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Abstract. In this paper, we focus on the two-dimensional subsonic flow problem for

polytropic gases around an infinite long ramp, which is motivated by a description in

Section 111 of Courant-Friedrichs’ book Supersonic flow and shock waves. The flow is

assumed to be steady, isentropic and irrotational; namely, the movement of the flow is

described by a second-order steady potential equation. By the complex methods together

with some properties on quasi-conformal mappings, we show that a nontrivial subsonic

flow around the infinite long ramp does not exist if the flow is uniformly subsonic.

1. Introduction and main result. In this paper, we will focus on the global sub-

sonic flow problem for the polytropic gases around an infinite long 2-D ramp with cor-

nered point or smooth convex curve (see Figure 1 and 2 below). This problem is motivated

by the following descriptions given in Section 111 of [8]: For the flow around a sharp

corner or body, if the oncoming flow is subsonic, then the problem involves potential

flow, governed by an elliptic differential equation whose solution at any point depends

on the boundary conditions even at remote parts of the boundary, and is more difficult

to treat than in the case of supersonic flow. Indeed, for the supersonic flows past sharp

bodies, thus far there have been many local or global existence results under various

cases; one can see [6], [15], [17], [21], [25] and the references therein. However, there are

few results for the subsonic flow past a sharp body although there are extensive works

for the subsonic flow past a bounded body or an almost half-plane (see [2], [4], [9], [10],
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Fig. 1

Fig. 2

[11], [20], [22], [26] and so on). Recently, under the assumptions that the Mach number

of the subsonic flow is suitably low and the flow field together with its derivatives are

appropriately behaved at infinity, the authors in [16] show that such a subsonic flow does

not move actually. In the present paper, for the 2-D infinite ramp we will prove the same

result as in [16] only under the hypothesis that the flow is uniformly subsonic. From

our result, we know that the phenomenon of the subsonic flow around an infinite ramp

is obviously different than that of a subsonic flow around a bounded body or an almost

half-plane due to the essentially geometrical differences among these obstacles. In the

latter case, the nontrivial subsonic flows can be shown to exist (see [2], [4], [9], [10], [11],

[20], [22] and [26]).

Now we use the potential flow equation to describe the motion of subsonic polytropic

gas in the domains Ω1 = {(x, y) : x ≤ 0, y > 0;x > 0, y > tanθ0x} and Ω2 = {(x, y) : y >

f(x), x ∈ R} respectively. Here f(x) ∈ C2(R), f(x) = 0 for x ≤ −1, and f(x) = tanθ0x

for x ≥ 1, and is convex and strictly increasing for −1 ≤ x ≤ 1. Let φ(x, y) be the

potential of velocity (u, v), i.e., u = ∂xφ, v = ∂yφ. Then it follows from Bernoulli’s law
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that
1

2
|∇φ|2 + h(ρ) = C0. (1.1)

Here h(ρ) =
c2(ρ)

γ − 1
is the specific enthalpy for the polytropic gas with the state equation

P = Aργ (1 < γ < 3, A > 0 is a constant), c(ρ) =
√
P ′(ρ) is the local sound speed, and

∇ = (∂x, ∂y), C0 = 1
2q

2
0 + h(ρ0) is the Bernoulli’s constant.

From (1.1) and the implicit function theorem, the density function ρ can be expressed

as

ρ = ρ(|∇φ|2). (1.2)

Substituting (1.2) into the mass conservation equation ∂x(ρu)+ ∂y(ρv) = 0 yields the

following potential equation

A11(u, v)φxx + 2A12(u, v)φxy +A22(u, v)φyy = 0, (1.3)

where

A11 = 1− u2

c2
, A12 = −uv

c2
, A22 = 1− v2

c2
.

Due to the fixed wall condition, we have on the boundary of Ωi (i = 1, 2)

∂�nφ = 0 on ∂Ωi, (1.4)

where �n represents the unit outward normal to ∂Ωi.

In addition, we assume the flow is uniformly subsonic in the whole domain Ωi; namely,

the Mach number satisfies

M =
|∇φ|
c(ρ)

≤ λ0 for (x, y) ∈ Ωi, (1.5)

where 0 < λ0 < 1 is any fixed constant.

We now state the main result in this paper.

Theorem 1.1 (Nonexistence of a global nontrivial uniformly subsonic flow). Under the

assumption (1.5), if φ ∈ C1,α(Ω̄i) ∩ C2(Ωi) (0 < α < 1) is a solution to (1.3) together

with the boundary condition (1.4), then φ ≡ C in Ωi(i = 1, 2). Namely, (u, v) ≡ (0, 0) in

Ωi.

Remark 1.2. The assumption on φ(x, y) ∈ C1,α(Ω̄1) ∩ C2(Ω1) is plausible from the

regularity theory of solutions to the second-order elliptic equations in the cornered do-

mains (one can see [1, 14, 18] and so on). In fact, at the corner point O of Ω1, the

nonlinear equation (1.3) becomes the Laplacian equation Δφ = 0 due to u = v = 0 at

O. Then it follows from the result in [1] that φ ∈ C1,α(Ω̄1) with α = θ0
π−θ0

holds. With

respect to φ ∈ C2(Ωi)(i = 1, 2), this comes from the Schauder interior estimate (one can

see [12]). In particular, for the case of Ω2, we can further have φ(x, y) ∈ C2,α(Ω̄2) due

to the Schauder interior and boundary estimates.

Remark 1.3. In the case of Ω1, compared with the result in [16], we have success-

fully removed the crucial restrictions on the smallness of λ0 in (1.5) and some artificial

assumptions of ∂α
x,yφ(0 ≤ |α| ≤ 2) at infinity in the present paper.
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Remark 1.4. When θ0 = 0 in Ω1, that is, when Ω1 is an upper-half-plane, then the

result similar to the Bernstein theorem on minimal surface established in [3] holds, which

illustrates that the C2−solution φ(x, y) of subsonic potential equation (1.3) in R2
+ must

be a linear function. This means that the uniform subsonic flow in R2
+ should keep a

constant state.

Remark 1.5. By the dimensionless treatment, the equation (1.3) can be rewritten as

∂x(ρ∂xϕ) + ∂y(ρ∂yϕ) = 0 with ρ = (1− γ − 1

2
|∇ϕ|2) 1

γ−1 and γ > 1. (1.6)

In this case, (1.6) is elliptic when |∇ϕ| <
√

2
γ+1 . We note that (1.6) becomes the

minimal surface equation when γ = −1. The classical Bernstein theorem states that

a C2(R2) solution of the minimal surface equation in R2 must be a linear function.

This is also true in the case when n ≤ 7 for an n-dimensional minimal surface equa-

tion
n∑

k=1

∂k(
∂kϕ√

1 + |∇ϕ|2
) = 0 (one can see [5], [13], [23] and so on). However, in the

unbounded domain of Rn (n ≤ 7) with boundaries (not the whole Rn), the classical

Bernstein theorem sometimes is incorrect; one can see [7, 19] and the references therein.

Remark 1.6. From Theorem 1.1, we can at least conclude that when the subsonic

flow problem (1.3)-(1.4) really has a nontrivial subsonic solution, the flow must attain

its sonic speed at some place of infinity. However, we guess that even if the uniformly

subsonic condition (1.5) is replaced by the subsonic condition M =
|∇φ|
c(ρ)

< 1 in Ωi, the

problem (1.3)-(1.4) still admits only trivial solution φ ≡ C; namely, the velocity of gas

(u, v) ≡ (0, 0) holds.

Now we comment on the proof procedure of Theorem 1.1. Motivated by the com-

plex methods, in particular the theory of quasi-conformal transformations and conformal

mappings with respect to the Riemann metric in [2], [3], and by a careful analysis on

a suitably chosen analytic and homeomorphic function between the domain Ωi and the

unit disk, we can derive that (u(x, y), v(x, y)) ≡ 0 holds in Ωi. Thus, Theorem 1.1 is

established.

Our paper is organized as follows: In §2, we list some basic properties of quasi-

conformal mappings and give some necessary illustrations for the reader’s convenience.

Based on the properties given in §2, we will complete the proof of Theorem 1.1 in §3.

2. Some properties of quasi-conformal mappings. As in [2], [3], we will use the

following concepts.

Definition 2.1 (Smooth Mapping). A homeomorphism mapping ζ(z) = ξ(x, y) +

iη(x, y) of a domain D in the z−plane C is called smooth if the derivatives ξx, ξy, ηx, ηy
exist and are continuous, and the Jacobian J = ξxηy − ξyηx > 0.

Definition 2.2 (Quasi-conformal). A smooth mapping ζ(z) is called quasi-conformal

in the domain D if ξ2x + ξ2y + η2x + η2y ≤ C(ξxηy − ξyηx) holds in D for some positive

constant C.
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Definition 2.3 (Conformal). A smooth mapping ζ(z) in D is said to be conformal

with respect to a Riemann metric g11(x, y)dx
2 + 2g12(x, y)dxdy + g22(x, y)dy

2 if

dξ2 + dη2 = λ(x, y)
(
g11(x, y)dx

2 + 2g12(x, y)dxdy + g22(x, y)dy
2
)
, (2.1)

where λ(x, y), g11(x, y) and g11(x, y)g22(x, y)− g212(x, y) are positive in D.

Here we point out a useful fact that if gij ∈ Cα(D)(0 < α < 1), then there exists a

smooth mapping ζ(z) such that ζ(z) is conformal to the Riemann metric g11(x, y)dx
2 +

2g12(x, y)dxdy + g22(x, y)dy
2 (one can see Lemma 2.5 of [2]).

For later use, we now list some basic properties on the conformal (or quasi-conformal)

mappings and give proofs if necessary for the reader’s convenience.

Lemma 2.4. If the smooth mapping ζ(z) in D is conformal with respect to Riemann

metric g11dx
2 + 2g12dxdy + g22dy

2, and the C1−mapping ζ̃(z) = ξ̃(x, y) + η̃(x, y) in D

satisfies dξ̃2+dη̃2 = λ̃(x, y)(g11dx
2+2g12dxdy+g22dy

2) with λ̃(x, y) ≥ 0 and
∂(ξ̃, η̃)

∂(x, y)
≥ 0,

then ζ̃ is an analytic function of ζ.

Proof. By dξ2 + dη2 = λ(g11dx
2 + 2g12dxdy + g22dy

2) with λ > 0 and dξ̃2 + dη̃2 =

λ̃(x, y)(g11dx
2 + 2g12dxdy + g22dy

2), we have

dξ̃2 + dη̃2 =
λ̃

λ
(dξ2 + dη2). (2.2)

On the other hand, one has

dξ̃2 + dη̃2 =

(
∂ξ̃

∂ξ
dξ +

∂ξ̃

∂η
dη

)2

+

(
∂η̃

∂ξ
dξ +

∂η̃

∂η
dη

)2

=

(
(
∂ξ̃

∂ξ
)2 + (

∂η̃

∂ξ
)2

)
dξ2 + 2

(
∂ξ̃

∂ξ

∂ξ̃

∂η
+

∂η̃

∂ξ

∂η̃

∂η

)
dξdη +

(
(
∂ξ̃

∂η
)2 + (

∂η̃

∂η
)2

)
dη2. (2.3)

(2.3) together with (2.2) yields⎧⎪⎪⎨⎪⎪⎩
(
∂ξ̃

∂ξ
)2 + (

∂η̃

∂ξ
)2 = (

∂ξ̃

∂η
)2 + (

∂η̃

∂η
)2,

∂ξ̃

∂ξ

∂ξ̃

∂η
+

∂η̃

∂ξ

∂η̃

∂η
= 0.

(2.4)

Set A =
∂ξ̃

∂ξ
, B = ∂ξ̃

∂η , C = ∂η̃
∂ξ , D = ∂η̃

∂η . Then (2.4) can be simplified as{
A2 + C2 = B2 +D2,

AB + CD = 0.

By a direct computation, we can arrive at (D2 + B2)(D2 − A2) = 0. Hence, if

D2 +B2 > 0, then D2 = A2; if D2 +B2 = 0, then A = B = C = D = 0; this also means

D2 = A2. That is, D2 = A2 actually holds.

We now assert A = D. Indeed, if not, then there exists a point in D such that

A = −D �= 0. It follows from AB + CD = 0 that B = C. Due to J =
∂(ξ̃, η̃)

∂(ξ, η)
=
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∂(ξ̃, η̃)

∂(x, y)

∂(x, y)

∂(ξ, η)
≥ 0, but J = −D2 − B2 < 0, this is a contradiction. Thus, A = D and

further B2 = C2.

Next, we assert B = −C. Indeed, if not, there exists some point in D such that

B = C �= 0. At this time, A = −D holds by AB + CD = 0. This, together with A = D,

yields A = D = 0. Hence, J = −B2 < 0 is contradictory with J ≥ 0. Namely, B = −C.

It follows from A = D and B = −C that

∂ξ̃

∂ξ
− ∂η̃

∂η
= 0,

∂ξ̃

∂η
+

∂η̃

∂ξ
= 0.

Namely, the Cauchy-Riemann equations of (ξ̃, η̃) on the variables (ξ, η) hold. Thus ζ̃

is an analytic function of ζ and we complete the proof of Lemma 2.4. �

Lemma 2.5. If gij(x, y) ∈ Cα(D) for the Riemann metric g11dx
2 + 2g12dxdy + g22dy

2

and satisfies in D
g11 + g22√
g11g22 − g212

≤ C, (2.5)

with C > 0 a constant, then each conformal mapping ζ(z) = ξ(x, y) + iη(x, y) with

respect to this Riemann metric is quasi-conformal in D.

Proof. Since ζ(z) is conformal with respect to g11dx
2 + 2g12dxdy + g22dy

2, then we

obtain ⎧⎪⎪⎨⎪⎪⎩
ξ2x + η2x = λg11,

ξ2y + η2y = λg22,

ξxξy + ηxηy = λg12.

This derives

λ2g11g22 = λ2g212 + J2

and

J = λ
√
g11g22 − g212 =

√
g11g22 − g212
g11 + g22

(ξ2x + ξ2y + η2x + η2y).

Therefore, we have ξ2x + ξ2y + η2x + η2y ≤ C(ξxηy − ξyηx), and we complete the proof of

Lemma 2.5. �
The following result comes from Lemma 2.10 of [2]; here we omit its proof.

Lemma 2.6. Under a quasi-conformal homeomorphism of a domain D onto a domain Δ,

a non-degenerate boundary continuum of D corresponds to a non-degenerate boundary

continuum of Δ.

Set w∗ = q∗e−iθ (which is called the distorted velocity in [2]), where q∗(q) = q ·
exp

(∫ q

0

√
1−M2(s)−1

s ds

)
with q =

√
u2 + v2,M(q) =

q

c(ρ(q2))
, θ = arctan

v

u
and (u, v)

is a subsonic solution to (1.3).

Let u∗ = Rew∗ and v∗ = −Imw∗; then one has

Lemma 2.7.

(du∗)2 + (dv∗)2 = λ̃(x, y)
(
A22dx

2 − 2A12dxdy +A11dy
2
)
, (2.6)
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where λ̃(x, y) ≥ 0 and
∂(u∗,−v∗)

∂(x, y)
≥ 0 for (x, y) ∈ Ωi (i = 1, 2).

Proof. Due to

∂(u∗, v∗)

∂(x, y)
=

∂(u∗, v∗)

∂(q∗, θ)

∂(q∗, θ)

∂(q, θ)

∂(q, θ)

∂(u, v)

∂(u, v)

∂(x, y)
,

we obtain

∂u∗

∂x
=

(
u2β q∗

q3
+

q∗v2

q3

)
φxx +

(
uβ q∗v

q3
− q∗vu

q3

)
φxy,

∂u∗

∂y
=

(
u2β q∗

q3
+

q∗v2

q3

)
φxy +

(
uβ q∗v

q3
− q∗vu

q3

)
φyy,

∂v∗

∂x
=

(
uβ q∗v

q3
− q∗vu

q3

)
φxx +

(
v2β q∗

q3
+

q∗u2

q3

)
φxy,

∂v∗

∂y
=

(
uβ q∗v

q3
− q∗vu

q3

)
φxy +

(
v2β q∗

q3
+

q∗u2

q3

)
φyy

with β = β(q) =
√
1−M2(q).

This, together with the equation (1.3) and a direct computation, yields

(du∗)
2
+ (dv∗)2 =

(
∂u∗

∂x
dx+

∂u∗

∂y
dy

)2

+

(
∂v∗

∂x
dx+

∂v∗

∂y
dy

)2

=

(
q∗

q2

)2 [((
v2 + u2β2

)
φ2
xx + 2uv

(
β2 − 1

)
φxxφxy +

(
u2 + v2β2

)
φ2
xy

)
dx2

+
((
2 v2 + 2u2β2

)
φxyφxx + 2uv

(
β2 − 1

)
φyyφxx

+ 2uv
(
β2 − 1

)
φ2
xy +

(
2u2 + 2 v2β2

)
φyyφxy

)
dxdy

+
((
v2 + u2β2

)
φ2
xy + 2uv

(
β2 − 1

)
φyyφxy +

(
u2 + v2β2

)
φ2
yy

)
dy2

]
= (

q∗

q
)2
[(

(c2 − u2)φ2
xx

c2
− 2uvφxxφxy

c2
+

(c2 − v2)φ2
xy

c2

)
dx2

+ 2

(
(c2 − u2)φxxφxy

c2
− uvφxxφyy

c2
−

uvφ2
xy

c2
+

(c2 − v2)φyyφxy

c2

)
dxdy

+

(
(c2−u2)φ2

xy

c2
− 2uvφxyφyy

c2
+

(c2 − v2)φ2
yy

c2

)
dy2

]
= (

q∗

q
)2
[(
A11φ

2
xx + 2A12φxxφxy +A22φ

2
xy

)
dx2 +

(
A11φ

2
xy + 2A12φxyφyy +A22φ

2
yy

)
dy2

+ 2
(
A11φxxφxy +A12φxxφyy +A12φ

2
xy +A22φxyφyy

)
dxdy

]
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=

(
q∗

q

)2 [(A22

(
A22φ

2
yy + 2A12φxyφyy +A11φ

2
xy

)
A11

)
dx2

+ (A22φ
2
yy + 2A12φxyφyy +A11φ

2
xy)dy

2

−
(

2A12(A22φ
2
yy + 2A12φxyφyy +A11φ

2
xy)

A11

)
dxdy

]

= (
q∗

q
)2

(
A22φ

2
yy + 2A12φxyφyy +A11φ

2
xy

A11

)(
A22dx

2 − 2A12dxdy +A11dy
2
)

=

(
q∗

q

)2 (
φ2
xy − φxxφyy

) (
A22dx

2 − 2A12dxdy +A11dy
2
)

=

(
exp

∫ q

0

√
1−M2 − 1

s
ds

)2 (
φ2
xy − φxxφyy

) (
A22dx

2 − 2A12dxdy +A11dy
2
)
.

Set λ̃(x, y) =
(
exp

∫ q

0

√
1−M2−1

s ds
)2 (

φ2
xy − φxxφyy

)
; then (2.6) is proved.

In addition,

φ2
xy − φxxφyy =

A2
11φ

2
xx + 2(A11A22 − 2A2

12)φxxφyy +A2
22φ

2
yy

4A12
2 ≥ 0 (2.7)

holds due to the positivity of the matrix

(
A2

11 A11A22 − 2A2
12

A11A22 − 2A12 A2
22

)
by the

subsonic property of (u, v). This yields λ̃(x, y) ≥ 0 in Ωi (i = 1, 2).

On the other hand, we have by a direct computation and (2.7) that

∂(u∗,−v∗)

∂(x, y)
= β

(
q∗

q

)2 (
φ2
xy − φxxφyy

)
≥ 0.

Therefore, we complete the proof of Lemma 2.7. �

3. The proof of Theorem 1.1. Based on some preparations in §2, we now start to

give the proof of Theorem 1.1.

Proof. (i). In the case of Ω1, since the coefficients of the matric A22(u, v)dx
2 −

2A12(u, v)dxdy + A11(u, v)dy
2 is Cα(Ω̄1), it follows from Lemma 2.5 in [2] that there

exists a homeomorphism mapping

ζ(z) : Ω1 −→ D

such that ζ is conformal with respect to the metric A22(u, v)dx
2 − 2A12(u, v)dxdy +

A11(u, v)dy
2 and the domain D is convex. By the hypothesis of uniformly subsonic

flow in Theorem 1.1 and Lemma 2.5, we conclude that ζ is a quasi-conformal mapping

(due to
A11 +A12√
A11A22 −A2

12

≤ 2√
1− λ2

0

by the condition (1.5)). On the other hand, by

the fact that the composite function of the quasi-conformal mapping and the conformal

mapping is still quasi-conformal, it follows from Lemma 2.6 that D = {ζ : |ζ| < 1} and

∂Ω1 = {(x, y) : x ≤ 0, y = 0} ∪ {(x, y) : x ≥ 0, y = tanθ0x} ∪ {(x, y) : x2 + y2 = ∞, x ≥
0, y ≥ 0} → ∂D = {ζ : |ζ| = 1} can be assumed without loss of generality (noting that
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the domain D is conformal to a unit disk by the Riemann mapping theorem). This,

together with Lemma 2.7 and Lemma 2.5, yields that the distorted velocity w̃∗(ζ) =

w∗(z(ζ)) is an analytic function for ζ ∈ D. For notational convenience, we can assume

ζ(0) = 1 and ζ(∞) = −1. It is noted that w̃∗ is continuous up to ∂D \ {−1} by the

assumption on φ ∈ C1,α(Ω̄1). Thus, in order to use the Schwartz reflection principle (see

[24] or so on) and further prove Theorem 1.1 in the case of Ω1, the key point is to show

w̃∗ ∈ C(D̄) and Im
(
w̃∗(ζ)

)
= 0 on ∂D. To this end, we will give the following argument.

Suppose that the parameter equation of ∂Ω1 in complex plane C is

z = p(s) =

{
s if s ≤ 0,

seiθ0 if s > 0.

Let the function s = g(α) be determined by

ζ(p(s)) = eiα, α ∈ (0, 2π),

which is plausible since ζ(z) is a quasi-conformal mapping from Ω1 onto D.

The fixed wall condition (1.4) can be rewritten as

Im(w∗(p(s))eiθ(s)) = 0 on ∂Ω1 (3.1)

with

θ(s) =

{
0 if s ≤ 0,

θ0 if s > 0.

This also means

Im(w̃∗(eiα)eiθ(g(α))) = 0 on ∂D \ {−1}. (3.2)

To prove w̃∗(ζ) ≡ 0 in D, we intend to find a suitable analytic function F (ζ) =

eμ(ζ)w̃∗(ζ) such that F (ζ) ≡ 0 in D.

At first, we look for an analytic function μ(ζ) = μ1(ξ, η) + iμ2(ξ, η) with ζ = ξ + iη

such that Im(F (ζ)) = 0 on ∂D and μ2 = θ(g(α)) on ∂D.

It is noted that θ(g(α)) = θ0 for 0 < α < π and θ(g(α)) = 0 for π < α < 2π. Moreover,

μ2(ξ, η) is harmonic in D. Then by Poisson’s formulae, we have

μ2(ρ, θ) =
1− ρ2

2π

∫ 2π

0

θ(g(α))

ρ2 + 1− 2ρcos(α− θ)
dα =

1− ρ2

2π

∫ π

0

θ0
ρ2 + 1− 2ρcos(α− θ)

dα;

here ζ = ρeiθ with θ ∈ [0, 2π].

Due to
∫ dx

a− cosx
=

2√
a2 − 1

arctan(

√
a+ 1

a− 1
tan

x

2
) for the constant a > 1, in the

case of 0 < θ < π, we have

μ2(ρ, θ) =
1− ρ2

2π

2θ0√
(ρ2 + 1)2 − (2ρ)2

arctan
(1− ρ2)tanα−θ

2

(ρ− 1)2

∣∣∣∣α=π

α=0

=
θ0
π

[
arctan(

1 + ρ

1− ρ
cot

θ

2
) + arctan(

1 + ρ

1− ρ
tan

θ

2
)
]
.
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In the case of π < θ < 2π, we have

μ2(ρ, θ) =
1− ρ2

2π

[∫ θ−π

0

θ0

ρ2 + 1− 2ρcos(α− θ)
dα+

∫ π

θ−π

θ0

ρ2 + 1− 2ρcos(α− θ)
dα

]

=
1− ρ2

2π

[
lim

ε→0+

∫ θ−π−ε

0

θ0

ρ2 + 1− 2ρcos(α− θ)
dα+ lim

ε→0+

∫ π

θ−π+ε

θ0

ρ2 + 1− 2ρcos(α− θ)
dα

]

=
θ0

π

[
lim

ε→0+
arctan(

1 + ρ

1− ρ
tan

α− θ

2
)

∣∣∣∣
α=θ−π−ε

α=0

+ lim
ε→0+

arctan(
1 + ρ

1− ρ
tan

α− θ

2
)

∣∣∣∣
α=π

α=θ−π+ε

]

= θ0 +
θ0

π

(
arctan(

1 + ρ

1− ρ
cot

θ

2
) + arctan(

1 + ρ

1− ρ
tan

θ

2
)

)
.

On the other hand, μ1(ξ, η) can be determined as follows:

μ1(ξ, η) =

∫ (ξ,η)

(0,0)

(μ1)ξdξ + (μ1)ηdη

=

∫ (ξ,η)

(0,0)

(μ2)ηdξ − (μ2)ξdη

= θ0

∫ ρ

0

(μ2)θ(r, θ)

r
dr

=
2θ0cosθ

π

∫ ρ

0

r2 − 1

4r2cos2θ − r4 − 2r2 − 1
dr

=
θ0
2π

ln

(
ρ2 + 1 + 2ρ cos θ

ρ2 + 1− 2ρ cos θ

)
.

Next, we show Im(F (ζ)) = 0 on ∂D and F (ζ) ∈ C(D̄).

Indeed, in terms of (3.2) and the expression of F (ζ), we have Im(F (ζ)) = 0 on

∂D \ {−1} and F (ζ) ∈ C(D̄ \ {−1}). In addition, due to eμ1 =

(
ρ2 + 1 + 2ρ cos θ

ρ2 + 1− 2ρ cos θ

) θ0
2π

and |F (ζ)| ≤ Ceμ1 , we have lim
ζ→−1,|ζ|≤1

F (ζ) = 0. This means that Im(F (ζ)) = 0 on ∂D

and F (ζ) ∈ C(D̄) hold. Consequently, by the Schwartz reflection principle we obtain that

F (ζ) can be analytically extended to the whole complex plane C and, further, F (ζ) ≡ C

in D holds due to Im(F (ζ)) = 0 on ∂D. It follows from lim
ζ→−1

F (ζ) = 0 that F (ζ) ≡ 0.

This implies w̃∗(ζ) ≡ 0 in D and w∗(z) ≡ 0 in Ω1. Namely, u = v ≡ 0 in Ω1. Then we

complete the proof of Theorem 1.1 for the domain Ω1.

(ii). In the case of Ω2, due to the convexity of Ω2, as in (i), it follows from the Riemann

mapping theorem and Lemma 2.6 that Ω2 is quasi-conformal to the unit disk D = {ζ :

|ζ| < 1}. For convenience, we describe the domain Ω2 as follows with A = (−1, 0) and

B = (1, tanθ0).

Without loss of generality, suppose that the quasi-conformal mapping ζ(z) : Ω2 −→ D

satisfies ζ(∞) = −1, ζ(A) = e−iπ
4 , ζ(B) = ei

π
4 .

As in (i), in order to show Theorem 1.1 in the case of Ω2, we intend to find a suitable

analytic function F (ζ) = eμ(ζ)w̃∗(ζ) such that F (ζ) ≡ 0 in D with the same notations of

w̃∗(ζ) and μ(ζ) in (i).
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Suppose that the parameter equation of ∂Ω2 in the complex plane is z = p(s) =

s+ if(s) for s ∈ (−∞,∞). Let the function s = g(α) be determined by

ζ(p(s)) = eiα, α ∈ (0, 2π).

Set μ2(ξ, η) = arctan f ′(g(α)) on ∂D, and then it follows from the harmonic property

of μ2 that we have

μ2(ρ, θ) =
1− ρ2

2π

∫ 2π

0

arctan f ′(g(α))

1 + ρ2 − 2ρ cos(α− θ)
dα.

For notational convenience, we denote by ϕ(α) ≡ arctan f ′(g(α)). Meanwhile, μ1(ξ, η)

can be expressed as

μ1(ρ,θ) =

∫ ρ

0

(μ2)θ(r, θ)

r
dr

=

∫ ρ

0

∫ 2π

0

(1− r2)sin(α− θ)ϕ(α)

π(1 + r2 − 2rcos(α− θ))2
drdα

=

∫ 2π

0

sin(α− θ)ϕ(α)

π
dα

∫ ρ

0

1− r2

(1 + r2 − 2rcos(α− θ))2
dr

=

∫ 2π

0

sin(α− θ)ϕ(α)

π
dα

∫ ρ

0

(
2− 2rcos(α− θ)

(1+r2 − 2rcos(α− θ))2
− 1

1+r2−2rcos(α−θ)

)
dr.

(3.3)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



264 YANG HUI AND YIN HUICHENG

Due to
∫ dx

(a2 + x2)2
=

1

2a2
x

a2 + x2
+

1

2a3
arctan(

x

a
) for the constant a > 0, we have∫

2− 2rcos(α− θ)

(1 + r2 − 2rcos(α− θ))2
dr

=

∫
2− 2rcos(α− θ)(

(r − cos(α− θ))2 + sin2(α− θ)
)2 dr

=

∫
2− 2τcos(α− θ)− 2cos2(α− θ)

(τ2 + sin2(α− θ))2
dτ (set τ = r − cos(α− θ))

=
τ

τ2 + sin2(α− θ)
+

1

sin(α− θ)
arctan

(
τ

sin(α− θ)

)
+

cos(α− θ)

τ2 + sin2(α− θ)

=
r

r2 + sin2(α− θ)
+

1

sin(α− θ)
arctan

(
r

sin(α− θ)

)
. (3.4)

On the other hand, one has∫
dr

1 + r2 − 2rcos(α− θ)
=

1

sin(α− θ)
arctan

(
r − cos(α− θ)

sin(α− θ)

)
. (3.5)

Substituting (3.4)-(3.5) into (3.3) yields

μ1(ρ, θ) =
ρ

π

∫ 2π

0

sin(α− θ)ϕ(α)

1 + ρ2 − 2ρcos(α− θ)
dα

=
ρ

π

∫ 2π

0

∂

∂α

(
ln(1 + ρ2 − 2ρcos(α− θ))

2ρ

)
ϕ(α)dα

=
1

2π
ln(1 + ρ2 + 2ρcosθ)(ϕ(π + 0)− ϕ(π − 0))

− 1

2π

∫ 2π

0

ln(1 + ρ2 − 2ρcos(α− θ))ϕ′(α)dα

=
θ0
2π

ln(1 + ρ2 + 2ρcosθ)− 1

2π

∫ π
4

0

ln(1 + ρ2 − 2ρcos(α− θ))ϕ′(α)dα

− 1

2π

∫ 2π

7π
4

ln(1 + ρ2 − 2ρcos(α− θ))ϕ′(α)dα.

Here we use the fact that ϕ′(α) = 0 for α ∈ [π4 ,
7π
4 ].

It is noted that 1+ρ2+2ρcosθ = |ζ+1|2 and ϕ′(α) is bounded for α ∈ [0, π
4 ]∪ [ 7π4 , 2π].

Then we obtain

eμ1 ≤ C|ζ + 1|
θ0
π and |F (ζ)| ≤ C|ζ + 1|

θ0
π .

As in (i), one has Im(F (ζ)) = 0 on ∂D and F (ζ) ∈ C(D̄) with lim
ζ→−1,|ζ|≤1

F (ζ) = 0,

and we further derive u = v ≡ 0 in Ω2. Consequently, we complete the proof of Theorem

1.1 in the case of Ω2. �
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