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Abstract

The paper is concerned with the local and global bifurcation structypesifive

solutionsu, v € H}(Q2) of the system

— Au+u =’ + fv*u in

— Av+ v = pov® + Buv in
of nonlinear Schrodinger (or Gross-Pitaevskii) type equatiors in RY, N < 3.
The system arises in nonlinear optics and in the Hartree-Fock theorydoulale
condensate. Local and global bifurcations in terms of the nonlineatiogygmram-
eter 5 of the system are investigated by using spectral analysis and by estaplishin
a new Liouville type theorem for nonlinear elliptic systems which providesaripr
bounds of solution branches. If the domain is radial, possibly unbouyrded we
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of the solutions along the bifurcating branches.
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1 Introduction
In this paper we are concerned with the nonlinear elliptatesmy

— Au+ Mu= ,u1u3 + Bv*u in Q
(1.2) — AU+ Aov = o + futv in Q
u,v >0 inQ, u,v € Hy(Q)

on a possibly unbounded domdinc RY, N < 3. This system has found considerable
interest in recent years as it appears in a number of phygrodlems, for instance in
nonlinear optics. There the soluti¢n, v) denotes components of the beam in Kerr-like
photorefractive media ([1]). With,; > 0, j = 1,2, we have self-focusing in both
components of the beam. The nonlinear coupling congtastthe interaction between
the two components of the beam. Problem (1.1) also ariséeiHartree-Fock theory for
a double condensate, i.e., a binary mixture of Bose-Einstmitlensates in two different
hyperfine states ([15]). In recent years many mathematicaksvon the existence
and on qualitative properties of solutions have appeamdaling interesting features
for the system which are quite different from those of samadir type Schrodinger
equations. Following the work [20] by Lin and Wei about theseance of ground state
solutions with small couplings a number of papers have besotdd to the existence
theory of solutions in various different parameter reginoésnonlinear couplings;
see [2, 3, 5, 6, 23, 24, 35] for the existence of ground stateoond state solutions,
[21, 22, 26, 30] for semiclassical states or singularly yméed settings. In [13, 38, 39]
the authors have investigated the competition gase 0, assuming\; = A\, = 1 and

w = py = 1, and established the existence of multiple positive sohsti We also
want to mention the paper [29] where the authors investigadimit of solutions as
 — —oo, and the related work [10] on Lotka-Volterra type competitsystems.

The current paper is mostly related to the papers [13, 38, 39 shall use a quite
different approach, namely bifurcation techniques. Owults are new and improve
significantly some of the results from [13, 38, 39] whate= )\, > 0 andu; = s > 01is
being required. When this condition holds the problem isrilava under the symmetry
(u,v) — (v,u). This invariance is essential to the method used in [13, 9B8,r&amely
Lusternik-Schnirelman type arguments for symmetric fiomztls. Our methods using
bifurcation techniques requir&; = X, > 0 in order to have a “trivial” branch of
solutions. But our arguments do not depend on the symmetrgito@m ., = po SO we
can extend the existence results from the papers mentidmace do a larger range of
parameters. Moreover we can show that the solutions lie otimemus branches in terms
of the nonlinear coupling parametgr and that these branches are bounded as long as
[ is bounded. These results are new even in the gase 1,. The boundedness of the
branch is a consequence of a new Liouville type theorem fptiel systems. We also
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show that a certain nodal property of a weighted differerfdaetwo components of the
solutions is preserved along the solution branches.

We deal with the casg; = A\, > 0 and may assumg, = A\, = 1. Thus we consider

— Au+u= v+ fv*u in
(1.2) — Av+ v = pupv® + putv in Q
u,v >0 inQ, u,v e Hy(Q).
Fixing 11, 2 > 0 we may assume without loss of generality that< u,. In the case

N =1, Q can be any bounded or unbounded domainV I= 2 or N = 3 the domains
Q c RY we deal with are bounded or radially symmetric (possiblyawnizled).

If we H}(Q) is a solution of
(1.3) —Aw+w=uw? w>0 inQ

then a direct calculation shows that fore (—. /1 pz, 1) U (p2, 00) the pair

_ 1/2 1/2
Uﬁ_( 2 ﬁ2) w, Uﬁ_( M1 — 52) w
piple — 3 pape —

solves (1.2). lfuy = ps =: p this simplifies to

1 1/2
Up = p = ——— w
e <m+m>

which is defined fo? # —u. Thus ifu; < ps we have a “trivial” branch

T, o= {(B.us vs) € R x HY(Q) x HY(Q) 2 B € (—/firfiz. 1) U (j12,00) }

of solutions of (1.2), and similarly for, = u». We are interested in proving bifurcation
of nontrivial solutions from this branch. In doing this wenstderably improve results
due to Dancer, Wei and Weth [13, 39]. Our results give thatetlzge infinitely many
bifurcation points along this trivial branch, that in caSe= 1 or ) radially symmetric,
the bifurcating branches are global and unbounded to thél#ie 5-direction, and that
solution branches are prescribed by a nodal property of ghiedl difference of the two
components andv.

The paper is organized as follows. In Section 2 we state tha neaults of the paper

about local and global bifurcations. We also state a Lidenttheorem which is used to
establish a-priori bounds of solution branches. This tesal be of independent interest.
In Section 3 we determine all bifurcation points alahg Finally, in Section 4 we prove

the Liouville theorem and using this we investigate the gldiifurcation branches.
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2 Statement of results

Let £ = H}(Q2) whenN = 1, or whenQ2 C R" is a bounded domain. ¥ > 2 and
Q c RY is unbounded we require th@tis radially symmetric, i.e., the exterior of a ball
or all of RY. In this case we sdf = {u € H}(Q) : w is radially symmetri¢. In the case
of a bounded radial domain actually either choicd-as fine.

We fix a nondegenerate solutiane F of (1.3) so that7,, C R x E x E. A parameter

value( is said to be a parameter of bifurcation fra@, or simply a bifurcation parameter,
if there exists a sequend®,;,u;,v;) € R x £ x E \ 7, of solutions of (1.2) such
that (5;,u;,v;) — (B,us,v3) asj — oo. We call 3 a global bifurcation parameter
if a connected set of solutions of (1.2) bifurcates fr@mat (3, ug, vg) in the sense of

Rabinowitz. More precisely, setting

S ={(B,u,v) ERx Ex E\T, : (#,u,v) solves (1.2)

then/ is a global bifurcation parameter if the connected compbsgrof (B,ug,vg) in
SU{(B,up,vg)} is unbounded 085 N 7, \ {(5, ug,vs)} # 0.

The bifurcation parameters depend on the eigenvalues of
(2.1) —A¢+ ¢ = M.

The eigenvalue problem (2.1) has a sequence of eigenvaluesl < A\, < \3 < ...
with A\, — oo and multiplicityn, = dim ker(—A + 1 — \,w?) where the kernel has to be
taken inE. In particular, in the radial setting we only consider rddigenfunctions here.
The first eigenvalue; = 1 is simple (2; = 1) with eigenfunctionw > 0. The condition
thatw is non-degenerate means that 3 is not an eigenvalue of (2.1), sq@ # 3 for all

k. Moreover, ifw is a mountain pass solution of (1.3) th&n > 3. More generally, the
Morse indexm(w) of w is given by

(2.2) m(w) =mny + -+ ng, with £y = max{k € N : \; < 3}.

Ouir first result deals with the existence of bifurcation p&in

Theorem 2.1. Assumev is a hon-degenerate solution ¢f.3). There exists a sequence
pr > P2 > Pz > > By > 0> Orgrr > Orgra > 00 > — /i fiz

of bifurcation parameters o{1.2) such that3, — —,/u1jiz ask — oo; herek is as
defined in(2.2). If the multiplicityn, of Ay is odd theng,, is a global bifurcation param-
eter. If iy # o then there are no other bifurcation points alofig except( 3y, ugs, , vg, )
k> 2.If py = po = pthen also( 5y, ug, , vg, ) With 5, = p is a bifurcation point.
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Remark 2.2. a) In the proof of Theorerd.1 we explicitly determine the bifurcation pa-
rameterss, as a function of\,. We also determine explicitly the keriglof the lineariza-
tion of (1.2) with respect tdu, v) at the trivial solution(3, ug, , vg, ). It turns out that its
dimension is the same as the multiplicityof A\, as eigenvalue of2.1). In fact, the rela-
tion betweerl;, and thek-th eigenspace will be made explicit (§8e7)). In particular, if
N = 1 or Qis radially symmetric andv = {u € H}(2) : u is radially symmetri¢ then
n, = 1 forall £ € N.

b) If 111 < u9 then at the end point; = 4, the trivial branch7,, intersects the solution
branch7; = {(3,w:,0) : 3 € R} wherew; = ;5 "*w. So here we have the bifur-
cation of semitrivial solutions of1.2) from 7,,. Looking at it differently, af, w;, 0)
the branchZ,, bifurcates from the branctf; of semitrivial solutions, and the bifurcation
points(3, us,, v, ) are secondary bifurcation points. Theor@m also shows that there
is no secondary bifurcations on the other halfQf with 5 > 5 which meets atf = p»
the solution branct; = {(3,0,w,) : 3 € R} wherew, = p; "/ *w.

c) If u; = pe =: p then at the pointi; = i the bifurcating solutions are explicitely given
by

o cosf)  sinf
(> Up 6, V) = (Ma ﬁwa \/_Q_Mw
For other values of one obtains non-positive solutions of the elliptic systéhe bifur-
cating setS;” := { (1, uup,vu0) : 0 < 8 < I} connectsZ,, with 77, and the bifurcating
setS; = {(1, upo,vu0) 1 T < 6 < I} connectsZ,, with 7,. By [6] at the intersection
ST = {(u, u,, 0)} we have bifurcation from a simple eigenvalue in the senseldf [1
so there are no further solutions ¢i.2) near (u,u,,0) except those contained .

The analogous statement holds né&rnN 75.

d) If \; is a simple eigenvalue qR.1) then the bifurcating connected s8 is in fact a
one-dimensional-curve in a neighborhood @f3;, ug, , vg, ). As stated in a) this applies

if N =1 orin the radial setting.

e) In the caseu; = p; = 1 and (2 a bounded smooth domain, [13, Theorem 1.2] of
Dancer, Wei and Weth states the existencg,ofuch that(1.2) has at least: solutions
for -1 < 8 < (3, and infinitely many solutions fg8 < —1. It seems most likely that
this holds with3, = Or+1- (The index shift occurs becausetthere is no bifurcation

to the left.) However, if the multiplicity, is even then we just obtain local bifurcation
from (Bx, ug,, vs,). And ifny is odd we do not know whether the bifurcating global con-
nected branchs, is unbounded in thg-direction. If so, then as a consequence of [5,
Theorem 1.5] the projectiopr; : R x F x E — R satisfiegr;(S;.) C (—oo, u1), hence
pri(Sg) D (—o0, k). Sk may however be bounded in thecomponent and unbounded
in the (u, v)-component, or it may return t8,,. Comparing Theorer2.1with [13, The-
orem 1.2] suggests that there should exist infinitely maopall solution branchess;
bifurcating from7;, and satisfyingr (S;,) D (—o0, fx)-

f) The first part of the result in Theoreghl about local bifurcations holds also for un-

) for0<9<g.

5



bounded domain& without radial symmetry. This will be clear from the proof ase th
Krasnoselski’s type bifurcation result is applied (see [38, 33]).

We now turn to the two case§¥ = 1 or 2 is radial where we can prove a result as
suggested in Remark 2.2 e). It is well known that (1.3) has guepositive (radial if

N > 2) least energy solutiom which is nondegenerate (in the class of radial functions
if N > 2) and of mountain pass type; see e.g., [27, 28, 37, 16] for #éhews domains.
Consequentlyn(w) = 1 andg;, € (—/fi1i2,0) for everyk > 2. Moreover,n;, = 1 for
everyk € N, so eachy, is a global bifurcation point. The next theorem contains som
information about the global bifurcating branch. Recaltthe setf = {u € H;(Q) :

u is radially symmetri¢ in Theorem 2.3 if the domain is radial.

Theorem 2.3. SupposeN = 1 or € is radial and letw € E be the unique positive
(radial) solution of (1.3). Then for each integek > 2 there exists a connected set
S, C S C R x E x E of solutions(3, u, v) of (1.2)such thatS, N 7,, = { (B, us,,vs,)}
The projectionpr; : S, — R onto the parameter space satisfigs(Sx) D (—o0, Ok )-
For any (3, u,v) € S the difference(p; — 8)'/?u — (uy — 3)"/?v has preciselyk — 1
simple zeroes.

Figure 1: Schematic diagram of the bifurcation scenarjg ik .

Thus in the one-dimensional or radial setting we recoveriamove [13, Theorem 1.2].
If 1n = pp andf < —1 the existence of radial solutioni®, u,v) such thatu — v has
preciselyk — 1 zeroes has been obtained by Wei and Weth in [39, Theoremadk.&]¢ 2
using variational methods which are based on the symngetry) — (v, u) of (1.2) in
the caseu; = u». Theorem 2.3 improves their result considerably by, firgktending

it to a larger range of parametets, 1., 3, in particular to the case without symmetry
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1 # ue, and, secondly, obtaining the additional information tintse solutions lie in
fact on connected branches.

Remark 2.4. a) If Q@ c R? is a ball or an annulus one can prove that there is global
bifurcation at a parameter valug, corresponding to an eigenvalug of (2.1), even if
Ar has no radial eigenfunction, so that Theor@r8does not apply. Sindd..2)and (2.1)
have anSO(2)-symmetry and are variational one can work with itfeorthogonal degree
from [34]. One can also work with the Leray-Schauder degree tedain subspace
E C H}(Q). For the latter approach one chooses € N maximal so that there is an
eigenfunction of(2.1) of the formR(r) cos md; here (r, ) are polar coordinates. Then
one takes to be the set of all functions that are everviand invariant under rotations
of 27r/m in 6. The bifurcating branches are global in the sense stated/atbut we do
not know whether they are unbounded or returi¥{o Even if they are unbounded we do
not know whether they are unbounded in thdirection.

b) Equivariant degree theory can also be used for a bounded syritndomain(2 C R3.

If O C R?is a ball or an annulus(1.2) and (2.1) have anSO(3)-symmetry. Here one
can apply the orthogonatO(3)-equivariant degree. More generally,(if is symmetric
with respect to a subgrou@@ C SO(3) the orthogonalz-equivariant degree can be used
to prove global bifurcation of non-radial solutions. Ddtaare left to the reader and we
just refer to the recent monograph [4] di-equivariant degree theory.

The proof of Theorem 2.3 requires the proof of a-priori baifwt solutiong 3, u, v) with
a bound ons and a bound on the number of nodal domaingf- 3)/?u— (g — 3)'/%v.

Theorem 2.5. SupposeV = 1 or Q is radial. Then, given a compact st C R and
k € N, the set

{(B,u,v) e Rx Ex E: (B,u,v) solveg1.2), 3 € B, and
(111 — B)Y*u — (ue — B)Y?v has at most: zeroe$

is bounded.

These a-priori bounds are a consequence of a Liouville thyg@rem for solutions
(u(r),v(r)) of the system

N —

" / 3 2 i
—u" - = + in (— ,
U= Bvu (—c,00)
(2.3) , N-—-1, 5 ) _
- — = + in (— ,
U = Hev Bu v (—c,00)
u,v >0

with ¢ € [0, oo] fixed. Whenc = co we understand the terms with andv’ disappear.

7



Theorem 2.6. Let (u, v) be a solution of(2.3). Then(u; — 8)Y?u — (us — 8)*?v has
infinitely many zeroes.

In [13, Theorem 2.1] it has been proved that the system
— Au = yu? + fo*u in RY

(2.4) — Av = v + futv in RY
w,v >0 inRY

has no classical solutions providgd > —,/up. This is not true anymore iff <
—/Hipz. For radial solutions, (2.4) reduces to (2.3) with= 0. Our Theorem 2.6
implies that, even if3 < —, /12, (2.4) does not have nontrivial radial solutions such
that(u, — 8)Y2u — (uz — 3)*/?v has only finitely many zeroes.

3 Proof of Theorem 2.1

We first determine explicitly all bifurcation parameters. drder to do this we consider

the function
3 -9 2
o (=g, m) — (1,00),  f(8) = 22 ﬁ(ﬂi+2ﬂ2)+ﬁ_
pifta — 3

It is straightforward to check thaf is a strictly decreasing diffeomorphism mapping
(—v/pipz, 0] to [3,00) and |0, i1) to (1, 3]. Recall the nondegenerate solution> 0
of (1.3) and the eigenvalueg of the eigenvalue problem (2.1).

Lemma 3.1. The only possible bifurcation parameters ate:= f~'(\x), k > 2 (k > 1
if 11 = p2). The dimension of the kernel of the linearization®f2) with respect tqu, v)
at the trivial solution(f, ug, , vs,) is equal to the multiplicity:;, of A, as eigenvalue of
(2.1).

Proof. Linearizing (1.2) at 3, ug, vg) yields the system
(3 1) — A(b + ¢ = 3/1416?3(? + ﬁU%Qﬁ -+ QBUﬁvlgw
' — A + ¢ = 2Bugud + 3pvit + Pujy
or equivalently
(3.2) —Ap+ ¢ = w(ag + by))
' — A+ = w? (bg + )
with

. po — B w1 — 3 :3M1M2—2/ﬁ15—52
e — 32 pphe — 32 p o — 3

(3.3) a=a(f) =3u
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and

\/(lh — B)(p2 — B)
iy — 3

(3.4) b=1b(3) =20

and

p— B i pa — 3 _3M1M2—2M25—52

(3.5) ¢ =clf) = 3u2 papz — 32 paps — 2 piapiz — 3

Let . be the solutions ofy — b = ay — 11?, that is,

a—c 1

(3.6) T = % 2%

(a — c)? + 4b2.
If (¢,) is a solution of (3.2) then a simple calculation shows that~.¢ solves

—A(¢ — 7)) + (¢ — 120) = (a — byz)w’ (¢ — 1)),
and thatu — by_ = 3. Consequentlyp — v_1) solves

—A(¢— 7)) + (¢ — 7-1) = 3w’ (¢ — 7-1).

Sincew is a nondegenerate solution of (1.3) we obtain that v_1. Plugging this into
(3.2) it follows thaty> solves the equation

— A+ = (by_ + c)wip.

Next one easily checks thay_ + ¢ = f(3). It follows that the linearization (3.1) has a
nontrivial kernel if, and only if,f(5) = A, for somek € N. Moreover, in that case the
kernel is given by

(3.7) Vi. = {(v-v, ) : ¢ is an eigenfunction of (2.1) associated\g .

The casef(5) = Ay = 1 corresponds t@ = puy. If u; < pe then we recall from
Remark 2.2b) thaf,, N 7; = {(pt1,w1,0)}, i.e. T, bifurcates fromZ; at that point. This
is a bifurcation from a simple eigenvalue, hence there candburther bifurcation of
solutions of (1.2), where both components have to be pesiit/that point. n

It remains to show that, is in fact a bifurcation parameter. By Remark 2.2c) this is
trivially the case foru; = puy and = (;. Therefore in the sequel we only need to
consider the case > 2. An important role plays the variational nature of the peobl
Solutions of (1.2) are critical points of the functiongl: £ x £ — R given by

1 1
Ja(u,v) = 5 /Q(|Vu|2 + |Vo? + u® 4+ v*) — 1 /Q(ulu4 + ppv?) — g/quvQ.



It is standard to show that; is of classC?. Observe thaf? embeds compactly into
L*(€2); in the case of an unbounded radial domain this is a well kncosequence of a
lemma of Strauss; see [36] or [40, Corollary 1.26]. It follogesily thatV.J is a compact
perturbation of igh,  and that/; satisfies the Palais-Smale condition. ket3) € N, be
the Morse index ofug, vg) as critical point of/Js.

Lemma 3.2. The change of Morse indices at, k > 2, is given by:
ik = ll{ﬂo (m(ﬁk — 6) — m(ﬂk + 5)) = Ng.

The lemma also holds fqr; = puy = patg; = u. We do not prove this here because
the proof is similar to the one we give below and because weotlm@ed the result by
Remark 2.2c).

Proof. Lemma 3.1 impliedi,| < ng. In order to provei, = n; we introduce some
notation. Let

((ug,v1), (ug,v9)) = /(Vu1 - Vug + ugus + Vg - Vg + v109)
Q

be the standard scalar product®Brx E and let|| . || be the associated norm. With respect
to this product we have

Vis(u,v) = (u,v) = (K(uu’ + fvu), K (uav® + fuv))

whereK = (—A+1)~'. Now the Hessiatl{; : (E x E)* — R of Jz at(ug, vg), is given

by
(3.8)

Hsl(¢,0)°] = [l(¢,0)]]> — /Q (a(B)w?” + 2b(B)w ¢t + c(B)w??)
= /Q (IVo]* + ¢* + | Vy|* +¢?) — / (a(B)¢” + 2b(B)pt) + c(B)Y?) w®

Q
with a,b,c as defined in (3.3)—(3.5). Le‘tfﬂi denote the positive (resp. negative)
eigenspace associated f6;, and recall the kernel), of Hg, given in (3.7). For
0 < B < p1 the lemma follows from the following two claims.
CLAIM 1:m(f5) = m(w) + 1for 8 < u; and close tqu,.
CLAIM 2: m(0) = 2m(w)

Postponing the proofs of these claims we first dedyce n; in the rangd) < 3 < ;.
By Lemma 3.1m (/) can only change at = /3, and the change is at mast. Moreover,
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0 < Bk <y isequivalenttal < f(Gx) = \x < 3,i.e.2 < k < ko. From Q_.AIM 1 and
CLAIM 2 it follows that for, < 8 < u; we have

m(w) —1=m(0) —m(B) =is+ -+ ix, <na+ -+ +ng, =m(w) — 1
and hencei, = ny, for 2 < k < k.

Proof of CLAIM 1. LetWW~ C E be the eigenspace of (2.1) associated to the eigenvalues
L =X < X < - < N\ < 3andWT the eigenspace of (2.1) associated to the
eigenvalues < Mg 41 < Ago42 < ---. Then we have

22 2 2 22 22 -
(3.9) /Qw¢ §/§2(1v¢y+¢)gm€0/ﬂw¢ <3/Qw¢ for¢p € W~ \ {0},
and

(3.10) / IV + %) = Mg / w?¢? > 3/ w?¢?  forp € W\ {0}.
Q Q

Q

We claim thatH; is negative definite on the spag€é~ x Rw C E x E and positive
definite on the orthogonal complemdiit™ x (Rw)*. Looking at (3.8) and using (3.9),
(3.10), this follows easily froma(3) — 3, b(5) — 0, andc(5) — 1 asfs — p;. O

Proof of CLAIM 2. The claim follows in the same way using tha&0) = 3 = ¢(0) and
b(0) = 0. Hy is negative definite ofi’ ~ x W~ and positive definite o+ x W+. O

For —\ /i < Br < 0 the equalityi, = n;, = dim V} follows immediately from the
following two claims.

CLAIM 3: For > j3; and close tg3;, Hp is positive definite oﬁ/ﬂt @ Vi and negative
definite onv .

CLAIM 4: Forj3 < (3 and close t@3;, Hy is positive definite oﬁ/ﬂt and negative definite
on Vg‘k P Vi.

Both claims follow fromHs = Hps, + (8 — B)Hp, + o(|8 — Bi]) for B — f if we
can show that the derivative; = %Hﬂm:gk is positive definite on the kern&f,. The
derivative is simply given by

HY((600)) = — /Q ()6 + 2W(B)ows + ¢ (B)?) .

Let (¢,v) = (v-(Br)¥,¥) € Vi \ {0} be an arbitrary nontrivial element of the kernel
(see (3.7)). S@ € E \ {0} is an eigenfunction of (2.1) associated\tpand

1-(8) = WG s )~ O+
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is as in (3.6). We have to show that

(- (B), )] = — / (¢ (B) (B + W (B)r—(B) + ¢ (B)u?)

Q

=~ @O+ W0+ D) [ we?

Q
>0

for 5 = (. Clearlyy_(5) < 0 for all g so it is sufficient to prove that'(5;) < 0,
b'(Br) > 0, andd (Gx) < 0. Fora we have

2 (pape — 28ps + 5?)

(p1pe — B2)?
provided—., /112 < 8 < 0, which is the case for thé,’s which we consider here. Fér
we get

<0

a'(B) =

_ 2p3p3 — AQp + pro)ppaf + Apa a8 — 2 + )3 + B

v >0
) (Hip2 = B2 — B2 (2 — )2
for — /s < B < 0. And finally, for c we have
/ 202 (pr 2 — 2B + 5°)
¢ = — <0
Q (papie — (3%)?
provided—. /12 < 5 < 0. H

In order to prove Theorem 2.1 we shall apply classical bétion results going back to
Krasnoselski [18] and Rabinowitz [31]. However, we need targatee that the bifur-
cating critical points of/; are in fact positive. In order to achieve this we modify the
problem and consider the functionsf : £ x E — R defined by

1 1

g5 (u,v) = —/(’VU’Q + | Vo)? +u? +0?) — = /(ului + pgv) — b /(uivi)
2 /, 1/, 2 /o,
Sl o)

1 p
= 5”(%”) T (Ml\UHi +M2’U+’i) - 5/91&1}3

Hereu, andv, are the positive parts af andv, and|. |, denotes the’-norm. It is
standard to prove that; is of classC*~° and satisfies the Palais-Smale condition. The
Euler-Lagrange equation associated/tds a modification of (1.2):

—Au+u= ului + 6viu+ in Q
(3.11) — Av+v=pvl + fulv, inQ
u,v € HY (),
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This system has only nonnegative solutions as can be seenuliplging the first
equation withu_, the second withy_ and integrating. Consequently every solution of
(3.11) is a solution of (1.2). And every non-negative solutof (1.2) is also a solution of
(3.11). This applies in particular to the elementgpf

We need to recall the concept of critical groups (see e.g29P. For an isolated critical
point (u, v) of J3 with J3 (u, v) = c the critical groups are defined by

C.(J5, (u,0)) = HL((J5)", () \ {(w,0)}).
Here H, denotes singular homology with coefficients in a field.

Lemma 3.3. For 3 € (—\/pfig, ) \ {Br : k € N} (8 > —pif p =y = pp) the
critical groups of (ug, vs) are given bydim Ci.(J5, (us,v3)) = Okm(s), and the local

degree byleg(V.J;, (ug, vz)) = (—1)™?). Herem(p3) is the index of the quadratic form
Hﬁ = D2J5(U@, U@) from (38)

Recall that due to the compact embeddingoihto L*(2), the gradient of]gr is a com-

pact perturbation of igy z, so the Leray-Schauder degree can be applied. By Lemma 3.3
the critical groups ofu;, v) considered as critical point of; or of J; are identical. The
same holds for the local degreesaf/; or of V.J;" at (us, vz). The computation of the
critical groups and the local degree (@fs, vg) with Jg replaced byJs is easy because
VJjs is of classC'. The argument for]; is a bit more complicated becau‘§e]gr is not
differentiable, not even dtug, v3).

Proof. Let Vﬁi be the positive (resp. negative) eigenspac# gf In particulardim V;~ =
m(3) andV; + V5 = E x E. Then there exist subspacé’égt C C3e(Q2) with
dim W, = m(3), clogW; + Wj) = E x E, and such thatf; is negative definite on
W and positive definite ofl/;". Letw, € W be such that spgm,, : n € N} = W
and setVy := Wy +sparfwy : k= 1...,n}. ThenJ; coincides withJ; in a neighbor-
hoodU C (ug,vs) + W} of (ug, vs) in (ug, vg) + Wj. Consequently/; |y is of class
C? and hagug, v3) as a nondegenerate critical point with Morse indefG). Now [7,
Theorem 1.5.10] yieldglim Cy(J;, (ug,vg)) = Orm(s). This in turn implies that the local
degree ofV.J; at (ug, vg) is (—1)"?); see [19, Theorem 3.2]. O

Proof of Theoren2.1. By Lemma 3.2 and Lemma 3.3 the bifurcation theorem for
variational maps as formulated in [25, Theorem 8.9] apphes yields that each
0 is in fact a bifurcation parameter for critical points b[f. The maximum principle
implies that these critical points must be strictly posifiience they are solutions of (1.2).

If the multiplicity n;, of A\ is odd then the crossing numberis not zero by Lemma 3.2
and the local degree ¢f.3, v3) as zero o1VJB+ changes. Then we can apply Rabinowitz’
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global bifurcation theorem; see [31] and [17, Theorem 3|.3In fact, a straightforward
modification of it yields a connected s&t of critical points(j, u, v) of J; bifurcating
from (Bx, ugs,, v, ), andSy is either unbounded or returns1q. If one of the components
u, v IS not strictly positive, then by the maximum principle tksmponent would bé.
That means, there would be bifurcation from one of the (Sgnwal branches

To:=1{(5,0,0) e Rx Ex E: 3 € R},

T = {(5,/11_1/210,0) ERx Ex E:(eR},

or
T = {(3,0, 5 "w) ERX E x E: 3 € R}.

It is clear that there is no bifurcation from,. Due to the results in [6] there is only
one bifurcation point ori/; that produces nonnegative solutions. This isfat
where bifurcation from a simple eigenvalue takes placetlse@roof of [6, Lemma 2.2].
According to the Crandall-Rabinowitz theorem (see [11] or, [Iieorem 1.5.1]) there
is locally a unique bifurcating branch which, in the cagse< ., must be our trivial
branchZ,, N ((—y/fip2, 1) x E x E), soS, N7, = @. Similarly, there is only one
bifurcation point o7, where nonnegative solutions bifurcate, namely at 1,. Again
we have bifurcation from a simple eigenvalue and the unigbwerdating branch here
is T, N ((112,00) x E x E) in the caseu; < ps, S0S; N7 = 0. If uy = py then
S, NT =0 =8, N7, holds fork > 2 according to Remark 2.2c). It follows that all
solutions onS;, must be strictly positive, hence they are solutions of (1.2)

Finally, if S; is bounded there exists a solutioh, «, v) € dSy. \ {(Gk, us,,vs,)}. There
are two possibilities: Eithes, u,v) € T, \ {(8k, ug,,vs,)}, and we are done, or one of
the components, v is not strictly positive. In the latter case, by the maximunmgiple
this component would then lieand we would have bifurcation from one of the (semi-
)trivial branchesl,, 7; or 73, which is not possible as shown above. O

4 Proof of Theorems 2.3, 2.5 and 2.6

We begin with the proof of the Liouville type theorem.

Proof of Theoren?.6. Let(u,v) be a classical radial solution of the system (2.3) such
that (u1 — 8)"?u — (s — 8)"/?v has only finitely many zeroes. i > —,/uii> then

u = v = 0 according to [13, Theorem 2.1]. In fact, for this rangesgéroblem (2.3) has
no classical nontrivial solution at all. Thus we only neectmsider the casg < —1.
The argument below works faf < 1 < ps. We consider the caseis finite, the case

¢ = oo is similar and simpler.
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Supposéu, v) # (0,0). Setting

L p — 3 2
1) ‘T (MQ - 5)

we claim that the differencevu — v must have infinitely many zeroes. The function
au — v solves the equation

N -1
c+r

2

—(ou —v)" — (qu —v) = apu® — Buv + afuv?® — pyv®

= (v’ + (1 = B)(p2 — B)'*uv + pv®) (au — v)

as a simple calculation shows. Settihg= au — v and

q = v’ + (= B)2 (12 — 5)!*uv + pp0?
we obtain the simple equation

(4.2) =S = a0,

CLAIM 1: Givenry > —c such thatf(rg) > 0 and f'(ry) > 0 there exists, > ry with
f'(r) > 0forrg <r < sp, f'(s0) =0.

Proof. Sincef’(ry) > 0 we may assume thag := f(r,) > 0. Now we define
so :=sup{s >ro: f'(r) >0 forry <r < s} € (rg, 0]
and observe that is strongly increasing on the interval, so). Then we have

u(r)>_2M:C—O>O for all » € (7o, so0)
o (0] Q

and thereforg(r) > pu?(r) > pick/a? for r € (rg, s0). This in turn yields

N -1

f”(r) - c+r

fi(r) = a(r) f(r) < —q(r)f(r) < —pucg/a® Torr € (ro, s0),

hences, < oo. [

CLAIM 2: Givensy, > —c such thatf(sy) > 0 and f'(sg) < 0 there exists; > s, with
f(r) >0forsy <r <ry, f(r) =0.
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Proof. If f'(sq) = 0thenf"(sq) = —2=L f'(s9) — q(s0)f(s0) < 0, SO increasing, we

c+3sp

may assume that'(sy) < 0. Now we define

ry = sup{r > sg: f(s) >0 forsy < s <r} € (sg,00]
and want to show that, < co. Observe that
(4.3) ((c+n)"f'() = =(c+1)"lq(r) f(r) < 0.

Therefore(c+r)N~! " is strictly decreasing on the interval, 7). ForN = 1 or N = 2
this implies easily; < co.

It remains to consider the casé = 3. Suppose to the contrary that = oo, hence
f(r) > 0forr > sy. Belowc; denotes various positive constants. We first claim that

(4.4) f(r)y =0  asr— oo.

(4.3) implies(c + r)?f" < 0, hencef’ < 0in [sy, ), and thereforef (r) — ¢; > 0 as
r — oo. If ¢ > 0thenf, henceu, ¢ andqf are bounded away from 0 j&,, cc). Now
(4.3) implies((c + )2 f'(r))’ < —ca(c+ r)? and thus(c + r)2f'(r) < —c3(c + )3 for r
large. This impliesf’(r) — —oo asr — oo, hencer; < oo, a contradiction.

Next we claim that
(4.5) (c+7)2f(r) = —oc0 asr — oo.

In order to see this, observe that (4.2) impliés+r) f)” < 0in [sy, o0), and consequently
((c+7)f) > 0becauséc+r)f > 01in [sg, o). It follows thatf(r) > ¢;/(c+r), hence
q(r) > ca/(c+r)* and

T

e+ 21 0) = s+ [ (et 9P ds == [ (e o)) ds

T0 T0

'

Cq

<03—/ ds — —o0 asr — oo..
ro CT 8

Next we prove that
(4.6) (c+7)%q(r) — oo asr — oo.

By (4.5), for anyC' > 0 there existsR(C') > 0 such thatf’'(r) < —C/(c + r)?* for
r > R(C). Using (4.4) it follows that

f(T):_/ f/(s)dSZ/ mdszc—l——r’
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hence(c + r)f(r) > C and(c + r)%q(r) > C?/a* forr > R(C). SinceC > 0 was
arbitrary, (4.6) follows.

Now (4.6) implies that the differential operatdr := —< ((c+r)?4) — (¢ + r)%q on
L?((sg,0)) is unbounded below. Then [14, Theorem XII1.7.40] implieattfi being a
solution of Df = 0 has arbitrarily large zeroes, contradicting the assumptjo= oc.
This proves CAIM 2. n

We have proved that givery > —c with f(ro) > 0 and f(r) > 0 for r > ry close to
ro there exists; > ry with f(r;) = 0 and f’(r;) < 0. Using analogous arguments one
sees that given; > —c with f(r;) < 0andf(r) < 0 for r > r; close tor; there exists
ro > r1 With f(re) = 0 and f’(ry) > 0. It follows that f = au — v has infinitely many
zeroes. This completes the proof of the Theorem. O

Remark 4.1. Claim 2 in the proof of Theorer.6 in the caseN = 2,3 can also be
derived from [8, Theorem 3.3(iii)] which asserts that\u > u? has no positive solution
in the exterior of a ball if; < % Using the definition of andc > 0, if f < 0 equation

(4.2) yields the inequality-Af > a2 f3. It follows readily thatf cannot be positive
for all r large, sof has to have infinitely many zeroes.

Now we turn to the

Proof of Theoren?.5. This is done by a standard blow-up argument. In dim&ssio
N = 2andN = 3 we write the system in the radial variable= |z| for r € (a, b) with

0 < a < b < oo. Suppose there exists a sequefite u,, v,,) of (radial) solutions of (1.2)
with 8, — 3, ||un|lec — oo and such that the differenég, — 3,)"%u, — (2 — 3,)Y v,
has at most zeroes for every. € N. We may assume thd,, || < ||u.||- @and choose
Ty, such that, (r,) = [|un,|l- Now we set,, := ||u, ||} anda, (r) := e, u,(r, + €,7),
On(r) := epvn(ry + e,7). Then clearlyi,, v, are bounded il > and satisfy the system

_,a// _ 8n(]\[ - ]‘)
" Tn + Enr
en(N —1)

a4 X1y, = s + B0y,
(4.7)

~1I
—V —

on the scaled domaift™ < r < %='=,

n

If N = 1 let the domain bda,b) with —oo < a < b < co. Then, after passing to
a subsequence; ™ and% converge in[—oo, oc|, and (@, v,) converge inC? . as

loc
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n — oo towards a solutiottu, v) of

o u// — M1u3 + 51)2“’
(4.8) — 0" = v + Buv,
u,v > 0.

Here v and v are defined on an interval of the following possible fornis:co, c0),
(—c, 00) with ¢ > 0, and(—o0, ¢) with ¢ > 0. But for the last possibilityu(—r), v(—r))
solves (4.8) orf—c, oo) reducing to the second possibility. In any case, we obtaoia s
tion (u, v) of (2.3) with N = 1 which is nontrivial because(0) = lim,,_., @,(0) = 1.
Observe thaty, — 3)'/?u — (1 — 3)"/?v can have at most simple zeroes because this
holds true for all( 1, — 3) /21, — (2 — 8)/*5,,. This contradicts the Liouville theorem 2.6.

Now we consider the dimensioié = 2 or N = 3. Up to a subsequence we may assume
rn/€n — ¢ € [0,00] asn — oo. Suppose first, /e, — oo along a subsequence, so that
i?(f—g‘}) — 0. Then(a,,?,) converge inC?_. along a subsequence towards a solution
(J,vf of (4.8) on domains of three possible formé:-oo, o), (—¢, 00) with ¢ > 0,
and (—oo, ¢) with ¢ > 0. As above we may reduce the third to the second possibility
and obtain a contradiction with Theorem 2.6 because thetignlus nontrivial and

(1 — B)Y?u — (ug — B)/?v has at mosk simple zeroes.

It remains to consider the case whetgs, — ¢ € [0,00) along a subsequence, so
that E:Tff;) — JL‘?}. Then after passing to a subsequeriég, #,,) converge inC? . as
n — oo towards a solutiofu, v) of (2.3). Sinces,, — 0 we must have,, — 0 anda = 0
which implies thatu, v) solves (2.3) or{0, cc). Again we obtain a contradiction to the

Liouville theorem 2.6. O

Finally we give the

Proof of Theoren2.3. In the one-dimensional and the radial setting all aigkres are
simple, so each bifurcating brané) must be global. Now fo(j3, u,v) € Si near the
bifurcation point(3y, ug, , v, ) the proofs of Lemma 3.1 and Lemma 3.2 imply

u = ug, + (8= Be)v-(Be) ok + o(8 — B)

and
v =vg, + (8 — Br)or +o(B — Br)

asf — [. Herey_(0) is given in (3.6) andyy is thek-th eigenfunction of (2.1). With
a asin (4.1) we claim that

au—v = (8 — fr)adr + o5 — B)
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has precisely: — 1 simple zeroes provided is close ta3,. Here we first note that, has
preciselyk — 1 simple zeroes (see Theorem XII1.7.53 and Corollary 7.56.14df for a
related case, and also [12]). Ngfv= au — v solves, in radial coordinates, the equation

N —1 .
4+ f = o + afoiu — ppv® — putv
,
= (/ilu2 + (1 — B2 (2 — B) v + M2U2) - f

=:q(r)f.

This implies thatf cannot have a double zero because otherwise 0, henceau = v,
which in turn impliesu = ug, v = vg. Now we bootstrap the perturbation teof — 3y,)
from the H'-norm to theC*-norm, so(u,v) converges tQq(ug,,vs,) in the C*-norm
asf — [. If the domain is bounded we easily deduce the claim. If thenaa is
unbounded andg has more thak — 1 zeroes then there have to be zeroeg ofioving
to infinity as3 — (. Then there exist a positive maximum (or a negative minumaoim)
f moving to infinity asG — (. Using the fact that, andv both go to zero as — oo
uniformly for /5 close tos, we get—f" + f = q(r)f with ¢(r) < 1 at a large pos-
itive maximum (or negative minumum)of f, which is not possible. The claim is proved.

_f”_

It follows from the same argument that. — v has preciselys — 1 simple zeroes for
every (6, u,v) € 8 \ {(B, us,.v5,)}. As a consequencdy NT,, = { (G, us,. vs,)},
andS; must be unbounded. Now Theorem 2.5 implies thamust be unbounded in the
(-direction, i.e.pri(Sx) C R is unbounded. Since the branSh cannot approach t@;
for 5 < 0with i = 0, 1,2 and since fog = 0 the only positive solution to (1.2) {3, vo)

it follows thatpr (S),) C (—o0,0), hencepry(Si,) D (=00, fi). O

Acknowledgement: We thank Pavol Quittner who pointed out a gap in the first podof
Theorem 2.6 and told us about the paper [8].
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