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DISSERTATION ABSTRACT 
 
Jason Douglas Hackley 
 
Doctor of Philosophy 
 
Department of Chemistry and Biochemistry 
 
March 2015 
 
Title: A Liquid-helium-free High-stability Cryogenic Scanning Tunneling 

Microscope for Atomic-scale Spectroscopy 
 
 

This dissertation provides a brief introduction into scanning 

tunneling microscopy, and then Chapter III reports on the design and 

operation of a cryogenic ultra-high vacuum scanning tunneling 

microscope (STM) coupled to a closed-cycle cryostat (CCC).  The STM is 

thermally linked to the CCC through helium exchange gas confined 

inside a volume enclosed by highly flexible rubber bellows.  The STM is 

thus mechanically decoupled from the CCC, which results in a 

significant reduction of the mechanical noise transferred from the CCC to 

the STM.  Noise analysis of the tunneling current shows current 

fluctuations up to 4% of the total current, which translates into tip-

sample distance variations of up to 1.5 picometers.  This noise level is 

sufficiently low for atomic-resolution imaging of a wide variety of 

surfaces.  To demonstrate this, atomic-resolution images of Au(111) and 

NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on 

Au(111), were obtained.  Other performance characteristics such as 

thermal drift analysis and a cool-down analysis are reported.  Scanning 
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tunneling spectroscopy (STS) measurements based on the lock-in 

technique were also carried out and showed no detectable presence of 

noise from the CCC.  These results demonstrate that the constructed 

CCC-coupled STM is a highly stable instrument capable of highly 

detailed spectroscopic investigations of materials and surfaces at the 

atomic-scale. 

A study of electron transport in single-walled carbon nanotubes 

(SWCNTs) was also conducted.  In Chapter IV, STS is used to study the 

quantum-confined electronic states in SWCNTs deposited on the Au(111) 

surface.  The STS spectra show the vibrational overtones which suggest 

rippling distortion and dimerization of carbon atoms on the SWCNT 

surface. This study experimentally connects the properties of well-

defined localized electronic states to the properties of their associated 

vibronic states. 

In Chapter V, a study of PbS nanocrystals was conducted to study 

the effect of localized sub-bandgap states associated with surface 

imperfections.  A correlation between their properties and the atomic-

scale structure of chemical imperfections responsible for their 

appearance was established to understand the nature of such surface 

states. 

This dissertation includes previously published and co-authored 

material. 
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CHAPTER I 

INTRODUCTION 

 

1.1.  Background 

More than forty years ago, Binnig and Rohrer invented the 

scanning tunneling microscope (STM) in a 27-month period while at IBM 

and published their first papers in 1982.1–4  Since then, the STM has 

proven to be an invaluable tool in nanoscience as it allows the 

investigator an unprecedented glimpse of an atom, molecule, 

nanoparticle, surface, or defect site—to probe local phenomena at the 

nanoscale.  Scanning tunneling microscopy is an art-form that allows 

one to reach out and “touch” atoms.5   

The STM is regularly used to perform surface topography scans (in 

constant current, or constant height modes) to reveal the real-space 

structure of a material,6 scanning tunneling spectroscopy (STS, 

measurements which obtain current vs. voltage spectra, I/V, or also 

differential conductance spectra, dI/dV) to measure the local density of 

states (LDOS) [REF???], and second-order differential conductance 

(d2I/dV2) for inelastic electron tunneling spectroscopy (IETS) to measure 

vibrational spectra of adsorbates.7,8  As discussed in a recent review, the 

STM has matured since its inception and is now routinely used to 

measure spatially resolved electromagnetic properties, atomically resolve 
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surface chemistry, perform high-resolution optical microscopy and 

spectroscopy, and visualize spatial structure in electronic, magnetic, and 

bosonic materials.9 

 Typically, high-performance STMs are operated at cryogenic 

temperatures in an ultra-high vacuum (UHV) environment, although, 

STMs may also achieve quality results in ambient conditions, as well as 

in gaseous10 or liquid11 environments, with experiments ranging from a 

few tens of mK12,13 to nearly 1000 K.14  The aforementioned qualities 

make the STM well-suited for use in a variety of research fields, 

especially those areas involved in nanotechnology.9 

 The STM can obtain atomic resolution images when its tip 

(commonly W, Pt-Ir, or Ag in our case) comes into close proximity 

(usually 5 to 10 Angstroms) with the sample surface (metallic or 

semiconducting), and when a single atom of the tip (meaning, the tip is 

atomically sharp) is closer to the surface than the other bulk atoms of 

the tip (Fig. 1.1).  The sharp tip will produce atomic resolution due to the 

tunneling probability decreasing exponentially with distance; that is, as 

the tunneling barrier width increases, conductance across the tunneling 

junction decreases about one order of magnitude for every 0.1 nm 

increase in gap distance.1   
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Figure 1.1.  Cartoon schematic showing one atom of the tip is closer to 
the sample surface than the bulk atoms of the tip.  The image also 
idealizes the narrow conduction channel for current flow. (Image from5 
modified by author.) 
 

 

Attaching the STM tip to piezoelectric motors offers the fine-control 

necessary for atomic resolution.  In the first STM created by Binnig and 

Rohrer, the louse-type,2 the three spatial dimensions (x, y, and z) of the 

STM scanner are individually controlled by their own piezoelectric motors 

(Fig. 1.2.(a)).  While another more recent type of STM, the Pan-type,15 

used in this dissertation, scanning is conducted by a single piezotube 

having electrical connections which apply perpendicular voltages that 

cause the scan tube to bend in the x- or y-directions (or a combination of 

the x- and y-directions), and to expand or contract in the z-direction (Fig. 
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1.2.(b, c)).  By controlling the voltages applied to the scanner piezoelectric 

motors, the tip raster scans the surface in the x-y plane while the tip 

height over the surface is controlled by the z-motor and STM current 

feed-back loop. 

 

 

Figure 1.2.  Types of Scanners.  (a)  The traditional tripod style of 
scanner showing that a STM tip was attached to three mutually exclusive 
piezoelectric motors.2  (b)  The newer type of scanner made of a tubular 
piezoelectric crystal (shown in white) whereby perpendicular voltages are 
applied to the tube electrodes (shown in gold) such that the tube flexes 
for x-y tip motion, and stretches/contracts to accommodate height 
change while scanning.  The STM tip (not shown) is attached to the end 
of the piezo tube such that the tip and tube axes are parallel.  (c)  
Diagram showing the polarization vector and position of electrodes on (b) 
for scanner control.  Images (b) and (c) from16 with (b) modified by 
author. 
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The fine-control of the z-direction piezoelectric motor is used to 

move the tip sufficiently close enough to the sample such that the 

electronic wavefunctions of the separate tip and sample states overlap in 

the vacuum barrier.  Even though the wavefunctions overlap, there is no 

net current across the tunneling junction until a bias is applied to the 

tunneling junction.  By convention, a tunneling junction with a positive 

bias means electrons are promoted such that they flow from the occupied 

states of the tip, across the tunneling barrier, and into the unoccupied 

states of the sample, or vice versa for negative bias; current is typically in 

the 1 to 1000 pA range, and bias is typically from a few millivolts up to 

around 10 V, although our experiments rarely use bias voltages higher 

than 5 V.  The current across the tunneling junction is collected by the 

STM with the R9 software developed by RHK. 

The STM described in this dissertation has room temperature 

scanning capabilities of 6.3 micrometers of total lateral (x, y) fine-scan 

motion, and about 1 micrometer of total fine-scan motion in the z-

direction; at liquid helium temperatures, the aforementioned values are 

about one-fourth the room temperature motion.  Chapter III will discuss 

the performance of the CCC STM in greater detail. 

 

1.2.  Motivation for Research  

Personally, the main motivation for conducting this line of 

investigation was to do what had not yet been done; to push the 
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boundaries of understanding by solving a problem which had not yet 

been solved.  Accordingly, the main question to be asked in is whether it 

is feasible to couple a CCC to a STM?  Meaning, could atomic-scale 

results for STM and STS experiments be obtained with a liquid-helium 

“refrigerator” mounted on top of our STM?  The idea seems like a logical 

step in the evolution of the two technologies, although it has yet to be 

completed and successfully reported in literature.  Sometime over 6 years 

ago ARS, Inc. improved their commercially available CCC product line to 

the point that CCC vibrations were no more than 5 nm at the cold-finger 

(see Chap. III).  Before then it was commonly believed that coupling a 

CCC to a STM could not produce atomic-resolution results due to 

mechanical vibrations.  Combined with the newly available ARS, Inc. 

CCC (CS202PF-X20B) and the inherent rigidity of the Pan STM,15 the 

research described in set out to investigate the feasibility of mating the 

new CCC design to a Pan STM with the aim of resolving atomic-scale 

electronic features and conducting atomic-scale spectroscopy. 

Practically, the main motivation behind this dissertation is the 

projected scarcity (see Chap. III) and cost of helium since it must be 

mined from the earth.  Unless humans find a new reservoir of helium, 

helium costs will increasingly become a more significant part of research 

budgets, possibly driving small-budget research groups out of business.  

Since the advent of the STM until now, STMs have traditionally used 

either flow- or bath-type cryostats to obtain cryogenic temperatures.  One 
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major drawback to the flow- or bath-type cryostats is the cryogen 

(usually liquid helium, or liquid nitrogen) used to cool the experiment is 

boiled off and exhausted to atmosphere; cryogen is consumed on every 

low-temperature experiment conducted.  It is possible to use a helium 

liquefier to collect the exhaust gas from the flow- and bath- type 

cryostats, such that the cryogen can be recompressed and purified for 

reuse.  These types of recapture systems can be cost-prohibitive, since 

larger-scale liquefiers require a trained worker to operate and monitor 

the process, such as the one previously operated at the University of 

Oregon from circa 1970 to 1990.17   As the price of helium continues to 

climb, helium liquefiers may become more attractive. 

The drawback of using a CCC on a STM is the baseline cryogenic 

temperature is a few degrees Kelvin higher than the liquid helium 

temperature of 4.2 K.  In our case, the lowest stable temperature 

obtained was ~11.5 K, although most experiments were conducted near 

15 to 16 K due to temperature creep of the CCC. 

The secondary benefit to having a CCC coupled to a STM is that we 

can remain on a subject of interest (nanoparticle, molecule, particular 

surface site, etc.) with very little thermal drift (0.18 A/h, refer to Chap. 

III) and we can remain at the site indefinitely (over 30 days so far). 

The CCC STM will find its niche in research groups in that it can 

operate at cryogenic temperatures seemingly indefinitely without 

consuming cryogen (and, thus, grant money).  Of course, the initial 
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hardware cost for the CCC is greater compared to a standard flow-type 

cryostat, but the initial hardware cost could be recovered after 

approximately one year of CCC STM experiments (as a quick estimate: 

our CCC hardware purchase price was ~$40,000, assuming not having to 

spend $1,000 per dewar of liquid helium per experiment, conducting one 

experiment per week while assuming 40 weeks of up-time, and allowing 

for 12 weeks of down-time and maintenance, hence 1 year).   

The scientific community will benefit greatly from a nano-scale 

instrument capable of cryogenic measurements that uses very little, if 

any, helium, and which also facilitates long-term experiments with 

minimal thermal drift.  The design, construction, and performance of the 

first ever STM coupled to a closed-cycle cryostat is described in this 

dissertation.   

 

1.3.  Overview of Dissertation 

 Chapter I provides a brief background of STM, discusses the 

motivation of the dissertation, and also contains a dissertation outline.  

Chapter II will provide a brief background of STM along with the basic 

theoretical background of tunneling.  Chapter III was previously 

published in Review of Scientific Instruments with D. A. Kislitsyn, D. K. 

Beaman, S. Ulrich, and G. V. Nazin and describes the construction, 

design, and performance of the CCC STM.  Chapter IV continues with the 

discussion of the CCC STM performance in a previously published paper 



9 

in the Journal of Physical Chemistry Letters with D. A. Kislitsyn, and G. 

V. Nazin and demonstrates the capability of the CCC STM to resolve 

vibrational excitations in electron transport through carbon nanotube 

quantum dots.  Chapter V continues the discussion of the CCC STM 

performance in a previously published paper in the Journal of Physical 

Chemistry Letters with D. A. Kislitsyn, C. F. Gervasi, T. Allen, P. K. B. 

Palomaki, R. Maruyama, and G. V. Nazin and demonstrates the ability of 

the CCC STM to spatially resolve sub-bandgap states within individual 

lead sulfide nanocrystals.  Chapter VI discusses future prospects of the 

research described in and concludes this dissertation. 
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CHAPTER II 

SCANNING TUNNELING MICROSCOPY 

 

2.1.  Theory of Electron Tunneling   

 Electron tunneling is quantum mechanical effect whereby a 

particle with energy less than a potential barrier, non-destructively 

penetrates one side of a potential barrier, and then exits the other side of 

the barrier with its initial energy intact.  This effect is not observed in 

classical mechanics.  Classically, if a human being throws a tennis ball 

at a brick wall, the ball will not penetrate the wall and exit the other side.  

Quantum mechanically, though, the electron’s energy is below the energy 

level of the wall (barrier), yet it still burrows (tunnels) through the wall 

with no loss in energy.  That is, the electron does not have enough energy 

to overcome the barrier, yet, with a small but finite probability, it may 

still be found on the opposite side of the barrier continuing unabated on 

its path. 

 In an effort to understand how tunneling takes place in a STM, it 

will help to look at the one-dimensional model of tunneling as presented 

in 1.  By convention, electrons tunnel through the barrier in the z-

direction, while the STM tip raster scans the x- and y-directions.  

Classically, an electron having energy E while moving through a potential 

V(z) can be described by the equation 
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௭ଶ2݉݌  ൅ ܸሺݖሻ ൌ ሺ2.1.1ሻ ,ܧ
 

with momentum p, and electron mass m.  Quantum mechanically an 

electron is described by its wavefunction ߰ሺݖሻ such that the electron 

state can be determined using the Schrodinger equation, 

 ቈെ ԰ଶ2݉ ݀ଶ݀ݖଶ ൅ ܸሺݖሻ቉߰ሺݖሻ ൌ ሻ. ሺ2.1.2ሻݖሺ߰ܧ
 

The specific (eigen) solutions for the equation in the classically allowed 

regions (where E > V) are 

 ߰ሺݖሻ ൌ ߰ሺ0ሻ݁േ௜௞௭ ሺ2.1.3ሻ
 

and where k is the wave vector 

 ݇ ൌ ඥ2݉ሺܧ െ ܷሻ԰ . ሺ2.1.4ሻ	
Moving in either the positive or negative direction, the electron has a 

constant momentum such that  

௭݌  ൌ ԰݇ ൌ ඥ2݉ሺܧ െ ܷሻ. ሺ2.1.5ሻ
 

In the regions that are forbidden classically, that is, where the energy of 

the electron is lower than the potential barrier energy, the solution to the 

Schrodinger equation is a decaying function where 

 ߰ሺݖሻ ൌ ߰ሺ0ሻ݁ି఑௭, ሺ2.1.6ሻ
 

with decay constant 
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ߢ  ൌ ඥ2݉ሺܷ െ ሻ԰ܧ . ሺ2.1.7ሻ
 

Equation 2.1.6 is a solution for an electron penetrating the barrier in the 

positive z-direction where the probability density for the electron at z is 

 |߰ሺݖሻ|ଶ ∝ |߰ሺ0ሻ|ଶ݁ିଶ఑௭. ሺ2.1.8ሻ
 

Therefore, inside the forbidden region there is a nonzero probability of 

finding the electron.  While an electron moving in the negative z-direction 

has the solution 

 ߰ሺݖሻ ൌ ߰ሺ0ሻ݁఑௭. ሺ2.1.9ሻ
 

Hence, an electron can penetrate the potential barrier and tunneling can 

take place.  Showing that an electron has a small but finite probability of 

tunneling through the vacuum barrier of the STM junction. 

 

2.2.  Bardeen’s Approximation and STM Imaging 

 The first theoretical model to describe experimental results of STM 

tunneling was provided by Tersoff and Hamann2 as they applied a 

modified version of Bardeen’s transfer Hamiltonian method3 to the STM 

junction.  In Bardeen’s paper he expanded on the original tunneling 

experiments of Giaver,4 and Nicol et al,5 who made qualitative sense of 

their data assuming that the density of states was the relevant factor in 

electron tunneling.  Bardeen made sense of the tunneling current using 

Fermi’s Golden Rule for the probability of a transition, namely, that an 
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electron would transfer from the tip to the sample, or vice versa.  The 

expression for a transition with probability w is 

ݓ  ൌ ԰ߨ2 หܯఓఔหଶߩ௙, ሺ2.2.1ሻ
 

with matrix elements ܯఓఔ, and energy density of final states ߩ௙, while 

assuming ܯఓఔ to be a constant.  For positive bias of the tunneling 

junction, w represents the rate at which tip electrons tunnel into 

available states of the sample.  Bardeen continued his treatment with the 

implication that for the small energy differences involved, ܯఓఔ is 

independent of energy.3  

 Tersoff and Hamann showed the tunneling current I can be 

determined using first-order perturbation theory, due to the weak 

coupling between the sample and tip,6 such that 

 
 
 

ܫ ൌ ԰݁ߨ2 ෍ ݂ሺܧఓሻఓఔ ሾ1 െ ݂ሺܧఔ ൅ ܸ݁ሻሿ ൈ หܯఓఔหଶߜሺܧఓ െ 	,ఔሻܧ ሺ2.2.2ሻ
 
with Fermi function f(E), applied voltage V, tunneling matrix elements ܯఓఔ between the tip and sample state wavefunctions (߰ఓ and ߰ఔ, 
respectively), and energy ܧఓ being the energy of ߰ఓ when no tunneling 

events are taking place.  The above equation can be simplified in the case 

of small voltages and low temperatures (when the Fermi function 

behaves as a step function) such that 

ܫ  ൌ ଶܸ԰݁ߨ2 ෍หܯఓఔหଶߜሺܧఔ െ ிሻఓ,ఔܧ ఓܧ൫ߜ െ .ி൯ܧ ሺ2.2.3ሻ
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Now, as per Bardeen,2,3 if the wavefunctions for each separate electrode 

are known, then one can calculate the tunneling matrix 

ఓఔܯ  ൌ െ ԰ଶ2݉න݀ Ԧܵ ∙ ሺ߰ఓ∗߰׏ఔ െ ߰ఔ߰׏ఓ∗ሻ , ሺ2.2.4ሻ
 

where the integral is over a separation surface located somewhere within 

the vacuum region between the two electrodes; it is not necessary to 

know precisely where the separation surface is drawn.1   

 Continuing on with their model, Tersoff and Hamann7 modeled the 

STM probe as locally spherical at the tip, such that Equation 2.3 above 

simplified to 

ܫ  ∝෍|߰ఔሺݎԦ଴ሻ|ଶ ఔܧሺߜ െ ிሻఔܧ , ሺ2.2.5ሻ
 

with the surface local density of states (LDOS) of the sample defined as 
 
 
,Ԧ଴ݎఔሺߩ  ிሻܧ ≡෍|߰ఔሺݎԦ଴ሻ|ଶ ఔܧሺߜ െ ிሻ,ఔܧ  ሺ2.2.6ሻ
 
 
where ߪ is in ohms-1, distances are in atomic units, energy in units of eV, 

and ߩఔሺݎԦ଴,  ிሻ is the LDOS of the tip surface.  Therefore, in the constantܧ

current topography mode (used in this dissertation), the scanned images 

are related to contour scans of constant surface (sample) LDOS.  
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2.3.  Scanning Tunneling Spectroscopy 

 Continuing on with the work of Bardeen, Tersoff, and Hamann, 

Chen1 shows that to understand STM spectroscopy results, one can start 

with Equation 2.2.2 above.  At a bias voltage V, the tunneling current 

can be determined by summing over the relevant states.  For the 

temperature range of typical STM experiments, the electrons in the tip 

and sample states obey the Fermi distribution.  Thus, the tunneling 

current becomes 

 

ܫ														  ൌ ԰݁ߨ4 න ሾ݂ሺܧி െ ܸ݁ ൅ ߳ሻ െ ݂ሺܧி െ ߳ሻሿ 																		ஶ
ିஶൈ ఓߩ ሺܧி െ ܸ݁ ൅ ߳ሻ ிܧఔሺߩ ൅ ߳ሻ|ܯ|ଶ݀߳ ሺ2.3.1ሻ

 
 

respectively, and the Fermi distribution is 

 

 ݂ሺܧሻ ൌ 11 ൅ exp ቀܧ െ ி݇஻ܶܧ ቁ . ሺ2.3.2ሻ
 
 

The Fermi distribution can then be approximated as a step function if ݇஻ܶ is smaller than the energy resolution of the measurement, such that 

the tunneling current becomes 

 

ܫ  ൌ ԰݁ߨ4 න ఓ௘௏ߩ
଴ ሺܧி െ ܸ݁ ൅ ߳ሻ ிܧఔሺߩ ൅ ߳ሻหܯఓఔหଶ݀߳. ሺ2.3.4ሻ
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Drawing on Bardeen’s above assumption that the tunneling matrix ܯఓఔ is 

constant in the range of measurements, one can see that the STM 

tunneling current is a convolution of the tip and sample density of states 

as follows, 

ܫ  ∝ න ఓ௘௏ߩ
଴ ሺܧி െ ܸ݁ ൅ ߳ሻ ிܧఔሺߩ ൅ ߳ሻ݀߳. ሺ2.3.5ሻ

 

We can now simplify the above equation by assuming that a metallic tip 

has a constant LDOS in the relevant energy interval such that 

ܸ݀ܫ݀  ∝ ிܧఔሺߩ ൅ ܸ݁ሻ. ሺ2.3.6ሻ
 

Thus, differential conductance (dI/dV) is a direct measurement of the 

sample local density of states. 

 

2.4.  Bridge to Chapter III 

Equipped with the above elementary principles of quantum 

tunneling as applied to STM, we set out to prove the operational 

feasibility of coupling a CCC to an STM.  With the main thrust of the 

work being the construction of a novel CCC UHV STM.  The novel system 

was characterized by conducting topography scans on atomically clean 

and atomically flat surfaces of Au(111), NaCl(100)/Au(111), and carbon 

nanotubes (CNTs) deposited onto Au(111); conducting scanning 

tunneling spectroscopy (dI/dV) on CNTs; analyzing thermal drift of the 

tip piezoelectric motors; carrying out noise analysis of the tunneling 
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current as a result of cryostat vibrations; and, finally, the cool-down 

performance of the CCC was also characterized.  These details are 

discussed in Chapter III. 
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CHAPTER III 

 

A HIGH-STABILITY CRYOGENIC SCANNING 

TUNNELING MICROSCOPE BASED ON  

A CLOSED-CYCLE CRYOSTAT 

 

This work was previously published with coauthors Jason D. 

Hackley, Dmitry A. Kislitsyn, Daniel K. Beaman, Stefan Ulrich, and 

George V. Nazin, in the Review of Scientific Instruments 85, 103704 

(2014), doi: 10.1063/1.4897139, © 2014 AIP Publishing LLC. 

 

3.1.  Introduction 

          Now in its fourth decade of existence, scanning tunneling 

microscopy (STM)1 has become an essential tool that has provided 

unique insights into the atomic structures of a wide variety of surfaces 

and nanoscale systems. Scanning Tunneling Spectroscopy (STS)1 is one 

of the important capabilities of STM that provides atomic-resolution 

information about the electronic structures of sample surfaces.  STM 

experiments probing the spatially-dependent spectroscopic properties of 

surfaces at the atomic scale typically require ultra-high vacuum (UHV) 

conditions and cryogenic temperatures: UHV enables preparation and 

use of well-defined atomically clean surfaces, while low-temperatures 
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greatly enhance the mechanical stability of the STM junction, freeze the 

motion of weakly-bound adsorbates, and improve the spectroscopic 

resolution of STM by reducing the thermal broadening of spectroscopic 

features. The majority of STM systems intended for high-performance 

STS experiments have so far been constructed coupled to a variety of 

different cryostats, such as continuous-flow2-4 or bath-cryostats.5-7 So 

far, operation of all of these cryostats relied on the use of cryogens, with 

the best operating conditions achievable with liquid helium.   The 

dramatic increase of liquid helium costs over the past decade8 has led to 

a situation where using liquid-helium for STM instruments is becoming 

prohibitively expensive. Near-future projections predict further price 

increases by up to 50%.8 Development of a cryogen-free STM operating at 

near liquid-helium temperatures is thus important for sustaining the 

current level of activity of STS-based studies in a variety of research 

fields.   

In this communication, we present a novel cryogenic UHV-STM 

instrument that, for the first time, achieves temperatures as low as 16 K 

by using a closed-cycle cryostat (CCC).9  The cryostat is based on the 

Gifford-McMahon (GM) design, which uses recirculating helium-gas thus 

obviating the need for liquid helium.  The use of a CCC for STM is 

counterintuitive due to the inherent noise of CCCs: GM cold-heads, in 

particular, incorporate moving parts located in close proximity of the cold 

finger where instrumentation is typically mounted. Another variation of 
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CCC, pulse-tube based refrigerators also display significant mechanical 

vibrations.10 By using a novel CCC, which is thermally linked to the STM 

system through helium exchange gas confined inside a volume confined 

by highly flexible rubber bellows, we have achieved a significant 

reduction of the mechanical noise transferred from the CCC to the STM.  

The performance of the new STM is comparable to the established 

designs based on the continuous flow- or bath-cryostats. Noise analysis 

of the tunneling current shows current fluctuations up to 4% of the total 

current, which translates into tip-sample distance variations of up to 2 

picometers.  This noise level is sufficiently low to allow atomic-resolution 

imaging of most surfaces typically studied with STM, as demonstrated in 

this manuscript using Au(111) and NaCl(100)/ Au(111) surfaces, as well 

as carbon nanotubes deposited on Au(111).  With the need for 

conservation of liquid helium removed, we are able to actively stabilize 

the temperature of the scanner using a heater controlled by a feedback 

mechanism.  This enables temperature stability on the scale of +/-1 

milli-Kelvin, which leads to extremely low lateral and vertical (tip-sample 

distance) drift rates.  Thermal drift analysis showed that under optimized 

conditions, the lateral stability of the STM scanner can be as low as 0.18 

Å/hour.  STS measurements (based on the lock-in technique) with the 

new STM show no detectable presence of noise from the closed-cycle 

cryostat.   
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3.2.  System Design 

3.2.1.  STM/Scan Head 

Despite the mechanical separation of the STM chamber from the 

CCC, residual mechanical noise appearing as spikes of up to 5 

nanometers can still be present on the cryostat cold-finger mounted on 

the STM chamber side.11  These vibrations have a low frequency of 2.4 

Hz, which makes it imperative for the STM scanner assembly (including 

the sample and sample holder) to be as rigid as possible.  The Pan-style 

design6 was therefore chosen for the STM scanner, as it is one of the 

most rigid designs developed so far.  The scan-head was designed in 

cooperation with RHK Technology, Inc., which has pioneered the 

commercial development of Pan-style STM scanners.12  

The STM scanner, constructed by RHK Technology, incorporates a 

set of piezo-drive positioners, which, in addition to the coarse approach 

capability realized by a Pan-style Z-positioner, allow lateral coarse-

positioning of the sample using a combined XY piezo-drive positioner.13  

The total range of all three positioners covers a volume of 8 mm x 4.5 

mm x 4.5 mm.  The positioners are assembled onto a rigid gold-coated 

molybdenum housing (Figure 3.1). Molybdenum was chosen because in 

addition to high stiffness, it possesses good thermal conductivity and a 

low thermal expansion coefficient that is a good match for other 

components of the system.  The body of the scanner was designed to 

accommodate an additional set of piezo motors for positioning of optics 
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for Scanning Tunneling Luminescence experiments.14-17 The constructed 

STM scanner is highly immune to external vibrations and is capable of 

atomic-resolution imaging (of graphite surfaces) in ambient conditions 

with minimal vibrational isolation (for example, a rubber pad placed 

under the scanner was found to be sufficient). For optimal vibrational 

isolation, our STM is suspended on stainless steel springs, and is eddy-

current damped by eight samarium-cobalt magnets attached to the STM 

body (Figure 3.1).  Each spring consists of two sections connected with a 

ceramic/stainless-steel coupler acting as an electrical and thermal 

break.  The natural frequency of the hanging STM is 1.7 Hz, below the 

fundamental noise frequency generated by the CCC. 

 

3.2.2.  Radiation Shields 

To achieve near-liquid helium temperatures, our design 

incorporates two nested thermal radiation shields constructed from gold-

plated oxygen-free high-conductivity copper (Figure 3.1).3  The two 

radiation shields are mounted to two cooling stages of the CCC: the outer 

thermal shield is attached to the first cooling stage (not shown), which 

during experiment is at 25-35 K; and the inner radiation shield is 

attached to the second cooling stage (Cold Finger in Figure 3.1), and is 

typically at ~15 K. The target temperature is typically maintained a 

fraction of a degree above the minimal attainable temperature using a  
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heater wound on the cold finger.   The heater is regulated using the 

feedback control loop of the temperature controller.   

 

Figure 3.1.  STM scanner suspended inside the thermal radiation 
shields. Left: front view of STM in shields with front-facing shields 
removed. Right: side view of STM in shields with side-facing shields 
removed.  The inner radiation shield is mounted directly to the cold tip, 
which is the second cooling stage of the cold finger.  The outer radiation 
shields mount directly to the first cooling stage of the cold finger (not 
shown).  Springs extend approximately four inches above the area 
shown. 
 
 

The STM body is cooled via a bundle of fine copper wires (0.005 in) 

connected to the top of the inner radiation shield via a sapphire piece 
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(sapphire was chosen in order to avoid direct electrical contact).  

Additional cooling is provided by electrical connections (0.005 in copper 

wires) connected to electrical feedthrough panels mounted on the 

backside of the inner shield (Figure 3.1).   The feedthrough panels were 

made from Shapal,18 which has high thermal conductivity thus providing 

efficient thermal anchoring of electrical connections to the inner shield.  

Electrical connections from the inner shield feedthrough panels to the 

outside were made using stainless steel wires to minimize the thermal 

leak.  To minimize the thermal load on the feedthrough panels, the 

stainless steel wires are thermally anchored at the outer thermal shield.  

During cool down, two spring-loaded screws mounted on the inner 

radiation shield are used to clamp the STM scanner to the back plate of 

the inner radiation shield (Figure 3.1).  The screws are released upon 

reaching the target temperature, so that the STM scanner hangs free, 

with the scanner temperature about 1.3 K higher than that of the inner 

radiation shield. 

Each radiation shield incorporates a set of windows (sapphire for 

the inner shield and fused silica for the outer shield), which allow fine-

scale observation of the STM junction and sample, as well as monitoring 

tip- or sample exchange.  The radiation shields, as well as the STM 

scanner, were designed and constructed with line-of-site openings for in-

situ evaporation/dosing directly into the STM junction by using thermal 

evaporators or gas sources mounted in the UHV system.   
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3.2.3.  Cooling System 

To achieve cryogenic temperatures, we used a CCC manufactured 

by Advanced Research Systems, Inc.9 The main components of the CCC 

are: 1) the GM cryocooler [DE202PF, Figure 3.2(a)]; 2) a low-vibration 

interface (DMX-20) incorporating a UHV-compatible cold finger to which 

the STM radiation shields are mounted [Figure 3.2(a)]; 3) a water-cooled 

compressor (ARS-2HW, not shown) that supplies compressed helium to 

the cryocooler.  The cryocooler, the main source of the 2.4 Hz noise, is 

mounted on a separate support structure that is mechanically decoupled 

from the STM system [Figure 3.2(b)], and is anchored directly to the floor 

surface that is direct contact with the underlying bedrock below the 

laboratory space.  The thermal link between the cooler and cold finger is 

realized using a heat exchange interface consisting partly of a rubber 

bellows filled with helium gas, with the rubber bellows being the only 

source of mechanical coupling between the cryocooler and the UHV 

system.  While this does not completely eliminate vibrations, the residual 

vibrational noise typically registered at the cold finger end is within 5 

nanometers, four orders of magnitude lower than the noise level at the 

cryocooler.11   

 

3.2.4.  UHV System Design  

Several measures were taken to minimize the noise experienced by 

the STM system. The UHV STM system was assembled on the rigid 
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concrete floor of the basement.  The floor is anchored to the underlying 

bedrock via six reinforced concrete piers.  The UHV chamber sits on an 

optical table with rigid mount legs without any additional vibrational 

isolation.  The system is located in a “sound proof” room with low-noise 

ventilation baffles and dampers maintaining laminar air flow.  The 

roughing pumps are located in an isolated pump room.  The vacuum 

backing lines were attached to the chamber via stainless steel bellows, 

and are routed through sand-filled boxes to damp the mechanical 

vibrations generated by the backing pumps.   

 

 
Figure 3.2.  Overview of the vacuum and cooling systems. (a) Thermal 
connection between the Cryocooler and Cold Finger is realized via He-
filled volume confined by a rubber bellows. (b) View of the UHV system. 
The cryostat is mounted above the UHV system to the cryostat support 
structure. The cryostat support structure has no contact with the UHV 
system. 
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The vacuum system is composed of the main chamber, a load-lock 

chamber for quick tip and sample exchange, and a process gas manifold, 

each with a dedicated pumping line composed of a 75 L/s turbo pump 

and a dry scroll pump. In the case of the main chamber, the 75 L/s 

turbo pump serves as a backing pump for a 300 L/s magnetically-

levitated turbo pump mounted directly on the chamber.   In addition, the 

main chamber is pumped by a 300 L/s ion pump integrated with a 

combination of a titanium sublimation pump and cryogenically-cooled 

shroud. The baseline pressure in the main chamber is ~410-11 torr, and 

at 210-11 torr during experiments at cryogenic temperatures, due to the 

cryo-pumping action of the radiation shields/cryostat.   

 

3.2.5.  Sample Preparation 

In addition to the STM, the main chamber houses the tip- and 

sample preparation and storage facilities.  Samples (mounted on 

molybdenum sample holders) and tips are stored in a “carousel” module 

inside the main chamber (Figure 3.3) with nine slots for samples and 

thirty slots for tips.  The samples and tips are exchanged between the 

load lock and the main UHV chamber by using a precision magnetic 

manipulator.  Inside the main chamber, the samples and tips are 

manipulated using a wobble-stick allowing three-dimensional translation 

and rotation around the wobble-stick axis.  Tips and samples are 

prepared in-situ via cycles of annealing and neon-ion-sputtering using a 
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custom multifunctional processing module (Figure 3.3).  The module 

incorporates a current-carrying filament that can either be used for e-

beam or radiation heating of individual samples and tips.3  During the 

annealing process, the temperature of the sample is monitored by a 

pyrometer. An ion gun is used for sample sputtering, while tips are self-

sputtered when biased to high voltage in neon pressure.  

 

 
Figure 3.3.  View of the main chamber interior looking through the view 
port.  Both the outer and inner radiation shield doors are open, affording 
a view of the STM.   
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After an atomically clean sample surface is obtained, a wide variety 

of materials can be deposited on the surface using several facilities 

implemented in the system:  1) four different ports are available on the 

main chamber for mounting either gas/vapor sources or thermal 

evaporators [Figure 3.2(b)], two of which are aligned into the STM 

junction.  Thus, materials with appropriate vapor pressures can be 

evaporated in situ. All of these ports have dedicated gate valves, which 

allow exchange of gas/vapor sources or thermal evaporators without 

breaking vacuum in the main chamber; 2) a “dry contact transfer”19 

capability is available for deposition of nanoscale materials and 

molecular materials that do not have sufficient vapor pressures for 

evaporation, such as carbon nanotubes, graphene flakes, and polymers;  

3) a facility for deposition of materials from solution using a pulsed 

valve20-21 is implemented in the load-lock, and has been successfully 

used for deposition of colloidal quantum dots. 

 

3.3.  Performance 

3.3.1.  Cool-down and Operation  

Full cool-down of the STM from room temperature to near-liquid 

helium temperatures takes approximately twelve hours [Figure 3.4(a)], 

and is typically carried out overnight. During cool down, the STM is 

clamped to the back plate of the inner radiation shield.  Upon reaching 

the target temperature the STM is unclamped and hangs free.  After the 
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cool-down, the cold-finger temperature is actively stabilized using a 

heater controlled by a feedback mechanism, such that the STM 

temperature remains stable for days within +/-1 mK [Figure 3.4(b)].  The 

high temperature stability enables extremely low lateral and vertical tip-

sample drift rates, as described below. So far, we have found no 

limitation on the duration of individual experiments: we have conducted 

experiments lasting several weeks without any major changes in 

operating conditions, except for the need to periodically (every several 

days) to increase the feedback set-point temperature.  This is likely due 

to condensation of air/water vapor inside the volume filled with exchange 

He gas. 

 

 

Figure 3.4.  (a) Typical cool down curves showing temperatures 
measured at the STM and at the Cold Finger.  The two curves in the 
upper right corner show the variation of the temperatures after 
unclamping of the STM (seen as a spike in the top curve). (b) Histogram 
showing typical variations of the STM temperature when the temperature 
stabilization feedback mechanism is engaged. Each count corresponds to 
an individual reading of the temperature by the controller electronics. 



31 

3.3.2.  Atomic Resolution 

The imaging capabilities of the new STM under cryogenic 

conditions were tested on several different samples with different surface 

structures.  Figure 3.5(a) shows a topography scan of a Au(111) surface 

(acquired at ~16 K), which displays a clear hexagonal atomic pattern 

characteristic of the Au(111) surface,22 with no identifiable features 

attributable to the CCC noise.  Figure 3.5(c), a cross-section of 

topography from Figure 3.5(a), shows well-defined atomic corrugation of 

~30 pm.  Another example of atomic-scale resolution, Figure 3.5(b), 

shows a topography scan of a NaCl(100) monolayer film thermally 

deposited on the Au(111) surface (image acquired at ~16 K).   Figure 

3.5(b) shows a square lattice with a lattice constant of 0.40 nm, as 

expected for the NaCl(100) lattice.  Similarly to Figure 3.5(a), no 

identifiable features attributable to the CCC noise are present in the 

image.  Figure 3.5(d), a cross-section of topography from Figure 3.5(b), 

shows well-defined atomic corrugation of ~10 pm, suggesting that the 

CCC noise is significantly less than this number. Atomic-resolution 

images were also obtained on single-walled carbon nanotubes deposited 

on the Au(111) surface, with one example shown in Figure 3.5(e).   
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Figure 3.5.  Atomic-resolution images acquired with the new STM.  (a) 
Topography scan showing atomic resolution of a reconstructed Au(111) 
surface [set point: 1.00 V, 100 pA].  The bright peaks represent the Au 
atoms. (b) Topography scan of monolayer of NaCl(100) thermally 
evaporated on the Au(111) surface [set point: 1.50 V, 10.0 pA].  The 
bright peaks represent the Cl atoms. (c) Cross-section of topography from 
(a) taken along the black line shown in (a).  (d) cross-section of 
topography from (b) taken along the black line shown in (b).  (e)  
Atomically resolved surface of single-wall carbon nanotube [set point: 
1.50 V, 5.0 pA].  
 



33 

3.3.3.  Noise Analysis 

To quantify the noise generated by the CCC more directly, with the 

STM operating at 16 K, we measured the tunneling current as a function 

of time (Figure 3.6) after turning off the z-piezo feedback, thus allowing 

the tip-sample distance z to be modulated by the external 

mechanical/acoustical noise.  The tunneling current in Figure 3.6 clearly 

shows periodic spikes with a period of ~0.42 s, matching that expected 

for the fundamental frequency of the CCC (2.4 Hz).  The typical 

amplitude of each spike is on the scale of ~ 16 pA, a ~4% correction to 

the total current.  We can estimate the corresponding noise-induced tip-

sample variation, by noting that the change of z by one angstrom 

changes the tunneling current by approximately a factor of ten. This 

means that a ~4% variation of the current should produce a 1.7 pm 

variation in z. This is a small number as compared to the atomic 

corrugations observed in Figure 3.5, explaining the lack of CCC-induced 

noise features in our STM images.  

 

3.3.4.  Scanning Tunneling Spectroscopy 

STS measurements were carried out using the lock-in technique, 

with the modulation frequency typically in the range from 500 to 1000 

Hertz.  With typical lock-in time constants being on the scale of at least a 

few hundred milliseconds, the lock-in signal is not expected to be very 

sensitive to the small current noise generated by the CCC, due to its low 



34 

frequency of 2.4 Hertz, even though higher harmonics (up to 14.4 Hz) are 

distinguishable in the Fourier spectra of the tunneling current (not 

shown).  This expectation is universally corroborated by the STS spectra 

measured for several nanoscale and molecular materials including: 

carbon nanotubes, PbS and CdSe quantum dots, and oligothiophene 

molecules. As a representative example of STS measurements, here we 

show a spectrum of a carbon nanotube deposited on the Au(111) surface 

(Figure 3.7).  The STS spectrum of the nanotube clearly shows the first 

and second Van Hove singularities visible both in the valence and 

conduction bands, with the bandgap being ~1.3 eV. Both forward and 

backward sweeps are presented showing reproducibility of the data. 

 

 

Figure 3.6.  Tunneling current as a function of time, with the closed 
cycle cryostat operating at 15 K. To more clearly show the mechanical 
component of the CCC-noise, the current was measured with a low-pass 
filter with a corner frequency of 250 Hz.    
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Figure 3.7.  STS spectroscopy of a single-wall carbon nanotube. (a) STM 
image of the nanotube. (b) Two STS spectra measured in one sweep from 
-1.5 V to 1.5 V (red curve) and back to -1.5 V (blue curve). The spectra 
were measured in the location shown by an asterisk in (a).  The peaks 
observed in (b) are identified as Van Hove singularities associated with 
the valence (peak H1) and conduction (peak E1) bands.  Higher order 
bands H2 and E2 are also observed. The STS spectra were obtained by 
measuring differential conductance, dI/dV, using the lockin-technique 
with a modulation of 20 mV. Tunneling set point: 1.5 V, 0.1 nA. 
Acquisition time: 2 minutes per spectrum. 
 

3.3.5.  Spatial Drift Analysis 

One of the critical specifications of a spectroscopic STM is its 

intrinsic rate of spatial drift: many types of STM-based spectroscopic 

measurements require extended data acquisition, which makes results 

sensitive to spatial drift on the atomic scale. Examples of such 

spectroscopic measurements are the Inelastic Tunneling Spectroscopy,23 
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Scanning Tunneling Luminescence,15 or simply detailed mapping of STS 

spectra of individual molecules. To quantify the typical rates of spatial 

drift in our STM, we compared STM images taken over the course of 120 

hours (images not shown). Figure 3.8 shows that the lateral drift (caused 

primarily by the piezo creep after moving by 40 nm into a new area) 

slows down dramatically over the period of the first 15 hours, and 

reaches a small steady drift rate of 0.18 Å/hour after the first 30 hours. 

 

 
Figure 3.8.  X-Y spatial drift as a function of time. The drift was 
calculated by comparing STM images of the same area.   

 

3.4.  Conclusion 

The atomically-resolved data collected using the new STM 

demonstrate, for the first time, the feasibility of combining an ultra-high 

vacuum STM instrument with a closed-cycle cryostat for achieving near-
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liquid helium temperatures necessary for the optimal performance of the 

spectroscopic mode of STM, Scanning Tunneling Spectroscopy.  The use 

of a closed-cycle cryostat eliminates costs associated with liquid-helium, 

and removes limitation on the durations of individual experiments. The 

quality of the collected data shows that the new STM is functionally 

equivalent to the existing high-performance cryogenic STM systems. 

Additionally, the STM spatial drift rate may be further reduced by using 

active stabilization of the scanner temperature with a feedback-controlled 

heater. The combination of a virtually unlimited experiment duration and 

reduced spatial drift afforded by the new design will enable significantly 

more detailed spectroscopic investigations of samples that require 

extended characterization times. This, for example, includes a wide 

variety of samples important for nanoscale materials science, because 

nanoscale materials (quantum dots, carbon nanotubes, nanowires, thin 

films, etc.) often exhibit pronounced structural or compositional 

inhomogeneities. 

 

3.5.  Bridge to Chapter IV 

 The concept of coupling a CCC to a PAN-style STM with the 

expectation of obtaining atomic-resolution has now been shown to be 

quite feasible, with experimental results showing that our STM can 

produce results similar to traditional style STMs coupled to flow-type 

cryostats.  Being that atomic-resolution data can be expected, we next 
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turned out attention to the CNT system.  In Chapter IV, the vibronic 

states of a CNT were mapped.  The data will show that because of our 

high-stability CCC STM design, we were able to see the quantum 

mechanical effect of the particle in a box vibronic states as a result of a 

defect within the CNT. 
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CHAPTER IV 

 

VIBRATIONAL EXCITATION IN ELECTRON 

TRANSPORT THROUGH CARBON  

NANOTUBE QUANTUM DOTS  

 

This work was previously published with coauthors Dmitry A. 

Kislitsyn, Jason D. Hackley, and George V. Nazin in the Journal of 

Physical Chemistry Letters, 5, 3138-3143 (2014), 

dx.doi.org/10.1021/jz5015967, © 2014 American Chemical Society.  

 

 

4.1.  Introduction 

 

Semiconducting single-walled carbon nanotubes (SWCNTs) are a 

promising material with unique photophysical1-2 and electronic 

properties3-4 which are, however, easily masked by interactions with the 

nanotube immediate environment.  An important example of this 

environmental sensitivity is electron transport through SWCNTs, where 

environmental effects have been shown to be responsible for charge 

carrier scattering,5-7 localization,8-9 and random-telegraph-signal noise.10-

11  These effects have been attributed to the existence of charge traps 

localized in the nanotube vicinity, inferred from the marked spatial 
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modulations of electrostatic potentials observed using scanning-gate 

microscopy12-13 and scanning photovoltage microscopy.5  Despite the 

insights obtained using these techniques, their spatial resolution is 

limited (10 nm for scanning probe techniques), which leaves the effects of 

shorter-scale disorder largely unexplored.  Short-scale disorder is highly 

relevant to optoelectronic applications because optical excitation can 

produce photo-ionized charges transiently trapped in the SWCNT 

vicinity, a scenario suggested by blinking and spectral diffusion of 

SWCNT photoluminescence,14 and by scanning photovoltage 

measurements.5  Trapped charge would lead to the simultaneous 

creation of an effective potential barrier for one type of charge carriers 

(electrons or holes), and a potential well for the other type of charge 

carriers.  While the influence of the former on charge transport is 

relatively well-understood,15 the impact of a potential well is difficult to 

predict.  Due to the electron-phonon coupling, the electronic states 

localized in the well can be expected to produce a manifold of local 

vibronic states sensitive to the degree of localization.  Such local vibronic 

states would have a direct impact on electron transport because they 

would mediate charge transfer across the localized electronic states.   

Here we use Scanning Tunneling Spectroscopy16 (STS) to study, for 

the first time, the electron-phonon coupling for electronic states localized 

in short segments of semiconducting SWCNTs.  STM imaging of SWCNTs 

deposited on the Au(111) surface (see Experimental Methods) shows 



41 

SWCNTs in a variety of environments.  STS of SWCNTs adsorbed on 

Au(111) terraces (Figure A.1; see Appendix A for supplemental figures for 

this chapter) shows relatively spatially-uniform density of states (DOS)  

consistent with those reported in literature:  the spectra are dominated 

by Van Hove singularities associated with the electronic band onsets.17-18  

Due to the presence of non-SWCNT material in the SWCNT-containing 

powder used for deposition, a significant fraction of SWCNTs in our 

experiments show unidentified material in the nanotube vicinity.  This 

material can locally prevent nanotubes from making extended contact 

with the surface resulting in height variations such as that shown in 

Figure A.2(a).  The intermittent contact leads to spatially-modulated 

charge transfer interaction with the Au(111) substrate, capable of 

producing quantum-confined states.19  In these conditions, the DOS-

peaks found in the STS spectra of such SWCNTs (Figure A.2(b)) contain 

fine structures with voltage-spacings reproducible for many different 

nanotubes (Figure A.3).  This suggests vibrational nature of these 

features, but to unequivocally establish their origin, it is useful to study 

examples of SWCNTs where electronic confinement is more pronounced, 

and the nanotube adsorption configuration is more well-defined.  One 

such example corresponds to the situation where a SWCNT is suspended 

across an atomic step on the Au(111) surface, as schematically 

illustrated in Figure 4.1(a).  An STM image of a SWCNT adsorbed in this 

geometry is shown in Figure 4.1(b).  The topographic profiles of the 
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nanotube and underlying surface (Figure 4.1(c)) show that the height 

change from point L to point R is identical to the height of an atomic step 

on the Au(111) surface.  This allows us to conclude that the nanotube is 

in contact with the surface in points L and R assuming that the local 

electronic structures of the nanotube in these points are similar (this is 

corroborated by the STS measurements discussed below).  The segment 

of the nanotube between these two points is relatively straight (as seen 

from Figure 4.1(c)), which suggests that at least a portion of this 

nanotube segment is not in direct contact with the substrate.  As 

described in the following paragraph, the local electronic structure of this 

partially suspended nanotube shows the existence of strongly localized 

electronic states.  

________________________________________________________________________ 
Figure 4.1 (next page).  Geometry of a SWCNT adsorbed across a gap 
between two atomic steps on the Au(111) surface. (a) A schematic 
representation of the system under study (not to scale). (b) STM 
topography of the nanotube. Au(111) step edges are marked as ଵ݃ and ݃ଶ. 
To the left of point ݊ଵ and to the right of point ݊ଶ the nanotube contains 
defects, which manifest themselves as protrusions in the topographical 
image. Tunneling set point: 1.5 V, 10 pA. (c) Height profiles taken along 
lines ܮଵ and ܮଶ in (b). ܮଵ corresponds to the nanotube top, and ܮଶ to the 
gold substrate  near the nanotube.  The profile of the nanotube shows 
point L is 2.34 Å, a number identical to the Au(111) step height (2.34 Å),  
lower than point ݊ଶ, which suggests that the nanotube touches the 
bottom of the Au trench at point L.  The nanotube profile between points 
L and R is relatively straight, which suggests that part of the nanotube is 
suspended above the substrate between these points. 
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As shown in Figure 4.2, the voltage-dependent DOS of the 

nanotube from Figure 4.1(b) is considerably more structured than that of 

nanotubes on Au terraces (Figure A.2(b)).  However, for every spatial 

location mapped in Figure 4.2, the origins of the observed electronic 

states can be similarly traced to the same sequence of states, the most 

visible states being ܪଵ-type (derived from the valence band), ܧଵ-type 

(derived from the conduction band), and ܧଶ-type (derived from the band 

immediately above the conduction band).  For example, in the center 

section of the nanotube, these bands correspond to states ܪଵ,ଵ, ܧଵ,ଵ and ܧଶ,ଵ. In points L and R (where the nanotube makes a contact with the Au 

surface), the electronic bands (levels ܧ௡௅ and ܧ௡ோ [these states coalesce 

with states ܧ௡∗∗ in Figure 4.2] together with their valence-band 

counterparts ܪ௡௅ and ܪ௡ோ) are rigidly shifted up in energy by 200-250 meV, 

as compared to states ܪଵ,ଵ,  ܧଵ,ଵ and ܧଶ,ଵ in the center section of the 

nanotube.  The band bending observed in points L and R is explained in 

a straightforward manner by the charge transfer20 between the nanotube 

and Au substrate caused by the mismatch in their effective 

workfunctions.19   This mismatch is clearly seen for the suspended 

section of the SWCNT, which is not subject to direct charge-transfer 

interaction with the Au surface. For the suspended section, the bias 

voltages corresponding to the onsets of conduction are asymmetric (~0.5 

V for positive voltages and ~-0.7 V for negative voltages) suggesting that 

the SWCNT workfunction (4.8 eV20) is ~100 meV higher than the effective 



45 

workfunction of the Au substrate.  (This number is lower than the 

workfunction of the pristine Au(111) surface [5.3 eV] apparently due to 

the direct proximity of a Au atomic step running along the SWCNT, as 

described in Figure A.4).   

The upshifts of electronic bands seen at points L and R are thus 

explained by partial electron transfer from the Au substrate to the 

nanotube, compensating somewhat for the mismatch of the 

workfunctions.  Electronic levels ܧଵ∗ and ܪ௡∗ to the left of point L, as well 

as levels ܧ௡∗∗ and ܪଵ∗∗  to the right of point R, are shifted further up, as 

expected for a SWCNT section in a more extended contact with the Au 

surface.  Overall, the bandgap of the nanotube does not change 

appreciably, and no new mid-gap states appear, suggesting that the 

spatially-dependent DOS in Figure 4.2 results primarily from band-

bending.   

Electrons propagating along the suspended part of the nanotube 

are repelled by the potential-barriers caused by local band bending in 

points L and R, which results in electron confinement and formation of a 

quantum dot (QD) in the suspended section of the nanotube.  The 

electron confinement is easily identifiable in Figure 4.2, with three sets of 

particle-in-a-box states ܧଵ,௡, ܧଶ,௡ and ܧଷ,௡ (n=1, 2)  derived from three 

different electronic bands ܧଵ, ܧଶ and ܧଷ (states derived from band ܧଷ are 

only visible in the suspended section of the nanotube, apparently due to 

the enhanced DOS produced by the confinement).  The spatial behavior 
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of these states is further clarified in Figure 4.3: spatial distributions of 

states ܧଵ,ଵ, ܧଶ,ଵ and ܧଷ,ଵ show single maxima in the QD center, whereas 

states ܧଵ,ଶ, ܧଶ,ଶ and ܧଷ,ଶ each show a node in the QD center. This spatial 

structure identifies states ܧଵ,ଵ, ܧଶ,ଵ and ܧଷ,ଵ as ground electronic states of 

the three progressions, while states ܧଵ,ଶ, ܧଶ,ଶ  and ܧଷ,ଶ correspond to 

single-node excited states. Each of the three state progressions is 

truncated at n=2, because only these states lie lower in energy than the 

height of the confining potential (~200 meV, estimated from ܧଵோ െ   .(ଵ,ଵܧ
States ܧ௡௅ and ܧ௡ோ as well as states ܪ௡௅ and ܪ௡ோ are more strongly localized 

than the QD states (the spatial extents of states ܪଵ௅ and ܪଵோ, somewhat 

exaggerated by the tip-convolution effects, are shown in Figure 4.3, 

bottom curves), which means that single-node excited states associated 

with states ܧ௡௅, ܧ௡ோ, ܪ௡௅ and ܪ௡ோ cannot be observed because these states 

cannot be confined by the band bending observed in Figure 4.2.  Indeed, 

due to their localized nature, such states would have to lie higher in 

energy than those of ܧଵ,௡ and ܧଶ,௡, above the confining potential barrier. 

Close inspection of spectroscopic peaks associated with individual 

electronic states reveals fine structure, which is particularly pronounced 

for the localized occupied states, as shown in Figure 4.4(a) (states ܪଵ∗, ܪଵ௅, ܪଵோ and ܪଵ∗∗).  The onset of each spectrum shows a central peak 

accompanied by two overtones on either side of the peak (these are seen 

either as peaks or shoulders).  For all spectra, the lower energy overtone 

is ~ 72 mV below the main peak, whereas the higher energy overtone is 
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~108 mV above the main peak.  Similarly to the occupied states in Figure 

4.4(a), fine structures are also observed for states ܧଵ,ଵ and ܧଶ,ଵ (Figure 

4.4(b)).  The fine structures of the ܧଵ,ଵ and ܧଶ,ଵ states are less pronounced 

than those of the occupied states in Figure 4.4(a), but similar overtone 

spacings are observed, the visibility of these features being somewhat 

location-dependent: 108±4 meV overtones (seen as a side-peak for ܧଵ,ଵ 
and a shoulder for ܧଶ,ଵ) are clearly observed on top of the nanotube 

(Figure 4.4(b), second curve from the top), while the ~72±4 meV 

overtones are more pronounced slightly away from the nanotube 

centerline (Figure 4.4(b), top curve).  States other than ܧଵ,ଵ and ܧଶ,ଵ may 

also possess vibrational structures, which may be obscured by the 

complex DOS pattern in Figure 4.2.  

The similarity in the spacings of the fine features observed at both 

positive and negative voltages in Figure 4.4 suggests that these fine 

features are not of electronic origin – in that scenario one would expect 

the fine structures to be different because of the different extents of 

localization observed for these states (states from Figure 4.4(a) as 

contrasted to states ܧଵ,ଵ and ܧଶ,ଵ).  Indeed, Figure 4.3 shows that states ܪଵ௅ and ܪଵோ  are more strongly localized than the QD states ܧ௠,௡, and the 

different degree of localization would have produced different electronic 

splittings.  The fine structures observed in Figure 4.4 must therefore be 

associated with vibrational excitation, analogous to the results reported 

for the STS spectroscopy of individual molecules.21-24 
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Vibrational patterns typically observed in STS spectroscopy on 

individual molecules are closely related to the changes in the molecular 

geometry caused by the transition to a transiently charged molecular 

state (anionic or cationic, depending on the bias polarity) that occurs 

during an electron tunneling event.25 The precise patterns could either 

follow Frank-Condon patterns for displaced oscillators,26 or have more 

complex structures when the transiently charged molecular state shows 

Jahn-Teller activity.27-28  Spectra shown in Figure 4.4 can be analyzed 

analogously, since the electron confinement observed in Figure 4.2 

effectively creates localized molecular-sized electronic orbitals inside the 

SWCNT.    

To identify the types of vibrations that can be excited in electron 

tunneling through the quantum-confined nanotube states, we thus need 

to identify the nature of structural distortions occurring in the presence 

of an extra localized charge in the nanotube.  Importantly, neutral 

species of very short (a few nanometers) SWCNTs are predicted to show a 

variety of structural distortions, the exact structure being sensitive to the 

nanotube chirality,29 length,30 diameter,31 and termination.31  In 

particular, calculations for finite-length armchair nanotubes (possessing 

finite non-zero bandgaps) have shown structures combining Clar and/or 

Kekulé patterns.30, 32  Chainlike distortions appearing as trans-poly-

acetylene chains oriented roughly along the nanotube axis were predicted 

for infinite chiral nanotubes.29  Similar bond alternations in polycyclic 
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aromatic hydrocarbon molecules are argued to be related to the 

“distortivity” of π-electrons working against the stabilizing influence of σ-

bonds,33 which tends to result in Kekuléan distortions.34  Such 

distortions can be generally expected to be more pronounced for more 

strongly localized states, with bond alternation on the scale of ~2 

picometers expected for short achiral35 and chiral36 tubules (a few to 

several nanometers in length).  In addition to the bond alternation, a 

short-range rippling-type of distortion of SWCNT surfaces was also found 

to occur in theoretical calculations.36    

________________________________________________________________________ 

Figure 4.2 (next page).  STS signal (obtained by measuring differential 
conductance, dI/dV, using the lockin-technique) as a function of the ݔ 
coordinate [identical to that in Figure 4.1(c)] and sample bias voltage.  
(STS signal serves as a measure of the local density of electronic states.) 
The spatial range corresponds to the part of line ܮଵ contained between 
points ݊ଵ and ݊ଶ in Figure 4.1(b) and Figure 4.1(c). Positive voltages 
correspond to unoccupied electronic states, while negative voltages 
correspond to occupied states. Vertical dashed lines at ݔ ൌ 4.4	݊݉ and 13.3	݊݉ (corresponding to points L and R in Figure 4.1) indicate positions 
of the nanotube contact with the Au substrate where the nanotube 
electronic bands are bent due to the charge transfer between the 
nanotube and Au. [The charge transfer is caused by a workfunction 
mismatch.] These points of contact reveal themselves through the 
appearance of shifted electronic levels ܧ௡௅ (and ܪ௡௅) and ܧ௡ோ (and ܪ௡ோ), as 
compared to the bands in the region between points L and R. The region 
in between points L and R (ݔ ൌ 4.4	݊݉ and 13.3	݊݉) forms a quantum dot 
(QD) with three sets of particle-in-a-box states ܧଵ,௡, ܧଶ,௡  and ܧଷ,௡ (n=1, 2).  

All QD energy levels are marked with horizontal dashed lines. Electronic 
levels ܧଵ∗ and ܪ௡∗ to the left of point L, as well as levels ܧ௡∗∗ and ܪଵ∗∗ to the 
right of point R are shifted further up.  All data were measured along the 
nanotube centerline. Tunneling set point: 1.5 V, 0.1 nA. 
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Figure 4.3.  Cross-sections of the data from Figure 4.2 along the 
horizontal dashed lines showing the spatial behavior of ܧ௠,௡ states of the 

QD from Figure 4.2.  Spatial distributions of states ܧଵ,ଵ, ܧଶ,ଵ  and ܧଷ,ଵ 
show single maxima in the QD center, whereas states ܧଵ,ଶ, ܧଶ,ଶ and ܧଷ,ଶ 
each show a node in the QD center.  States ܪଵ௅ and ܪଶோ are more strongly 
localized as compared to the QD states ܧ௠,௡.  Individual cross-sections 

are offset for clarity.  
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Figure 4.4.  Cross-sections of the data from Figure 4.2 taken along the 
vertical dashed lines in Figure 4.2, showing DOS as functions of the 
sample bias voltage (the corresponding x-coordinates of these cross-
sections are also shown).  Individual cross-sections are offset for clarity.   
All spectra were measured along the nanotube centerline except the top 
curve in (b). 

(a) Occupied states that correspond to several distinct locations 
where the nanotube makes contact with the Au substrate. The onset of 
each spectrum shows a peak accompanied by two overtones (seen either 
as peaks or shoulders).  For all spectra, the lower energy overtone is ~ 72 
mV below the main peak, whereas the higher energy overtone is ~108 mV 
above the main peak.  

(b) Unoccupied states. In addition to three spectra measured 
roughly on top of the nanotube, a spectrum measured at ݔ ൌ 9	݊݉ 
slightly away from the nanotube centerline is also shown (top curve, all 
features contained in this curve are upshifted due to the larger fraction 
of the bias voltage dropped across the nanotube diameter). The manifold 
of ܧ௠,௡ states is seen at positive voltages as peaks. Similarly to the 

occupied states in (a), states ܧଵ,ଵ and ܧଶ,ଵ contain fine structure, which is 

most clearly seen for the two spectra measured at ݔ ൌ 9	݊݉:  the top 
curve shows overtones at ~ 72 mV below the corresponding ܧଵ,ଵ  and ܧଶ,ଵ 
peaks;  for the spectrum measured along the nanotube centerline 
(second from top) the main ܧଵ,ଵ  and ܧଶ,ଵ peaks are accompanied by a 

side-peak and a shoulder correspondingly, both  ~108 mV higher than 
the corresponding main peaks.   
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In contrast to neutral SWCNTs, calculations of anionic species for 

short tubules show significantly reduced bond alternation,35 which can 

be interpreted in terms of the reduced “distortivity” of π-electrons in this 

state.  Similar results were also obtained for the excitonic states in chiral 

nanotubes.36    We therefore expect a similar behavior in the present 

case: a reduction of the overall local deformation of the nanotube for the 

charged state of the QD. 

To identify the nature of vibrational modes contained in the 

spectra of Figure 4.4, we need to convert the voltage scale to the correct 

energy scale by taking into account the finite voltage drop inside the 

SWCNT.  As shown in the discussion following Figure A.5, the average 

potential inside the nanotube is ~10±1% of the total bias voltage, so that 

the correct energy scale is calculated for the present system by 

multiplying the total applied voltage by a factor of 0.9±0.01.  This gives 

rescaled peak spacings of 65±4 meV and 103±4 meV for the two 

vibrational overtones.  The first energy is equivalent to 518±32 cm-1, 

which can be explained by the presence of a rippling deformation of the 

QD-CNT surface, analogously to the short-range rippling deformation 

found in the calculated geometries of chiral SWCNTs.36  Indeed, the 

found energy is close to the 559 cm-1 energy of the transverse out-of 

plane-phonons in graphene at the K-point of the Brillouin zone (nominal 

optical and acoustical branches intersect at this point),37 which could 
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generate rippling with a spatial periodicity determined by the K-point 

wavevector. 

To identify the phonon mode associated with the higher-energy 

sideband, we calculate the corresponding vibrational energy as 65 + 97 

meV = 162±6 meV (assuming that the onsets of conduction in our 

spectra correspond to zero-phonon peaks). This is equivalent to 1296±48 

cm-1, which is close to 1378 cm-1, the energy of the D-band Kekulé 

modes31 calculated for the present nanotube, which has a skeletal 

diameter of ~0.7 nm, based on the measured topographic height of ~1.0 

nm (Figure 4.1(c)).  Both of the found vibrational energies are red-shifted 

with respect to the corresponding expected values, which could be 

partially explained by the reduced bond order of the cationic and anionic 

states of the nanotube QD observed in the STS spectra of Figure 4.2 and 

Figure 4.4. The presence of Kekulé modes in our spectra suggests a 

Kekuléan in-plane dimerization of carbon atoms on the nanotube surface 

localized on and around the QD section of the nanotube.  

In addition to the identified K-point-transverse out-of plane-

phonons and Kekulé modes, other unresolved modes are likely present in 

the spectra of Figure 4.4.  In particular, excitation of low energy modes 

are possible, including the radial breathing mode,38 and center-of-mass 

motion perpendicular to the Au(111) surface,26 which in the present case 

would involve bending of the nanotube.  Excitation of these, as well as 

other low energy and/or weakly coupled modes, is likely the cause of the 
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substantial widths of peaks in the spectra of Figure 4.4.23  Further, the 

spectra may also be affected by non-adiabatic effects resulting from the 

vibronic inter-valley coupling, analogously to the Jahn-Teller activity 

identified recently in STS spectra of porphyrin molecules.27-28  

The present work sheds light on one of the fundamental 

mechanisms determining the influence of local disorder on electron 

transport through SWCNTs: Figure 4.2 suggests that the energetically 

sparse progression of localized electronic states, created in a short 

SWCNT segment by a disorder potential, would be out of resonance with 

the conduction band (or valence band) states of the rest of the nanotube. 

This means that resonant electron transmission through such SWCNT 

segments would have to occur through the vibrational overtones of the 

localized electronic states (or, more generally, vibronic states).  The 

precise structure of the manifold of such vibronic states also determines 

the rate of energy relaxation for charges traversing the SWCNT segments 

with localized electronic states, which determines the dynamics of charge 

trapping/de-trapping.   

 

4.2.  Experimental Details 

Experiments were carried out in a home-built ultra-high vacuum (UHV) 

cryogenic STM system.  All imaging and spectroscopic measurements 

were carried out at a temperature of 15 Kelvin using electrochemically-

etched silver tips. SWCNTs (obtained from Sigma-Aldrich) were deposited 
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on Au(111)/mica substrates using the in-vacuum “dry contact transfer” 

(DCT) method, analogous to the approach demonstrated recently in other 

STM studies of carbon nanotubes.39-40   Figure A.1 shows representative 

STM images of several SWCNTs on a Au(111) surface.   

 

4.3.  Bridge to Chapter V 

 This chapter showed that the novel CCC UHV STM described in 

this dissertation performed at a level that allowed one to map out the 

vibronic states of a CNT.  In Chapter V, it will be shown that our CCC 

UHV STM was able to spatially map out the delocalized quantum-

confined states and localized sub-bandgap states due to non-

stoichiometry in a PbS quantum dots.   
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CHAPTER V 

 
 

SPATIAL MAPPING OF SUB-BANDGAP STATES 

INDUCED BY LOCAL NON-STOICHIOMETRY 

IN INDIVIDUAL LEAD-SULFIDE 

NANOCRYSTALS 

 

This work was previously published with coauthors Dmitry A. 

Kislitsyn, Christian F. Gervasi, Thomas Allen, Peter K.B. Palomaki, Jason 

D. Hackley, Ryuichiro Maruyama, and George V. Nazin in the Journal of 

Physical Chemistry Letters, 5, 3704-3707 (2014), 

dx.doi.org/10.1021/jz5019465, © 2014 American Chemical Society. 

 
 

5.1.  Introduction 

Recently, thin films composed of lead chalcogenide colloidal 

semiconducting nanocrystals (NCs) have emerged as a promising class of 

photovoltaic materials that allow great flexibility in controlling their 

properties by means of tailored synthesis, processing and film 

deposition.1-2 Further, quantum confinement effects in NCs can be 

exploited to control their photoexcitation dynamics in order to achieve 

multiplication of photo-generated carriers3-7 and/or hot-electron 

extraction,8 which may enable solar cells with efficiencies in excess of the 
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Shockley–Queisser limit.9 While substantial progress has been made 

towards improving the efficiency of NC-based photovoltaic devices, with 

recent reports of efficiencies above 8%,10-11 the microscopic picture of the 

fundamental physical processes of photo-generation and charge 

transport in NC films remains incomplete. One of the important 

outstanding questions is the impact of the NC surface chemistry on the 

electronic properties of NCs. Imperfections in surface passivation or 

stoichiometry are thought to cause sub-bandgap states, which can have 

a significant impact on electron–hole recombination.12 While evidence for 

such surface states was found in recent photoluminescence studies of 

as-synthesized lead chalcogenide NCs,13-14 fabrication of functional 

photovoltaic devices may introduce further surface imperfections as it 

often involves a sequence of synthetic and processing steps including 

surface ligand exchange15-16 and (in some studies) thermal annealing17-18 

that can both affect the nanocrystal surface chemistry.  Indeed, sub-

bandgap states have been identified in processed NC films using a variety 

of techniques, including photoluminescence;14 a combination of current-

based deep level transient spectroscopy, thermal admittance and Fourier 

transform photocurrent spectroscopies;19 Scanning Tunneling 

Spectroscopy (STS);20 and photocurrent measurements in NC-based 

field-effect transistor devices.21 Despite the insights provided by such 

studies, they do not provide direct information about the local chemical 

and spatial structures of surface states. This information is critically 
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important for addressing the remaining uncertainties regarding the 

nature of such surface states, especially given the diversity of atomic 

sites present on NC surfaces arising from variations in ligand coverage 

and the presence of different crystallographic facets.  

Here we report, for thfe first time, the spatial mapping of sub-

bandgap states in individual PbS NCs using a combination of Scanning 

Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy 

(STS). PbS NCs deposited on Au(111) surfaces were annealed in ultra-

high vacuum at 170 °C to remove surface ligands (see Experimental 

Details). Ligand-free NCs were targeted because they are unaffected by 

the uncertainties associated with different possible ligand shell 

configurations, and therefore serve as a useful model amenable to 

theoretical simulations.22-24  NCs in devices are also often stripped of 

ligands to increase inter-particle electronic coupling.25 In total, we 

studied 16 individual PbS NCs. The NCs were annealed at progressively 

higher temperatures until well-defined and reproducible NC topographies 

consistent with complete removal of ligands were obtained (Figure B.1; 

see Appendix B for supplemental figures for this chapter).  The apparent 

heights of thus prepared NCs are typically 1-2 nm, while their lateral 

dimensions are 2-5 nm with width/height ratios being typically 2:1 to 

3:1, which suggests that the NC shapes change significantly upon 

annealing. Importantly, annealed ligand-free NCs display topographic 
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features, such as crystal facet steps and edges, showing visible angles 

consistent with different crystallographic directions (Figure B.1).  

STS spectra of individual NCs were obtained by measuring the 

differential tunneling conductance dI/dV as a function of the applied 

bias voltage (see Experimental Details).26 The recorded dI/dV signal 

serves as a measure of the local density of states (DOS). STS spectra of 

annealed NCs show progressions of occupied and unoccupied states 

separated by apparent band gaps of different magnitudes (Figure 5.1). All 

spectra in Figure 5.1 show similar progressions of states H1 (highest 

occupied state), E1,1 (lowest unoccupied state), E1,2 and E2 (both 

unoccupied states), with individual state energies varying for different 

NCs. The STS spectra shown in Figure 5.1 appear to be consistent with 

the DOS spectra calculated for stoichiometric ligand-free lead-

chalcogenide NCs,22-24 where the DOS was found to be dominated by 

quantum-confined electronic states derived from the conduction and 

valence bands. These calculations show that lowest-energy electronic 

states in such NCs exhibit roughly s and p overall spatial symmetries, 

modulated on the atomic scale by their corresponding Bloch wave 

functions.22  However, as we show below, the nature of states E1,1 and 

E1,2 in Figure 5.1 is different.  

A common feature of all spectra in Figure 5.1 is that states E1,1 

and E1,2 are separated by ~0.2 V in all cases. Identifying the nature of 

states E1,1 and E1,2 is important because the lowest-lying unoccupied 
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states are primarily responsible for the photophysical and electron 

transport properties of NC-based materials.21  We note that overtones 

E1,2 are unlikely to be caused by vibrational excitation of NCs27 due to 

their relatively large energetic spacing, inconsistent with the vibrational 

energy scale of PbS.28  This energetic spacing also appears too large to be 

explained by electronic splitting (caused by the NC anisotropy) of the 

different L-valleys in the Brillouin zone.29  Similar spectral features 

observed in STS studies of electrochemically-grown PbS NCs were 

attributed to  particle-in-a-box-like states.30  According to this 

interpretation, state E1,1 should correspond to the ground state, state E2 

should correspond to the excited state varying along the z-direction, and 

E1,2 is attributable to excited states varying in the x-y plane. Spatial 

mapping of NC DOS shows that the nature of E1,n states in the present 

case is more complex, as described below. 

To understand the nature of the E1,n bands, we have carried out 

DOS mapping for several NCs. Representative data for one such NC 

(referred to as NC1 in the following) are presented below.  STM 

topography of NC1 shows a series of steps angled at 120° degrees with 

respect to each other (Figure 5.2(a,b)). This observation suggests that 

these directions correspond to the <110> crystallographic directions, 

while the top surface of NC1 should correspond to the (111) 

crystallographic orientation, based on the stability of these facets 

established in TEM studies of restructuring of PbS NCs under similar 
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temperatures in vacuum.31-32  A cross-section of the topography for NC1 

(Figure 5.2(c)) shows that the top facet, oriented at ~10° with respect to 

the Au(111) surface, is relatively flat with corrugation at the angstrom-

scale, consistent with complete removal of ligands. 

 

 

Figure 5.1.  Representative dI/dV spectra for five PbS NCs (set point 
voltages and currents range from 1.2 V to 2.5 V, and 10 pA to 30 pA for 
the spectra shown). The bias voltage effectively serves as the energy scale 
(see, however, discussion associated with Figure B.2 for a more complete 
description of the relationship between the bias voltage and energy).  
Occupied and unoccupied states are indicated by arrows and marked 
with an 'H' and 'E' for electrons and holes respectively. The apparent 
band gaps for each of the NCs are marked with double sided arrows. 
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A STS spectrum measured on top of NC1 (Figure 5.2(d)) shows an 

electronic DOS with a ~0.8 eV bandgap formed by states E1,1 and H1.  

Additional states E2 (1.3 eV) and H2 (-1.4 eV) are found at higher 

voltages. The lowest unoccupied state E1,1 shows a side-peak (E1,2), 

which is observed in most annealed NCs (Figure 5.1).  STS spectra 

measured at different locations on NC1 show considerable variation in 

state energies and character.  To visualize these variations, we recorded a 

spatial “cross-section” of the electronic DOS along a linear path across 

NC1 (Figure 5.3(a)).  The resulting DOS cross-section (Figure 5.3(b)) 

shows quasi-periodic oscillations in intensity for the electronic DOS of 

states E1,n. The spatial variations of all states E1,n (Figure 5.3(b)) are 

nearly identical suggesting similar origins for the main peak and its 

sidebands. The spatial modulation of states E1,n occurs with an average 

period of ~0.9 nm, a large number as compared to the typical inter-

atomic distances along the PbS(111) surface, which means that this 

modulation is not caused by the elemental contrast between Pb and S 

lattice sites that could be expected on a defect-free PbS surface.33  In 

accordance with this assessment, the highest occupied state H1, which is 

expected to be comprised of sulfur 3p atomic orbitals,24 is not visibly 

modulated.  The only identifiable variation of the H1 state is a minor 

change in H1 energy (from -0.8 V to -0.7 V and back to -0.8 V) as the 

scan progresses along the path in Figure 5.3(a) from P1 to P5.  

 



64 

 
Figure 5.2.  STM/STS characterization of a representative nanocrystal 
NC1.  (a) STM topography image of NC1 [set point 1.0 V, 1.0 pA].           
(b) Topographical features attributable to step edges oriented along 
specific crystallographic directions. The majority of features indicate 120° 
angles, which suggests that the top facet of NC1 corresponds to a {111} 
plane.   (c) A cross-section of the topography [path indicated by the arrow 
in (a)] showing that the top facet of NC1 is at a small angle with respect to 
the Au(111) surface. Individual steps are marked with dashed lines, with 
the step height (0.342 nm) corresponding to the distance between the 
sulfur {111} planes.  (d) A representative STS spectrum [set point 2.0 V, 
15 pA] measured at the location marked by the star in (a). Prominent 
occupied and unoccupied states are marked with an 'H' and 'E', 
respectively. 
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The trajectory of the H1 energy variation roughly follows the NC 

topography (high topographic locations correspond to the lower (in 

absolute value of applied voltage) onsets of resonant tunneling through 

H1), which is explained by the variation of the voltage drop inside the 

NC.36  A smaller variation in the tunneling onset energy is found for the 

unoccupied states, which is attributable to the different work-functions 

of the tip and sample, as explained further in the Appendix B. Insight 

into the nature of states E1,n can be gained from a detailed analysis of 

their spatial behavior, as discussed in the following. 

 

 

 

Figure 5.3.  Spatial DOS (STS) mapping across nanocrystal NC1.          
(a) Topographic image [set point 1.0 V, 1 pA] showing the path of 
mapping (points P1 through P5).  (b) Density of states [set point 2.0 V, 10 
pA] as a function of bias voltage and position x along the path shown in 
(a).  (c) Individual STS spectra from (b) measured at points P2 through P5.  
Occupied and unoccupied states are marked 'H' and 'E' respectively in 
both (b) and (c).  Spectral feature H** corresponds to “reverse” 
tunneling34-35 through a localized occupied state outside of the mapping 
path. 
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To characterize the spatial behavior of the NC1 electronic structure, 

we recorded STS spectra on a two-dimensional grid of (32 by 32) points 

covering the spatial range shown by the yellow rectangle in Figure 5.4(a). 

In the overall bias voltage range sampled in these spectra, several spatial 

DOS patterns associated with distinct electronic states shown in Figure 

5.3 are identified (Figure 5.4). These patterns show that the distributions 

of individual electronic states across NC1 are highly inhomogeneous. 

States E1,n are primarily concentrated in the left and bottom parts of NC1 

(locations 1-9 in Figure 5.4(b), 0.35 V) in the vicinity of the steps 

observed in the STM topography (Figure 5.4(a)). The DOS intensity 

corresponding to these states forms stripe-like features running through 

locations 1-9 in Figure 5.4(b).  These four stripes correspond to the four 

DOS peaks observed along the x-coordinate for the E1,1 states in Figure 

5.3(b).  All states E1,n have very similar two-dimensional spatial 

distributions of their DOS, as can be seen in Figure 5.4(b), consistent 

with the one-dimensional scan of Figure 5.3(b). Figure 5.4(b) shows that 

the “stripes” are localized in the vicinity of the NC1 step edges 

(highlighted in the bottom maps of Figure 5.4(b)). In contrast, 

unoccupied state E2 is delocalized throughout NC1, and is primarily 

concentrated in the upper right part of NC1 (locations 10-15 in Figure 

5.4(b), 1.15 V) where no clear topographic steps exist. 

Similar distinction between localized states at the onset of 

tunneling and delocalized states at higher voltages is found for occupied 
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states: the highest energy state H1† appearing at -0.58 V (Figure 5.4(c)), 

is localized (analogously to states E1,n) near the step edges, while states 

H1 (-0.7 V) and H2 (-1.4 V) show relatively uniform distributions.  The 

latter are, in fact, even more homogenous than they appear: their 

apparent DOS in locations 13-15 is suppressed due to the effect of 

variable voltage drop across the NC described in the discussion of Figure 

5.3(b).  

Theoretical calculations show that unoccupied states in PbS are 

formed predominantly by Pb-derived atomic 6p orbitals, whereas 

occupied states are formed predominantly by S-derived atomic 3p 

orbitals.24  According to these predictions, the DOS of states E1,n and E2, 

for unpassivated NCs, is carried by surface Pb-atoms, while the DOS of 

states H1†, H1 and H2 is carried by surface S-atoms.  The S- and Pb-

character of occupied and unoccupied states correspondingly holds true 

even in the presence of under-coordinated Pb- or S-atoms, which form 

localized states split-off from the conduction- and valence-bands.37  

Because Pb- and S-atoms located at step edges lack nearest neighbors, 

they are in under-coordinated environments compared to other surface 

atoms, and therefore may form sub-band gap states.38  Localization of 

states E1,n and H1† near the step edges, where atomic coordination is 

disrupted, suggests that these states correspond to sub-bandgap trap 

states, while the spatially delocalized states E2, H1 and H2 are identified 

as quantum-confined states derived from the conduction (E2) and valence 
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(H1 and H2) bands.  Consistent with the identification of states E1,n and 

H1† as states primarily localized on Pb- or S-atoms respectively, DOS 

maps for these states (Figure 5.3(b,c)) show complementary intensities in 

most of locations 1-15.  The differences in the spatial distributions of 

states H1† and E1,n are attributable to the different spatial distributions of 

the under-coordinated Pb- and S-atoms, which is likely a result of the 

different quantities of Pb versus S atoms, as can be expected based on 

the fact that as-synthesized PbS NCs typically have Pb-rich surfaces.39-40  

Our spectroscopic data corroborates this expectation: the splitting of 

non-stoichiometric trap states from the main quantum-confined states 

has been predicted to be larger for NCs with greater non-stoichiometry,37 

and can thus be used as a measure of the degree of local non-

stoichiometry.  Specifically, on the energy scale, state H1† appears only 

0.12 eV higher than the onset of band H1 in Figures 5.3(b,c), which is 

comparable with calculations for states localized at S-atoms within step 

edges on the stoichiometric PbS(100) surface.38  In contrast, the energy 

difference E2 - E1,1 is relatively large: ~0.8 eV. The same trends are 

observed in the spectra of most other NCs (Figure 5.1) suggesting that 

the number of under-coordinated Pb atoms is indeed higher than that of 

under-coordinated S-atoms in the studied NCs.  These trends, and their 

consistency with the theoretical predictions37 further reinforce our 

assignment of states E1,n and H1† as defect states. 
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Figure 5.4.  (a) Topographic images of NC1 [set point 1.0 V, 1 pA]. 
Bottom image is marked to indicate step edges with 120° angles oriented 
along <110> directions, the same set of marks is used in the bottom 
images of (b) and (c) for reference.  (b) DOS maps for unoccupied states of 
NC1 [set point 2.0 V, 15 pA] measured at the indicated bias voltages. 
Parallel dashed red lines indicate the apparent orientation of stripe-like 
features associated with states E1,n.  (c) DOS maps for occupied states of 
NC1 [set point 2.0 V, 15 pA] measured at the indicated bias voltages. 
High intensity signals in the top left and top right of the H2 map in (c) are 
attributed to spectral features of nearby NCs. The spatial extent of maps 
in (b) and (c) corresponds to the yellow rectangle shown in (a). Numbered 
markers in the bottom images of (b) and (c) [identical for both sets of 
maps] indicate locations of high DOS intensity for states E1,n  (1-9) and E2 
(10-15).  Location 16 marks a region with a localized higher energy state [ 
~1.9 V, map not shown], likely corresponding to a smaller NC (with a 
different crystallographic orientation) that is in the process of merging 
with NC1. 
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Additional support for assignment of states E1,n as trap states is 

provided by the analysis of their energies in other studied NCs.  

Inspection of STS spectra of such NCs (Figure 5.1) shows that energy 

splitting E2 - E1,1 varies among different NCs, but does not show a 

correlation with their apparent bandgaps E1,1 - H1 (Figure B.3).  This is 

contrary to what would be expected if all states H1, E1,1 and E2 had 

quantum-confined nature – in this case, according to STS results 

obtained on PbS NCs with similar aspect ratios,30 state E2 would be 

attributable to a higher-order particle-in-a-box-like state quantized in the 

Z-direction, which would mean that both energy differences E2 - E1,1 and 

E1,1 - H1 would scale with the NC thicknesses, resulting in a linear 

correlation between them.  Since it has been established above that 

states H1 and E2 are delocalized and are of quantum-confined nature, 

state E1,1 must be of different origin. 

The origin of states E1,n may be alternatively explained by using 

the physical picture developed in several recent STS studies of ordered 

chain-like atomic structures,41-43 where the linear-combination-of-

atomic-orbitals (LCAO) model was applied to describe the observed 

extended electronic states formed through coupling of orbitals associated 

with individual adatoms.  According to this physical picture, in the 

present case E1,n bands may correspond to LCAO-like states formed 

through coupling of the orbitals associated with individual under-

coordinated Pb atoms, with individual E1,n states roughly corresponding 
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to different linear combinations of such orbitals.  The model explains the 

presence of multiple states in STS spectra, as well as the similarity of 

their spatial DOS maps.  The latter may only be different in their (spatial) 

nodal structures, which could not be resolved in our measurements.  

While the precise atomic structure of the NC surface could not be 

determined from the collected STS data, the obtained maps of E1,n states 

suggest that the NC surface is reconstructed analogously to the 

reconstructions of the PbS(111) surfaces predicted by recent density 

functional theory calculations.44  These calculations show that PbS(111) 

surfaces tend to extensively reconstruct beyond the bond-length 

modifications found at the surfaces of small metal-chalcogenide NCs.22  

Specifically, PbS(111) surfaces were found to reconstruct by forming 

submonolayer stripe-like patterns of Pb adatoms, thereby reducing the 

electrostatic energy of the surface.  Indeed, our E1,n maps show stripes 

oriented at ~30° with respect to the step edges.  Since the latter are 

aligned along the <110> crystallographic directions, the E1,n stripes are 

likely aligned with one of the <211> directions, consistent with self-

assembly of surface Pb atoms in patterns defined by surface 

crystallographic directions, as would be expected on a reconstructed 

surface.  Existence of well-defined patterns of non-stoichiometric Pb 

adatoms is also consistent with the observation of the well-defined 

progressions of STS features corresponding to E1,n states.  Such STS 

features can be expected to be smeared out into featureless bands for 
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less ordered NC surfaces, as was found for NCs annealed at lower 

temperatures (data not shown).  

Our results suggest that self-assembly of non-stoichiometric 

adatoms on PbS NC surfaces may result in formation of extended LCAO-

like sub-bandgap states, which have important implications for the more 

general case of imperfectly passivated ligand-covered NCs.  Even when 

the density of dangling bonds per NC is small, the tendency of under-

coordinated adatoms to co-localize near structural imperfections, as 

observed in our work, may lead to stronger electronic coupling of 

dangling bonds resulting in larger modifications of the sub-bandgap 

electronic structure than that expected for isolated dangling bonds.  The 

atomic-scale spatial structure of these sub-bandgap states should have a 

strong impact on the photophysical properties of such NCs, and will be a 

subject of our future studies.  Furthermore, we believe that STS-based 

mapping of electronic states reported in this Letter, may prove to be a 

useful tool for identifying the nature of defects and impurities occurring 

on NC surfaces.  

 

5.2.  Experimental Details 

Experiments were carried out in a home-built ultra-high vacuum 

(UHV) cryogenic STM system incorporating a STM scanner from RHK 

Technology.45  An Au(111)/mica substrate was prepared in situ by using 

multiple sputter/anneal cycles. Thiol-terminated PbS NCs (synthesis of 
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PbS NCs is described in the Supporting Information) were deposited on 

the Au(111) substrate in the load-lock section of the vacuum system 

using an in-vacuum solenoid pulse valve.  The deposition parameters 

were chosen so as to obtain sub-monolayer NC coverage.  The Au(111) 

substrate with deposited PbS NCs was then annealed overnight in ultra-

high vacuum at progressively higher temperatures, with the final 

temperature of ~170°C.  This annealing temperature was chosen to 

achieve removal of residual unstable species remaining after the initial 

annealing steps.  Figure B.1 shows representative STM images of several 

NCs on a Au(111) surface.  

All imaging and spectroscopic measurements were carried out at a 

temperature of ~15 K using electrochemically etched silver tips.  All STS 

spectra were recorded using the lock-in technique at ~600 Hz, and bias 

modulations varying from 10 mV (individual spectra, and one-

dimensional spatial scans) to 50 mV (two-dimensional DOS maps). 
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CHAPTER VI 

 

DISSERTATION SUMMARY 

 
In closing, the work contained in this dissertation demonstrated 

the first ever successful coupling of a closed-cycle cryostat (CCC) to a 

scanning tunneling microscope (STM) for operation in an ultra-high 

vacuum (UHV) environment.  Specifically, this work showed that is in 

fact feasible to couple a CCC to a STM, and that the system is capable of 

atomic-scale resolution.  Performance-wise, this dissertation showed: 

 

1. The topography scans had sub-nanometer lateral (x-y plane) 

resolution under cryogenic conditions (~15-16 K).  This was clearly 

seen in the measured nearest neighbor distance of 0.29 nm for the 

Au(111) surface, which also displayed a clear hexagonal atomic 

pattern characteristic of the Au(111) surface, neither of which had 

any identifiable features attributable to the CCC noise (Figure 

3.5a).   A second example of sub-nanometer resolution is seen in 

the nearest neighbor distance of 0.40 nm for the NaCl(100) 

monolayer film thermally deposited on the Au(111) surface, which 

showed the characteristic square atomic pattern of NaCl(100); 

again, without any identifiable features attributable to the CCC 

noise (Figure 3.5b).  As far as the z-direction (height) topography 

measurements are concerned, the data showed that our 
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instrument is capable of picometer resolution.  The is seen in the 

cross-section of the Au(111) topography from Figure 3.5a, which 

showed well-defined atomic corrugation of ~30 pm; and in the 

cross-section of the NaCl(100) topography from Figure 3.5b, which 

showed a well-defined atomic corrugation of ~10 pm; both 

measurements suggesting the CCC noise is significantly less than 

this number. An atomic-resolution image obtained on single-walled 

carbon nanotubes (CNT) deposited on the Au(111) surface, showing 

the carbon atoms of the nanotube along with the CNT chirality 

(Figure 3.5e).   

2. Scanning tunneling spectroscopy (STS) was conducted on a variety 

of materials, showing that out spectroscopy measurements are not 

susceptible to the mechanical vibrations of the CCC.  For each 0.1 

nm increase in the tunneling gap distance, a one order of 

magnitude decrease of the tunneling current is expected.  Our 

measurements showed that the tunneling current fluctuation 

corresponds to a z-height difference as a result of CCC mechanical 

vibrations of 1.7 pm (Chap. III), thus explaining the lack of CCC-

induced noise in our images and spectra.  The STS spectra for 

CNTs in Chapters III and IV, and for PbS quantum dots (QDs) in 

Chapter V, showed that the home-built UHV CCC STM performed 

as hoped.  With the resolution of the data on par with traditional 

flow- and bath-cryostat STMs. 
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3. As an unexpected, and quite serendipitous outcome, it was found 

that the CCC STM piezoelectric motors were resistant to the 

thermal creep associated with the cryogenic fluid pressure 

fluctuations of flow-type cryostats.  This is a real and tangible 

benefit to the STM community as it will allow experimentalists to 

conduct long-term studies of a vast array of systems, without 

paying the price of helium consumption. 

 

Furthermore, it would seem to be practical and prudent for 

experimentalists to adopt the in described technique of coupling a CCC 

to a STM based on the projected helium scarcity of the not-to-distant-

future (discussed briefly in Chap. III).  Granted, the lowest temperatures 

obtained by the instrument described in this research is about 10-15 K 

higher than the lowest temperatures of flow-type cryostat STMs, yet the 

results described in show that data is not affected by the CCC and that 

the vibrational isolation system, as designed, is efficient enough to 

attenuate the CCC mechanical vibrations such that they are nearly 

imperceptible in the STM data.  Thus, it is hoped that this dissertation 

will serve as a guide to other STM experimentalists, whether as a 

blueprint, or as a sign post for a new direction of innovation. 
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APPENDIX A 

 

SUPPORTING INFORMATION TO CHAPTER IV 

 

  

 

Figure A.1.  Representative STM images of several CNTs deposited on 
the Au(111) surface using the “dry contact transfer” method.  Nanotubes 
constituted ~70% of the SWNT-containing powder obtained from Sigma-
Aldrich, which explains the presence of small clusters around the 
nanotubes in the majority of the STM images.       
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Figure A.2.  (a) STM topography of a SWNT, different from that of Figure 
4.1(b) of the main text.  (b) STS signal as a function of the ݔ coordinate 
[as shown in (a)] and sample bias voltage.  (STS signal serves as a 
measure of the local density of electronic states.)  The spatial range 
corresponds to the dashed line between points ݊ଵ and ݊ଶ in (a).  Positive 
voltages correspond to unoccupied electronic states, while negative 
voltages correspond to occupied states.  All data were measured along 
the nanotube centerline.  The spectra show Van Hove singularities, with 
the most visible states being ܪଵ-type (derived from the valence band), ܧଵ-
type (derived from the conduction band), and ܧଶ-type (derived from the 
band immediately above the conduction band).  Some bandgap variation 
is observed in the STS map shown in Figure A.2(b), with levels ܧ௡∗ and ܪଵ∗ 
on the left side of the map, and levels ܧ௡∗∗ and ܪଵ∗∗ on the right side.   The 
observed bandgap variation is likely a result of the non-uniform 
environment of the nanotube: the vicinity of point ݊ଶ shows a higher 
density of impurities located around the nanotube.   
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Figure A.3.  STS spectra showing fine spectral structures.  (a) Spectra 
for the nanotube shown in Figure A.2a, the bottom three spectra 
measured outside of the region contained between points ݊ଵ and ݊ଶ.      
(b)  Additional spectra from localized states in other nanotubes.   
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Figure A.4.  Zoomed-out view of the SWNT from Figure 4.1(b) showing 
the geometry of the Au trench straddled by the nanotube. 

 

The band bending observed in points L and R in Figure A.2 is 

explained by the charge transfer1 between the nanotube and Au 

substrate caused by the mismatch in their effective work-functions.2  As 

described in the main text, the SWCNT workfunction is 4.8 eV,1 which is 

~100meV higher than the effective workfunction of the Au substrate.  

This number is lower than the workfunction of the pristine Au(111) 

surface, 5.3 eV, apparently due to the direct proximity of a Au atomic 

step running along the SWCNT, shown in Figure A.4.  Indeed, as can be 

seen from Figure A.4, the Au terrace shown in dark blue does not extend 

above the nanotube.  On the other hand, Figure 4.1c clearly shows that 

the nanotube touches this Au terrace in point L, which is only possible if 
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the top boundary of this terrace runs roughly along the nanotube, as 

schematically shown in Figure A.4. The Au step edge carries with it a 

workfunction-lowering charge redistribution caused by the 

Smoluchowski effect.1 

 

 

Figure A.5.  Voltage drop in a biased STM junction with a SWNT under 
the STM tip. 
 
 

Mismatch of workfunctions in the tip ߶௧௜௣ and substrate ߶஺௨, 

together with the finite voltage drop ∆ܸ inside the SWNT, lead to a shift of 
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electronic state ܧଵ by ݁∆ܸ ൌ ݁	ሺߙ ௕ܸ ൅ ∆߶ሻ, where 	 ௕ܸ is  the applied bias 

voltage, ∆߶ ൌ ߶௧௜௣ െ ߶஺௨, and   e is the electron charge. Parameter ߙ thus 

relates the average potential inside the nanotube to the external 

potentials applied across the tunneling gap. Therefore, states ܧଵ 
(unoccupied) and ܪଵ (occupied) are observed at voltages ாܸ and ுܸ that 

are defined by the following equations: 

 

ଵܧ  ൅ ߶∆ߙ ൌ ሺ1 െ ሻߙ ݁ ாܸ ሺA.1ሻ
ଵܪ  ൅ ߶∆ߙ ൌ ሺ1 െ ሻߙ ݁ ுܸ ሺA.2ሻ
 

Where ܧଵ and ܪଵ	are the true energies of states ܧଵ and ܪଵ with respect to 

the substrate Fermi level. Voltages ாܸ and ுܸ are determined directly 

from the STS spectra. Then we can eliminate unknown ∆߶ so that:  

 
ଵܧ  െ ଵܪ ൌ ሺ1 െ ሻሺ݁ߙ ாܸ െ ݁ ுܸሻ ሺA.3ሻ
 

Quantities appearing on the right side of the equation depend on the 

relative lateral distance between the tip apex and the “centers of gravity” 

of the measured localized states ܧଵ and ܪଵ. Indeed, Figure 4.2 of the main 

text shows a noticeable “curving” of localized states ܧଵ,ଵ, ܪଵ∗, ܪଵ∗∗, and 

other states appearing at onsets of conduction. This is primarily a result 

of the variation of ߙ with distance ∆x to the “center of gravity” of the 

corresponding state.  
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Then, when the tip is at a lateral distance ∆x away from states ܧଵ 
or ܪଵ, we can write 

ଵܧ  െ ଵܪ ൌ ሺ1 െ ௫ሻሺ݁∆ߙ ாܸ,∆௫ െ ݁ ுܸ,∆௫ሻ ሺA.4ሻ
 

And when the tip is immediately above states ܧଵ or ܪଵ, we can write:  

ଵܧ  െܪଵ ൌ ሺ1 െ ଴ߙ ሻሺ݁ ாܸ,଴ െ ݁ ுܸ,଴ሻ ሺA.5ሻ
 
Then unknown difference ܧଵ െ  :ଵ is eliminated, so thatܪ

 
 	 1 െ ଴1ߙ െ ௫∆ߙ ൌ ாܸ,∆௫ െ ுܸ,∆௫ாܸ,଴ െ ுܸ,଴ ൌ ߢ ൌ 1.045 ሺA.6ሻ
 
 

Here, quantities ாܸ,∆௫ and ுܸ,∆௫, as well as ாܸ,଴ and ுܸ,଴, were extracted 

from Figure A.6 using states ܧଵ,ଵ and ܪଵ∗, and ∆ݔ ൌ 3	݊݉ (offset from the 

“centers of gravity” of the corresponding states). 

Quantity ߛ ൌ   depends primarily on the shape of the tip, and	଴ߙ/௫∆ߙ

can be measured independently by using spectra showing bipolar 

transport,3 which was observed at a SWCNT defect located nearby 

(Figure A.7). Bipolar transport through a given state ܧௗ (in Figure A.7 the 

state originates from a defect) can occur either at a positive voltage ாܸା or 

a negative voltage ாܸି  described by the following formulae: 

ௗܧ  ൅ ߶∆ௗߙ ൌ ሺ1 െ ௗሻߙ ݁ ாܸା ሺA.7ሻ
 
ௗܧ  ൅ ߶∆ௗߙ ൌ െߙௗ ݁ ாܸି  ሺA.8ሻ
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Figure A.6.  Spatial dependence of STS peaks corresponding to states  ܧଵ,ଵ [shown in (a)] and ܪଵ∗  [shown in (b)] from Figure A.2.  The spatial 

coordinate x is identical to that used in Figure A.2. The STS signal has 
been renormalized so as to give constant integral DOS within the ranges 
shown.  

 
 

From these we have: 

 ሺ1 െ ௗሻߙ ாܸା ൌ െߙௗ ாܸି  ሺA.9ሻ
 
Which gives for ߙௗ: 

ௗߙ  ൌ ாܸାாܸା െ ாܸି  ሺA.10ሻ
 
Here ߙௗ is a function that depends on coordinate x. In principle, ߙௗ may 

not be equal to ߙ, because the “center of gravity” of the defect state is not 

necessarily at the same height as that of states ܧଵ,ଵ and ܪଵ∗.  However, in 

the limit of a slowly changing tip profile, approximate equality 

଴ߙ௫∆ߙ  ൎ ௗ,଴ߙௗ,∆௫ߙ  ሺA.11ሻ
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applies, which can be used for the evaluation of ߛ ൌ  .  From Figure	଴ߙ/௫∆ߙ

A.6 we determine ாܸା and ாܸି , at ∆ݔ ൌ 0 and ∆ݔ ൌ 3	݊݉, which give ߛ ൎ0.6 േ 0.05.  Then: 

଴ߙ  ൌ ߢ െ ߢ1 െ ߛ ൎ 0.10 േ 0.01 ሺA.12ሻ
 
is the quantity that determines the average potential inside the nanotube 

of Figure 4.2 of the main text. 

 

______________________________________________________________________________ 

Figure A.7 (next page).  Spatial dependence of STS peaks corresponding 
to bipolar transport through state ܧௗ that originates from a defect located 
on the same nanotube as that shown in Figure A.2.  See text for 
definitions of band onsets ாܸା and ாܸି . 
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APPENDIX B 

 

SUPPORTING INFORMATION TO CHAPTER V 
 

NC Crystallographic Orientation 

 

Figure B.1.  STM topographic images showing crystallographic features 
for three PbS NCs.  (a), (b), (c) Topographies for three representative NCs. 
(d), (e), (f) NC topographies, [same as in (a), (b), and (c) respectively] with 
lines and relative angles indicating orientations of crystallographic 
features for each NC.  The observed angles suggest that the top NC facets 
corresponds to crystal planes (111), (100), and (100) respectively.  (g), 

(h), (i) Enhanced topographic images [for the same NCs] with same 
crystallographic markings as in (d), (e) and (f).  
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NC Band Bending 

Mismatch of workfunctions in the tip ߶௧௜௣ and substrate ߶஺௨, 

together with the finite voltage drop ∆ܸ inside the NC, lead to a shift of 

electronic state ܧଵ by ݁∆ܸ ൌ ݁	ሺߙ ௕ܸ ൅ ∆߶ሻ, where 	 ௕ܸ is  the applied bias 

voltage, ∆߶ ൌ ߶௧௜௣ െ ߶஺௨, and e is the electron charge. Parameter ߙ thus 

relates the average potential inside the nanocrystal to the external 

potentials applied across the tunneling gap. Therefore, states ܧଵ 
(unoccupied) and ܪଵ (occupied) are observed at voltages ாܸ and ுܸ that 

are defined by the following equations:1-2 

 ݁ ாܸ ൌ ଵܧ ൅ 1߶∆ߙ െ ߙ  ሺB.1ሻ
 
 

 ݁ ுܸ ൌ ଵܪ ൅ 1߶∆ߙ െ ߙ  ሺB.2ሻ
 
 

Where ܧଵ and ܪଵ	are the true energies of states ܧଵ and ܪଵ with 

respect to the substrate Fermi level. Voltages ாܸ and ுܸ are determined 

directly from the STS spectra. Observations of “reverse” tunneling 

spectral features1,3 analogous to H** lead to typical values of ߙ on the 

scale of a few percent.  

The changes in voltages ாܸ and ுܸ observed in Figure 5.3b of the 

main text are caused by the fact that ߙ depends on the relative distance 

between the tip apex and the “centers of gravity” of states ܧଵ and 1ܪ. 

Factor ߙ is higher at the periphery of NC1, as compared to the center of 

NC1's top facet because in the former case the tip is located closer to the 
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Au surface, which results in a larger electric field inside the NC, leading 

to higher effective voltage drop inside the NC. Without the Δ߶ term, this 

effect would lead to “curving” of ாܸ and ுܸ trajectories away from axis V = 

0 in Figure 5.3b, as observed for ுܸ. In the present case, however, Δ߶ is 

nonzero and negative.  This reinforces the “curving” trend observed for 

ுܸ, but counteracts the “curving” of  ாܸ. 

 

 
Figure B.2.  Voltage drop in a biased STM junction with a NC under the 
STM tip.   
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Figure B.3.  Plot of the energy difference between the E2 and E1,1 states 
vs. the energy difference between the E1,1 and H1 states for 10 measured 
NCs. During this experiment, many of the measured NCs did not exhibit 
clearly-defined H1 or E2 states, and thus were not included here. 
 

 

PbS nanocrystal synthesis 

Synthesis of PbS NCs was performed following a modified 

procedure from Hines and Scholes.4 Lead oxide (PbO, 99.0%), oleic acid 

(OA, technical grade 90%), 1-octadecene (ODE, technical grade 90%, 

pumped on at 80° C for 8 hours), toluene (99.8%, anhydrous), pentane 

(anhydrous), methanol (anhydrous), pentanethiol (98%), and 

pentanedithiol (96%) were purchased from Sigma-Aldrich and used as 
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received unless otherwise stated.  Bis(trimethylsilyl)sulfide ((TMS)2S, 

synthesis grade) was purchased from Gelest.   

All syntheses were conducted using standard Schlenk 

techniques.  In a typical synthesis, 4 mL of ODE and 4 mL of OA were 

combined with 0.30 g of PbO (1.3 mmol).  The mixture was heated, with 

stirring, to 100° C for 30 minutes, then heated to the injection 

temperature of 105° C for at least 30 minutes, all under vacuum.  A 

sulfur precursor solution containing 0.167 mL (0.8 mmol) of (TMS)2S in 4 

mL of ODE was prepared in a glovebox under nitrogen atmosphere.  The 

sulfur precursor solution was quickly injected into the flask and held at 

95° C for 1 minute, then cooled to room temperature in an ice 

bath.  Removal of excess ligand and 1-octadecene was completed by 

repeated precipitation in acetone, centrifugation of the particles, and 

dispersion in small amounts of toluene.  Finally, the NC dispersion was 

filtered through a 0.2 μm syringe filter to remove any insoluble material. 

Prior to using PbS NCs in STS experiments, a ligand exchange was 

performed using a combination of pentanethiol and pentanedithiol in an 

effort to improve NC adhesion to the gold substrate and remove highly 

insulating OA ligands.  In a typical ligand exchange procedure 0.3 mL of 

stock solution of PbS NC (15 mg/mL in toluene) was diluted with 5 mL of 

pentane in a centrifuge tube with an air-tight lid with septum. Several 

drops of pentanethiol stock solution (9:1 pentanethiol:pentanedithiol, 

total concentration 0.15 M in pentane) were added via syringe and then 
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mixed. Pentanethiol capped PbS NCs were precipitated from pentane 

using methanol and centrifuged at 3500 rpm. Following removal of the 

supernatant, NCs were redispersed in toluene.  This cleaning procedure 

was repeated two times. Finally, PbS NCs were dispersed in anhydrous 

pentane to produce a 0.9 mg/mL stock solution.  The suspension was 

centrifuged to remove aggregates, and the remaining dispersed NCs were 

transferred to a clean tube under N2 for use in STM experiments. 

 

 
Figure B.4.  Absorbance and PL spectra of PbS NCs following thiol-
ligand exchange.  The emission peak at 977 nm (1.27 eV) corresponds to 
an approximate diameter of 3.2 nm PbS NC. 
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