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Annotating the functional properties of gene products, i.e., RNAs and proteins, is a

fundamental task in biology. The Gene Ontology database (GO) was developed to

systematically describe the functional properties of gene products across species, and

to facilitate the computational prediction of gene function. As GO is routinely updated, it

serves as the gold standard and main knowledge source in functional genomics. Many

gene function prediction methods making use of GO have been proposed. But no

literature review has summarized these methods and the possibilities for future efforts

from the perspective of GO. To bridge this gap, we review the existing methods with an

emphasis on recent solutions. First, we introduce the conventions of GO and the widely

adopted evaluation metrics for gene function prediction. Next, we summarize current

methods of gene function prediction that apply GO in different ways, such as using

hierarchical or flat inter-relationships betweenGO terms, compressingmassive GO terms

and quantifying semantic similarities. Althoughmany efforts have improved performance

by harnessing GO, we conclude that there remainmany largely overlooked but important

topics for future research.

Keywords: gene ontology, gene function prediction, functional genomics, directed acyclic graph, inter-

relationships, semantic similarity

1. INTRODUCTION

Functional annotations of gene products, i.e., proteins and RNAs, can promote the progress of drug
development (Barabási et al., 2011; Xuan et al., 2019), disease analysis (Kissa et al., 2015; Zeng et al.,
2015; Zhang et al., 2019), gene set enrichment analysis (Zheng andWang, 2008; Mi et al., 2013), and
many other domains (Radivojac et al., 2013; Jiang et al., 2016; Shehu et al., 2016; Zhou et al., 2019).
Advances in bio-technologymake it possible to perform high-throughput experiments, which yield
diverse functional information about gene products, at decreasing costs. The key task has shifted
from collecting such data to analyzing the data with a unified functional description scheme. To
address this problem, some paradigms (Ashburner et al., 2000; Ruepp et al., 2004; Dessimoz and
Škunca, 2017) aim to describe the functional properties of gene products in a formal and species
neutral way, as well as to assist computational gene function prediction. Among these paradigms,
Gene Ontology (GO) (Ashburner et al., 2000) andMIPS Functional Catalog (FunCat) (Ruepp et al.,
2004) are themost often used. Compared with FunCat, GO ismore comprehensive, is continuously
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updated, has more affiliated functional annotations, and is more
widely used. Therefore, we focus on function predictionmethods
using GO.

GO is composed of three ontologies: molecular functional
ontology (MFO), biological process ontology (BPO), and cellular
component ontology (CCO) (Ashburner et al., 2000). MFO
describes the elemental activities of a gene product at the
molecular level (i.e., binding and catalysis); BPO captures the
beginning and end, pertinent to the functioning of integrated
living units: cells, tissues, organs, and organisms; CCO describes
the parts of cells and their extracellular environments. Each
ontology consists of a set of ontological terms (GO terms), which
are organized in a hierarchy, or directed acyclic graph (DAG), as
shown in Figure 1. This DAG can be generated from the ontology
file with moderate scripts (i.e., Matlab, R, and Python). In the
Supplementary Material, we provide some exemplar codes for
generating an association matrix from GO and to visualize the
Ontology. Each GO term is defined by a unique alphanumeric
identifier and can be viewed as a vertex of the graph, and the
function is described using controlled words. The edge encodes
the relationships (is a, part of, and regulate) between GO terms.
For example, “GO:0043473” represents the pigmentation, and
“GO:0048066” describes the developmental pigmentation; the
two terms are connected by a line with “I,” which means that
the developmental pigmentation is a subtype of pigmentation.

GO annotation is another component of GO, and it stores
the currently known functional knowledge of gene products.
Each positive annotation relates a gene with a GO term, and
indicates the gene product carries out the function described
by this term. Similarly, each negative annotation indicates the
gene product does not perform the function described by this
term. The GO consortium (Ashburner et al., 2000) independently
or collaboratively annotate genes with GO terms from model

GO:0005575 GO:0008150 GO:0003674

GO:0043473 GO:0050789

GO:0043474 GO:0048066 GO:0048519 GO:0048518

GO:0043324 GO:0048070 GO:0006856

GO:0048087GO:0048086

GO:0048080 GO:0048074 GO:0048081 GO:0048075

GO:0005575 -> cellular_component

GO:0003674 -> molecular_function

GO:0008150 -> biological_process

GO:0043473 -> pigmentation

GO:0050789 -> regulation of biological process

GO:0043474 -> pigment metabolic process involved in pigmentation

GO:0048066 -> developmental pigmentation

GO:0048519 -> negative regulation of biological process

GO:0048518 -> positive regulation of biological process

GO:0043324 -> pigment metabolic process involved in developmental pigmentation

GO:0048070 -> regulation of developmental pigmentation

GO:0006856 -> eye pigment precursor transport

GO:0048086 -> negative regulation of developmental pigmentation

GO:0048087 -> positive regulation of developmental pigmentation

GO:0048080 -> negative regulation of cuticle pigmentation

GO:0048074 -> negative regulation of eye pigmentation

GO:0048081 -> positive regulation of cuticle pigmentation

GO:0048075 -> positive regulation of eye pigmentation
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FIGURE 1 | Snapshot of a directed acyclic graph from Gene Ontology. Each ontological term is represented by an alphanumeric identifier, and its biological function

is described by controlled words. These GO terms are hierarchically connected with different types of directed edges. The level of a GO term in the DAG is determined

by its furthest distance to the root GO term (“GO:0008150” in BPO, “GO:0005575” in CCO, and “GO:0003674” in MFO). For example, “GO:0048087” is a direct child

and also a grandson of “GO:0048066,” and its furthest distance to the root term is 5, while “GO:0006856” is another direct child of “GO:0048066” and its furthest

distance to the root is 4, so “GO:0006856” is plotted at a higher level than “GO:0048087”.

organisms (or species) of wide interest among biologists, such
as Homo sapiens, Mus musculus, Arabidopsis thaliana, and
so on. However, our current knowledge about the functional
taxonomy of gene products is still immature. Therefore, both
the GO hierarchy and annotations are regularly updated with
new knowledge and archived for reference. The collected GO
annotations are still quite incomplete, imbalanced, and rather
shallow (Rhee et al., 2008; Thomas et al., 2012; Dessimoz and
Škunca, 2017). For example, different species have different
distributions of GO annotations; zebrafish is heavily studied in
terms of developmental biology and embryogenesis, while rat
is the standard model for toxicology (Dessimoz and Škunca,
2017). The portion of negative annotations is much smaller than
positive ones, because a negative result may be due to inadequate
experimental conditions and is often deemed as less useful
and publishable than a positive annotation. By December 2019,
GO included more than 45,000 terms, and each gene was only
annotated with several or dozens of these terms. Therefore, it is
rather difficult to accurately infer the associations between the
genes and the many GO terms.

Each GO term can be modeled as a semantic label and, thus,
the gene function prediction task can be treated as a classification
problem to determine whether the label is positive for the gene or
not. Early gene function prediction solutions simply utilized this
annotation information (Schwikowski et al., 2000; Hvidsten et al.,
2001; Raychaudhuri et al., 2002; Schug et al., 2002; Troyanskaya
et al., 2003; Karaoz et al., 2004), and converted the problem
into a plain binary (or multi-class) classification task (Hua and
Sun, 2001; Lanckriet et al., 2003; Leslie et al., 2004). Such
methods ignored the correlations between the GO terms and
the imbalanced characteristics of terms; therefore, their accuracy
was low. Since a gene is often simultaneously annotated with a
set of structurally organized GO terms, some researchers model
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FIGURE 2 | The number of published papers related to GO-based gene

function prediction over 10 years.

gene function prediction as a multi-label or structural output
prediction task (Barutcuoglu et al., 2006; Obozinski et al., 2008;
Zhang and Zhou, 2014; Kahanda and Ben-Hur, 2017). Others
attempted to use the inter-relationships among GO terms, and
introduced a variety of solutions based on multi-label learning.
These generally obtained an improved accuracy (Mostafavi et al.,
2008; Mostafavi and Morris, 2010; Yu et al., 2012a, 2015a).

We utilizedWeb of Science1 to search articles related to gene
function prediction using GO published in the past 10 years
through a keyword search: “gene ontology and gene function
prediction.” The statistic counts are shown in Figure 2. We can
see that research interest in this topic is increasing. As the need
of human knowledge (i.e., GO and its annotations) for artificial
intelligence in biology increases, we believe the study of GO for
gene function prediction and for other biomedical data mining
tasks will be fast growing. Several excellent surveys provide
a comprehensive literature summation of the progress in gene
function prediction (a.k.a. protein function prediction) and the
studies of GO from different perspectives (Pandey et al., 2006;
Tiwari and Srivastava, 2014; Valentini, 2014; Mazandu et al.,
2016; Shehu et al., 2016; Dessimoz and Škunca, 2017). However,
to the best of our knowledge, none of them focus on harnessing
GO for gene function prediction.

Therefore, we give a comprehensive review of GO-based
gene function prediction methods ( categorized in Figure 3). The
three main issues in gene function prediction are summarized
on the left side of Figure 3. Categories of computational
methods that combat one or two of these issues are on the
right side of Figure 3. Each of these methods is detailed in the
following sections.

The rest of this review is organized as follows. We introduce
the workflow of gene function prediction, conventions in GO and
typical evaluation metrics in section 2. In section 3, we categorize
the existing GO-based gene function prediction methods. In
section 4, we summarize remaining issues, as well as some
interesting but less explored topics in gene function prediction.
Section 5 concludes the survey.

1webofknowledge.com

2. RELATED KNOWLEDGE

Gene function prediction methods mainly utilize the structure
of GO and biological features (including nucleotide/amino acids
sequences, gene expression, and interaction data, etc.) of genes.
Therefore, we first review the basic workflow of gene function
prediction, introduce the True Path Rule, and evidence codes
from GO, and then present the widely-used evaluation metrics
for gene function prediction.

2.1. The Workflow of Gene Function
Prediction
The GO file and annotation files are publicly accessible
at http://geneontology.org/. They are regularly updated and
archived. GO can be represented by a DAG (G ∈ R

m×m for
m terms). The GO annotations are usually encoded by a gene-
term association matrix (Y ∈ R

n×m for n genes with respect tom
GO terms). If gene i is annotated with t or t’s descendants, then
Y(i, t) = 1; if this gene is not annotated with t or its ancestor,
then Y(i, t) = −1; otherwise, Y(i, t) = 0. We want to remark
that Y(i, t) = 0 simply indicates that till now there is no evidence
that this gene does or does not carry out the function related
to term t. This specification is based on the incompleteness and
open-world assumption of GO annotations (Schnoes et al., 2013;
Dessimoz and Škunca, 2017). If X ∈ R

n×d stores the numeric
features of these genes, then the function prediction task can be
seen as a classification task that makes use of Y and input pattern
X to train amodel, which can predict the association probabilities
between these (or new) genes and GO terms.

Existing methods of computational gene function prediction
generally focus on the three tasks ( illustrated in Figure 4):
(i) predicting missing (new) annotations, which updates some
entries in Y with value 0 into 1 to identify new functional
annotations of genes; (ii) identifying noisy annotations, which
updates some entries in Y with value 1 into −1 to remove these
false positive annotations; (iii) predicting negative examples,
which updates some entries in Y with value 0 into −1 to state
that the gene clearly does not carry out this function. The first
task has been extensively studied, while the latter two tasks are
attracting research interest.

The evaluation protocol for gene function prediction is
generally performed one of two ways. One way is called history
to recent, which takes advantage of previously archived GO
annotations to train a model and evaluate the model’s predictions
by referring to more recent GO annotations. The second way is
called dataset partition (or cross-validation), which divides the
archived GO annotations into two (or three) sets, the first one (or
two) sets for training (or tuning) the predictor, and the remaining
set for testing the predictor. There are three main differences
between the two ways. First, from the view of selecting training
and testing sets, the history to recent evaluation is affected by the
time span, since GO annotations are regularly updated. A time
span of one or 2 years is often adopted. The dataset partition
evaluation is influenced by the proportion of training and testing
sets; a higher proportion of training sets generally gives better
results. Second, from the prediction results, the history to recent
way evaluates the fixed, recent annotations and, thus, it does
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FIGURE 3 | Three issues in gene function prediction (left), and categorization of existing computational solutions based on GO (right).

FIGURE 4 | Exemplar tasks of gene function prediction, which include predicting missing, negative, and noisy annotations.

not have a variance. In contrast, the dataset partition evaluation
has to repeat multiple, independent runs to avoid the impact
of random partition, and the average results and variances are
both influenced. The results obtained in the history to recent
evaluation are generally better than those obtained by the dataset
partition evaluation. That is because history to recent evaluation
uses all the genes and annotations for training, while dataset
partition only uses genes in the training set and excludes genes
in the testing set. Third, from the application view, the history
to recent evaluation is deemed as more realistic and is more

popular. Since GO annotations are regularly updated, the history
to recent can reflect the potential of the model with up-to-data
annotations. In contrast, the dataset partition may suffer from
a circular prediction caused by the complex inter-connections
between the partitioned training and testing sets.

2.2. Conventions in GO
2.2.1. True Path Rule
The True Path Rule is one of the most important rules in
GO (Blake, 2013), and should be respected in gene function
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prediction. If a gene is annotated with GO term t, then this gene
is also annotated with t’s ancestor terms. Conversely, if this gene
does not have the function described by t, then it should not
be annotated with t’s descendant terms other. From this rule,
we have

p(t|par(t)) ≥ p(t|gpar(t)) (1)

p(t|gpar(t)) ≥ p(t|uncle(t)) (2)

where par(t) denotes the parent term of term t, gpar(t) is the
grandparent term of t, and uncle(t) is the uncle (parent’s sibling)
term of t. p(t|par(t)) is the conditional probability that a gene is
annotated with t given this gene is already annotated with par(t).
These equations imply that if a gene is annotated with GO terms
par(t) [or uncle(t)], then this gene is also annotated with gpar(t)
(if any), but not vice versa.

Given the structural relationships between terms, gene
function prediction can be viewed as a structure output or multi-
label learning problem (Barutcuoglu et al., 2006; Obozinski et al.,
2008; Yu et al., 2012a; Zhang and Zhou, 2014; Kahanda and
Ben-Hur, 2017; Kulmanov et al., 2017). The structure or multi-
label predictions are consistent if they obey the True Path Rule
or satisfy Equations (1, 2). According to this rule, a positive
prediction for a term but a negative prediction for its ancestor
terms with respect to the same gene are inconsistent predictions.
In other words, a positive prediction for a term implies positive
predictions for all the ancestors, and a negative prediction implies
negative associations for all the descendant terms.

2.2.2. Evidence Code
Each GO annotation is tagged with one or more evidence
codes, which state the type of evidence (or source) from which
the annotation is collected. GO adopts 21 evidence codes
and groups them into four categories: (i) Experimental: EXP
(Inferred from Experiment), IDA (Inferred from Direct Assay),
IPI (Inferred from Physical Interaction), IMP (Inferred from
Mutant Phenotype), IGI (Inferred from Genetic Interaction),
and IEP (Inferred from Expression Pattern); (ii) Computational:
ISS (Inferred from Sequence or structural Similarity), ISO
(Inferred from Sequence Orthology), ISA (Inferred from
Sequence Alignment), ISM (Inferred from Sequence Model),
IGC (Inferred from Genomic Context), IBA (Inferred from
Biological aspect of Ancestor), IBD (Inferred from Biological
aspect of Descendant), IKR (Inferred from Key Residues),
IRD (Inferred from Rapid Divergence), RCA (Inferred from
Reviewed Computational Analysis), and IEA (Inferred from
Electronic Annotation); (iii) Author: TAS (Traceable Author
Statement) and NAS (Non-traceable Author Statement);
(iv) Curatorial: IC (Inferred by Curator) and ND (No
biological Data Available) (Consortium et al., 2017). The
specific meanings of these evidence codes can be found at
http://www.geneontology.org/page/guide-go-evidence-codes.

Except IEA, all other evidence codes are curated by curators.
Several studies investigate the quality of GO annotations
from the perspective of evidence codes. Thomas et al. (2007)
proposed to apply evidence codes as indicator for the reliability

of annotations, and found that the annotations achieved by
experimental and author statement are more reliable than others.
Clark and Radivojac (2011) investigated the quality of NAS and
IEA annotations, and found IEA annotations were much more
reliable than NAS ones in MFO branch. Gross et al. (2009)
considered evolutionary changes to evaluate stability and quality
of different evidence codes. Buza (2008) estimated the annotation
quality with respect to terms in BPO via a rank of evidence codes.
Jones et al. (2007) found that a high false positive rate is obtained
when leveraging ISS annotations and sequence data as the basis
for prediction. Yu et al. (2017c) adopted evidence codes to weight
the annotations and to identify the noisy annotations.

2.3. Evaluation Metrics
Multiple evaluation metrics can be adopted to quantify the
results of gene function prediction. Given the complexity of
gene function prediction, these metrics aim to evaluate the
performance from different aspects (Radivojac et al., 2013; Jiang
et al., 2016). For recent gene function prediction,AUC, Fmax, and
Smin are recommended by CAFA (Critical Assessment of protein
Function Annotation algorithms) (Radivojac et al., 2013; Jiang
et al., 2016; Zhou et al., 2019). AUC defines different thresholds
to plot the receiver-operating characteristics curve of each GO
term, and then calculates the average-area value of these terms.

Fmax is the overall maximum harmonic mean of precision
and recall across all possible thresholds on the predicted gene-
term association matrix (Jiang et al., 2016). The formal definition
of Fmax is

Fmax = max
θ

2pre(θ)rec(θ)

pre(θ)+ rec(θ)
(3)

pre(θ) =
1

m(θ)

m(θ)
∑

i=1

TPi

TPi + FPi
(4)

rec(θ) =
1

n

n
∑

i=1

TPi

TPi + FNi
(5)

where m(θ) is the number of genes, which have at least one
predicted score ≥ θ . TPi counts the number of true positive
predictions, FPi is the number of false positive predictions and
FNi counts the number of false negative predictions for gene i.

Smin utilizes information theoretic analogs based on the GO
hierarchy to evaluate the minimum semantic distance between
the predictions and ground-truths across all possible thresholds
(Jiang et al., 2014). The formal definition of Smin is

Smin = min
θ

√

ru(θ)2 +mi(θ)2 (6)

ru(θ) =
1

n

n
∑

i=1

∑

t

IC(t)l(t /∈ pi(θ) ∧ t ∈ Ti) (7)

mi(θ) =
1

n

n
∑

i=1

∑

t

IC(t)l(t ∈ pi(θ) ∧ t /∈ Ti) (8)
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where IC(t) is the information content of the term t, which
estimates a term’s specificity by its frequency of annotation
to genes (Lin, 1998). pi(θ) denotes the set of terms with
predicted scores ≥ θ for gene i, and Ti denotes the set of
terms annotated to that gene. In addition, the area under
the precision-recall curve (AUPRC) is also widely used as an
evaluation metric. Unlike AUC, it accounts for the imbalance
in the GO terms and is also more discriminant than AUC
(Guan et al., 2008; Peña-Castillo et al., 2008).

Gene function prediction can be viewed as a multi-label
classification problem (Yu et al., 2012a; Zhang et al., 2012).
Evaluation metrics for multi-label learning are also used
to quantify the performance of gene function prediction,
such as MicroAvgF1, MacroAvgF1, RankingLoss, Coverage, and
AvgPrecision. MicroAvg-F1 calculates the F1 measure from the
predictions of different GO terms as a whole; it is more affected
by the performance of terms that have more relevant genes.
MacroAvgF1 averages the F1 scores of different GO terms,
and is more affected by the performance of sparse GO terms
with fewer relevant genes. RankingLoss evaluates the average
fraction of GO-term pairs that are incorrectly ranked. Coverage
examines the search steps to cover all relevant annotations from
a predicted gene-term association matrix. AvgPrecision evaluates
the average fraction of GO terms ranked above a particular GO
term. The formal definitions of these multi-label evaluation
metrics can be found elsewhere (Zhang and Zhou, 2014; Gibaja
and Ventura, 2015). Here, we want to highlight that these
metrics quantify the results of gene function prediction from
different perspectives. Any single prediction model generally
cannot consistently outperform all others across each of
these metrics.

3. CATEGORIZATION OF EXISTING
SOLUTIONS

It is difficult to give a pure categorization of GO-based gene
function prediction solutions since there are always overlaps.
In this paper, we classify the existing solutions according to
whether hierarchical inter-relations are used between the GO
terms, and whether the massive GO terms are compressed.

3.1. Gene Function Prediction Using
Inter-Relations Between GO Terms
GO uses a DAG to hierarchically organize the GO terms. This
DAG encodes domain knowledge of biology. Evidence suggests
that using the inter-relations between GO terms can boost the
performance of gene function prediction (Tao et al., 2007; Pandey
et al., 2009; Done et al., 2010). The inter-relations between GO
terms can be measured from different viewpoints (Teng et al.,
2013; Peng et al., 2018), and can be roughly grouped into two
categories, flat and hierarchical. The flat inter-relations simply
consider the occurrence of two GO terms annotated to the same
genes, without explicitly using the hierarchical structure between
the terms. The hierarchical inter-relations additionally account
for the ontology structure. Based on the target tasks, we further
divide those two methods into three subtypes based on whether
they predict missing, noisy or negative annotations of genes, as
listed in Table 1.

3.1.1. Flat Inter-Relations-Based Solutions
Early solutions simply treated gene function prediction as a
binary (or multi-class) classification problem (Hua and Sun,
2001; Lanckriet et al., 2003; Leslie et al., 2004). These solutions

TABLE 1 | Categories of solutions that use different inter-relations between GO terms.

Solutions Inter-relations Basic techniques

Predicting missing annotations

ProWL (Yu et al., 2012b) Flat Weak label learning

ProDM (Yu et al., 2013a) Flat Weak label learning

ProHG (Liu et al., 2016) Flat Random walks

ITSS (Tao et al., 2007) Hierarchical Semantic similarity

NtN (Done et al., 2010) Hierarchical Singular value decomposition

dRW (Yu et al., 2015d) Hierarchical Random walks

PILL (Yu et al., 2015b) Hierarchical Random walks

DeepGO (Kulmanov et al., 2017) Hierarchical Deep learning

NewGOA (Yu et al., 2018a) Hierarchical Bi-random walks

AsyRW (Zhao et al., 2019b) Hierarchical Bi-random walks

Identifying noisy annotations

NoisyGOA (Lu et al., 2016) Hierarchical Semantic-based kNN

NoGOA (Yu et al., 2017c) Hierarchical Sparse representation

NFA (Lu et al., 2018) Hierarchical Sparse representation

Selecting negative annotations

ALBias (Youngs et al., 2013) Flat Bayesian model

ProPN (Fu et al., 2016b) Flat Random walks

SNOB (Youngs et al., 2014) Hierarchical Bayesian model

NETL (Youngs et al., 2014) Hierarchical Topic model

IFDR (Yu et al., 2017b) Hierarchical Semi-supervised linear regression

NegGOA (Fu et al., 2016a) Hierarchical Random walks
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accounted for neither the flat nor the hierarchical inter-relations
between GO terms. As a result, they are generally less accurate
than more advanced solutions (Tao et al., 2007; Pandey et al.,
2009; Done et al., 2010; Liu et al., 2016), which take into account
the various inter-relation among GO terms.

To predict newGO annotations of genes, Elisseeff andWeston
(2002) pioneered a rank-based support vector machine that
ranked relevant annotations of genes ahead of irrelevant ones.
Yu et al. (2012a) and Zhang et al. (2012) used the empirical
co-occurrence of two GO terms annotated to the same genes
to predict new annotations of genes, and Yu et al. (2013b,
2015a) further selectively fused multiple functional networks for
gene function prediction. To replenish the missing annotations
of partially annotated genes, Yu et al. (2012b) proposed a
gene function prediction model based on weak label learning
(ProWL), in which the labels of the annotated training data were
incomplete. ProWL performs the prediction for one GO term
at a time. To solve this problem, Yu et al. (2013a) presented an
algorithm called ProDM, which uses the maximized dependency
between the features and GO annotations of genes to predict
missing (or new) GO annotations of genes. Chicco et al. (2014)
took advantage of the equivalence between a truncated singular
value decomposition and an autoencoder neural network, and
employed an autoencoder on the gene-term association matrix
to predict missing annotations of genes.

To identify negative examples (or negative annotations with
respect to a GO term/gene), some models (Mostafavi andMorris,
2009; Cesa-Bianchi et al., 2012) utilized heuristics to determine
negative examples first and, thus, reduce the impact of an
absence of negative examples in discriminative learning. Next,
these models merged the selected negative examples to make
a prediction. For example, Guan et al. (2008) assumed that
the negative examples of a given term were all genes not
annotated with that term. Mostafavi and Morris (2009) and
Cesa-Bianchi et al. (2012) presumed that negative examples of
a target term came from the genes which were not annotated
with sibling terms of that term. This hypothesis may be often
violated, since a gene may be annotated with one or more of
those sibling terms as more experimental evidence becomes
available. Youngs et al. (2013) introduced a model called
ALBias, which assumed that the negative examples of a gene
should root in the terms with the smallest probability of being
annotated to that gene. The negative examples selected by ALBias
can boost the performance of gene function predictions. To
take advantage of information about features of genes and
the available-but-scanty negative examples, Fu et al. (2016b)
proposed a gene function prediction approach using positive
and negative examples (ProPN). In ProPN, a signed hybrid
directed graph encodes the positive and negative examples, the
interactions between genes and the flat inter-relations between
terms. Then, label propagation on the graph identifies the
negative examples.

Irrespective of the target task, these solutions generally focus
on using the co-occurrence of GO terms annotated to the
same genes. Although some of them also use the annotations
augmented by True Path Rule, they still do not explicitly
include the important hierarchical inter-relations among the
GO terms.

3.1.2. Hierarchical Inter-Relations-Based Solutions
Many models use the hierarchical inter-relations between GO
terms and prove that the appropriate use of inter-relations can
improve the gene function prediction (Tao et al., 2007; Done
et al., 2010; Yu et al., 2015b). For example, Barutcuoglu et al.
(2006) organized the predictions obtained from multiple binary
classifiers for different terms in a Bayesian network derived
from the GO hierarchy. Valentini (2011) and Cesa-Bianchi
et al. (2012) further introduced a bi-directional asymmetric
flow of information based on the GO hierarchy using an
ensemble method , in which the positive predictions for a node
propagated to its ancestors in a recursive way, while the negative
predictions propagated to its offsprings. Obozinski et al. (2008)
focused on calibrating and combining independent predictions
to obtain a set of probabilistic predictions that are consistent
with the topology of the ontology. Kahanda and Ben-Hur (2017)
proposed a structured output solution that adopted a structural
kernel function.

King et al. (2003) directly applied the annotation patterns
of genes to induce a decision tree or Bayesian classifier to
predict gene functions. However, neither classifiers was reliable
for sparse GO terms, which are annotated with too few
(≤10) genes. Tao et al. (2007) quantified the semantic similarity
between genes by combing the hierarchical relationships between
terms and known GO annotations of genes, then using a k
nearest neighbor (kNN) classifier with the semantic similarity
to predict unknown annotations of genes. Pandey et al. (2009)
employed Lin’s similarity (Lin, 1998) to capture the inter-
relations between hierarchically organized terms and to infer
annotations of genes. Done et al. (2010) introduced a method
called NtN, which applies singular value decomposition (SVD)
(Golub and Reinsch, 1971) on the gene-term association matrix,
whose entries are weighted by the term frequency-inverse
document frequency and GO hierarchy; thus, the semantic
relationships between genes and between terms were explored
and the missing associations between genes and terms were
completed. Yu et al. (2015b) utilized the hierarchical and flat
inter-relations among terms to predict additional annotations
of partially annotated genes. However, this solution ignored
GO terms in the GO hierarchy that were not yet annotated
to studied genes. To solve this problem, Yu et al. (2015d)
introduced a downward Random Walks model (dRW), which
performed random walks on the GO hierarchy while taking
the terms annotated to a gene as the initial nodes. Given
the structural difference between the GO terms subgraph and
the genes subgraph, Yu et al. (2018a) proposed a method
called NewGOA, which used a bi-random walk strategy on
a hybrid graph to predict new annotations of genes. Zhao
et al. (2019b) quantified the individual walk-lengths for each
node of a hybrid network composed of genes, GO terms
and their hierarchical relations; then, a random walk with
individual walk-lengths on the network was performed to
achieve cross-species gene function prediction. Kulmanov et al.
(2017) developed a deep learning-based approach that utilized
the GO structure as background information to optimize
the predictions.

To select negative examples, Youngs et al. (2014) proposed
two algorithms: selection of negatives through observed bias
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(SNOB) and negative examples from topic likelihood (NETL).
SNOB approximated the empirical conditional probability
between terms using both direct and GO-hierarchy augmented
annotations. NTEL assumed a gene is a document and all terms
affiliated with that gene are words of that document; then it
used a Latent Dirichlet Allocation topic model (Blei et al.,
2003) to select negative examples. Fu et al. (2016a) proposed
a negative GO annotations selection approach (NegGOA)
that leveraged GO hierarchy, random walks, and co-occurrence
patterns of annotations to select negative examples of a gene.
Experimental study has demonstrated that NegGOA suffered
less from incomplete annotations than NETL or SNOB, and
that the selected negative examples improved the performance
of gene function prediction. Yu et al. (2017b) applied a random
walk on the GO hierarchy and biological network to enrich the
links between nodes, and then factorized the updated relational
matrices of hierarchy and the network into two low-rank
numeric matrices (one for the feature data matrix and the other
for the GO label matrix), and finally imposed a semi-supervised
classification on the two low-rank matrices to infer positive or
negative annotations of genes.

The GO hierarchical structure has also been used to identify
noisy annotations, which is a less-studied but practical topic
of gene function prediction. Since GO annotations of genes
are collected from different sources (like crowdsourcing), these
annotations are inevitably inaccurate (Huntley et al., 2014). Lu
et al. (2016) proposed a novel model (NoisyGOA) that measured
the taxonomic similarity between ontological terms using the
GO hierarchy and the semantic similarity between genes using
annotations. Next, NoisyGOA utilized the GO annotations of a
gene’s neighbors to aggregate annotations of the gene. Then, it
takes the positive annotations with the lowest aggregated scores
as noisy annotations. However, NoisyGOA does not evaluate
the reliability of different annotations, and includes noisy
annotations when quantifying the semantic similarity between
genes. To address that, Lu et al. (2018) preset weights for different
evidence codes and upward-propagated weights to ancestor
annotations via the GO hierarchy. Next, they measured the
semantic similarity between genes by l1-norm regularized sparse
representation on the weighted gene-term association matrix,
and took advantage of annotations of semantic neighbors to
identify noisy annotations of a gene. Further, Yu et al. (2017c)
introduced a more advanced and adaptive approach (NoGOA),
which used evidence codes of annotations to deferentially weight
annotations and sparse representation to quantify the similarity
between genes to identify noisy annotations.

Overall, these solutions each model GO by using the
pattern of GO annotations and/or GO hierarchy. Therefore, they
generally obtain a better performance than counterparts without
such modeling.

3.2. Gene Function Prediction by
Compressing Massive GO Terms
GO now includes more than 45,000 GO terms, and most
GO annotations of genes are sparse and incomplete. As such,
predicting the associations between genes and massive terms is

rather difficult. Some solutions (Emmert-Streib and Dehmer,
2009; Li et al., 2009; Yu et al., 2018a) use different techniques
to utilize the GO hierarchy graph and to boost performance
with respect to sparse GO terms, which are annotated to too
few genes. However, they still have to handle massive GO terms.
In actual fact, the huge number of GO terms also causes a
heavy computation burden for GO-based semantic similarity
studies (Mistry and Pavlidis, 2008; Yu et al., 2015d). To alleviate
this difficulty, researchers have tried to compress massive terms,
and predict gene functions in a compressed label space. Based
on the adopted techniques, existing solutions can be divided
into two types: (i) matrix factorization-based and (ii) hashing
coding-based techniques. These methods are summarized in
Table 2. Obviously, these solutions have some overlaps with the
ones introduced in the previous subsections. These solutions
demonstrate that compressing GO terms improves accuracy and
may even boost efficiency (Wang et al., 2015; Yu et al., 2017e;
Zhao et al., 2019a).

3.2.1. Matrix Factorization-Based Solutions
Some efforts have been made toward applying matrix
factorization-based solutions to compress sparse GO terms
and to infer annotations of genes (Done et al., 2010; Wang
et al., 2015; Yu et al., 2017b). NtN (Done et al., 2010) and IFDR
(Yu et al., 2017b) are methods already mentioned in section
3.1.2. In addition, Yu et al. (2017d) proposed ProCMF to
explore the latent relationships between genes and GO terms
by matrix factorization. ProCMF factorized the gene-term
association matrix into two low-rank matrices, and then defined
two smoothness terms on these two matrices to use multiple
functional association networks of genes and flat inter-relations
between GO terms. These two terms also guide the matrix
factorization and the approximation of the to-be-predicted
gene-term association matrix. Wang et al. (2015) introduced a
method called clusDCA based on Diffusion Component Analysis
(DCA) (Cho et al., 2015). clusDCA individually performed a
random walk on the GO DAG and on the biological networks
to capture information about the underlying structure, then

TABLE 2 | Exemplar solutions based on compressing GO terms.

Solutions Inter-relations

Matrix factorization

ProCMF (Yu et al., 2017d) Flat

clusDCA (Wang et al., 2015) Hierarchical

NtN (Done et al., 2010) Hierarchical

clusDCA (Wang et al., 2015) Hierarchical

ProsNet (Wang et al., 2017) Hierarchical

IFDR (Yu et al., 2017b) Hierarchical

NMFGO (Yu et al., 2020b) Hierarchical

ZOMF (Zhao et al., 2019c) Hierarchical

LSDRs (Makrodimitris et al.,

2019)

Hierarchical

Hash learning
HashGO (Yu et al., 2017e) Hierarchical

HPHash (Zhao et al., 2019a) Hierarchical
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obtained two updated adjacency matrices. To reduce noise, it
applied SVD on the two matrices to compress them into two
low-dimensional matrices. After that, clusDCA optimized a
relational matrix between low-dimensional matrices to explore
the latent relations, and to predict the associations between genes
and GO terms. clusDCA manifested a significantly improved
performance on sparse terms. Yu et al. (2020b) introduced a
method called NMFGO, which combined non-negative matrix
factorization (NMF) (Lee and Seung, 1999) with a GO DAG
regularization term to factorize the gene-term association matrix
into two low-rank matrices. Next, NMFGO used the low-rank
matrices to explicitly calculate the semantic similarity between
genes. After that, NMFGO predicted the low-rank labels of a gene
based on the low-rank labels of its semantic neighbors. Then, it
restored the predictions to the original GO terms. Makrodimitris
et al. (2019) recently experimentally evaluated a series of label-
compression solutions based on matrix factorization and proved
that compressed labels can boost the prediction performance.

However, the matrix factorization-based methods above
lack interpretability of the compressed labels, and suffer from
an inherent problem of thresholding both the relevant and
irrelevant GO annotations from the predicted numeric gene-
term association matrix. This problem is also found in multi-
label learning (Pillai et al., 2013). To solve these problems,
Zhao et al. (2019c) introduced a method based on zero-one
matrix factorization (ZOMF). ZOMF decomposed the gene-
term association matrix into two low-rank matrices with entry
values restricted to one or zero, then explored the inner latent
relationships between the genes and terms. Next, it defined two
smoothness terms on these two low-rank matrices with respect
to the gene-gene interactions and the structural relationships
between terms, thus guiding the optimization of low-rank
matrices. Finally, it reconstructed the association matrix using
the optimized two low-rank matrices to predict gene functions.
ZOMF did not need to threshold the reconstructed association
probability matrix, and the compressed zero-one labels had a
more intuitive explanation than compressed labels.

3.2.2. Hashing-Based Solutions
To achieve low storage and fast retrieval, hashing has been widely
used in big data applications (Wang et al., 2016; Liu et al.,
2019). For example, Tian et al. (2016) used hash tables to store
essential information learned from GO DAG and to efficiently
compute the semantic similarity of genes. Empirical studies show
that hash tables-based solutions can speed up diverse semantic
similarity metrics, e.g., the group-based one (Teng et al., 2013)
and Best Match Average (Pesquita et al., 2008). Researchers also
recently employed hashing learning techniques to convert the
typical one-hot coding of massive GO terms into short binary
hashing codes. For example, Yu et al. (2017e) adopted a hashing
technique that preserved the graph structure from Liu et al.
(2011) to represent a large set of GO terms with compact binary
codes, and then computed semantic similarity between the genes
using the Hamming distance to predict gene functions. However,
this method did not obey the GO hierarchy very well. To solve
this problem, Zhao et al. (2019a) introduced a hashing method
that preserved the ontology hierarchy (HPHash), which sought

a set of hash functions to maintain the GO hierarchy order
and the taxonomic similarity between the terms. Then, HPHash
used the hash functions to compress a high-dimensional gene-
term association matrix into a low-dimensional binary matrix,
and predicted the gene functions therein. HPHash improved the
prediction accuracy, and can be used as a plugin to boost the
BLAST-based gene function prediction (Zhang et al., 1997; You
et al., 2018).

3.3. Cross-Species Solutions
GO is a community-collaborative effort in functional genomics,
and GO terms are generally organized in a species-neutral
way to reflect the broad domain knowledge of biology. Due
to differences in the preferences of biologist and in research
ethics for experiments involving humans, animals, and plants,
the curated annotations of genes for different species are biased,
incomplete, and imbalanced (Schnoes et al., 2013; Dessimoz
and Škunca, 2017; Zhao et al., 2019b). Two species with high
homology have a large number of homologous genes, which
should share similar (or even identical) GO annotations (Schnoes
et al., 2013). Unfortunately, contemporary homologous genes
are associated with different GO terms, due to the bias of
biologists and diverse focuses on different species. Therefore,
it is interesting to leverage the shared GO structure and
complementary annotations of genes for cross-species gene
function prediction.

In the early stages, typical cross-species solutions only
involved the sequence data along with BLAST and PSI-BLAST
(Zhang et al., 1997), but these solutions were unreliable, and
the sequence identification was <25% (Shehu et al., 2016). Eisen
(1998) found that utilizing evolutionary information improved
gene function prediction. Guided by this observation, some
databases based on the phylogenetic trees of animal-gene families
appeared, such as TreeFam (Li et al., 2006). Chikina and
Troyanskaya (2011) leveraged gene sequence and expression data
to identify function analogous genes, and obtained an improved
accuracy. However, these solutions ignored GO. To consider
GO, Mitrofanova et al. (2011) presented a GO chain-graph-
based approach to improve gene function prediction, which
utilized high inter-species sequence homology, the PPIs of two
or more species together and the GO hierarchy to construct
a heterogeneous network. But this inter-species method only
considered a small number of GO terms. Park et al. (2013)
demonstrated that comparing the sequences of just two
genes participating in the same biological processes is somewhat
inaccurate. Using other genomic data, such as gene expression,
can supplement traditional sequence-similarity measures to
boost the performance when evalusting biological-process
functions. Some other solutions attempted more advanced
sequence or physical-chemical similarity metrics to improve the
function prediction (Vidulin et al., 2016; Kulmanov et al., 2017;
You et al., 2018; Kulmanov and Hoehndorf, 2020). For example,
You et al. (2018) recently presented the GOLabeler, which
separately trained five different classifiers from five different
feature descriptors on sequence data, and then combined these
classifiers to make a prediction. These attempts typically assumed
that the annotations of the “well-annotated” species were
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complete, which is not true (Jiang et al., 2014). Moreover, they
neglected the dynamic, mutually supplementary GO annotations
of the close-homology species. Yu et al. (2016b) studied cross-
species gene function prediction based on semantic similarity.
They separately explored the prediction performance for two
species with high or low homology, finding that annotations
of highly-homologous species were complementary, while those
of less homologous species did not complement each other.
Kulmanov et al. (2017) developed a deep learning-based method
(DeepGO) to predict gene function from sequences. In DeepGO,
the deep learning model predicted the GO annotations of genes
based on gene sequences and dependencies between GO terms.
To leverage the GO annotations of different species, Zhao et al.
(2019b) constructed a heterogeneous network including the
GO hierarchy, intra- and inter-species subnetworks. Then, they
introduced an asynchronous random work on the heterogeneous
network to predict gene functions.

3.4. GO-Based Semantic-Similarity
Measures and Applications
The semantic similarity between genes is quantified using GO
annotations and/or GO hierarchy. It is positively correlated with
the feature similarity between them, which is computed from
other biological data (Pesquita et al., 2009; Yu et al., 2015d).
Therefore, semantic-based (and also sequence similarity- or
interaction network-based) gene function prediction has been
popular in recent years (Tao et al., 2007; Yu et al., 2015d, 2016a,
2017c,e).

Semantic similarity-based methods typically use the semantic
similarity to select the neighborhood genes and predict the
annotations of a gene based on annotations of those
neighborhood genes. ITSS (Tao et al., 2007), dRW (Yu et al.,
2015d), HashGO (Yu et al., 2017e), HPHash (Zhao et al., 2019a),
and NMFGO (Yu et al., 2020b) are some representative methods
introduced in sections 3.1.2, 3.2.2. In addition, the semantic
similarity is integrated with other feature similarities for gene
function prediction (Yu et al., 2015c, 2016a). For example, Yu
et al. (2016a) proposed a semantic data fusion method (SimNet),
which optimized the weights of multiple functional association
networks to align with a semantic-similarity kernel matrix
induced from the GO annotations of genes. After that, SimNet
applied these weights to fuse the networks into a composite
network, and then performed random walks on the composite
network to make a prediction.

Measures of the similarity between genes can be extended
from taxonomic similarity measures between GO terms. Existing
similarity measures between genes can be further divided into
two categories (Pesquita et al., 2009), pairwise and groupwise.
Pairwise measures generally employ an average combination
(Lord et al., 2003), maximum combination (Sevilla et al., 2005),
or best match average combination (BMA) to integrate the
proximity between pairwise terms. Among them, BMA provides
a good balance between the maximum and average measure,
since the latter two measures are inherently influenced by
the number of terms being combined (Pesquita et al., 2009).
Groupwise measures directly apply set (Mistry and Pavlidis,

2008), graph (Pesquita et al., 2008; Teng et al., 2013), or vector
operator to compute the similarity between two sets of terms.
For example, Mistry and Pavlidis (2008) introduced a set based
metric called term overlap (TO), which takes into account the
ratio between the number of shared annotations and minimum
number of annotations of two genes. Graph-based measures
organize terms annotated to a gene by a subgraph of DAG and
then use graph comparing techniques to quantify the similarity
between genes, i.e., simGIC (Pesquita et al., 2008) and SORA
(Teng et al., 2013). The associations between a gene and all its
terms can be encoded as a binary vector; vector-based measures
then directly calculate the similarity between genes on the
binary vectors using traditional similarity metrics (i.e., cosine and
Hamming distances). The methods mentioned above use only
the GO annotations and structure, whereas Peng et al. (2018)
presented a similarity measure that integrated information from
gene co-function networks, the GO structure and annotations.

To facilitate effective exploration of these semantic measures,
some online tools or packages have been developed for the
community. Yu et al. (2010) introduced an R package called
GOSemSim to efficiently compute the semantic similarity
between individual GO terms, sets of GO terms, genes or
gene clusters. Peng et al. (2016) developed a web tool called
InteGO2 to select the most appropriate measure from a set of
measures using a voting method, or to integrate measures
via a meta-heuristic search method. Mazandu et al. (2015)
introduced a Python portable application called A-DaGO-Fun,
which assembled diverse semantic measures and biological
applications using these measures.

However, most solutions based on semantic similarity are
still impacted by incomplete GO annotations. For a gene without
any GO annotations, its semantic similarity with other genes is
zero. Another limitation of semantic similarity-based solutions
is that they cannot predict new annotations for a gene without
any annotations. Furthermore, semantic measures are computed
with respect to massive GO terms and, thus, are less reliable with
sparse annotations. To address the last issue, some efforts have
beenmade toward compressing these terms before measuring the
semantic similarity (Done et al., 2010; Yu et al., 2017e, 2020b;
Zhao et al., 2019a); these were reviewed in previous subsections.

4. REMAINING CHALLENGES AND
POTENTIAL TOPICS

Despite much progress, the intrinsic complexity of GO-
based gene function prediction, the evolution of GO and the
importance of reliable GO annotations for various domainsmean
that there are still interesting and challenging research directions,
which deserve further efforts.

First, the GO annotations of genes are still incomplete,
shallow, imbalanced across species and even noisy (Thomas
et al., 2012; Dessimoz and Škunca, 2017). Since the semantic
similarity between genes may not faithfully reflect the actual
similarity between genes or terms with incomplete annotations,
semantic similarity-based solutions can only be applied for
species with sufficient annotations. Although several semantic
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similarity-based solutions make specific use of the GO hierarchy,
GO annotations (Tao et al., 2007; Done et al., 2010; Xu et al.,
2013; Yu et al., 2015b,d) and additional data sources (Peng et al.,
2018; Yu et al., 2020b) to obtain an improved performance, they
are mostly based on the assumption of complete annotations.
In addition, many solutions suffer from an overwhelming
computational load when handling massive GO terms. Hence,
more efficient and effective models are still welcomed.

Second, for massive GO terms, the models based on
compressed GO terms (Done et al., 2010; Wang et al., 2015; Yu
et al., 2017e, 2020b; Zhao et al., 2019a) have attracted increasing
interest. Although the compressed labels allow researchers to
explore and employ potential relationships between terms, more
theoretically sound label-compression solutions, which enable
efficient gene function prediction with improved efficiency and
reliability, are still anticipated.

Third, multi-omics data can reflect gene function from
different aspects and they complement each other. Some
efforts have been made to combine GO and heterogeneous
proteomics/genomics data (Cho et al., 2016; Yu et al., 2016a,
2017d), but they often suffer from a large number of GO terms.
Therefore, they have to project heterogeneous data onto the
common latent feature space, which obscures the intrinsic
structures of the respective data sources. More advanced
integrative solutions must integrate these heterogeneous
biological data and the GO knowledge more effectively.

Fourth, due to the research priorities of biologists and
animal/plant ethics, the collected GO annotations of genes are
imbalanced across different species (Schnoes et al., 2013).
Many species have scarce annotations, and their annotations
must be electronically inferred from those of relatively well-
annotated species. Some studies show that the GO annotations
of homologous genes across species are complementary. One
fruitful direction would be to credibly transfer annotations from
several well-annotated and curated species to less-studied species.

Fifth, most existing solutions focus on predicting the
new annotations of a newly-sequenced gene or the missing
annotations of a gene with sparse annotations. In fact, gene
function prediction relies on the known positive and negative
annotations of a gene, but conventionally only the positive
annotations of genes are reported and, thus, recorded in
GO. Therefore, it lacks negative annotations, which limits the
discriminative ability of function prediction models (Youngs
et al., 2014; Fu et al., 2016a). Noisy annotations are also still
largely overlooked by the community, whichmaymislead wet-lab
experimental verification, GO enrichment analysis, and more.
More efforts can be devoted into identifying noisy annotations
and irrelevant (or negative) annotations of genes.

Last but not least, beside proteins, other gene products like
miRNAs and lncRNAs also play important roles in many life
processes and have associations with different complex diseases
(Lu et al., 2008; Chen et al., 2012; Deng et al., 2019; Zou et al.,
2019). Our preliminary studies (Yu et al., 2017a, 2018b; Fu et al.,
2018; Wang et al., 2019) show that using GO appropriately
can boost the prediction of lncRNA-disease associations, and
GO has some overlaps with Disease Ontology (Schriml et al.,
2011), which also adopts a DAG to hierarchically organize disease

terms. For example, GO has been used to find functional
similarities in genes that are overexpressed or underexpressed in
diseases (Chen et al., 2013), and our empirical results showed
that the exclusion of GO annotations of genes significantly
compromised the precision of an lncRNA-disease association
prediction (Yu et al., 2017a; Fu et al., 2018). Another issue
is that alternative splicing causes a gene to be translated into
different isoforms or protein variants, but GO collectively stores
the associations between GO terms and genes irrespective
these variants. Differentiating the GO annotations of individual
isoforms can provide a deeper analysis of living processes (Li
et al., 2014). Our recent study confirmed that considering the
GO hierarchy also helps to identify the functions of individual
isoforms (Wang et al., 2020; Yu et al., 2020a). The accumulated
experiences of using GO for gene function prediction are
expected to shed light on the predicted functions of other
molecules (i.e., ncRNAs).

5. CONCLUSIONS

Identifying the functional roles of gene products such as proteins
and RNAs is one of the fundamental tasks in the post-genomic
era. Given the incomplete functional knowledge of genes, we
have to admit that existing gene function prediction solutions are
still no substitute for wet-lab experiments. Rather, they are an
important supplementary technique. As more evidence of gene
functions is accumulated from experiments, the gene function
prediction solutions will become more competent.

Our survey reviews the literature of ongoing studies of
gene function prediction using GO, with the aim of expediting
research into reliable gene function prediction. We may
neglect some important work related to GO-based computational
gene function prediction, given multiplicity and diverse
progress in various areas. The main challenges of gene function
prediction are: (i) GO annotations that are incomplete, sparse,
shallow, and imbalanced within and between species; (ii)
massive structurally organized GO terms; and (iii) increasing
relevant and irrelevant multi-type biological data. In summary,
although various computational methods based on GO have been
proposed, there are still promising topics and challenges that
deserve further efforts.

AUTHOR CONTRIBUTIONS

YZ and GY drafted the manuscript. MG and GY conceived the
whole program, extensively revised the manuscript, and finally
approved the final manuscript. JW, JC, and XZ participated in
the discussion and revision of this manuscript.

FUNDING

This work was financially supported by Natural Science
Foundation of China (61872300), Fundamental Research

Frontiers in Genetics | www.frontiersin.org 11 April 2020 | Volume 11 | Article 400

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhao et al. GO Based Gene Function Prediction

Funds for the Central Universities (XDJK2019B024
and XDJK2020B028), Natural Science Foundation of
CQ CSTC (cstc2018-jcyjAX0228), and King Abdullah
University of Science and Technology, under award
number FCC/1/1976-19-01.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.00400/full#supplementary-material

REFERENCES

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al.
(2000). Gene ontology: tool for the unification of biology.Nat. Genet. 25, 25–29.
doi: 10.1038/75556

Barabási, A.-L., Gulbahce, N., and Loscalzo, J. (2011). Network medicine: a
network-based approach to human disease. Nat. Rev. Genet. 12, 56–68.
doi: 10.1038/nrg2918

Barutcuoglu, Z., Schapire, R. E., and Troyanskaya, O. G. (2006). Hierarchical
multi-label prediction of gene function. Bioinformatics 22, 830–836.
doi: 10.1093/bioinformatics/btk048

Blake, J. A. (2013). Ten quick tips for using the gene ontology. PLoS Comput. Biol.
9:e1003343. doi: 10.1371/journal.pcbi.1003343

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. J. Mach.

Learn. Res. 3, 993–1022. doi: 10.1162/jmlr.2003.3.4-5.993
Buza, T. J. (2008). Gene ontology annotation quality analysis in model eukaryotes.

Nucleic Acids Res. 36:e12. doi: 10.1093/nar/gkm1167
Cesa-Bianchi, N., Re, M., and Valentini, G. (2012). Synergy of

multi-label hierarchical ensembles, data fusion, and cost-sensitive
methods for gene functional inference. Mach. Learn. 88, 209–241.
doi: 10.1007/s10994-011-5271-6

Chen, G., Wang, Z., Wang, D., Qiu, C., Liu, M., Chen, X., et al. (2012).
LncRNAdisease: a database for long-non-coding RNA-associated diseases.
Nucleic Acids Res. 41, D983?D986. doi: 10.1093/nar/gks1099

Chen, W.-H., Zhao, X.-M., van Noort, V., and Bork, P. (2013). Human monogenic
disease genes have frequently functionally redundant paralogs. PLoS Comput.

Biol. 9:e1003073. doi: 10.1371/journal.pcbi.1003073
Chicco, D., Sadowski, P., and Baldi, P. (2014). “Deep autoencoder neural networks

for gene ontology annotation predictions?” in Proceedings of the 5th ACM

Conference on Bioinformatics, Computational Biology, and Health Informatics

(Newport Beach, CA), 533–540. doi: 10.1145/2649387.2649442
Chikina, M. D., and Troyanskaya, O. G. (2011). Accurate quantification of

functional analogy among close homologs. PLoS Comput. Biol. 7:e1001074.
doi: 10.1371/journal.pcbi.1001074

Cho, H., Berger, B., and Peng, J. (2015). “Diffusion component analysis:
unraveling functional topology in biological networks?” in International

Conference on Research in Computational Molecular Biology (Warsaw), 62–64.
doi: 10.1007/978-3-319-16706-0_9

Cho, H., Berger, B., and Peng, J. (2016). Compact integration of multi-
network topology for functional analysis of genes. Cell Syst. 3:540.
doi: 10.1016/j.cels.2016.10.017

Clark, W. T., and Radivojac, P. (2011). Analysis of protein function and
its prediction from amino acid sequence. Proteins 79, 2086–2096.
doi: 10.1002/prot.23029

Deng, L., Wang, J., and Zhang, J. (2019). Predicting gene ontology function
of human micrornas by integrating multiple networks. Front. Genet. 10:3.
doi: 10.3389/fgene.2019.00003

Dessimoz, C., and Skunca, N. (2017). The gene ontology handbook.Methods Mol.

Biol. 1446,3–68. doi: 10.1007/978-1-4939-3743-1
Done, B., Khatri, P., Done, A., and Draghici, S. (2010). Predicting novel human

gene ontology annotations using semantic analysis. IEEE/ACM Trans. Comput.

Biol. Bioinformatics 7, 91–99. doi: 10.1109/TCBB.2008.29
Eisen, J. A. (1998). Phylogenomics: improving functional predictions for

uncharacterized genes by evolutionary analysis. Genome Res. 8, 163–167.
doi: 10.1101/gr.8.3.163

Elisseeff, A., and Weston, J. (2002). “A kernel method for multi-labelled
classification?” in Advances in Neural Information Processing Systems

(Vancouver, BC), 681–687.

Emmert-Streib, F., and Dehmer, M. (2009). Predicting cell cycle regulated genes by
causal interactions. PLoS ONE 4:e6633. doi: 10.1371/journal.pone.0006633

Fu, G., Wang, J., Domeniconi, C., and Yu, G. (2018). Matrix factorization-based
data fusion for the prediction of lncRNA-disease associations. Bioinformatics

34, 1529–1537. doi: 10.1093/bioinformatics/btx794
Fu, G., Wang, J., Yang, B., and Yu, G. (2016a). NegGOA: Negative go

annotations selection using ontology structure. Bioinformatics 32, 2996–3004.
doi: 10.1093/bioinformatics/btw366

Fu, G., Yu, G., Wang, J., and Maozu, G. (2016b). Protein function prediction
using positive and negative example. J. Comput. Res. Dev. 53, 1753–1765.
doi: 10.7544/issn1000-1239.2016.20160196

Gibaja, E., and Ventura, S. (2015). A tutorial onmultilabel learning. ACMComput.
Surveys 47:52. doi: 10.1145/2716262

Golub, G. H., and Reinsch, C. (1971). “Singular value decomposition and least
squares solutions?”, inHandbook for Automatic Computation. Die Grundlehren

der mathematischen Wissenschaften (in Einzeldarstellungen mit besonderer

Berï£¡cksichtigung der Anwendungsgebiete), Vol. 186, eds F. L. Bauer, A. S.
Householder, F. W. J. Olver, H. Rutishauser, K. Samelson, and E. Stiefel (Berlin;
Heidelberg: Springer), 134–151. doi: 10.1007/978-3-662-39778-7_10

Gross, A., Hartung, M., Kirsten, T., and Rahm, E. (2009). 11Estimating the
quality of ontology-based annotations by considering evolutionary changes?”
in InternationalWorkshop onData Integration in the Life Sciences (Manchester),
71–87. doi: 10.1007/978-3-642-02879-3_7

Guan, Y., Myers, C. L., Hess, D. C., Barutcuoglu, Z., Caudy, A. A., and
Troyanskaya, O. G. (2008). Predicting gene function in a hierarchical context
with an ensemble of classifiers.Genome Biol. 9:S3. doi: 10.1186/gb-2008-9-s1-s3

Hua, S., and Sun, Z. (2001). Support vector machine approach for
protein subcellular localization prediction. Bioinformatics 17, 721–728.
doi: 10.1093/bioinformatics/17.8.721

Huntley, R. P., Sawford, T., Martin, M. J., and Donovan, C. (2014). Understanding
how and why the gene ontology and its annotations evolve: the go within
uniprot. GigaScience 3, 2047–217X. doi: 10.1186/2047-217X-3-4

Hvidsten, T. R., Komorowski, J., Sandvik, A. K., and Laegreid, A. (2001). Predicting
gene function from gene expressions and ontologies,? in Pacific Symposium on

Biocomputing (Hawaii: World Scientific), 299–310.
Jiang, Y., Clark, W. T., Friedberg, I., and Radivojac, P. (2014). The impact

of incomplete knowledge on the evaluation of protein function prediction:
a structured-output learning perspective. Bioinformatics 30, i609?i616.
doi: 10.1093/bioinformatics/btu472

Jiang, Y., Oron, T. R., Clark, W. T., Bankapur, A. R., D’Andrea, D.,
Lepore, R., et al. (2016). An expanded evaluation of protein function
prediction methods shows an improvement in accuracy. Genome Biol. 17:184.
doi: 10.1186/s13059-016-1037-6

Jones, C. E., Brown, A. L., and Baumann, A. U. (2007). Estimating the annotation
error rate of curated go database sequence annotations. BMC Bioinformatics

8:170. doi: 10.1186/1471-2105-8-170
Kahanda, I., and Ben-Hur, A. (2017). “Gostruct 2.0: Automated protein

function prediction for annotated proteins?” in Proceedings of the 8th

ACM International Conference on Bioinformatics, Computational Biology,

and Health Informatics (Boston, MA), 60–66. doi: 10.1145/3107411.31
07417

Karaoz, U., Murali, T., Letovsky, S., Zheng, Y., Ding, C., Cantor, C. R.,
et al. (2004). Whole-genome annotation by using evidence integration in
functional-linkage networks. Proc. Natl. Acad. Sci. U.S.A. 101, 2888–2893.
doi: 10.1073/pnas.0307326101

King, O. D., Foulger, R. E., Dwight, S. S., White, J. V., and Roth, F. P.
(2003). Predicting gene function from patterns of annotation. Genome Res. 13,
896–904. doi: 10.1101/gr.440803

Frontiers in Genetics | www.frontiersin.org 12 April 2020 | Volume 11 | Article 400

https://www.frontiersin.org/articles/10.3389/fgene.2020.00400/full#supplementary-material
https://doi.org/10.1038/75556
https://doi.org/10.1038/nrg2918
https://doi.org/10.1093/bioinformatics/btk048
https://doi.org/10.1371/journal.pcbi.1003343
https://doi.org/10.1162/jmlr.2003.3.4-5.993
https://doi.org/10.1093/nar/gkm1167
https://doi.org/10.1007/s10994-011-5271-6
https://doi.org/10.1093/nar/gks1099
https://doi.org/10.1371/journal.pcbi.1003073
https://doi.org/10.1145/2649387.2649442
https://doi.org/10.1371/journal.pcbi.1001074
https://doi.org/10.1007/978-3-319-16706-0_9
https://doi.org/10.1016/j.cels.2016.10.017
https://doi.org/10.1002/prot.23029
https://doi.org/10.3389/fgene.2019.00003
https://doi.org/10.1007/978-1-4939-3743-1
https://doi.org/10.1109/TCBB.2008.29
https://doi.org/10.1101/gr.8.3.163
https://doi.org/10.1371/journal.pone.0006633
https://doi.org/10.1093/bioinformatics/btx794
https://doi.org/10.1093/bioinformatics/btw366
https://doi.org/10.7544/issn1000-1239.2016.20160196
https://doi.org/10.1145/2716262
https://doi.org/10.1007/978-3-662-39778-7_10
https://doi.org/10.1007/978-3-642-02879-3_7
https://doi.org/10.1186/gb-2008-9-s1-s3
https://doi.org/10.1093/bioinformatics/17.8.721
https://doi.org/10.1186/2047-217X-3-4
https://doi.org/10.1093/bioinformatics/btu472
https://doi.org/10.1186/s13059-016-1037-6
https://doi.org/10.1186/1471-2105-8-170
https://doi.org/10.1145/3107411.3107417
https://doi.org/10.1073/pnas.0307326101
https://doi.org/10.1101/gr.440803
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhao et al. GO Based Gene Function Prediction

Kissa, M., Tsatsaronis, G., and Schroeder, M. (2015). Prediction of drug
gene associations via ontological profile similarity with application to drug
repositioning.Methods 74, 71–82. doi: 10.1016/j.ymeth.2014.11.017

Kulmanov, M., and Hoehndorf, R. (2020). Deepgoplus: improved protein function
prediction from sequence. Bioinformatics 36, 422–429. doi: 10.1101/615260

Kulmanov, M., Khan, M. A., and Hoehndorf, R. (2017). DeepGO: predicting
protein functions from sequence and interactions using a deep ontology-aware
classifier. Bioinformatics 34, 660–668. doi: 10.1093/bioinformatics/btx624

Lanckriet, G. R., Deng, M., Cristianini, N., Jordan, M. I., and Noble, W. S. (2003).
“Kernel-based data fusion and its application to protein function prediction
in yeast?” in Pacific Symposium on Biocomputing (Hawaii: World Scientific),
300–311. doi: 10.1142/9789812704856_0029

Lee, D. D., and Seung, H. S. (1999). Learning the parts of objects by non-negative
matrix factorization. Nature 401, 788–791. doi: 10.1038/44565

Leslie, C. S., Eskin, E., Cohen, A., Weston, J., and Noble, W. S. (2004). Mismatch
string kernels for discriminative protein classification. Bioinformatics 20,
467–476. doi: 10.1093/bioinformatics/btg431

Li, H., Coghlan, A., Ruan, J., Coin, L. J., Heriche, J.-K., Osmotherly, L., et al. (2006).
TreeFam: a curated database of phylogenetic trees of animal gene families.
Nucleic Acids Res. 34(Suppl. 1), D572?D580. doi: 10.1093/nar/gkj118

Li, H.-D., Menon, R., Omenn, G. S., and Guan, Y. (2014). The emerging Era of
genomic data integration for analyzing splice isoform function. Trends Genet.
30, 340–347. doi: 10.1016/j.tig.2014.05.005

Li, X., Chen, H., Li, J., and Zhang, Z. (2009). Gene function prediction with gene
interaction networks: a context graph kernel approach. IEEE Trans. Inform.

Technol. Biomed. 14, 119–128. doi: 10.1109/TITB.2009.2033116
Lin, D. (1998). “An information-theoretic definition of similarity?” in Proceedings

of 15th International Conference onMachine Learning (Madison,WI), 296–304.
Liu, J., Wang, J., and Yu, G. (2016). Protein function prediction by

random walks on a hybrid graph. Curr. Proteomics 13, 130–142.
doi: 10.2174/157016461302160514004307

Liu, W., Wang, J., Kumar, S., and Chang, S.-F. (2011). “Hashing with graphs?” in
Proceedings of the 28th International Conference onMachine Learning (Bellevue,
WA), 1–8.

Liu, X., Yu, G., Domeniconi, C., Wang, J., Ren, Y., and Guo, M. (2019).
“Ranking-based deep cross-modal hashing?” in Proceedings of the

AAAI Conference on Artificial Intelligence, Vol. 33 (Hawaii), 4400–4407.
doi: 10.1609/aaai.v33i01.33014400

Lord, P. W., Stevens, R. D., Brass, A., and Goble, C. A. (2003). Investigating
semantic similarity measures across the gene ontology: the relationship
between sequence and annotation. Bioinformatics 19, 1275–1283.
doi: 10.1093/bioinformatics/btg153

Lu, C., Chen, X., Wang, J., Yu, G., and Yu, Z. (2018). Identifying noisy functional
annotations of proteins using sparse semantic similarity. Sci. Sin. Inform. 48,
1035–1050. doi: 10.1360/N112017-00105

Lu, C., Wang, J., Zhang, Z., Yang, P., and Yu, G. (2016). NoisyGOA: Noisy GO
annotations prediction using taxonomic and semantic similarity. Comput. Biol.

Chem. 65, 203–211. doi: 10.1016/j.compbiolchem.2016.09.005
Lu, M., Zhang, Q., Deng, M., Miao, J., Guo, Y., Gao, W., et al. (2008). An

analysis of human microRNA and disease associations. PLoS ONE 3:e3420.
doi: 10.1371/journal.pone.0003420

Makrodimitris, S., van Ham, R. C., and Reinders, M. J. (2019). Improving
protein function prediction using protein sequence and GO-term similarities.
Bioinformatics 35, 1116–1124. doi: 10.1093/bioinformatics/bty751

Mazandu, G. K., Chimusa, E. R., Mbiyavanga, M., and Mulder, N. J. (2015). A-
DaGO-Fun: an adaptable gene ontology semantic similarity-based functional
analysis tool. Bioinformatics 32, 477–479. doi: 10.1093/bioinformatics/btv590

Mazandu, G. K., Chimusa, E. R., and Mulder, N. J. (2016). Gene ontology semantic
similarity tools: survey on features and challenges for biological knowledge
discovery. Brief. Bioinformatics 18, 886–901. doi: 10.1093/bib/bbw067

Mi, H., Muruganujan, A., Casagrande, J. T., and Thomas, P. D. (2013). Large-scale
gene function analysis with the panther classification system. Nat. Protoc. 8,
1551–1566. doi: 10.1038/nprot.2013.092

Mistry, M., and Pavlidis, P. (2008). Gene ontology term overlap as a
measure of gene functional similarity. BMC Bioinformatics 9:327.
doi: 10.1186/1471-2105-9-327

Mitrofanova, A., Pavlovic, V., and Mishra, B. (2011). Prediction of protein
functions with gene ontology and interspecies protein homology

data. IEEE/ACM Trans. Comput. Biol. Bioinformatics 8, 775–784.
doi: 10.1109/TCBB.2010.15

Mostafavi, S., and Morris, Q. (2009). “Using the gene ontology hierarchy
when predicting gene function?” in Conference on Uncertainty in Artificial

Intelligence (Montreal, QC), 419–427.
Mostafavi, S., and Morris, Q. (2010). Fast integration of heterogeneous data

sources for predicting gene function with limited annotation. Bioinformatics

26, 1759–1765. doi: 10.1093/bioinformatics/btq262
Mostafavi, S., Ray, D., Wardefarley, D., Grouios, C., and Morris, Q.

(2008). Genemania: a real-time multiple association network integration
algorithm for predicting gene function. Genome Biol. 9(Suppl. 1), 1–15.
doi: 10.1186/gb-2008-9-s1-s4

Obozinski, G., Lanckriet, G., Grant, C., Jordan, M. I., and Noble, W. S. (2008).
Consistent probabilistic outputs for protein function prediction. Genome Biol.
9:S6. doi: 10.1186/gb-2008-9-s1-s6

Pandey, G., Kumar, V., and Steinbach, M. (2006). Computational Approaches for

Protein Function Prediction: A Survey. Twin Cities: Department of Computer
Science and Engineering; University of Minnesota.

Pandey, G., Myers, C. L., and Kumar, V. (2009). Incorporating functional inter-
relationships into protein function prediction algorithms. BMC Bioinformatics

10:142. doi: 10.1186/1471-2105-10-142
Park, C. Y., Wong, A. K., Greene, C. S., Rowland, J., Guan, Y., Bongo, L.

A., et al. (2013). Functional knowledge transfer for high-accuracy prediction
of under-studied biological processes. PLoS Comput. Biol. 9:e1002957.
doi: 10.1371/journal.pcbi.1002957

Pe na-Castillo, L., Tasan, M., Myers, C. L., Lee, H., Joshi, T., Zhang, C., et al.
(2008). A critical assessment of Mus musculus gene function prediction using
integrated genomic evidence. Genome Biol. 9:S2. doi: 10.1186/gb-2008-9-s1-s2

Peng, J., Li, H., Liu, Y., Juan, L., Jiang, Q., Wang, Y., et al. (2016). InteGO2: a
web tool for measuring and visualizing gene semantic similarities using gene
ontology. BMC Genomics 17:553. doi: 10.1186/s12864-016-2828-6

Peng, J., Zhang, X., Hui, W., Lu, J., Li, Q., Liu, S., et al. (2018). Improving
the measurement of semantic similarity by combining gene ontology and co-
functional network: a random walk based approach. BMC Syst. Biol. 12:18.
doi: 10.1186/s12918-018-0539-0

Pesquita, C., Faria, D., Bastos, H., Ferreira, A. E., Falc ao, A. O., and Couto,
F. M. (2008). Metrics for GO based protein semantic similarity: a systematic
evaluation. BMC Bioinformatics 9:S4. doi: 10.1186/1471-2105-9-S5-S4

Pesquita, C., Faria, D., Falcao, A. O., Lord, P., and Couto, F. M. (2009).
Semantic similarity in biomedical ontologies. PLoS Comput. Biol. 5:e1000443.
doi: 10.1371/journal.pcbi.1000443

Pillai, I., Fumera, G., and Roli, F. (2013). Threshold optimisation for multi-label
classifiers. Pattern Recogn. 46, 2055–2065. doi: 10.1016/j.patcog.2013.01.012

Radivojac, P., Clark, W. T., Oron, T. R., Schnoes, A. M., Wittkop, T.,
Sokolov, A., et al. (2013). A large-scale evaluation of computational
protein function prediction. Nat. Methods 10, 221–227. doi: 10.1038/
nmeth.2340

Raychaudhuri, S., Chang, J. T., Sutphin, P. D., and Altman, R. B. (2002).
Associating genes with gene ontology codes using a maximum entropy analysis
of biomedical literature. Genome Res. 12, 203–214. doi: 10.1101/gr.199701

Rhee, S. Y., Wood, V., Dolinski, K., and Draghici, S. (2008). Use and misuse
of the gene ontology annotations. Nat. Rev. Genet. 9, 509–515. doi: 10.1038/
nrg2363

Ruepp, A., Zollner, A., Maier, D., Albermann, K., Hani, J., Mokrejs, M.,
et al. (2004). The funcat, a functional annotation scheme for systematic
classification of proteins from whole genomes. Nucleic Acids Res. 32,
5539–5545. doi: 10.1093/nar/gkh894

Schnoes, A. M., Ream, D. C., Thorman, A. W., Babbitt, P. C., and Friedberg, I.
(2013). Biases in the experimental annotations of protein function and their
effect on our understanding of protein function space. PLoS Comput. Biol.
9:e1003063. doi: 10.1371/journal.pcbi.1003063

Schriml, L. M., Arze, C., Nadendla, S., Chang, Y.-W. W., Mazaitis, M.,
Felix, V., et al. (2011). Disease ontology: a backbone for disease
semantic integration. Nucleic Acids Res. 40, D940?D946. doi: 10.1093/nar
/gkr972

Schug, J., Diskin, S., Mazzarelli, J., Brunk, B. P., and Stoeckert, C. J. (2002).
Predicting gene ontology functions from ProDom and CDD protein domains.
Genome Res. 12, 648–655. doi: 10.1101/gr.222902

Frontiers in Genetics | www.frontiersin.org 13 April 2020 | Volume 11 | Article 400

https://doi.org/10.1016/j.ymeth.2014.11.017
https://doi.org/10.1101/615260
https://doi.org/10.1093/bioinformatics/btx624
https://doi.org/10.1142/9789812704856_0029
https://doi.org/10.1038/44565
https://doi.org/10.1093/bioinformatics/btg431
https://doi.org/10.1093/nar/gkj118
https://doi.org/10.1016/j.tig.2014.05.005
https://doi.org/10.1109/TITB.2009.2033116
https://doi.org/10.2174/157016461302160514004307
https://doi.org/10.1609/aaai.v33i01.33014400
https://doi.org/10.1093/bioinformatics/btg153
https://doi.org/10.1360/N112017-00105
https://doi.org/10.1016/j.compbiolchem.2016.09.005
https://doi.org/10.1371/journal.pone.0003420
https://doi.org/10.1093/bioinformatics/bty751
https://doi.org/10.1093/bioinformatics/btv590
https://doi.org/10.1093/bib/bbw067
https://doi.org/10.1038/nprot.2013.092
https://doi.org/10.1186/1471-2105-9-327
https://doi.org/10.1109/TCBB.2010.15
https://doi.org/10.1093/bioinformatics/btq262
https://doi.org/10.1186/gb-2008-9-s1-s4
https://doi.org/10.1186/gb-2008-9-s1-s6
https://doi.org/10.1186/1471-2105-10-142
https://doi.org/10.1371/journal.pcbi.1002957
https://doi.org/10.1186/gb-2008-9-s1-s2
https://doi.org/10.1186/s12864-016-2828-6
https://doi.org/10.1186/s12918-018-0539-0
https://doi.org/10.1186/1471-2105-9-S5-S4
https://doi.org/10.1371/journal.pcbi.1000443
https://doi.org/10.1016/j.patcog.2013.01.012
https://doi.org/10.1038/nmeth.2340
https://doi.org/10.1101/gr.199701
https://doi.org/10.1038/nrg2363
https://doi.org/10.1093/nar/gkh894
https://doi.org/10.1371/journal.pcbi.1003063
https://doi.org/10.1093/nar/gkr972
https://doi.org/10.1101/gr.222902
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhao et al. GO Based Gene Function Prediction

Schwikowski, B., Uetz, P., and Fields, S. (2000). A network of protein-protein
interactions in yeast. Nat. Biotechnol. 18, 1257–1261. doi: 10.1038/82360

Sevilla, J. L., Segura, V., Podhorski, A., Guruceaga, E., Mato, J. M., Martinez-
Cruz, L. A., et al. (2005). Correlation between gene expression and GO
semantic similarity. IEEE/ACMTrans. Comput. Biol. Bioinformatics 2, 330–338.
doi: 10.1109/TCBB.2005.50

Shehu, A., Barbarï£¡, D., and Molloy, K. (2016). “A survey of computational
methods for protein function prediction?”, in Big Data Analytics in Genomics,
ed K. C. Wong (Cham: Springer), 225–298. doi: 10.1007/978-3-319-41279-5_7

Tao, Y., Li, J., Friedman, C., and Lussier, Y. A. (2007). Information theory applied
to the sparse gene ontology annotation network to predict novel gene function.
Bioinformatics 23, i529?i538. doi: 10.1093/bioinformatics/btm195

Teng, Z., Guo, M., Liu, X., Dai, Q., Wang, C., and Xuan, P. (2013). Measuring
gene functional similarity based on group-wise comparison of go terms.
Bioinformatics 29, 1424–1432. doi: 10.1093/bioinformatics/btt160

The Gene Ontology Consortium (2017). Expansion of the gene ontology
knowledgebase and resources. Nucleic Acids Res. 45, D331?D338.
doi: 10.1093/nar/gkw1108

Thomas, P. D., Mi, H., and Lewis, S. (2007). Ontology annotation: mapping
genomic regions to biological function. Curr. Opin. Chem. Biol. 11, 4–11.
doi: 10.1016/j.cbpa.2006.11.039

Thomas, P. D., Wood, V., Mungall, C. J., Lewis, S. E., and Blake, J. A. (2012).
On the use of gene ontology annotations to assess functional similarity
among orthologs and paralogs: a short report. PLoS Comput. Biol. 8:e1002386.
doi: 10.1371/journal.pcbi.1002386

Tian, Z., Wang, C., Guo, M., Liu, X., and Teng, Z. (2016). SGFSC: speeding the
gene functional similarity calculation based on hash tables. BMC Bioinformatics

17:445. doi: 10.1186/s12859-016-1294-0
Tiwari, A. K., and Srivastava, R. (2014). A survey of computational intelligence

techniques in protein function prediction. Int. J. Proteomics 2014:845479.
doi: 10.1155/2014/845479

Troyanskaya, O. G., Dolinski, K., Owen, A. B., Altman, R. B., and Botstein, D.
(2003). A bayesian framework for combining heterogeneous data sources for
gene function prediction (in Saccharomyces cerevisiae). Proc. Natl. Acad. Sci.
U.S.A. 100, 8348–8353. doi: 10.1073/pnas.0832373100

Valentini, G. (2011). True path rule hierarchical ensembles for genome-wide
gene function prediction. IEEE/ACM Trans. Comput. Biol. Bioinformatics 8,
832–847. doi: 10.1109/TCBB.2010.38

Valentini, G. (2014). Hierarchical ensemble methods for protein function
prediction. ISRN Bioinformatics 2014:901419. doi: 10.1155/2014/901419

Vidulin, V., Šmuc, T., and Supek, F. (2016). Extensive complementarity
between gene function prediction methods. Bioinformatics 32, 3645–3653.
doi: 10.1093/bioinformatics/btw532

Wang, J., Liu,W., Kumar, S., and Chang, S. F. (2016). Learning to hash for indexing
big data - a survey. Proc. IEEE 104, 34–57. doi: 10.1109/JPROC.2015.2487976

Wang, K., Wang, J., Domeniconi, C., Zhang, X., and Yu, G. (2020). Isoform
function prediction based on bi-random walks on a heterogeneous network.
Bioinformatics 36, 1864–1871.

Wang, S., Cho, H., Zhai, C., Berger, B., and Peng, J. (2015). Exploiting ontology
graph for predicting sparsely annotated gene function. Bioinformatics 31,
i357?i364. doi: 10.1093/bioinformatics/btv260

Wang, S., Qu, M., and Peng, J. (2017). “ProSNet: Integrating homology with
molecular networks for protein function prediction?” in Pacific Symposium on

Biocomputing (Hawaii), 27–38. doi: 10.1142/9789813207813_0004
Wang, Y., Yu, G., Domeniconi, C., Wang, J., Zhang, X., and Guo, M.

(2019). Selective matrix factorization for multi-relational data fusion,? in
International Conference on Database Systems for Advanced Applications,
313–329. doi: 10.1007/978-3-030-18576-3_19

Xu, Y., Guo, M., Shi, W., Liu, X., and Wang, C. (2013). A novel
insight into gene ontology semantic similarity. Genomics 101, 368–375.
doi: 10.1016/j.ygeno.2013.04.010

Xuan, P., Sun, C., Zhang, T., Ye, Y., Shen, T., and Dong, Y. (2019). A
gradient boosting decision tree-based method for predicting interactions
between target genes and drugs. Front. Genet, 10:459. doi: 10.3389/fgene.201
9.00459

You, R., Zhang, Z., Xiong, Y., Sun, F., Mamitsuka, H., and Zhu, S.
(2018). GOLabeler: Improving sequence-based large-scale protein

function prediction by learning to rank. Bioinformatics 34, 2465–2473.
doi: 10.1093/bioinformatics/bty130

Youngs, N., Penfold-Brown, D., Bonneau, R., and Shasha, D. (2014). Negative
example selection for protein function prediction: the NoGo database. PLoS
Comput. Biol. 10:e1003644. doi: 10.1371/journal.pcbi.1003644

Youngs, N., Penfold-Brown, D., Drew, K., Shasha, D., and Bonneau, R.
(2013). Parametric Bayesian priors and better choice of negative examples
improve protein function prediction. Bioinformatics 29, 1190–1198.
doi: 10.1093/bioinformatics/btt110

Yu, G., Domeniconi, C., Rangwala, H., and Zhang, G. (2013a). “Protein function
prediction using dependence maximization?” in Joint European Conference on

Machine Learning and Knowledge Discovery in Databases (Prague: Springer),
574–589. doi: 10.1007/978-3-642-40988-2_37

Yu, G., Domeniconi, C., Rangwala, H., Zhang, G., and Yu, Z. (2012a).
“Transductive multi-label ensemble classification for protein function
prediction?” in Proceedings of the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (Beijing), 1077–1085.
doi: 10.1145/2339530.2339700

Yu, G., Fu, G., Lu, C., Ren, Y., and Wang, J. (2017a). BRWLDA: bi-
random walks for predicting lncRNA-disease associations. Oncotarget 8:60429.
doi: 10.18632/oncotarget.19588

Yu, G., Fu, G., Wang, J., and Guo, M. (2017b). Predicting irrelevant functions of
proteins based on dimensionality reduction. Sci. Sin. Inform. 47, 1349–1368.
doi: 10.1360/N112017-00009

Yu, G., Fu, G., Wang, J., and Zhao, Y. (2018a). NewGOA: Predicting
new go annotations of proteins by bi-random walks on a hybrid
graph. IEEE/ACM Trans. Comput. Biol. Bioinformatics 15, 1390–1402.
doi: 10.1109/TCBB.2017.2715842

Yu, G., Fu, G., Wang, J., and Zhu, H. (2016a). Predicting protein function via
semantic integration of multiple networks. IEEE/ACM Trans. Comput. Biol.

Bioinformatics 13, 220–232. doi: 10.1109/TCBB.2015.2459713
Yu, G., Li, F., Qin, Y., Bo, X., Wu, Y., and Wang, S. (2010). GOSemSim: an R

package for measuring semantic similarity among go terms and gene products.
Bioinformatics 26, 976–978. doi: 10.1093/bioinformatics/btq064

Yu, G., Lu, C., and Wang, J. (2017c). NoGOA: predicting noisy GO annotations
using evidences and sparse representation. BMC Bioinformatics 18:350.
doi: 10.1186/s12859-017-1764-z

Yu, G., Luo, W., Fu, G., and Wang, J. (2016b). Interspecies gene
function prediction using semantic similarity. BMC Syst. Biol. 10:361.
doi: 10.1186/s12918-016-0361-5

Yu, G., Rangwala, H., Domeniconi, C., Zhang, G., and Zhang, Z. (2013b).
“Protein function prediction by integrating multiple kernels?” in Twenty-Third

International Joint Conference on Artificial Intelligence (Beijing), 1869–1875.
Yu, G., Rangwala, H., Domeniconi, C., Zhang, G., and Zhang, Z. (2015a).

Predicting protein function using multiple kernels. IEEE/ACM Trans. Comput.

Biol. Bioinformatics 12, 219–233. doi: 10.1109/TCBB.2014.2351821
Yu, G., Wang, K., Domeniconi, C., Guo, M., and Wang, J. (2020a). Isoform

function prediction based on bi-random walks on a heterogeneous network.
Bioinformatics 36, 303–310. doi: 10.1093/bioinformatics/btz535

Yu, G., Wang, K., Fu, G., Guo, M., and Wang, J. (2020b). NMFGO:
Gene function prediction via nonnegative matrix factorization with gene
ontology. IEEE/ACM Trans. Comput. Biol. Bioinformatics 17, 238–249.
doi: 10.1109/TCBB.2018.2861379

Yu, G., Wang, K., Fu, G., Wang, J., and Zeng, A. (2017d). Protein function
prediction based on multiple networks collaborative matrix factorization. J.
Comput. Res. Dev. 54, 2660–2673. doi: 10.7544/issn1000-1239.2017.20170644

Yu, G., Wang, Y., Wang, J., Fu, G., Guo, M., and Domeniconi, C. (2018b).
“Weighted matrix factorization based data fusion for predicting lncRNA-
disease associations?” in IEEE International Conference on Bioinformatics and

Biomedicine (Madrid), 572–577. doi: 10.1109/BIBM.2018.8621081
Yu, G., Zhang, G., Rangwala, H., Domeniconi, C., and Yu, Z. (2012b).

“Protein function prediction using weak-label learning?” in Conference

on Bioinformatics, Computational Biology and Biomedicine (Orlando, FL),
202–209. doi: 10.1145/2382936.2382962

Yu, G., Zhao, Y., Lu, C., and Wang, J. (2017e). HashGO: hashing gene
ontology for protein function prediction. Comput. Biol. Chem. 71, 264–273.
doi: 10.1016/j.compbiolchem.2017.09.010

Frontiers in Genetics | www.frontiersin.org 14 April 2020 | Volume 11 | Article 400

https://doi.org/10.1038/82360
https://doi.org/10.1109/TCBB.2005.50
https://doi.org/10.1007/978-3-319-41279-5_7
https://doi.org/10.1093/bioinformatics/btm195
https://doi.org/10.1093/bioinformatics/btt160
https://doi.org/10.1093/nar/gkw1108
https://doi.org/10.1016/j.cbpa.2006.11.039
https://doi.org/10.1371/journal.pcbi.1002386
https://doi.org/10.1186/s12859-016-1294-0
https://doi.org/10.1155/2014/845479
https://doi.org/10.1073/pnas.0832373100
https://doi.org/10.1109/TCBB.2010.38
https://doi.org/10.1155/2014/901419
https://doi.org/10.1093/bioinformatics/btw532
https://doi.org/10.1109/JPROC.2015.2487976
https://doi.org/10.1093/bioinformatics/btv260
https://doi.org/10.1142/9789813207813_0004
https://doi.org/10.1007/978-3-030-18576-3_19
https://doi.org/10.1016/j.ygeno.2013.04.010
https://doi.org/10.3389/fgene.2019.00459
https://doi.org/10.1093/bioinformatics/bty130
https://doi.org/10.1371/journal.pcbi.1003644
https://doi.org/10.1093/bioinformatics/btt110
https://doi.org/10.1007/978-3-642-40988-2_37
https://doi.org/10.1145/2339530.2339700
https://doi.org/10.18632/oncotarget.19588
https://doi.org/10.1360/N112017-00009
https://doi.org/10.1109/TCBB.2017.2715842
https://doi.org/10.1109/TCBB.2015.2459713
https://doi.org/10.1093/bioinformatics/btq064
https://doi.org/10.1186/s12859-017-1764-z
https://doi.org/10.1186/s12918-016-0361-5
https://doi.org/10.1109/TCBB.2014.2351821
https://doi.org/10.1093/bioinformatics/btz535
https://doi.org/10.1109/TCBB.2018.2861379
https://doi.org/10.7544/issn1000-1239.2017.20170644
https://doi.org/10.1109/BIBM.2018.8621081
https://doi.org/10.1145/2382936.2382962
https://doi.org/10.1016/j.compbiolchem.2017.09.010
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhao et al. GO Based Gene Function Prediction

Yu, G., Zhu, H., and Domeniconi, C. (2015b). Predicting protein
functions using incomplete hierarchical labels. BMC Bioinformatics 16:1.
doi: 10.1186/s12859-014-0430-y

Yu, G., Zhu, H., Domeniconi, C., and Guo, M. (2015c). Integrating
multiple networks for protein function prediction. BMC Syst. Biol. 9:S3.
doi: 10.1186/1752-0509-9-S1-S3

Yu, G., Zhu, H., Domeniconi, C., and Liu, J. (2015d). Predicting protein function
via downward random walks on a gene ontology. BMC Bioinformatics 16:271.
doi: 10.1186/s12859-015-0713-y

Zeng, X., Zhang, X., and Zou, Q. (2015). Integrative approaches for predicting
microRNA function and prioritizing disease-related microRNA using
biological interaction networks. Brief. Bioinformatics 17, 193–203.
doi: 10.1093/bib/bbv033

Zhang, J., Zhang, Z., Chen, Z., and Deng, L. (2019). Integrating
multiple heterogeneous networks for novel lncRNA-disease association
inference. IEEE/ACM Trans. Comput. Biol. Bioinformatics 16, 396–406.
doi: 10.1109/TCBB.2017.2701379

Zhang, M.-L., and Zhou, Z.-H. (2014). A review on multi-label learning
algorithms. IEEE Trans. Knowl. Data Eng. 26, 1819–1837. doi: 10.1109/TKD
E.2013.39

Zhang, X. F., Dai, D. Q., and Li, X. X. (2012). Protein complexes discovery
based on protein-protein interaction data via a regularized sparse generative
network model. IEEE/ACM Trans. Comput. Biol. Bioinformatics 9, 857–870.
doi: 10.1109/TCBB.2012.20

Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST:
a new generation of protein database search programs. Nucleic Acids Res. 25,
3389–3402. doi: 10.1093/nar/25.17.3389

Zhao, Y., Fu, G., Wang, J., Guo, M., and Yu, G. (2019a). Gene function prediction
based on gene ontology hierarchy preserving hashing. Genomics 111, 334–342.
doi: 10.1016/j.ygeno.2018.02.008

Zhao, Y., Wang, J., Guo, M., Zhang, X., and Yu, G. (2019b). Cross-species
protein function prediction with asynchronous-random walk. IEEE/ACM

Trans. Comput. Biol. Bioinformatics 99, 1–12. doi: 10.1109/TCBB.2019.2
943342

Zhao, Y., Wang, J., Guo, M., Zhang, Z., and Yu, G. (2019c). Protein function
prediction based on zero-one matrix factorixation. Sci. Sin. Inform. 49,
1159–1174. doi: 10.1360/N112018-00331

Zheng, Q., and Wang, X.-J. (2008). GOEAST: a web-based software toolkit
for gene ontology enrichment analysis. Nucleic Acids Res. 36, W358?W363.
doi: 10.1093/nar/gkn276

Zhou, N., Jiang, Y., Bergquist, T. R., Lee, A. J., Kacsoh, B. Z., Crocker, A.
W., et al. (2019). The CAFA challenge reports improved protein function
prediction and new functional annotations for hundreds of genes through
experimental screens. Genome Biol. 20, 1–23. doi: 10.1186/s13059-019-
1835-8

Zou, Q., Sangaiah, A. K., and Mrozek, D. (2019). Machine learning techniques on
gene function prediction. Front. Genet. 10:938. doi: 10.3389/978-2-88963-214-5

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Zhao, Wang, Chen, Zhang, Guo and Yu. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 15 April 2020 | Volume 11 | Article 400

https://doi.org/10.1186/s12859-014-0430-y
https://doi.org/10.1186/1752-0509-9-S1-S3
https://doi.org/10.1186/s12859-015-0713-y
https://doi.org/10.1093/bib/bbv033
https://doi.org/10.1109/TCBB.2017.2701379
https://doi.org/10.1109/TKDE.2013.39
https://doi.org/10.1109/TCBB.2012.20
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1016/j.ygeno.2018.02.008
https://doi.org/10.1109/TCBB.2019.2943342
https://doi.org/10.1360/N112018-00331
https://doi.org/10.1093/nar/gkn276
https://doi.org/10.1186/s13059-019-1835-8
https://doi.org/10.3389/978-2-88963-214-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	A Literature Review of Gene Function Prediction by Modeling Gene Ontology
	1. Introduction
	2. Related Knowledge
	2.1. The Workflow of Gene Function Prediction
	2.2. Conventions in GO
	2.2.1. True Path Rule
	2.2.2. Evidence Code

	2.3. Evaluation Metrics

	3. Categorization of Existing Solutions
	3.1. Gene Function Prediction Using Inter-Relations Between GO Terms
	3.1.1. Flat Inter-Relations-Based Solutions
	3.1.2. Hierarchical Inter-Relations-Based Solutions

	3.2. Gene Function Prediction by Compressing Massive GO Terms
	3.2.1. Matrix Factorization-Based Solutions
	3.2.2. Hashing-Based Solutions

	3.3. Cross-Species Solutions
	3.4. GO-Based Semantic-Similarity Measures and Applications

	4. Remaining Challenges and Potential Topics
	5. Conclusions
	Author Contributions
	Funding
	Supplementary Material
	References


