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ABSTRACT The software engineering community is rapidly adopting machine learning for transition-
ing modern-day software towards highly intelligent and self-learning systems. However, the software
engineering community is still discovering new ways how machine learning can offer help for various
software development life cycle stages. In this article, we present a study on the use of machine learning
across various software development life cycle stages. The overall aim of this article is to investigate the
relationship between software development life cycle stages, and machine learning tools, techniques, and
types. We attempt a holistic investigation in part to answer the question of whether machine learning favors

certain stages and/or certain techniques.

INDEX TERMS Software engineering, Machine learning, Literature review

. INTRODUCTION

The software engineering (SE) community is continuously
looking for better and more efficient ways of building high-
quality software systems. However, in practice, the strong
emphasis on time to market tends to ignore many, well-
known SE recommendations. That is, practitioners focus
more on programming as compared to requirements gather-
ing, planning, specification, architecture, design, and docu-
mentation — all of which are ultimately known to greatly ben-
efit the cost-effectiveness and quality of software systems.
Lack of human resources is often cited as the main reason for
doing so. Herein lies the great potential for machine learning
(ML) since its algorithms are proven to be most befitting
to problem domains that aim to replicate human behavior.
Hence, it stands to reason that human-centric SE activities
should also benefit from ML [1].

The growing demand for agility and the ability to solve
complex problems in SE has already led researchers to
explore the potential of ML in this field. To date, ML has
many demonstrated benefits. Applications of ML for SE
range from resolving ambiguous requirements to predicting
software defects [2]. For example, Sultanov et al. [3] used
reinforcement learning (a type of ML) on understanding
the relationships among software requirements at different
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levels of abstraction. Their approach shows how ML can
automatically generate traceable links between high-level
and low-level requirements. However, ML is not a single
technique but rather an assortment of techniques. The chal-
lenge of using ML for SE is thus not only about finding the
right way of solving the problem but also about comparing
various ML techniques and their potential. For example,
several researchers have explored predictions in order to
better estimate the time to market for software products. For
this purpose, various ML techniques were used and com-
pared, e.g., artificial neural networks, rule induction, case-
based reasoning, support vector machines, regression-based
decision trees, and random forest [4, 5, 6, 7].

In many areas of science and engineering, such as image
recognition or autonomous driving, ML has already revo-
lutionized development. The applications of ML to SE are
also increasing significantly, which is evident through the
exponential growth in the number of articles on ML for SE
being published every year. Consequently, it is of interest to
understand, which software development life cycle (SDLC)
stages benefit the most from this trend; or even to understand
which ML techniques are most suitable for which SDLC
stage(s). This leads to the motivation of conducting this study.

In this article, we provide a bird’s-eye view on the current
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state-of-the-art regarding the causal relationship between ML
and SDLC stages and suggest the open areas of research
where more primary studies are needed. The fairly broad
scope of this study is by design. While this article sets out to
explore the causal relationship between machine learning and
SDLC stages in the form of a literature review, it should be
noted that some specialized studies already exist, e.g., ML for
automated software testing [8]. Similar to exploratory studies
conducted in the past, such as Bindewald et al. [9], our review
is based on the quantitative analysis of the articles present
in the literature addressing the application of ML to various
SDLC stage(s).

The rest of the article is organized as follows. The re-
lated work is discussed in Section II. Section III presents a
brief introduction to ML. Section IV explains the research
methodology and protocol followed in the study. Results
of the study are discussed in Section V. Further analysis
on the presented state-of-the-art is discussed in Section VL.
Section VII presents challenges, limitations, and future re-
search directions of this field. Section VIII discusses different
threats to the validity of the presented results. The article is
concluded in Section IX.

Il. RELATED WORK

Some studies, e.g., [8, 10, 11, 12], have already analyzed
the application of ML in SE in the past. Durelli et al. [§]
conducts a systematic mapping study on the application of
ML for software testing. The study highlights the use of ML
techniques in various software testing activities such as test-
case generation and oracle construction. Results of the study
show that a vast majority of articles employ supervised learn-
ing, such as ANN and DT, to solve testing-related problems.
Moreover, the key advantages and disadvantages of using ML
for software testing are discussed. Mainly, the advantage of
ML techniques is their scalability and efficient application to
large-scale and complex software systems. The disadvantage,
on the other hand, is the unavailability of data that fits well
with the learning process.

Fajardo et al. [10] provides an extensive overview of apply-
ing data mining techniques to SE tasks including open issues
and recommendations for improvements. The study provides
a comprehensive list of data mining techniques applicable
in SE, e.g., aspects related to clustering, regression, and
performance metrics. Moreover, the study highlights some
widely used datasets of SE employed in the data mining
articles and states key advantages of mining SE data.

Wan et al. [11] performed a survey by interviewing 14
people from 3 companies and 342 respondents from 26
countries. The aim of the study was to understand and
highlight the key differences in the software development
practices followed in building ML and non-ML software
systems. Results suggested that ML engineers should focus
on handling the uncertain randomness of ML systems and
work on employing version control systems specifically for
ML applications in order to improve reproducibility.

Zhang et al. [12] conducted the research focusing on the

application of ML in SE. The study provides a comprehen-
sive list of SE tasks whose problems can be addressed using
ML techniques. The study also emphasizes the fact of SE to
be a highly fertile area to explore with regards to applying
ML techniques by formulating SE tasks as learning problems
and addressed using ML techniques.

In contrast to the aforementioned focused studies, our
study provides a broader context and a comprehensive list
of articles that help identify the relationship between various
ML techniques and SDLC stages. We also provide the re-
lationships of ML types, tools, and techniques with respect
to SE stages, which help better understanding the current
progress of the adoption of ML for SE.

lll. INTRODUCTION TO ML

ML has evolved drastically over the recent years and is now
being employed on a global scale. As a subset of artificial
intelligence, ML has been considered vital when developing
software systems for domains such as speech/image recog-
nition [13] or automotive [14]. ML techniques have also
been used to address various SE issues and activities. Most
commonly, ML has been employed in defect prediction,
effort estimation, and identifying patterns and similarities in
the source code.

The ML techniques are essentially targeted to solve prob-
lems, which can often become hard to analyze by people
causing misinformation [15]. These problems have various
types, which can be categorized as ML types. ML types gen-
erally include supervised, unsupervised, and reinforcement
learning. Most of the applications of ML consist of problems
that can be deemed of type supervised learning. It refers to
learning from features along with their known class labels.
Then, predicting the class labels from new unseen features.
These problems are also often categorized as classification
problems.

Arguably, ML techniques can also be classified into two
divisions. 1) Traditional ML techniques that include decision
trees (DT), random forest (RF), linear regression, logistic
regression (LR), support vector machines (SVM), k-nearest
neighbors (KNN), and naive bayes (NB). 2) Neural network-
based ML techniques that include artificial neural network
(ANN), recurrent neural network (RNN), and convolutional
neural network (CNN). Deep learning (DL) — also known
as deep neural networks (DNN) — is a subset of ANN.
DL was introduced mainly to address the data scalability
problems such as handling high-dimensional and large-scale
datasets. Structurally, instead of comprising a single hidden
layer within the input and output layer as in ANN, RNN
and CNN techniques are composed of multiple hidden layers
of interconnected neurons. The processing inside the hidden
layers is based on the principle of weighted connections. In
general, each hidden neuron is comprised of predetermined
weight and bias values, which are later adjusted during the
training process until the desired output is reached. Lastly,
the output layer holding the acquired weight and bias values
represents the solution to the given problem.
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IV. RESEARCH METHODOLOGY

In order to direct the study, we followed the Goal, Question,
and Metric (GQM) paradigm suggested by Basili et al. [16].
The aim of the GQM paradigm is to guide the study by
specifying its goals in order to have an objective-oriented
data extraction process. It also helps in tracing goals to
formulated questions leading to better interpretation of the
data in line with goals stated before.

A. GOALS

The overall aim of this study is to evaluate the relation
between ML and SDLC stages. The considerably broader aim
of this study differentiates it from other similar studies, such
as the one by Durelli et al. [8], which have quite a narrow
focus. Following are the goals formulated for this study.

G1. To identify the susceptibility of various ML types and
techniques to SDLC stages

G2. To understand the maturity of research in this area

G3. To identify the demographics in this area

G4. To understand the implications, challenges, limitations,
and future research directions in this area

The first three goals lead to the research questions dis-
cussed in the following subsection. Due to the descriptive and
elaborate nature of the fourth goal, we decided to thoroughly
discuss it in Sections VI and VIIL.

B. QUESTIONS

In order to meet the outlined goals, we have formulated
concrete questions and identified suitable metrics (quantifi-
able attributes). The questions and metrics (emphasized) are
explained as follows:

G1. The susceptibility of various ML types and techniques
to SDLC stages

Q1.1. What SDLC stages are being focused on by academic
and industrial researchers in this area?
Rationale: Our interest is to understand what SDLC
stage the researchers tend to focus on, whether, a
particular SDLC stage or the amalgamation of two or
more. The SDLC stages are based on, but not limited
to, the knowledge areas mentioned in SWEBOK [17]
characterizing the practice of SE, e.g., Software Re-
quirements, Software Design, or Software Mainte-
nance.

Q1.2. What are the applications of ML for SE?
Rationale: We are interested to know about the spe-
cific applications of ML that exist in SE, e.g., whether
an ML technique was used to automate test case
generation or to predict potential bugs in the system.

Q1.3. What type of ML and its techniques are being em-
ployed for SE?
Rationale: We are interested to know whether a
particular type/technique was consistently employed
for a specific life cycle stage. The type of ML refers
to how the models have been trained, e.g., supervised,
semi-supervised, or unsupervised. Whereas the ML
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techniques are the algorithms used for classification
or clustering problems, e.g., SVM, RF, or ANN.

G2. The maturity of research in the area

Q2.1. What is the contribution facet of the articles?
Rationale: The contribution facet refers to the novel
contributions made by the researchers in the articles.
It partially corroborates the attributes provided by
Banerjee et al. [18] and Petersen et al. [19], and are
supplemented by our own views obtained by analyz-
ing the extracted articles. The attributes are defined as
follows:

o Tool: Article proposing a new tool or improving
an existing one and describing its evaluation.

« Approach/method: Article proposing a new ap-
proach/method or improving the existing one.

o Model/framework: Article introducing a new
model/framework or improving the existing one.

« Algorithm/process: Article proposing a new al-
gorithm/SE process or improving the existing
one.

« Comparative analysis: Article evaluating differ-
ent approaches and reporting results of the com-
parative study.

Q2.2. What is the research facet of the articles?
Rationale: The research facet of an article refers to
the maturity of the research in terms of empirical
evidence provided in the article or whether an article
was proposing a solution or evaluating an existing
approach. The research facet is defined as follows:

« Evaluation: Article evaluating or validating the
proposed approach using empirical methods.

« Knowledge: Article describing the experiences
and opinions of authors on the existing ap-
proaches.

« Solution: Article proposing a new solution and
describing its applicability with the help of exam-
ples and arguments.

We further explored the evaluation facet in order to
understand the empirical methods employed in the
articles.

Q2.3. What datasets are commonly employed in the arti-
cles?
Rationale: We are interested to know about the
datasets that are most commonly used to evaluate the
research results in the domain of ML for SE.

G3. The demographics of research in the area

Q3.1. What are the trends in terms of years of publications
in the area?
Rationale: The trends in terms of years refer to
the number of publications varying from a year to
another. Here, we want to assess how active this
research area is.

Q3.2. What are the highest publishing venues of the area?
Rationale: We are interested to know about the
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venues, which have the highest publications with
respect to the area of ML for SE.

C. ARTICLES EXTRACTION
Query formulation
In order to search for relevant literature, following the guide-
lines proposed by Petersen et al. [19], we devised a query that
uses a two-element PICO search. Problem ‘P’: (requirement,
specification, design, model, analysis, architecture, imple-
mentation, code, test, verification, validation, maintenance),
and Intervention ‘I’: (machine learning, deep learning). We
have not considered Comparison ‘C’ and Outcome ‘O’ as this
is out of the scope of this study. Following is the resultant
query that was eventually used in all digital libraries:
("machine learning" OR "deep learning”) AND software
AND requirement™* OR specification* OR design* OR model*
OR analysis OR architecture OR implementation OR code
OR test* OR verification OR validation OR maintenance'

Digital libraries

The query was applied to titles and abstracts of articles in
five well-known digital libraries: ACM Digital Library?, IEE-
EXplore?®, ScienceDirect*, Springer’, and Web of Science®.
According to [20], these digital libraries are among the most
popular sources in computer science and engineering that
ensure high coverage of potentially relevant studies. We did
not include Google Scholar’ in our study as the search results
of Google Scholar tend to be repetitive with respect to results
from the included digital libraries, and its unique contribution
to the search process is unclear [20].

Time period

We scope the time period of related studies published from
1991 to 2020. The earliest paper we could find in our study
was published in 1991, hence the starting time. We conducted
the search in Q1 2021 and made sure that the results are
reproducible until 2020, hence the ending time.

Articles selection

All repositories, except Springer, returned the number of
articles as shown in Fig. 1. Springer initially yielded 4,502
articles as a result of the query; however, most of these arti-
cles were quite irrelevant to the scope of our study even after
applying filters, such as “Computer Science” as discipline,
and “SE” and “AI” as sub-disciplines, to reduce the search
space. We then went through the titles and abstracts of the
articles (if the goal of the article is unclear from the title)
and stopped the search process when the first page with all
irrelevant articles was reached. This resulted in 46 articles.

! Asterisk (*) is a wildcard that refers to zero or more characters in a word
Zhttps://dl.acm.org/

3https://ieeexplore.ieee.org/

“https://www.sciencedirect.com/

Shttps://www.springer.com/

Shttps://apps.webofknowledge.com/

"https://scholar.google.com

In total, we extracted 565 articles, as shown in Fig. 1.
However, many of them were duplicated as one article may
appear in many digital libraries. We then removed duplicates,
which resulted in 501 unique articles. The articles then under-
went a screening process and were scrutinized based on the
following inclusion criteria.

1) Articles that were relevant to the scope, i.e., relevance
and appropriateness of the article correspond to the
research goals of the study, were included.

2) Articles that were available in the full-text format were
included.

3) Articles demonstrating well-established
soundness were included.

4) Articles of more than a single page were included.

5) Articles that were peer-reviewed were included.

6) Articles that were entirely written in English were in-
cluded.

Consequently, a total of 263 relevant articles were selected
and included in the final pool. Fig. 1 shows the overall article
extraction process including the number of articles extracted
from each repository and the final pool.

empirical

Tool

Conducting a literature review is a tedious and time-
consuming task. It usually involves the search, collection,
filtration, and classification of a huge amount of papers.
Without a helping tool, this is a very difficult endeavor. In this
work, we used Mendeley® and Google Sheets.® These tools
helped us in importing, organizing, and analyzing search
results.

D. CLASSIFICATION SCHEME

We later defined a classification scheme to ensure accurate
assessment of attributes [19]. The generalized attributes ob-
tained were then sorted by the authors of this study based
on the knowledge areas provided in SWEBOK [17]. In
fact, the knowledge areas mentioned in SWEBOK were not
strictly used in the categorization but merely employed as
a defining factor to providing a high-level abstraction of
attributes that represented the set of articles. However, we
referred to the following knowledge areas while devising the
categories in this study: 1) software requirements, 2) software
design, 3) software construction, 4) software quality, and
5) software maintenance. During the article sorting process,
certain articles were found to be equivocal. In such cases,
we associated those attributes to the articles that received
majority votes from the authors of this study. To get a better
understanding, a graphical representation of the workflow
starting from the attribute extraction process leading to the
resulting classification scheme is shown in Fig. 2.

V. STUDY FINDINGS
Here we answer the RQs, which we discussed in Section IV.

8https://www.mendeley.com
9https://www.google.com/sheets/about
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IEEE (320)

Extracted
articles (565)

Removal of
duplicates

Inclusion of
relevant
articles (-238)

Final pool of
articles (263)

Springer
(46)

FIGURE 1: Article extraction process

Read abstract Read full text

FIGURE 2: Attribute extraction leading to the classification
scheme
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A. SDLC STAGES (Q1.1)

As already discussed, based on the analysis of articles, we
have grouped them into 5 major categories (inspired by the
aforementioned knowledge areas in SWEBOK [17]). These
categories are briefly described as follows:

Software requirements

We group all those articles in this category, which are con-
cerned with the elicitation, modeling, analysis, prioritization,
and validation of software requirements.

Software architecture and design

We group all those articles in this category, which deal with
the process of specifying the architectural components and
interfaces of software, and the description of how compo-
nents of a software system are organized.

Software implementation

We group all those articles in this category, which are con-
cerned with the development or construction of software
achieved through a combination of design artifacts and cod-
ing.

Software quality assurance and analytic

We group all those articles in this category, which deal
with fundamental elements such as quality characteristics,
quality process improvement or assessment, or verification
and validation. We have also included articles referring to
software testing in this category.
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Requirements 24

Architecture and
Design

Implementation 29

Quality Assurance
and Analytics

Maintenance K|

All Stages 19

FIGURE 3: Articles by SDLC stages

Software maintenance

We group all those articles in this category, which deal with
software adherence activities in order to meet new or changed
operating environments such as refactoring, maintenance
cost estimation, defect correctness, and factors related to
software aging (e.g., resource depletion).

The SE stages and the number of articles that are asso-
ciated with those stages are shown in Fig. 3. 136 out of
263 (52%) articles belong to quality assurance and analytic.
44 out of 263 (17%) articles have focused on architecture
and design. 29 out of 263 (11%) articles have addressed
the implementation followed by requirements engineering
stage with 24 out of 263 (9%) articles. 11 (4%) articles
were focusing on the maintenance phase. The rest of the
articles were not particularly focusing on any stage but were
generally applicable to SE.

B. APPLICATIONS OF ML FOR SE (Q1.2)

To address this question, we have developed a classification
scheme based on the identified applications of ML for SE
in order to characterize the obtained articles into appropriate
categories. We have organized the applications of ML for
SE as branches, which belong to five life cycle stages of SE
(knowledge areas). The applications of ML for SE that come
under corresponding SDLC stages along with the references
of articles are shown in Table 1. Note that the applications
highlighted in this study may not cover the entire knowledge
base but rather should be deemed as stemming research
indicating key applications of ML for SE in literature. The
applications falling under the SE stages are described below.

Applications of ML aiming at software requirements

ML has been widely used to facilitate the software require-
ments stage. For instance, in requirements modeling and
analysis, articles focused on distinguishing ambiguous re-
quirements [21], resolving incompleteness, the correctness of
requirements [22], etc. Requirements selection/prioritization/
classification deals with articles proposing ML techniques
that emphasize on automating prioritization of requirements
or their classification. Perini et al. [23] employed an ML

6

technique to generate approximate rank in order to pri-
oritize requirements. Navarro-Almanza et al. [24] used a
convolutional neural network (CNN) to classify functional
requirements by analyzing textual features. We further found
articles focusing on requirements traceability. Requirements
traceability refers to the ML approaches that assist in linking
requirements to code or other artifacts as shown by Guo et
al. [25], who used deep learning (DL) techniques in order to
generate a trace link of requirements with other artifacts.

Applications of ML aiming at software architecture and
design

Many types of research in the past have applied ML to soft-
ware architecture and design. The applications include design
models, which are comprised of recommendation models for
software processes/services. Apart from this, model smells
and refactoring techniques of object-oriented structures using
ML have also been proposed in the articles. White et al. [26]
introduced DL to software language modeling based on infor-
mation retrieval models. Design pattern prediction primarily
focuses on recognizing design patterns in software through
source code or user interface layout using ML techniques.
For example, Nguyen et al. [27] proposed an approach known
as DeepUI in order to semi-automate the design tasks by
learning from previous UI design patterns. Development ef-
fort estimation refers to estimating effort for the development
of software projects using ML techniques. Ionescu [28] used
ANN to automate effort estimation by learning from textual
features of project tasks.

Applications of ML aiming at software implementation

We found several studies on ML assisting the software im-
plementation stage. Among many applications, code clone/
localization/refactoring/ labeling aims at finding code dupli-
cation, specific location of code in software, refactoring of
code, or labeling of code with the help of ML, e.g., Alahmadi
et al. [29] employed CNN in order to predict the code blocks
in video tutorials. Code/bad smell detection focuses on ap-
plying ML in order to detect code and bad smells in software
source code and design models, respectively. Code smells are
indications of poor software code quality leading to the rise
of technical debt. It generally includes god classes, spaghetti
code, etc., whereas bad smells in design models have sim-
ilar characteristics such as lazy classes and middle man.
Pecorelli et al. [30] investigated data balancing techniques
and addressed unbalanced dataset issues when employing
ML for code smell detection. Maneerat et al. [31] proposed
an approach to predict bad smells from design models such as
class diagrams. Code inspection/analysis represents the class
in which an ML technique is employed for the purpose of
code reviews. For instance, Lal et al. [32] proposed an ML
approach to automate code reviews for the pushed code. The
code/program similarity category refers to the identification
of specific piece(s) of code, which are similar between two
or more software projects. Additionally, Kim et al. [33]
proposed an ML technique in order to reduce the number
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of program similarity comparisons aimed at distinguishing
between original and pirated/cracked software.

Applications of ML aiming at software quality and analytic
Most of the articles we found were focusing on applying ML
to various software quality assurance and analytic tasks. The
applications include: fault/bug/defect prediction category,
which revolves around the prediction of faults, bugs, or de-
fects using ML techniques [34, 35, 36, 37, 38, 39]. Test case/
data/oracle generation surrounds ML techniques that help in
generating test data, test oracles, or entire test suites. Braga
et al. [40] proposed an ML technique to automate the process
of test oracle generation. Test case selection/prioritization/
classification deals with the class that particularly focuses
on test case prioritization or classification techniques using
ML. Rosenfeld et al. [41] employed an ML technique in
order to select generic test cases for android applications.
The technique is aimed at reducing the manual testing efforts
by classifying the activities and automatically selecting the
activity-specific test cases. Vulnerability/anomaly/malware
discovery/analysis mostly concerns the security aspect of
the software, e.g., Huang et al. [42] employed the term
frequency-inverse document frequency (TF-IDF) technique
and deep neural network to automatically classify software
vulnerabilities. Software analysis, technique assessment, and
software process assessment come under assessment and
analysis of software. In this regard, Fu et al. [43] proposed a
regression-based ML technique in order to estimate software
energy consumption by analyzing software performance fea-
tures. The verification and validation category specifically
addresses prediction and verification of software reliability
through ML, e.g., Tamura et al. [44] proposed a DL-based
technique to select the most suitable software reliability
model for the development project. Testing effort estimation
refers to the amount of testing effort required in order to test
a software system using ML techniques, e.g., Silva et al. [6]
evaluated various ML tools in order to estimate the execution
times for running functional test cases.

Applications of ML aiming at software maintenance

The software maintenance stage has been found as the least
focused stage for researchers in this domain. In this category,
the research is more inclined towards cost/effort estimation
than the rest of the maintenance tasks. We found articles
focusing on software maintainability prediction, which refers
to the proposed ML techniques in order to assist the pre-
diction of maintainability metrics appropriate for specific
software projects [45]. Software aging detection refers to
the use of ML in order to detect software maturity and its
aging in terms of resource depletion such as memory leaks,
high CPU usage, and overtime. In this regard, Andrzejak
et al. [46] investigated the feasibility of ML techniques for
classification in detecting early performance degradation due
to software image aging. The maintenance effort estimation
class aims at estimating the amount of effort required for the
maintenance of a software system using ML, e.g., Chandra
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et al. [47] used an SVM-based regression model in order to
forecast maintenance effort with univariate and multivariate
approaches.

Effect and significance of applying ML at each SDLC stage

ML aims to automate and support the SE activities, which
are considered to be performed intensively by humans. ML
allows systems to perform human-centric activities at a much
larger scale [48]. In fact, an empirical study [49] has been
conducted to understand whether software engineers can uti-
lize ML techniques for the improvement of their SE process
and whether solutions proposed by engineers still outperform
ML techniques. However, the need for ML techniques is
still pertinent due to their ability to outperform in most SE
activities. We highlight some of these activities with respect
to SDLC stages which are as follows:

In the requirements stage, writing requirements specifi-
cations is highly deemed to be a human-centric task. Prior
work by Pandita et al. [50] and Jahan et al. [51] have
inferred the most probable specifications and identified its
unexpected behaviors from various artifacts by employing
ML techniques, respectively. Ferrari et al. [52] identified am-
biguous requirements among different domains using ML. In
the architecture and design stage, predicting design patterns
is an important reverse engineering activity to improve soft-
ware integrity. However, it often suffers from false positives
and negatives [53]. As the number of patterns is increasing
rapidly due to their variations, the process of recognizing
these patterns can be effectively learned using ML [53]. In
the implementation stage, detecting code smells in a large
codebase can be extremely difficult for a human as opposed
to a machine, thus ML techniques can greatly reduce this
effort of detecting code smells or technical debt [30, 31].
In quality assurance, there is a need to ensure that the
system remains error-free or to be able to timely identify
the cause of failure. ML techniques employed in literature
for this purpose proved to be promising in detecting software
faults [34, 35, 36]. Test generation is also considered to be a
task that requires human intelligence. Zhang et al. [54] have
employed ML to automatically generate test data in order
to improve return on investment. In software maintenance,
Malgonde et al. [55] have shown ML techniques perform
significantly better at predicting the effort as compared to the
team estimates (human-centric).

Despite the intriguing tendency of full automation, com-
plete automation could often result in a potentially fallible
system, therefore, practitioners are encouraged to employ
ML techniques with humans in the loop wherever there
is a presence of criticality [1, 49]. In addition, there is a
significant lack of studies showing the cost-benefit analysis
of their proposed ML techniques, which would be vital for
ML-based approaches to be feasible for adaptation in the
industry.
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TABLE 1: Classification by articles

SDLC Stages Applications of ML for SE Articles
All Stages N/A [1, 11, 14, 48, 49, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69]
Requirements Modeling and Analysis [21,22,51,70,71,72,73, 74, 75]
Requirements Requirements Selection/Prioritization/Classification [23, 24,76, 717,78, 79, 80, 81]

Requirements Traceability

[3, 25, 82, 83, 84, 85, 86]

Architecture and Design Design Modeling

Design Pattern Prediction
Development Effort Estimation

[9, 26, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102]

[27, 53, 103, 104, 105, 106]

[4,5,28,107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117,118, 119, 120, 121, 122, 123]

Code Clone/Localization/Refactoring/Labeling

Code/Bad smell detection
Code Inspection/Analysis
Code/Program Similarity

Implementation

[29, 124, 125, 126, 127, 128, 129, 130, 131, 132]
[30, 31, 133, 134]

[32, 135, 136, 137, 138, 139, 140, 141, 142]

[33, 143, 144, 145, 146, 147]

Fault/Bug/Defect Prediction

Quality Assurance
Test Case/Data/Oracle Generation

Test Case Selection/Prioritization/Classification

[7, 34, 35, 36, 37, 38, 39, 148, 149, 150, 151, 152, 153, 154,
155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166,
167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203]
[40, 54, 204, 205, 206, 207, 208, 209]

[41, 210, 211, 212, 213]

and Analytic Vulnerability/ Anomaly/Malware Discovery/Analysis [42, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224,
225,226, 227, 228, 229, 230, 231, 232]
Software Analysis [43, 233,234, 235, 236, 237, 238, 239, 240, 241, 242, 243]
Technique Assessment [244, 245, 246, 247, 248]
Software Process Assessment [249, 250, 251]
Verification and Validation [44, 246, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261,
262, 263, 264, 265]
Testing Effort Estimation [6, 266, 267, 268]
Software Maintainability Prediction [45, 269, 270, 271]
Maintenance Software Aging Detection [46, 272, 273, 274, 275]
Maintenance Effort Estimation [47,276]
C. ML TYPE AND TECHNIQUES (Q1.3)
ML types Supervised
By the type of ML, we mean how the models have been ,
Unsupervised

trained, i.e., supervised, semi-supervised, unsupervised, re-
inforcement, or analytical learning. Supervised learning is
based on a training set and a test set taken from the dataset.
The model training is done by taking multiple labeled sam-
ples from the train set. After the model is trained, its per-
formance is evaluated using the test set. In semi-supervised
learning, both labeled and unlabelled data are employed in
order to train the model. The dataset is divided into un-
supervised clusters as such. Then, the class information is
obtained by learning the clustering outcomes [216]. Unsu-
pervised learning requires no training dataset. For instance, in
unsupervised learning for fault detection, software instances
are usually grouped into clusters and each cluster is labeled
as “Buggy” or “Correct”. However, each cluster needs to
be labeled manually by the individuals with expertise [198].
Reinforcement learning refers to unsupervised goal-oriented
learning performed by an agent directly interacting with
the environment. Analytical learning is aimed at generating
solutions based on background knowledge and improving
inference iteratively [253].

As shown in Fig. 4, 193 out of 263 (73%) articles em-
ployed supervised learning, 15 out of 263 (6%) articles
employed unsupervised learning, 6 out of 263 (2%) articles
employed semi-supervised learning, 4 out of 263 (2%) ar-
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Semi-supervised

Reinforcement 4

Analytical | 1

FIGURE 4: Articles by ML type

ticles addressed reinforcement learning, and 1 out of 263
(0.4%) focused on analytical (inference-based) learning. The
rest of the articles 44 out of 263 (17%) did not explicitly
report the employed ML type.

ML techniques

ML techniques are the algorithms used for classification,
regression, or clustering problems, e.g., SVM, RF, or ANN.
The employed techniques in the selected pool of articles are
shown in Fig. 5. The topmost commonly used techniques are
ANN, RF, DT, and NB, respectively. While 51 out of 263
(19%) articles employed ANN, 45 out of 263 (17%) articles
have used RF and SVM, and 40 out of 263 (15%) articles
used DT and NB for model training.
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TABLE 2: Named propositions in the articles

Sr.no.  Name Contribution Article
Facet
1 Trace-by- Approach [86]
Classification
2 DeepSim Approach [147]
3 CDGDroid Approach [200]
4 SLDeep Approach [175]
5 REMI Approach [168]
6 Feature Maps Algorithm [105]
7 ProbPoly Framework [75]
8 ExploitMeter Framework [231]
9 DLFuzz Framework [256]
10 DARVIZ Framework [98]
11 Seml Framework [172]
12 CroLSim Model [85]
13 DeepGauge Process [206]
14 WIRECAML Tool [224]
FIGURE 5: Articles by techniques 15 SOA-based integrated  Tool (151]
software
16 Modelware Tool [102]
17 Featuretools Tool [67]
18 Code-Buff Tool [128]
19 AppFlow Tool [211]
20 CloneCognition Tool [126]
21 ArchLearner Tool [95]
22 SZZ Unleashed Tool [149]
23 Auto-sklearn Tool [194]
24 RIVER Tool [209]
25 InSet Tool [91]
250
200
150
FIGURE 6: Articles by contribution facet
100
50
D. CONTRIBUTION FACET OF THE ARTICLES (Q2.1) 12
The contribution facet addresses the novel propositions of 0
Evaluation Knowledge Solution

the articles. It is derived by analyzing the contribution of
the articles, which represents the current state-of-the-art and
enables researchers and industrial practitioners to get an
overview of the existing tools and techniques in the liter-
ature. As shown in Fig. 6, 121 out of 263 (46%) articles
focused on approaches/methods, followed by 60 (23%) arti-
cles proposing models/frameworks, 24 (9%) articles focusing
on comparative analysis of existing techniques, 13 (5%)
articles focusing on tools, and 6 (2%) articles focusing on
algorithms/processes. The rest of the articles — 39 out of 263
(15%) — reported no new propositions. These articles were
either investigating existing approaches, discussing opinions,
or reporting their experiences.

Table 2 shows the names of the propositions along with the
contribution facet and references of the articles. Interestingly,
only 25 out of 263 (9%) articles have explicitly named their
propositions.
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FIGURE 7: Articles by research facet

E. RESEARCH FACET OF THE ARTICLES (Q2.2)
The research facet describes the nature of articles in terms of
their purpose of conducting the research, such as evaluations
(articles employing empirical methods such as controlled
experiments or case studies), solutions (articles proposing so-
lutions to underlying problems without empirical evidence),
and knowledge (articles expressing experiences and opin-
ions). Fig. 7 shows the articles by their research facet. 204
out of 263 (78%) articles have contributions with empirically
evaluated propositions, whereas 47 out of 263 (18%) articles
are knowledge-based, and 12 out of 263 (5%) articles have
proposed solutions without any empirical evaluation.

The evaluation facet, in turn, represents the type of eval-
uation that has been performed in the articles in order to
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FIGURE 8: Articles by evaluation facet

evaluate their propositions. The articles by the evaluation
facet are shown in Fig. 8. Controlled experiments have been
performed in 148 out of 204 (73%) articles followed by case
studies in 58 out of 204 (28%) articles and surveys in 16
out of 204 (8%) articles. 2 out of 204 (1%) articles have
employed both a controlled experiment and a case study
for an empirical evaluation; whereas, rest of the articles
did not use any empirical method for evaluation purposes.
Moreover, we found no article employing ethnography or
action research as empirical methods for evaluation. Among
the articles those performed control experiments, 78 articles
proposed approaches/techniques/methods, and 41 articles
proposed models/frameworks. While 15 articles focused on
comparative analysis, 8 articles proposed tools, and 4 articles
introduced new algorithms/processes.

F. DATASETS (Q2.3)

We further explored the datasets that have been used in most
of the articles in order to evaluate their proposed approaches
or comparative studies. Evidently, the majority of articles
employed datasets obtained from PROMISE! repository
followed by repositories made publicly available by NASA!'!,
StackOverflow!2, Github!3, and JAVA projects.

G. TRENDS IN TERMS OF YEAR (Q3.1)

This refers to the trends in terms of publication years of
articles. It shows the evolution of the adoption of ML for SE.
As shown in Fig. 9, the use of ML for SE is consistently
growing over the passage of time. One can also observe an
exponential growth in this trend from 2016 - 2018, where
2018 proved to be the highest publication year with 63 (24%)
publications. In 2019 and 2020, we recorded relatively fewer
publications: 45 out of 263 (17%) and 34 out of 263 (13%),
respectively. There could be two plausible reasons for that.
Either some databases are not updated completely (as this
study was conducted in Q4 of 2020) or like any hype cycle,

10http://promise.site.uottawa.ca/SERepository/datasets-page.html
https://data.nasa.gov/
2https://archive.org/details/stackexchange
Bhttps://ghtorrent.org/
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FIGURE 10: Articles by venues (Top 5)

the peak of inflated expectations regarding ML for SE was
reached in 2018 and now the trend is slowly going towards
the trough of disillusionment. We believe the latter is the case
here.

H. VENUES WITH HIGHEST PUBLICATIONS (Q3.2)

Fig. 10 shows the top 5 venues where most researchers
of the domain tend to publish. International Conference on
Software Engineering (ICSE) is leading by 11 out of 263
(4%) and the second most publishing venue is Transactions
on Software Engineering (TSE) journal with 10 out of 263
(4%). They are followed by International Workshop on Ma-
chine Learning and Software Engineering, which featured
5 out of 263 (2%) articles, European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), which also featured 5 out of 263
(2%) articles, and International Conference on Cloud Com-
puting, Data Science & Engineering (Confluence), which
featured 3 out of 263 (1%) articles. Moreover, Fig. 11 shows
the overall distribution of articles with respect to publishing
venues. Here one can observe that 155 out of 263 (59%)
articles have been published in conferences, 51 out of 263
(19) articles have been published in journals, 26 out 263
(10%) articles have been published in workshops, and 18 out
of 263 (7%) articles have been published in symposia.

VI. ANALYSIS AND DISCUSSION

This section relates to the fourth goal of this study (G4) and
deals with implications and analysis of the aforementioned
articles.
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A. RELATION OF SDLC STAGES WITH RESEARCH AND
CONTRIBUTION FACETS

Fig. 12 shows the relationship of the contribution and re-
search facets explored in this study with the SDLC stages.
Moreover, the figure provides a bird’s-eye view of the current
studies falling into the respective SDLC stages along with
their contribution type and research purpose. For instance,
55 articles belonging to the quality assurance stage have
proposed a new approach or method as their primary contri-
bution, and the contributions of 107 articles at this stage were
evaluated empirically. In addition, we can observe that no
tool has been proposed for the requirements and maintenance
stage indicating less interest of researchers in prototyping
their proposition.

B. RELATION OF SDLC STAGES WITH ML

As shown in Fig. 3, 52% of the articles were dedicated to the
quality assurance and analytic stage, which shows that soft-
ware quality'* is the prime focus for the researchers of this
domain. Indeed, quality assurance, along with requirements
and design, are human-centric stages of the SDLC and the
high number of articles in these areas highlight the fact that
ML is able to offer help here. As shown in Tab. 1, we further
observed that fault/bug/defect prediction has been the major
focus of researchers within quality assurance. Certainly, the
nature of ML types and techniques is more supportive for
this kind of activities, but we hope that in the future other
SE activities may also similarly benefit from ML. This is
particularly valid for the maintenance stage, which has been
the least interesting area for the application of ML. We
encourage researchers to investigate how ML can be used
to automate certain tasks in this area. We further encourage
researchers to adopt combinations of ML techniques and use
diverse datasets from different sources in order to train the
ML models so that the applicability of the techniques can be
generalized as also observed in [99, 115, 188, 237].

14Qur criteria for software quality assurance is shown in Tab. 1

VOLUME 4, 2016

C. RELATION OF SDLC STAGES WITH ML TYPES

As shown in Fig. 4, a vast majority of articles falling into
requirements, architecture and design, and implementation
categories are addressing the problems using supervised
learning. For instance, [25] used supervised DL technique to
identify trace links and predict associations within artifacts.
A similar supervised learning technique has been proposed in
[86] order to generate trace links from commonly occurring
artifacts in the project. The reason supervised learning is
mostly employed in the articles could be that supervised
learning models are comparatively simple and produce re-
sults with high confidence and accuracy. We also noticed
that only 4 out of 263 (2%) articles [3, 61, 225, 238] used
reinforcement learning. This implies a little interest of re-
searchers in the applications of reinforcement learning to SE.
Reinforcement learning has proven to be beneficial in solving
complex problems especially in healthcare, business, and
robotics [277]. Thus, we believe it would be an interesting
area to explore in terms of facilitating SE. For instance,
software simulations can be deemed as an environment in
which the RL agent can interact and reach various goal-
oriented outcomes [278].

D. RELATION OF SDLC STAGES WITH ML TOOLS

As shown in Fig. 6, only 13 articles proposed a new tool
to facilitate SDLC stages. As further can be observed in
Fig. 12, 6 out of those 13 tools have been proposed for
quality assurance purposes, e.g., the tool named “Appflow”,
which is proposed by Hu et al. [211] and predicts reusable
UI test cases using neural networks. Tools are indeed a
valuable contribution when it comes to the practicality and
applicability of the proposed approach. In the future, more
tools are desirable that are targeting other SDLC stages.

E. RELATION OF SDLC STAGES WITH ML TECHNIQUES
Although all ML techniques have certain pros and cons, the
selection of the most suitable technique depends on the type
of dataset being constructed or employed and what problem
is being addressed. The SDLC stage-wise breakdown of ML
techniques is shown in Fig. 13. As anticipated, mostly ML
techniques were employed to solve problems related to the
quality assurance and analytic stage. ANN was the most
commonly used technique here (30 articles), followed by
SVM (28 articles) and RF (24 articles), respectively. NB was
next in line with 21 articles. ANN, which was used in 30
articles in the quality assurance stage was also a subject of
interest for the researchers working in the architecture and
design stage (15 articles).

As shown in Fig. 13, ANN is the most widely employed
ML technique for SDLC stages in general due to its simplic-
ity and strong classification and regression capabilities. CNN
is mostly used in supervised learning problems, whereas
RNN has been used to address both supervised and unsu-
pervised learning problems. In traditional ML techniques,
KNN, k-means clustering, NB, and SVM are mostly em-
ployed to address semi-supervised and unsupervised learning
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FIGURE 13: ML techniques usage in SDLC

problems. In the case of reinforcement learning, Q-learning
technique and its variants have been mostly employed in the
literature.

When it comes to neural networks-based techniques, our
findings show that simple neural networks, e.g., ANN (51 out
of 263 (19%)) and shallow neural networks, e.g., CNN and
RNN (containing one or more hidden layers) (combined 47
out of 263 (18%)) are the most widely used ML techniques
in SE. Neural networks are mostly employed for software
architecture and design, and software implementation. Apart
from neural networks, traditional ML techniques such as
Boosting, NB, and case-based ranking, were popular in re-
quirements engineering, particularly. The SVM technique
has been mostly employed for the software maintenance

12

stage. Apart from the ML techniques, most of the articles
addressed problems related to supervised learning indicating
classification as a major area of interest. While unsupervised
and semi-supervised learning has been less employed in the
area. The wide adoption of neural networks-based techniques
in articles indicate their suitability and potential for achieving
good results in this area. Mainly due to the reason that
a neural network-based model is capable of learning from
high dimensional large scale input data and an appropriate
selection of cost function leads to the development of a
more robust model. Moreover, neural network-based tech-
niques are highly customizable and can be applied to vari-
ous learning problems, such as supervised, unsupervised, or
reinforcement, which make them highly flexible in terms of
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applicability.

Table 3 contains the complete list of articles (263) used in
this paper showing ML techniques employed in those articles
with respect to SDLC stages along with their contribution
facet.

VIl. CHALLENGES, LIMITATIONS AND FUTURE
RESEARCH DIRECTIONS

This section also relates to the fourth goal of this study (G4)
and deals with challenges, limitations, and future research
directions in this field.

A. CHALLENGES

One of the major challenges in this domain, as also re-
ported by other experts, e.g., [150, 157], is the uncertain and
stochastic nature of the employed ML techniques, and the
difference in the captured data and results, e.g., the difference
in the DL model output values when executing it multiple
times over the same input data. The approaches need to be
reproducible and rigorous in order to build high confidence
for their application.

The availability of sufficiently labeled and structured
datasets is also a challenge as also reported by other re-
searchers, e.g., [32, 170, 184]. However, this can be over-
come rather easily as more and more researchers have started
sharing their datasets publicly. An associated issue is the
imbalanced sizes of software projects and datasets. Using
new techniques for dataset balancing, such as SMOTE and
ClassBalancer (both evaluated by Percorelli et al. [30]), or
devising new ones is highly recommended in this context.

The ever-increasing software complexity is also one of the
greater challenges for this domain. Meinke et al. [63] also
attest to our observation and further suggest that the scalabil-
ity problem should be given proper attention by researchers
of this domain. We also invite researchers to conduct more
studies investigating the impact of ML techniques on differ-
ent software sizes.

B. LIMITATIONS

As observed in some studies, e.g., [140, 176], the lack of
generalizability regarded as over-fitting problems is one of
few major limiting factors, which decreases the accuracy of
results. This leads to lesser results when ML models are
applied to diverse cross-project datasets. Using standard data
preprocessing techniques such as SMOTE, ClassBalancer,
and Resample [30], and performing K-fold cross-validation
or hold-out validation could reduce the problem of over-fitted
and under-fitted models.

As observed in some studies, e.g., Ghaffarian et al. [219],
the current state of evaluation of ML techniques, especially
for software vulnerability testing is not well grounded. The
dataset often lacks sufficient vulnerability types, which re-
sults in less generalizable outcomes. In order to improve
results’ precision, lesser false positives, and false negatives
while maintaining recall can help produce meaningful re-
sults.

VOLUME 4, 2016

In a distributed software development environment, man-
ual inspection/allocation of work items, excessive time
consumption, potentially fallible outcomes, and lack of
production-ready approaches are some of the limitations
identified by Barcus et al. [279] and Achimugu et al. [280].

C. FUTURE RESEARCH DIRECTIONS

In order to facilitate requirements traceability, researchers
have suggested that devising a feedback mechanism, such
as adding user feedback during the model training process
in order to improve feature selection and performance, can
really help the cause of generalizability. One of such works is
presented by Sultanov et al. [3], which provides a very good
basis for further developments.

In order to improve prediction accuracy and better reli-
ability of results, more experiments using larger numbers
of datasets and software applications have also been sug-
gested [99, 115, 188, 237].

Researchers in the articles have also suggested investigat-
ing further regarding the suitable metrics and loss functions
employed in the evaluation of ML for SE-focused techniques,
especially for multi-class classification problems [125].

Future research directions also include automata learning
for emergent middle-wares and using ML to address complex
system integration problems, especially in system of systems
such as the internet of things. Moreover, researchers are en-
couraged to devise adaptable, easily integrable, and scalable
solutions in the area.

VIIl. THREATS TO VALIDITY

Similar to other secondary studies, this study is also prone
to some validity threats. The threats and their mitigation
strategies are described in this section.

A. EXTERNAL VALIDITY

The extraction of articles and choice of repositories constitute
a threat to internal validity. In order to minimize the former,
we adopted the PICO (Population, Intervention, Comparison,
Outcomes) criteria suggested by Petersen et al. [19] to for-
mulate the search terms. The selected terms unequivocally
represent the goals of our work. An associated issue corre-
sponds to the frequently used specific ML terms. Although
the query used did not explicitly include ML terms, such
as classification, regression, SVM, ANN, inductive logic,
Bayesian network, or deep belief network, this would not
affect the analysis much because such information is usually
available in abstracts, hence accessible. In order to minimize
the latter, we used five digital libraries as the primary source
for this research. All selected digital libraries are well known
in the computer science discipline for including the most
relevant results [281]. Additionally, according to Wohlin et
al. [282], having a larger set of papers is not necessarily
better for such reviews. The important thing is that the found
studies are a good representation of the population, which we
ensured in this study by adopting a rigorous paper selection
process.
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TABLE 3: Articles by ML techniques

Refs.  SDLC Stages Contribution Facet ML techniques
1 [58] All Stages Approach/Technique/Method RNN
2 [63] All Stages Other Other
3 [64] All Stages Other Other
4 [56] All Stages Comparative Analysis Other
5 [57] All Stages Other Other
6 [69] All Stages Other RNN, RBM
7 [14] All Stages Model/Framework Other
8 [67] All Stages Tool RF
9 [49] All Stages Other Other
10 [62] All Stages Tool NLP
11 [61] All Stages Other DT
12 [48] All Stages Other Other
13 [65] All Stages Other Other
14 [1] All Stages Other Other
15 [60] All Stages Other Other
16 [68] All Stages Comparative Analysis LR, SVM, NB
17 [66] All Stages Approach/Technique/Method LSTM
18 [11] All Stages Other Other
19  [59] All Stages Other Other
20 [21] Requirements Approach/Technique/Method NB, KNN, RF
21 [70] Requirements Approach/Technique/Method SVM, SMO, NB
22 [82] Requirements Approach/Technique/Method PN
23 [75] Requirements Model/Framework ProbPoly
24 [71] Requirements Approach/Technique/Method Text2Model
25  [84] Requirements Approach/Technique/Method RF
26 [72] Requirements Approach/Technique/Method Other
27  [22] Requirements Approach/Technique/Method NB, RF, LR, SGD, DT
28 [23] Requirements Approach/Technique/Method Boosting
29 [81] Requirements Approach/Technique/Method NSGA-II algorithm
30 [24] Requirements Model/Framework CNN
31 [73] Requirements Approach/Technique/Method FL
32 [76] Requirements Approach/Technique/Method LP, SMO, NB, KNN
33 [86] Requirements Approach/Technique/Method J48, FSS, CFS
34 [25] Requirements Model/Framework RNN
35  [85] Requirements Model/Framework KNN
36 [79] Requirements Other Other
37 [3] Requirements Approach/Technique/Method RL
38 [80] Requirements Model/Framework LSTM, GRU, CNN
39 [51] Requirements Approach/Technique/Method LSTM
40  [74] Requirements Approach/Technique/Method Spacy NLP model
41 [77] Requirements Comparative Analysis LR, SVM, MNB, kNN
42 [83] Requirements Approach/Technique/Method RNN
43 [78] Requirements Approach/Technique/Method RNN, CNN, SVM, KNN, LR, NB, RF
44 [117]  Architecture and Design Approach/Technique/Method KNN, CTM, MARS, CART
45 [102]  Architecture and Design Tool Modelware
46  [98] Architecture and Design Model/Framework DARVIZ
47 [96] Architecture and Design Approach/Technique/Method RF
48  [97] Architecture and Design Model/Framework Other
49  [87] Architecture and Design Model/Framework CNN
50 [27] Architecture and Design Approach/Technique/Method RNN, GAN
51  [89] Architecture and Design Approach/Technique/Method SVM
52 [122]  Architecture and Design Other CBR, ANN, DT, BN, SVR, GA, AR
53 [112]  Architecture and Design Comparative Analysis CBR, ANN, CART
54 [101]  Architecture and Design Approach/Technique/Method NB, SMO, RF
55 [92] Architecture and Design Model/Framework Restricted Boltzmann Machine
56  [99] Architecture and Design Model/Framework GRBF
57  [53] Architecture and Design Approach/Technique/Method RNN, DT
58 [111]  Architecture and Design Model/Framework ANN
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TABLE 3: Articles by ML techniques

Refs.  SDLC Stages Contribution Facet ML techniques
59 [93] Architecture and Design Model/Framework Other
60 [113]  Architecture and Design Other NN
61 [110]  Architecture and Design Comparative Analysis SVR
62 [115]  Architecture and Design Approach/Technique/Method NB
63 [90] Architecture and Design Model/Framework NN
64 [116]  Architecture and Design Model/Framework GP, LMS, LR, MP, RBFN, SMO, AR, BAG,
CR, DT, MSR, ZR, DS, RT
65 [94] Architecture and Design Model/Framework CNN
66 [120]  Architecture and Design Approach/Technique/Method DT, NN
67 [119]  Architecture and Design Comparative Analysis GP, NN
68 [108]  Architecture and Design Model/Framework RBF, SVR, PCA
69 [4] Architecture and Design Approach/Technique/Method RT, MLP, SVR
70 [5] Architecture and Design Comparative Analysis ANN, RI, FL, CART, CBR
71 [26] Architecture and Design Other NN
72 [114]  Architecture and Design Approach/Technique/Method ANN, SVM
73 [118]  Architecture and Design Other ANN, GA
74 [28] Architecture and Design Approach/Technique/Method ANN
75 [121]  Architecture and Design Other ANN, GA
76 [100]  Architecture and Design Approach/Technique/Method Other
77 [109]  Architecture and Design Approach/Technique/Method NB, LR, RF
78 [105]  Architecture and Design Algorithm/Process CNN, RF
79 [123]  Architecture and Design Model/Framework DNN
80 [95] Architecture and Design Tool LSTM
81 [106]  Architecture and Design Approach/Technique/Method SBL
82 [107]  Architecture and Design Model/Framework RF
83 [88] Architecture and Design Approach/Technique/Method LR, NB, DT, RF, KNN
84 [9] Architecture and Design Model/Framework k-means clustering
85 [104]  Architecture and Design Approach/Technique/Method Other
86 [103]  Architecture and Design Approach/Technique/Method ANN, SVM, RF
87 [91] Architecture and Design Tool NB, NN, KNN, RF, SVM, DT
88 [131]  Implementation Approach/Technique/Method RNN
89 [29] Implementation Approach/Technique/Method CNN
90 [128]  Implementation Tool KNN
91 [132]  Implementation Approach/Technique/Method Fica
92 [33] Implementation Approach/Technique/Method NN, RF
93 [125]  Implementation Model/Framework CNN
94 [145]  Implementation Approach/Technique/Method RNN
95 [127]  Implementation Approach/Technique/Method CNN
96 [147]  Implementation Approach/Technique/Method DNN
97 [133]  Implementation Approach/Technique/Method DT
98 [138]  Implementation Approach/Technique/Method OGUST
99 [32] Implementation Approach/Technique/Method NB, DT, SVM
100  [140] Implementation Approach/Technique/Method RF, NB, KNN
101 [31] Implementation Approach/Technique/Method RF, NB, LR
102 [137] Implementation Comparative Analysis NB
103 [146] Implementation Model/Framework RNN
104 [143] Implementation Approach/Technique/Method CNN, RNN, LSTM
105 [135] Implementation Approach/Technique/Method SVM
106  [126] Implementation Tool ANN
107 [30] Implementation Approach/Technique/Method Other
108  [124] Implementation Approach/Technique/Method LSTM
109 [141] Implementation Approach/Technique/Method RF, J48, SMO, MLP, NB, LogitBoost, Ad-
aBoost
110 [134] Implementation Approach/Technique/Method DT, GBT, SVM, RF, ANN
111 [142] Implementation Approach/Technique/Method RNN
112 [129] Implementation Approach/Technique/Method RNN
113 [130] Implementation Approach/Technique/Method KNN, RF
114 [136] Implementation Approach/Technique/Method DNN
115 [139]  Implementation Approach/Technique/Method NB, LR, SVM, RF, XGB, CNN
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116  [144] Implementation Approach/Technique/Method RNN

117 [150]  Quality Assurance and Analytic Approach/Technique/Method SVM, DT

118  [267]  Quality Assurance and Analytic Approach/Technique/Method COBWEB/3

119 [224]  Quality Assurance and Analytic Tool DT, RF, LR, NB, TAN

120 [256]  Quality Assurance and Analytic Model/Framework CNN

121 [161]  Quality Assurance and Analytic Approach/Technique/Method OC-SVM

122 [219]  Quality Assurance and Analytic Other Other

123 [41] Quality Assurance and Analytic Approach/Technique/Method KStar

124 [163]  Quality Assurance and Analytic Approach/Technique/Method NN

125 [266]  Quality Assurance and Analytic Other DT

126 [211]  Quality Assurance and Analytic Tool NN

127 [228]  Quality Assurance and Analytic Model/Framework RFE, NB

128 [40] Quality Assurance and Analytic Approach/Technique/Method AdaBoostM1, JRIP 3

129 [207]  Quality Assurance and Analytic Approach/Technique/Method ANN, DT, KNN, NB, RF, SVM

130 [254]  Quality Assurance and Analytic Model/Framework RNN

131 [206]  Quality Assurance and Analytic Algorithm/Process DNN

132 [255]  Quality Assurance and Analytic Approach/Technique/Method LSTM

133 [157]  Quality Assurance and Analytic Approach/Technique/Method SVM, CNN

134 [265]  Quality Assurance and Analytic Model/Framework RNN

135  [210]  Quality Assurance and Analytic Algorithm/Process SVM

136 [54] Quality Assurance and Analytic Model/Framework GA

137 [253]  Quality Assurance and Analytic Model/Framework EDAs

138 [262]  Quality Assurance and Analytic Model/Framework MBR, BBN

139 [205]  Quality Assurance and Analytic Other Other

140 [212]  Quality Assurance and Analytic Approach/Technique/Method K-means clustering, Expecta-
tion-Maximization, Incremental Conceptual
Clustering

141 [252]  Quality Assurance and Analytic Other Other

142 [246]  Quality Assurance and Analytic Comparative Analysis DT, BNN, RBNN, SVM

143 [44] Quality Assurance and Analytic Approach/Technique/Method NN

144 [223]  Quality Assurance and Analytic Model/Framework Other

145  [257]  Quality Assurance and Analytic Approach/Technique/Method SVM

146 [233]  Quality Assurance and Analytic Other Other

147  [170]  Quality Assurance and Analytic Approach/Technique/Method NB, DT, SVM

148  [182]  Quality Assurance and Analytic Comparative Analysis ANN, Particle Swarm Optimization, DT, NB

149  [151]  Quality Assurance and Analytic Tool SVM, DT

150  [268]  Quality Assurance and Analytic Model/Framework ANN

151 [264]  Quality Assurance and Analytic Other STP, LTP

152 [220]  Quality Assurance and Analytic Approach/Technique/Method DT, RF, KNN, SVM

153 [213]  Quality Assurance and Analytic Approach/Technique/Method NB

154  [204]  Quality Assurance and Analytic Algorithm/Process GA

155 [200]  Quality Assurance and Analytic Approach/Technique/Method CNN

156 [208]  Quality Assurance and Analytic Approach/Technique/Method Evolutionary Algorithm

157  [158]  Quality Assurance and Analytic Approach/Technique/Method DT

158  [188]  Quality Assurance and Analytic Comparative Analysis LR, ANN

159  [173]  Quality Assurance and Analytic Comparative Analysis NB

160  [176]  Quality Assurance and Analytic Approach/Technique/Method LR

161  [187]  Quality Assurance and Analytic Approach/Technique/Method ANN

162 [258]  Quality Assurance and Analytic Other NN

163 [229]  Quality Assurance and Analytic Model/Framework NN

164 [218]  Quality Assurance and Analytic Model/Framework RF, PART

165 [245]  Quality Assurance and Analytic Comparative Analysis NN, NB

166 [261]  Quality Assurance and Analytic Other Other

167  [263]  Quality Assurance and Analytic Model/Framework ANN

168  [167]  Quality Assurance and Analytic Other SVM, RF

169  [244]  Quality Assurance and Analytic Approach/Technique/Method SBL

170 [184]  Quality Assurance and Analytic Model/Framework DT, SVM, ANN
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171 [153]  Quality Assurance and Analytic Comparative Analysis LM, MAE, LR, PR, SVR, NNC, SVLR, NND,
LoR, NB, IBL, IDT, 1R

172 [152]  Quality Assurance and Analytic Model/Framework DT, MLP, RBF

173 [6] Quality Assurance and Analytic Comparative Analysis SVR, ANN

174 [246]  Quality Assurance and Analytic Comparative Analysis DT, SVM

175 [249]  Quality Assurance and Analytic Approach/Technique/Method C4.5,NB, SVM

176 ~ [214]  Quality Assurance and Analytic Comparative Analysis DT, NB, SVM-C, KNN, RF

177 [247]  Quality Assurance and Analytic Approach/Technique/Method SVM

178  [160]  Quality Assurance and Analytic Other Other

179 [251]  Quality Assurance and Analytic Approach/Technique/Method NN

180  [250]  Quality Assurance and Analytic Model/Framework NN

181  [216]  Quality Assurance and Analytic Model/Framework SVM

182 [186]  Quality Assurance and Analytic Other DT, CBR, ANN, SVM

183 [217]  Quality Assurance and Analytic Approach/Technique/Method Recurrent Neural Network, LSTM

184  [248]  Quality Assurance and Analytic Other NN

185 [178]  Quality Assurance and Analytic Model/Framework CNN

186 [177]  Quality Assurance and Analytic Approach/Technique/Method CNN

187  [165]  Quality Assurance and Analytic Approach/Technique/Method SVM, RNN

188  [171]  Quality Assurance and Analytic Model/Framework CNN

189  [231]  Quality Assurance and Analytic Model/Framework FL

190  [237]  Quality Assurance and Analytic Model/Framework SVM

191  [230] Quality Assurance and Analytic Approach/Technique/Method CNN

192 [189]  Quality Assurance and Analytic Comparative Analysis MLP, RBF, CART, KNN

193 [221]  Quality Assurance and Analytic Approach/Technique/Method CNN

194 [174]  Quality Assurance and Analytic Other Single Layer Perceptron, Multi Layer Percep-
tron, LVQ, SOM, AIRS, CLONAL, Immune

195 [193]  Quality Assurance and Analytic Other RF, DT, SVM, NB, LR

196 [222]  Quality Assurance and Analytic Approach/Technique/Method LSTM, NB, RF

197 [197]  Quality Assurance and Analytic Approach/Technique/Method DBN

198  [162]  Quality Assurance and Analytic Model/Framework CNN

199  [38] Quality Assurance and Analytic Comparative Analysis ANN, CNN, SOM, LVQ, LVQ

200  [43] Quality Assurance and Analytic Model/Framework Linear Regression, Ridge, Lasso, Random For-
est Regression

201  [259]  Quality Assurance and Analytic Other Other

202 [34] Quality Assurance and Analytic Approach/Technique/Method DT, LR

203 [236]  Quality Assurance and Analytic Approach/Technique/Method SVM

204  [198]  Quality Assurance and Analytic Approach/Technique/Method RNN

205 [155]  Quality Assurance and Analytic Comparative Analysis DNN

206  [202]  Quality Assurance and Analytic Model/Framework RNN

207  [35] Quality Assurance and Analytic Comparative Analysis LR, NB, DT, J48

208  [37] Quality Assurance and Analytic Approach/Technique/Method DT, RF, NB, SVM, ANN

209  [234]  Quality Assurance and Analytic Other NN, RF, DT

210 [203]  Quality Assurance and Analytic Model/Framework SDNN

211 [164]  Quality Assurance and Analytic Comparative Analysis GMMs, ANN

212 [180]  Quality Assurance and Analytic Other CNN

213 [242]  Quality Assurance and Analytic Approach/Technique/Method DT, KNN, SVM, NB

214 [149]  Quality Assurance and Analytic Tool RF

215  [239] Quality Assurance and Analytic Approach/Technique/Method SGD

216 [227]  Quality Assurance and Analytic Approach/Technique/Method LSTM

217 [175]  Quality Assurance and Analytic Approach/Technique/Method LSTM

218  [39] Quality Assurance and Analytic Other Other

219 [192]  Quality Assurance and Analytic Approach/Technique/Method ANN

220  [226]  Quality Assurance and Analytic Approach/Technique/Method RF, NB, J48

221 [201]  Quality Assurance and Analytic Model/Framework LSTM

222 [241]  Quality Assurance and Analytic Model/Framework LSTM

223 [36] Quality Assurance and Analytic Approach/Technique/Method SVM

224 [191]  Quality Assurance and Analytic Model/Framework NaN

225 [185]  Quality Assurance and Analytic Approach/Technique/Method RF
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226 [156]  Quality Assurance and Analytic Approach/Technique/Method LSTM
227 [169]  Quality Assurance and Analytic Approach/Technique/Method GA
228  [42] Quality Assurance and Analytic Model/Framework TF-IDF, 1G, DNN
229  [215]  Quality Assurance and Analytic Model/Framework LSTM
230  [240]  Quality Assurance and Analytic Model/Framework RFCM, LR, CART, KNN
231 [225]  Quality Assurance and Analytic Algorithm/Process RL
232 [194]  Quality Assurance and Analytic Tool RE, DT
233 [179]  Quality Assurance and Analytic Comparative Analysis LR, KNN, DT, RF, SVM, NN
234 [7] Quality Assurance and Analytic Approach/Technique/Method RF
235 [172]  Quality Assurance and Analytic Model/Framework LSTM
236 [209]  Quality Assurance and Analytic Tool RNN
237 [238]  Quality Assurance and Analytic Model/Framework RL
238  [159]  Quality Assurance and Analytic Model/Framework LR, DT, RF
239 [235] Quality Assurance and Analytic Other CART, kNN, KRR, MR, RF, SVR
240  [243]  Quality Assurance and Analytic Other Other
241  [196]  Quality Assurance and Analytic Approach/Technique/Method NHANES dataset
242 [190]  Quality Assurance and Analytic Approach/Technique/Method SVM, RF, ANN, DT, NBG, LR, CNN
243 [195]  Quality Assurance and Analytic Approach/Technique/Method NN
244 [232]  Quality Assurance and Analytic Approach/Technique/Method ANN
245  [154]  Quality Assurance and Analytic Approach/Technique/Method CNN
246 [260]  Quality Assurance and Analytic Model/Framework SVM, ANN, NB
247  [183]  Quality Assurance and Analytic Approach/Technique/Method RF, NB, SVM, ANN
248 [166]  Quality Assurance and Analytic Model/Framework RF, NB, DT, LR, ANN
249 [181]  Quality Assurance and Analytic Approach/Technique/Method MLP, CNN
250 [148]  Quality Assurance and Analytic Model/Framework NB, LR, C4.5, SVM, RF, MLP
251 [199]  Quality Assurance and Analytic Approach/Technique/Method CNN
252 [168]  Quality Assurance and Analytic Approach/Technique/Method RF
253  [274] Maintenance Model/Framework SVM
254 [46] Maintenance Approach/Technique/Method NB, SMO
255 [269] Maintenance Algorithm/Process FL
256 [47] Maintenance Approach/Technique/Method SVM
257  [272] Maintenance Approach/Technique/Method MS5P
258 [275] Maintenance Approach/Technique/Method DT, ANN, SVM
259 [273] Maintenance Comparative Analysis DT, SVM, DBN
260  [45] Maintenance Model/Framework LSTM
261 [271] Maintenance Approach/Technique/Method RF, NB, KNN, SVM, ANN
262 [270] Maintenance Other ANN, SVM/R, DT
263 [276] Maintenance Approach/Technique/Method RNN

B. INTERNAL VALIDITY

Another threat is regarding the quality assessment of this
study. As discussed by Petersen et al. [283] and Kitchenham
et al. [284], quality assessment is not common in such kind
of studies as their overall aim is to give a broad overview of
the topic area. However, despite these observations, we have
adopted a rigorous process for the inclusion and classification
of papers, which ensures that only high-quality related papers
are selected as primary studies.

C. CONCLUSION VALIDITY

Each article in this study was reviewed by the first author,
which may lead to a threat to the reliability of the results.
This threat was reduced by double-checking the article by
the second, the third, and the fourth author. A random set
of articles was distributed among the second and the third
author. Their review results were then compared with the
results of the first author. In case of a disagreement, the
opinion of the fourth author was sought. Although this did
not happen much.

IX. CONCLUSION

The conclusion of the study is manifold. We have provided an
overview of the state-of-the-art in the area of machine learn-
ing for software engineering by evaluating carefully selected
studies. We also proposed a classification scheme that high-
lights the overall applications of machine learning for soft-
ware engineering in terms of SDLC stages. The classification
shows the primary focus of researchers towards specific
stages. This observation is one of the major contributions of
this study. This study also reveals that the quality of primary
studies in the domain of ML and SE is evidence-based with
respect to the techniques being empirically evaluated by the
researchers. We have also shown the relationship of SDLC
stages with ML types, tools, and techniques. Although this
research area is showing moderate growth in terms of the
number of publications, further primary studies need to be
conducted to emphasize other lesser explored SDLC stages
such as maintenance. The challenges, limitations and future
directions reported in this article should motivate and further
guide researchers in the future. We believe this study provides
the necessary impetus and further motivation to explore those
SDLC stages, which have been given lesser attention to date
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with respect to the application of ML.

In the future, we intend to perform a more comprehensive
study investigating the relationship between ML and SDLC
stages. To this end, we intend to narrow down our search
query by including ML terms such as classification, regres-
sion, SVM, ANN, inductive logic, Bayesian network, or deep
belief network. We believe in this way, we can grasp a more
focused view of the state-of-the-art.
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