[w] log
p[w]

m[w]
, (3)

3. TRAINING

With our features selected, we are now ready to parametrize
and train the model. We choose to model the observations
with single Gaussians having diagonal covariances. It would
be a simple extension to use mixtures of Gaussians here, but
since the features appear well separated we expected this
would not be necessary. Furthermore, reducing the num-
ber of parameters in the model greatly reduces the amount
of training data necessary to train the model. We trained
the model with the Expectation-Maximization (EM) algo-
rithm [7] using several minutes of speech data from two
speakers in the callhome database (8000 frames of 8 kHz,
8-bit mulaw data) with speech and voicing states labeled in
each frame. Since all states were labeled, it was only neces-
sary to run EM for one complete iteration.

4. PERFORMANCE

To illustrate the strengths of our two-layer approach, we be-
gin by showing the results of applying an ordinary HMM
versus our linked HMM in noisy conditions in figure 3. No-
tice how our model is able to more reliably find the voic-
ing states. We can understand why by thinking about the
flow of information in the inference process: the “strong”
voicing states (chunks 1, 3, and 4), which are captured by
both models, are feeding information into the upper (speech
state) level, biasing it towards a speech state. This then
flows back down to the voicing level, since the probabil-
ity of a voiced state is much higher when the upper level is
in a speech state.
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Fig. 3. Comparison of an ordinary HMM (left) versus our
linked HMM model (right) on a chunk of noisy data. Notice
how our model more reliably finds the voiced segments.

4.1. Robustness to Noise

In this set of experiments, we show the robustness of our al-
gorithm to noise and compare our results with some related
work. We will use the measure of segmental signal-to-noise
ratio, or SSNR, to evaluate the noise condition. We can
compute the SSNR for K frames of a zero-mean signal s[n]
with added noise w[n] as follows:

SSNR =
1

K

K∑

i=1

20 log
σ2

si[n]

σ2
wi[n]

. (4)

The best reported results in the literature for voicing de-
tection in noise are from Spanias and Ahmadi [4]. Their
approach was to use the logical “and” of two features: an
adaptive threshold test for energy and one for the cepstral
peak. The threshold for each feature is chosen as the me-
dian of that signal over the entire file. They employ no
time dynamics, but use a 5-frame median filter to smooth
the results of their detection. As in their work, we hand la-
beled a small set of speech (2000 frames in our case). Each
frame was labeled as being voice/unvoiced and speech/non-
speech by both examining the clean spectrogram and lis-
tening to the corresponding audio. We then added Gaussian
noise of varying power to simulate various noise conditions.
As their signals themselves were not available, we imple-
mented their technique so that we could compare its results
directly on our data. The results for are shown in figure 4. In
the interests of space, we have shown only the total voicing
error, which includes voiced frames classified as unvoiced
(V-UV) and unvoiced frames classified as voiced (UV-V).
Note however that for both algorithms, the UV-V error was
an order of magnitude smaller than the V-UV error.

It is interesting to note that the results of the Ahmadi and
Spanias method do not worsen monotonically with increas-
ing noise. This is due to their heuristic for choosing feature
thresholds – under just the right amount of noise, the thresh-
olds achieve their best values. As a result, adding noise can
actually improve the performance by shifting the thresholds
in the right way. In addition, because their method requires
the energy and the cepstral peak to be above a threshold, it
tends to clip off the beginning and end of many voiced seg-
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Fig. 4. Comparison of the voicing segmentation error (V-
UV + UV-V) in various noise conditions using our method
(solid line) against our implementation of the Ahmadi and
Spanias algorithm [4] (dashed line).

ments, which tend to be lower energy though still clearly
voiced.

Before we leave this experiment, we would like to show
one last performance figure – the performance of the speech
segmentation with respect to noise (figure 5). The perfor-
mance is quite robust. Even at -14dB, we are only misclassi-
fying 17% of the frames. As with the voicing segmentation,
this error is almost entirely made up of S-US errors.
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Fig. 5. Speech Segmentation Error (S-NS + NS-S) in vari-
ous noise conditions vs. SSNR.

4.2. Robustness to Microphone Distance

Another important goal for our method is to be robust to mi-
crophone distance. In any real environment, distance adds
more than Gaussian noise – now the sounds of fans, doors,
chairs and the like all become comparable in power to the
speech signal as the distance increases. We tested this con-
dition by putting a far-field condenser microphone (an AKG
C1000s) on a table in an office environment, then moving
successively further away from the mic. The total voicing
error and speech error for this experiment are shown in fig-
ure 6.

We estimate the SSNR of the signal at 24 feet to be -18
dB. However, since the noise no longer has a white spec-
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Fig. 6. Performance of the voicing and speech segmentation
with distance from mic (in feet). The first plot shows the
total voicing error; the second shows the total speech error.

trum, it is potentially more difficult to contend with. How-
ever, our method is still robust to this difficult condition. By
21 feet (about -10 dB of SSNR), we still have less than 10%
error in both voicing and speech segmentation.
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