
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Literature Review of Machine Learning
and Software Development Life cycle
Stages
SAAD SHAFIQ, ATIF MASHKOOR, CHRISTOPH MAYR-DORN AND ALEXANDER EGYED
Johannes Kepler University, Linz, Austria

Corresponding author: Saad Shafiq (e-mail: saad.shafiq@jku.at)

The research reported in this article has been partly funded by the LIT Artificial Intelligence Lab and the LIT Secure & Correct Systems
Lab supported by the state of Upper Austria.

ABSTRACT The software engineering community is rapidly adopting machine learning for transition-
ing modern-day software towards highly intelligent and self-learning systems. However, the software
engineering community is still discovering new ways how machine learning can offer help for various
software development life cycle stages. In this article, we present a study on the use of machine learning
across various software development life cycle stages. The overall aim of this article is to investigate the
relationship between software development life cycle stages, and machine learning tools, techniques, and
types. We attempt a holistic investigation in part to answer the question of whether machine learning favors
certain stages and/or certain techniques.

INDEX TERMS Software engineering, Machine learning, Literature review

I. INTRODUCTION

The software engineering (SE) community is continuously
looking for better and more efficient ways of building high-
quality software systems. However, in practice, the strong
emphasis on time to market tends to ignore many, well-
known SE recommendations. That is, practitioners focus
more on programming as compared to requirements gather-
ing, planning, specification, architecture, design, and docu-
mentation – all of which are ultimately known to greatly ben-
efit the cost-effectiveness and quality of software systems.
Lack of human resources is often cited as the main reason for
doing so. Herein lies the great potential for machine learning
(ML) since its algorithms are proven to be most befitting
to problem domains that aim to replicate human behavior.
Hence, it stands to reason that human-centric SE activities
should also benefit from ML [1].

The growing demand for agility and the ability to solve
complex problems in SE has already led researchers to
explore the potential of ML in this field. To date, ML has
many demonstrated benefits. Applications of ML for SE
range from resolving ambiguous requirements to predicting
software defects [2]. For example, Sultanov et al. [3] used
reinforcement learning (a type of ML) on understanding
the relationships among software requirements at different

levels of abstraction. Their approach shows how ML can
automatically generate traceable links between high-level
and low-level requirements. However, ML is not a single
technique but rather an assortment of techniques. The chal-
lenge of using ML for SE is thus not only about finding the
right way of solving the problem but also about comparing
various ML techniques and their potential. For example,
several researchers have explored predictions in order to
better estimate the time to market for software products. For
this purpose, various ML techniques were used and com-
pared, e.g., artificial neural networks, rule induction, case-
based reasoning, support vector machines, regression-based
decision trees, and random forest [4, 5, 6, 7].

In many areas of science and engineering, such as image
recognition or autonomous driving, ML has already revo-
lutionized development. The applications of ML to SE are
also increasing significantly, which is evident through the
exponential growth in the number of articles on ML for SE
being published every year. Consequently, it is of interest to
understand, which software development life cycle (SDLC)
stages benefit the most from this trend; or even to understand
which ML techniques are most suitable for which SDLC
stage(s). This leads to the motivation of conducting this study.

In this article, we provide a bird’s-eye view on the current

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

state-of-the-art regarding the causal relationship between ML
and SDLC stages and suggest the open areas of research
where more primary studies are needed. The fairly broad
scope of this study is by design. While this article sets out to
explore the causal relationship between machine learning and
SDLC stages in the form of a literature review, it should be
noted that some specialized studies already exist, e.g., ML for
automated software testing [8]. Similar to exploratory studies
conducted in the past, such as Bindewald et al. [9], our review
is based on the quantitative analysis of the articles present
in the literature addressing the application of ML to various
SDLC stage(s).

The rest of the article is organized as follows. The re-
lated work is discussed in Section II. Section III presents a
brief introduction to ML. Section IV explains the research
methodology and protocol followed in the study. Results
of the study are discussed in Section V. Further analysis
on the presented state-of-the-art is discussed in Section VI.
Section VII presents challenges, limitations, and future re-
search directions of this field. Section VIII discusses different
threats to the validity of the presented results. The article is
concluded in Section IX.

II. RELATED WORK
Some studies, e.g., [8, 10, 11, 12], have already analyzed
the application of ML in SE in the past. Durelli et al. [8]
conducts a systematic mapping study on the application of
ML for software testing. The study highlights the use of ML
techniques in various software testing activities such as test-
case generation and oracle construction. Results of the study
show that a vast majority of articles employ supervised learn-
ing, such as ANN and DT, to solve testing-related problems.
Moreover, the key advantages and disadvantages of using ML
for software testing are discussed. Mainly, the advantage of
ML techniques is their scalability and efficient application to
large-scale and complex software systems. The disadvantage,
on the other hand, is the unavailability of data that fits well
with the learning process.

Fajardo et al. [10] provides an extensive overview of apply-
ing data mining techniques to SE tasks including open issues
and recommendations for improvements. The study provides
a comprehensive list of data mining techniques applicable
in SE, e.g., aspects related to clustering, regression, and
performance metrics. Moreover, the study highlights some
widely used datasets of SE employed in the data mining
articles and states key advantages of mining SE data.

Wan et al. [11] performed a survey by interviewing 14
people from 3 companies and 342 respondents from 26
countries. The aim of the study was to understand and
highlight the key differences in the software development
practices followed in building ML and non-ML software
systems. Results suggested that ML engineers should focus
on handling the uncertain randomness of ML systems and
work on employing version control systems specifically for
ML applications in order to improve reproducibility.

Zhang et al. [12] conducted the research focusing on the

application of ML in SE. The study provides a comprehen-
sive list of SE tasks whose problems can be addressed using
ML techniques. The study also emphasizes the fact of SE to
be a highly fertile area to explore with regards to applying
ML techniques by formulating SE tasks as learning problems
and addressed using ML techniques.

In contrast to the aforementioned focused studies, our
study provides a broader context and a comprehensive list
of articles that help identify the relationship between various
ML techniques and SDLC stages. We also provide the re-
lationships of ML types, tools, and techniques with respect
to SE stages, which help better understanding the current
progress of the adoption of ML for SE.

III. INTRODUCTION TO ML
ML has evolved drastically over the recent years and is now
being employed on a global scale. As a subset of artificial
intelligence, ML has been considered vital when developing
software systems for domains such as speech/image recog-
nition [13] or automotive [14]. ML techniques have also
been used to address various SE issues and activities. Most
commonly, ML has been employed in defect prediction,
effort estimation, and identifying patterns and similarities in
the source code.

The ML techniques are essentially targeted to solve prob-
lems, which can often become hard to analyze by people
causing misinformation [15]. These problems have various
types, which can be categorized as ML types. ML types gen-
erally include supervised, unsupervised, and reinforcement
learning. Most of the applications of ML consist of problems
that can be deemed of type supervised learning. It refers to
learning from features along with their known class labels.
Then, predicting the class labels from new unseen features.
These problems are also often categorized as classification
problems.

Arguably, ML techniques can also be classified into two
divisions. 1) Traditional ML techniques that include decision
trees (DT), random forest (RF), linear regression, logistic
regression (LR), support vector machines (SVM), k-nearest
neighbors (KNN), and naive bayes (NB). 2) Neural network-
based ML techniques that include artificial neural network
(ANN), recurrent neural network (RNN), and convolutional
neural network (CNN). Deep learning (DL) – also known
as deep neural networks (DNN) – is a subset of ANN.
DL was introduced mainly to address the data scalability
problems such as handling high-dimensional and large-scale
datasets. Structurally, instead of comprising a single hidden
layer within the input and output layer as in ANN, RNN
and CNN techniques are composed of multiple hidden layers
of interconnected neurons. The processing inside the hidden
layers is based on the principle of weighted connections. In
general, each hidden neuron is comprised of predetermined
weight and bias values, which are later adjusted during the
training process until the desired output is reached. Lastly,
the output layer holding the acquired weight and bias values
represents the solution to the given problem.

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

IV. RESEARCH METHODOLOGY
In order to direct the study, we followed the Goal, Question,
and Metric (GQM) paradigm suggested by Basili et al. [16].
The aim of the GQM paradigm is to guide the study by
specifying its goals in order to have an objective-oriented
data extraction process. It also helps in tracing goals to
formulated questions leading to better interpretation of the
data in line with goals stated before.

A. GOALS
The overall aim of this study is to evaluate the relation
between ML and SDLC stages. The considerably broader aim
of this study differentiates it from other similar studies, such
as the one by Durelli et al. [8], which have quite a narrow
focus. Following are the goals formulated for this study.
G1. To identify the susceptibility of various ML types and

techniques to SDLC stages
G2. To understand the maturity of research in this area
G3. To identify the demographics in this area
G4. To understand the implications, challenges, limitations,

and future research directions in this area
The first three goals lead to the research questions dis-

cussed in the following subsection. Due to the descriptive and
elaborate nature of the fourth goal, we decided to thoroughly
discuss it in Sections VI and VII.

B. QUESTIONS
In order to meet the outlined goals, we have formulated
concrete questions and identified suitable metrics (quantifi-
able attributes). The questions and metrics (emphasized) are
explained as follows:
G1. The susceptibility of various ML types and techniques

to SDLC stages
Q1.1. What SDLC stages are being focused on by academic

and industrial researchers in this area?
Rationale: Our interest is to understand what SDLC
stage the researchers tend to focus on, whether, a
particular SDLC stage or the amalgamation of two or
more. The SDLC stages are based on, but not limited
to, the knowledge areas mentioned in SWEBOK [17]
characterizing the practice of SE, e.g., Software Re-
quirements, Software Design, or Software Mainte-
nance.

Q1.2. What are the applications of ML for SE?
Rationale: We are interested to know about the spe-
cific applications of ML that exist in SE, e.g., whether
an ML technique was used to automate test case
generation or to predict potential bugs in the system.

Q1.3. What type of ML and its techniques are being em-
ployed for SE?
Rationale: We are interested to know whether a
particular type/technique was consistently employed
for a specific life cycle stage. The type of ML refers
to how the models have been trained, e.g., supervised,
semi-supervised, or unsupervised. Whereas the ML

techniques are the algorithms used for classification
or clustering problems, e.g., SVM, RF, or ANN.

G2. The maturity of research in the area
Q2.1. What is the contribution facet of the articles?

Rationale: The contribution facet refers to the novel
contributions made by the researchers in the articles.
It partially corroborates the attributes provided by
Banerjee et al. [18] and Petersen et al. [19], and are
supplemented by our own views obtained by analyz-
ing the extracted articles. The attributes are defined as
follows:
• Tool: Article proposing a new tool or improving

an existing one and describing its evaluation.
• Approach/method: Article proposing a new ap-

proach/method or improving the existing one.
• Model/framework: Article introducing a new

model/framework or improving the existing one.
• Algorithm/process: Article proposing a new al-

gorithm/SE process or improving the existing
one.

• Comparative analysis: Article evaluating differ-
ent approaches and reporting results of the com-
parative study.

Q2.2. What is the research facet of the articles?
Rationale: The research facet of an article refers to
the maturity of the research in terms of empirical
evidence provided in the article or whether an article
was proposing a solution or evaluating an existing
approach. The research facet is defined as follows:
• Evaluation: Article evaluating or validating the

proposed approach using empirical methods.
• Knowledge: Article describing the experiences

and opinions of authors on the existing ap-
proaches.

• Solution: Article proposing a new solution and
describing its applicability with the help of exam-
ples and arguments.

We further explored the evaluation facet in order to
understand the empirical methods employed in the
articles.

Q2.3. What datasets are commonly employed in the arti-
cles?
Rationale: We are interested to know about the
datasets that are most commonly used to evaluate the
research results in the domain of ML for SE.

G3. The demographics of research in the area
Q3.1. What are the trends in terms of years of publications

in the area?
Rationale: The trends in terms of years refer to
the number of publications varying from a year to
another. Here, we want to assess how active this
research area is.

Q3.2. What are the highest publishing venues of the area?
Rationale: We are interested to know about the

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

venues, which have the highest publications with
respect to the area of ML for SE.

C. ARTICLES EXTRACTION
Query formulation
In order to search for relevant literature, following the guide-
lines proposed by Petersen et al. [19], we devised a query that
uses a two-element PICO search. Problem ‘P’: (requirement,
specification, design, model, analysis, architecture, imple-
mentation, code, test, verification, validation, maintenance),
and Intervention ‘I’: (machine learning, deep learning). We
have not considered Comparison ‘C’ and Outcome ‘O’ as this
is out of the scope of this study. Following is the resultant
query that was eventually used in all digital libraries:

("machine learning" OR "deep learning") AND software
AND requirement* OR specification* OR design* OR model*
OR analysis OR architecture OR implementation OR code
OR test* OR verification OR validation OR maintenance1

Digital libraries
The query was applied to titles and abstracts of articles in
five well-known digital libraries: ACM Digital Library2, IEE-
EXplore3, ScienceDirect4, Springer5, and Web of Science6.
According to [20], these digital libraries are among the most
popular sources in computer science and engineering that
ensure high coverage of potentially relevant studies. We did
not include Google Scholar7 in our study as the search results
of Google Scholar tend to be repetitive with respect to results
from the included digital libraries, and its unique contribution
to the search process is unclear [20].

Time period
We scope the time period of related studies published from
1991 to 2020. The earliest paper we could find in our study
was published in 1991, hence the starting time. We conducted
the search in Q1 2021 and made sure that the results are
reproducible until 2020, hence the ending time.

Articles selection
All repositories, except Springer, returned the number of
articles as shown in Fig. 1. Springer initially yielded 4,502
articles as a result of the query; however, most of these arti-
cles were quite irrelevant to the scope of our study even after
applying filters, such as “Computer Science” as discipline,
and “SE” and “AI” as sub-disciplines, to reduce the search
space. We then went through the titles and abstracts of the
articles (if the goal of the article is unclear from the title)
and stopped the search process when the first page with all
irrelevant articles was reached. This resulted in 46 articles.

1Asterisk (*) is a wildcard that refers to zero or more characters in a word
2https://dl.acm.org/
3https://ieeexplore.ieee.org/
4https://www.sciencedirect.com/
5https://www.springer.com/
6https://apps.webofknowledge.com/
7https://scholar.google.com

In total, we extracted 565 articles, as shown in Fig. 1.
However, many of them were duplicated as one article may
appear in many digital libraries. We then removed duplicates,
which resulted in 501 unique articles. The articles then under-
went a screening process and were scrutinized based on the
following inclusion criteria.

1) Articles that were relevant to the scope, i.e., relevance
and appropriateness of the article correspond to the
research goals of the study, were included.

2) Articles that were available in the full-text format were
included.

3) Articles demonstrating well-established empirical
soundness were included.

4) Articles of more than a single page were included.
5) Articles that were peer-reviewed were included.
6) Articles that were entirely written in English were in-

cluded.
Consequently, a total of 263 relevant articles were selected

and included in the final pool. Fig. 1 shows the overall article
extraction process including the number of articles extracted
from each repository and the final pool.

Tool
Conducting a literature review is a tedious and time-
consuming task. It usually involves the search, collection,
filtration, and classification of a huge amount of papers.
Without a helping tool, this is a very difficult endeavor. In this
work, we used Mendeley8 and Google Sheets.9 These tools
helped us in importing, organizing, and analyzing search
results.

D. CLASSIFICATION SCHEME
We later defined a classification scheme to ensure accurate
assessment of attributes [19]. The generalized attributes ob-
tained were then sorted by the authors of this study based
on the knowledge areas provided in SWEBOK [17]. In
fact, the knowledge areas mentioned in SWEBOK were not
strictly used in the categorization but merely employed as
a defining factor to providing a high-level abstraction of
attributes that represented the set of articles. However, we
referred to the following knowledge areas while devising the
categories in this study: 1) software requirements, 2) software
design, 3) software construction, 4) software quality, and
5) software maintenance. During the article sorting process,
certain articles were found to be equivocal. In such cases,
we associated those attributes to the articles that received
majority votes from the authors of this study. To get a better
understanding, a graphical representation of the workflow
starting from the attribute extraction process leading to the
resulting classification scheme is shown in Fig. 2.

V. STUDY FINDINGS
Here we answer the RQs, which we discussed in Section IV.

8https://www.mendeley.com
9https://www.google.com/sheets/about

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

FIGURE 1: Article extraction process

FIGURE 2: Attribute extraction leading to the classification
scheme

A. SDLC STAGES (Q1.1)

As already discussed, based on the analysis of articles, we
have grouped them into 5 major categories (inspired by the
aforementioned knowledge areas in SWEBOK [17]). These
categories are briefly described as follows:

Software requirements

We group all those articles in this category, which are con-
cerned with the elicitation, modeling, analysis, prioritization,
and validation of software requirements.

Software architecture and design

We group all those articles in this category, which deal with
the process of specifying the architectural components and
interfaces of software, and the description of how compo-
nents of a software system are organized.

Software implementation

We group all those articles in this category, which are con-
cerned with the development or construction of software
achieved through a combination of design artifacts and cod-
ing.

Software quality assurance and analytic

We group all those articles in this category, which deal
with fundamental elements such as quality characteristics,
quality process improvement or assessment, or verification
and validation. We have also included articles referring to
software testing in this category.

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

FIGURE 3: Articles by SDLC stages

Software maintenance
We group all those articles in this category, which deal with
software adherence activities in order to meet new or changed
operating environments such as refactoring, maintenance
cost estimation, defect correctness, and factors related to
software aging (e.g., resource depletion).

The SE stages and the number of articles that are asso-
ciated with those stages are shown in Fig. 3. 136 out of
263 (52%) articles belong to quality assurance and analytic.
44 out of 263 (17%) articles have focused on architecture
and design. 29 out of 263 (11%) articles have addressed
the implementation followed by requirements engineering
stage with 24 out of 263 (9%) articles. 11 (4%) articles
were focusing on the maintenance phase. The rest of the
articles were not particularly focusing on any stage but were
generally applicable to SE.

B. APPLICATIONS OF ML FOR SE (Q1.2)
To address this question, we have developed a classification
scheme based on the identified applications of ML for SE
in order to characterize the obtained articles into appropriate
categories. We have organized the applications of ML for
SE as branches, which belong to five life cycle stages of SE
(knowledge areas). The applications of ML for SE that come
under corresponding SDLC stages along with the references
of articles are shown in Table 1. Note that the applications
highlighted in this study may not cover the entire knowledge
base but rather should be deemed as stemming research
indicating key applications of ML for SE in literature. The
applications falling under the SE stages are described below.

Applications of ML aiming at software requirements
ML has been widely used to facilitate the software require-
ments stage. For instance, in requirements modeling and
analysis, articles focused on distinguishing ambiguous re-
quirements [21], resolving incompleteness, the correctness of
requirements [22], etc. Requirements selection/prioritization/
classification deals with articles proposing ML techniques
that emphasize on automating prioritization of requirements
or their classification. Perini et al. [23] employed an ML

technique to generate approximate rank in order to pri-
oritize requirements. Navarro-Almanza et al. [24] used a
convolutional neural network (CNN) to classify functional
requirements by analyzing textual features. We further found
articles focusing on requirements traceability. Requirements
traceability refers to the ML approaches that assist in linking
requirements to code or other artifacts as shown by Guo et
al. [25], who used deep learning (DL) techniques in order to
generate a trace link of requirements with other artifacts.

Applications of ML aiming at software architecture and
design
Many types of research in the past have applied ML to soft-
ware architecture and design. The applications include design
models, which are comprised of recommendation models for
software processes/services. Apart from this, model smells
and refactoring techniques of object-oriented structures using
ML have also been proposed in the articles. White et al. [26]
introduced DL to software language modeling based on infor-
mation retrieval models. Design pattern prediction primarily
focuses on recognizing design patterns in software through
source code or user interface layout using ML techniques.
For example, Nguyen et al. [27] proposed an approach known
as DeepUI in order to semi-automate the design tasks by
learning from previous UI design patterns. Development ef-
fort estimation refers to estimating effort for the development
of software projects using ML techniques. Ionescu [28] used
ANN to automate effort estimation by learning from textual
features of project tasks.

Applications of ML aiming at software implementation
We found several studies on ML assisting the software im-
plementation stage. Among many applications, code clone/
localization/refactoring/ labeling aims at finding code dupli-
cation, specific location of code in software, refactoring of
code, or labeling of code with the help of ML, e.g., Alahmadi
et al. [29] employed CNN in order to predict the code blocks
in video tutorials. Code/bad smell detection focuses on ap-
plying ML in order to detect code and bad smells in software
source code and design models, respectively. Code smells are
indications of poor software code quality leading to the rise
of technical debt. It generally includes god classes, spaghetti
code, etc., whereas bad smells in design models have sim-
ilar characteristics such as lazy classes and middle man.
Pecorelli et al. [30] investigated data balancing techniques
and addressed unbalanced dataset issues when employing
ML for code smell detection. Maneerat et al. [31] proposed
an approach to predict bad smells from design models such as
class diagrams. Code inspection/analysis represents the class
in which an ML technique is employed for the purpose of
code reviews. For instance, Lal et al. [32] proposed an ML
approach to automate code reviews for the pushed code. The
code/program similarity category refers to the identification
of specific piece(s) of code, which are similar between two
or more software projects. Additionally, Kim et al. [33]
proposed an ML technique in order to reduce the number

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

of program similarity comparisons aimed at distinguishing
between original and pirated/cracked software.

Applications of ML aiming at software quality and analytic
Most of the articles we found were focusing on applying ML
to various software quality assurance and analytic tasks. The
applications include: fault/bug/defect prediction category,
which revolves around the prediction of faults, bugs, or de-
fects using ML techniques [34, 35, 36, 37, 38, 39]. Test case/
data/oracle generation surrounds ML techniques that help in
generating test data, test oracles, or entire test suites. Braga
et al. [40] proposed an ML technique to automate the process
of test oracle generation. Test case selection/prioritization/
classification deals with the class that particularly focuses
on test case prioritization or classification techniques using
ML. Rosenfeld et al. [41] employed an ML technique in
order to select generic test cases for android applications.
The technique is aimed at reducing the manual testing efforts
by classifying the activities and automatically selecting the
activity-specific test cases. Vulnerability/anomaly/malware
discovery/analysis mostly concerns the security aspect of
the software, e.g., Huang et al. [42] employed the term
frequency-inverse document frequency (TF-IDF) technique
and deep neural network to automatically classify software
vulnerabilities. Software analysis, technique assessment, and
software process assessment come under assessment and
analysis of software. In this regard, Fu et al. [43] proposed a
regression-based ML technique in order to estimate software
energy consumption by analyzing software performance fea-
tures. The verification and validation category specifically
addresses prediction and verification of software reliability
through ML, e.g., Tamura et al. [44] proposed a DL-based
technique to select the most suitable software reliability
model for the development project. Testing effort estimation
refers to the amount of testing effort required in order to test
a software system using ML techniques, e.g., Silva et al. [6]
evaluated various ML tools in order to estimate the execution
times for running functional test cases.

Applications of ML aiming at software maintenance
The software maintenance stage has been found as the least
focused stage for researchers in this domain. In this category,
the research is more inclined towards cost/effort estimation
than the rest of the maintenance tasks. We found articles
focusing on software maintainability prediction, which refers
to the proposed ML techniques in order to assist the pre-
diction of maintainability metrics appropriate for specific
software projects [45]. Software aging detection refers to
the use of ML in order to detect software maturity and its
aging in terms of resource depletion such as memory leaks,
high CPU usage, and overtime. In this regard, Andrzejak
et al. [46] investigated the feasibility of ML techniques for
classification in detecting early performance degradation due
to software image aging. The maintenance effort estimation
class aims at estimating the amount of effort required for the
maintenance of a software system using ML, e.g., Chandra

et al. [47] used an SVM-based regression model in order to
forecast maintenance effort with univariate and multivariate
approaches.

Effect and significance of applying ML at each SDLC stage

ML aims to automate and support the SE activities, which
are considered to be performed intensively by humans. ML
allows systems to perform human-centric activities at a much
larger scale [48]. In fact, an empirical study [49] has been
conducted to understand whether software engineers can uti-
lize ML techniques for the improvement of their SE process
and whether solutions proposed by engineers still outperform
ML techniques. However, the need for ML techniques is
still pertinent due to their ability to outperform in most SE
activities. We highlight some of these activities with respect
to SDLC stages which are as follows:

In the requirements stage, writing requirements specifi-
cations is highly deemed to be a human-centric task. Prior
work by Pandita et al. [50] and Jahan et al. [51] have
inferred the most probable specifications and identified its
unexpected behaviors from various artifacts by employing
ML techniques, respectively. Ferrari et al. [52] identified am-
biguous requirements among different domains using ML. In
the architecture and design stage, predicting design patterns
is an important reverse engineering activity to improve soft-
ware integrity. However, it often suffers from false positives
and negatives [53]. As the number of patterns is increasing
rapidly due to their variations, the process of recognizing
these patterns can be effectively learned using ML [53]. In
the implementation stage, detecting code smells in a large
codebase can be extremely difficult for a human as opposed
to a machine, thus ML techniques can greatly reduce this
effort of detecting code smells or technical debt [30, 31].
In quality assurance, there is a need to ensure that the
system remains error-free or to be able to timely identify
the cause of failure. ML techniques employed in literature
for this purpose proved to be promising in detecting software
faults [34, 35, 36]. Test generation is also considered to be a
task that requires human intelligence. Zhang et al. [54] have
employed ML to automatically generate test data in order
to improve return on investment. In software maintenance,
Malgonde et al. [55] have shown ML techniques perform
significantly better at predicting the effort as compared to the
team estimates (human-centric).

Despite the intriguing tendency of full automation, com-
plete automation could often result in a potentially fallible
system, therefore, practitioners are encouraged to employ
ML techniques with humans in the loop wherever there
is a presence of criticality [1, 49]. In addition, there is a
significant lack of studies showing the cost-benefit analysis
of their proposed ML techniques, which would be vital for
ML-based approaches to be feasible for adaptation in the
industry.

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

TABLE 1: Classification by articles

SDLC Stages Applications of ML for SE Articles

All Stages N/A [1, 11, 14, 48, 49, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69]

Requirements
Requirements Modeling and Analysis [21, 22, 51, 70, 71, 72, 73, 74, 75]
Requirements Selection/Prioritization/Classification [23, 24, 76, 77, 78, 79, 80, 81]
Requirements Traceability [3, 25, 82, 83, 84, 85, 86]

Architecture and Design Design Modeling [9, 26, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102]

Design Pattern Prediction [27, 53, 103, 104, 105, 106]
Development Effort Estimation [4, 5, 28, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,

117, 118, 119, 120, 121, 122, 123]

Implementation

Code Clone/Localization/Refactoring/Labeling [29, 124, 125, 126, 127, 128, 129, 130, 131, 132]
Code/Bad smell detection [30, 31, 133, 134]
Code Inspection/Analysis [32, 135, 136, 137, 138, 139, 140, 141, 142]
Code/Program Similarity [33, 143, 144, 145, 146, 147]

Quality Assurance

Fault/Bug/Defect Prediction [7, 34, 35, 36, 37, 38, 39, 148, 149, 150, 151, 152, 153, 154,
155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166,
167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203]

Test Case/Data/Oracle Generation [40, 54, 204, 205, 206, 207, 208, 209]
Test Case Selection/Prioritization/Classification [41, 210, 211, 212, 213]

and Analytic Vulnerability/Anomaly/Malware Discovery/Analysis [42, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224,
225, 226, 227, 228, 229, 230, 231, 232]

Software Analysis [43, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243]
Technique Assessment [244, 245, 246, 247, 248]
Software Process Assessment [249, 250, 251]
Verification and Validation [44, 246, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261,

262, 263, 264, 265]
Testing Effort Estimation [6, 266, 267, 268]

Maintenance
Software Maintainability Prediction [45, 269, 270, 271]
Software Aging Detection [46, 272, 273, 274, 275]
Maintenance Effort Estimation [47, 276]

C. ML TYPE AND TECHNIQUES (Q1.3)
ML types
By the type of ML, we mean how the models have been
trained, i.e., supervised, semi-supervised, unsupervised, re-
inforcement, or analytical learning. Supervised learning is
based on a training set and a test set taken from the dataset.
The model training is done by taking multiple labeled sam-
ples from the train set. After the model is trained, its per-
formance is evaluated using the test set. In semi-supervised
learning, both labeled and unlabelled data are employed in
order to train the model. The dataset is divided into un-
supervised clusters as such. Then, the class information is
obtained by learning the clustering outcomes [216]. Unsu-
pervised learning requires no training dataset. For instance, in
unsupervised learning for fault detection, software instances
are usually grouped into clusters and each cluster is labeled
as “Buggy” or “Correct”. However, each cluster needs to
be labeled manually by the individuals with expertise [198].
Reinforcement learning refers to unsupervised goal-oriented
learning performed by an agent directly interacting with
the environment. Analytical learning is aimed at generating
solutions based on background knowledge and improving
inference iteratively [253].

As shown in Fig. 4, 193 out of 263 (73%) articles em-
ployed supervised learning, 15 out of 263 (6%) articles
employed unsupervised learning, 6 out of 263 (2%) articles
employed semi-supervised learning, 4 out of 263 (2%) ar-

FIGURE 4: Articles by ML type

ticles addressed reinforcement learning, and 1 out of 263
(0.4%) focused on analytical (inference-based) learning. The
rest of the articles 44 out of 263 (17%) did not explicitly
report the employed ML type.

ML techniques
ML techniques are the algorithms used for classification,
regression, or clustering problems, e.g., SVM, RF, or ANN.
The employed techniques in the selected pool of articles are
shown in Fig. 5. The topmost commonly used techniques are
ANN, RF, DT, and NB, respectively. While 51 out of 263
(19%) articles employed ANN, 45 out of 263 (17%) articles
have used RF and SVM, and 40 out of 263 (15%) articles
used DT and NB for model training.

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

FIGURE 5: Articles by techniques

FIGURE 6: Articles by contribution facet

D. CONTRIBUTION FACET OF THE ARTICLES (Q2.1)

The contribution facet addresses the novel propositions of
the articles. It is derived by analyzing the contribution of
the articles, which represents the current state-of-the-art and
enables researchers and industrial practitioners to get an
overview of the existing tools and techniques in the liter-
ature. As shown in Fig. 6, 121 out of 263 (46%) articles
focused on approaches/methods, followed by 60 (23%) arti-
cles proposing models/frameworks, 24 (9%) articles focusing
on comparative analysis of existing techniques, 13 (5%)
articles focusing on tools, and 6 (2%) articles focusing on
algorithms/processes. The rest of the articles – 39 out of 263
(15%) – reported no new propositions. These articles were
either investigating existing approaches, discussing opinions,
or reporting their experiences.

Table 2 shows the names of the propositions along with the
contribution facet and references of the articles. Interestingly,
only 25 out of 263 (9%) articles have explicitly named their
propositions.

TABLE 2: Named propositions in the articles

Sr. no. Name Contribution
Facet

Article

1 Trace-by-
Classification

Approach [86]

2 DeepSim Approach [147]
3 CDGDroid Approach [200]
4 SLDeep Approach [175]
5 REMI Approach [168]
6 Feature Maps Algorithm [105]
7 ProbPoly Framework [75]
8 ExploitMeter Framework [231]
9 DLFuzz Framework [256]
10 DARVIZ Framework [98]
11 Seml Framework [172]
12 CroLSim Model [85]
13 DeepGauge Process [206]
14 WIRECAML Tool [224]
15 SOA-based integrated

software
Tool [151]

16 Modelware Tool [102]
17 Featuretools Tool [67]
18 Code-Buff Tool [128]
19 AppFlow Tool [211]
20 CloneCognition Tool [126]
21 ArchLearner Tool [95]
22 SZZ Unleashed Tool [149]
23 Auto-sklearn Tool [194]
24 RIVER Tool [209]
25 InSet Tool [91]

FIGURE 7: Articles by research facet

E. RESEARCH FACET OF THE ARTICLES (Q2.2)
The research facet describes the nature of articles in terms of
their purpose of conducting the research, such as evaluations
(articles employing empirical methods such as controlled
experiments or case studies), solutions (articles proposing so-
lutions to underlying problems without empirical evidence),
and knowledge (articles expressing experiences and opin-
ions). Fig. 7 shows the articles by their research facet. 204
out of 263 (78%) articles have contributions with empirically
evaluated propositions, whereas 47 out of 263 (18%) articles
are knowledge-based, and 12 out of 263 (5%) articles have
proposed solutions without any empirical evaluation.

The evaluation facet, in turn, represents the type of eval-
uation that has been performed in the articles in order to

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

FIGURE 8: Articles by evaluation facet

evaluate their propositions. The articles by the evaluation
facet are shown in Fig. 8. Controlled experiments have been
performed in 148 out of 204 (73%) articles followed by case
studies in 58 out of 204 (28%) articles and surveys in 16
out of 204 (8%) articles. 2 out of 204 (1%) articles have
employed both a controlled experiment and a case study
for an empirical evaluation; whereas, rest of the articles
did not use any empirical method for evaluation purposes.
Moreover, we found no article employing ethnography or
action research as empirical methods for evaluation. Among
the articles those performed control experiments, 78 articles
proposed approaches/techniques/methods, and 41 articles
proposed models/frameworks. While 15 articles focused on
comparative analysis, 8 articles proposed tools, and 4 articles
introduced new algorithms/processes.

F. DATASETS (Q2.3)
We further explored the datasets that have been used in most
of the articles in order to evaluate their proposed approaches
or comparative studies. Evidently, the majority of articles
employed datasets obtained from PROMISE10 repository
followed by repositories made publicly available by NASA11,
StackOverflow12, Github13, and JAVA projects.

G. TRENDS IN TERMS OF YEAR (Q3.1)
This refers to the trends in terms of publication years of
articles. It shows the evolution of the adoption of ML for SE.
As shown in Fig. 9, the use of ML for SE is consistently
growing over the passage of time. One can also observe an
exponential growth in this trend from 2016 - 2018, where
2018 proved to be the highest publication year with 63 (24%)
publications. In 2019 and 2020, we recorded relatively fewer
publications: 45 out of 263 (17%) and 34 out of 263 (13%),
respectively. There could be two plausible reasons for that.
Either some databases are not updated completely (as this
study was conducted in Q4 of 2020) or like any hype cycle,

10http://promise.site.uottawa.ca/SERepository/datasets-page.html
11https://data.nasa.gov/
12https://archive.org/details/stackexchange
13https://ghtorrent.org/

FIGURE 9: Articles by year

FIGURE 10: Articles by venues (Top 5)

the peak of inflated expectations regarding ML for SE was
reached in 2018 and now the trend is slowly going towards
the trough of disillusionment. We believe the latter is the case
here.

H. VENUES WITH HIGHEST PUBLICATIONS (Q3.2)
Fig. 10 shows the top 5 venues where most researchers
of the domain tend to publish. International Conference on
Software Engineering (ICSE) is leading by 11 out of 263
(4%) and the second most publishing venue is Transactions
on Software Engineering (TSE) journal with 10 out of 263
(4%). They are followed by International Workshop on Ma-
chine Learning and Software Engineering, which featured
5 out of 263 (2%) articles, European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), which also featured 5 out of 263
(2%) articles, and International Conference on Cloud Com-
puting, Data Science & Engineering (Confluence), which
featured 3 out of 263 (1%) articles. Moreover, Fig. 11 shows
the overall distribution of articles with respect to publishing
venues. Here one can observe that 155 out of 263 (59%)
articles have been published in conferences, 51 out of 263
(19) articles have been published in journals, 26 out 263
(10%) articles have been published in workshops, and 18 out
of 263 (7%) articles have been published in symposia.

VI. ANALYSIS AND DISCUSSION
This section relates to the fourth goal of this study (G4) and
deals with implications and analysis of the aforementioned
articles.

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

FIGURE 11: Articles by publishing venues

A. RELATION OF SDLC STAGES WITH RESEARCH AND
CONTRIBUTION FACETS
Fig. 12 shows the relationship of the contribution and re-
search facets explored in this study with the SDLC stages.
Moreover, the figure provides a bird’s-eye view of the current
studies falling into the respective SDLC stages along with
their contribution type and research purpose. For instance,
55 articles belonging to the quality assurance stage have
proposed a new approach or method as their primary contri-
bution, and the contributions of 107 articles at this stage were
evaluated empirically. In addition, we can observe that no
tool has been proposed for the requirements and maintenance
stage indicating less interest of researchers in prototyping
their proposition.

B. RELATION OF SDLC STAGES WITH ML
As shown in Fig. 3, 52% of the articles were dedicated to the
quality assurance and analytic stage, which shows that soft-
ware quality14 is the prime focus for the researchers of this
domain. Indeed, quality assurance, along with requirements
and design, are human-centric stages of the SDLC and the
high number of articles in these areas highlight the fact that
ML is able to offer help here. As shown in Tab. 1, we further
observed that fault/bug/defect prediction has been the major
focus of researchers within quality assurance. Certainly, the
nature of ML types and techniques is more supportive for
this kind of activities, but we hope that in the future other
SE activities may also similarly benefit from ML. This is
particularly valid for the maintenance stage, which has been
the least interesting area for the application of ML. We
encourage researchers to investigate how ML can be used
to automate certain tasks in this area. We further encourage
researchers to adopt combinations of ML techniques and use
diverse datasets from different sources in order to train the
ML models so that the applicability of the techniques can be
generalized as also observed in [99, 115, 188, 237].

14Our criteria for software quality assurance is shown in Tab. 1

C. RELATION OF SDLC STAGES WITH ML TYPES
As shown in Fig. 4, a vast majority of articles falling into
requirements, architecture and design, and implementation
categories are addressing the problems using supervised
learning. For instance, [25] used supervised DL technique to
identify trace links and predict associations within artifacts.
A similar supervised learning technique has been proposed in
[86] order to generate trace links from commonly occurring
artifacts in the project. The reason supervised learning is
mostly employed in the articles could be that supervised
learning models are comparatively simple and produce re-
sults with high confidence and accuracy. We also noticed
that only 4 out of 263 (2%) articles [3, 61, 225, 238] used
reinforcement learning. This implies a little interest of re-
searchers in the applications of reinforcement learning to SE.
Reinforcement learning has proven to be beneficial in solving
complex problems especially in healthcare, business, and
robotics [277]. Thus, we believe it would be an interesting
area to explore in terms of facilitating SE. For instance,
software simulations can be deemed as an environment in
which the RL agent can interact and reach various goal-
oriented outcomes [278].

D. RELATION OF SDLC STAGES WITH ML TOOLS
As shown in Fig. 6, only 13 articles proposed a new tool
to facilitate SDLC stages. As further can be observed in
Fig. 12, 6 out of those 13 tools have been proposed for
quality assurance purposes, e.g., the tool named “Appflow”,
which is proposed by Hu et al. [211] and predicts reusable
UI test cases using neural networks. Tools are indeed a
valuable contribution when it comes to the practicality and
applicability of the proposed approach. In the future, more
tools are desirable that are targeting other SDLC stages.

E. RELATION OF SDLC STAGES WITH ML TECHNIQUES
Although all ML techniques have certain pros and cons, the
selection of the most suitable technique depends on the type
of dataset being constructed or employed and what problem
is being addressed. The SDLC stage-wise breakdown of ML
techniques is shown in Fig. 13. As anticipated, mostly ML
techniques were employed to solve problems related to the
quality assurance and analytic stage. ANN was the most
commonly used technique here (30 articles), followed by
SVM (28 articles) and RF (24 articles), respectively. NB was
next in line with 21 articles. ANN, which was used in 30
articles in the quality assurance stage was also a subject of
interest for the researchers working in the architecture and
design stage (15 articles).

As shown in Fig. 13, ANN is the most widely employed
ML technique for SDLC stages in general due to its simplic-
ity and strong classification and regression capabilities. CNN
is mostly used in supervised learning problems, whereas
RNN has been used to address both supervised and unsu-
pervised learning problems. In traditional ML techniques,
KNN, k-means clustering, NB, and SVM are mostly em-
ployed to address semi-supervised and unsupervised learning

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

FIGURE 12: Relationship of contribution/research facets with the SDLC stage facet

FIGURE 13: ML techniques usage in SDLC

problems. In the case of reinforcement learning, Q-learning
technique and its variants have been mostly employed in the
literature.

When it comes to neural networks-based techniques, our
findings show that simple neural networks, e.g., ANN (51 out
of 263 (19%)) and shallow neural networks, e.g., CNN and
RNN (containing one or more hidden layers) (combined 47
out of 263 (18%)) are the most widely used ML techniques
in SE. Neural networks are mostly employed for software
architecture and design, and software implementation. Apart
from neural networks, traditional ML techniques such as
Boosting, NB, and case-based ranking, were popular in re-
quirements engineering, particularly. The SVM technique
has been mostly employed for the software maintenance

stage. Apart from the ML techniques, most of the articles
addressed problems related to supervised learning indicating
classification as a major area of interest. While unsupervised
and semi-supervised learning has been less employed in the
area. The wide adoption of neural networks-based techniques
in articles indicate their suitability and potential for achieving
good results in this area. Mainly due to the reason that
a neural network-based model is capable of learning from
high dimensional large scale input data and an appropriate
selection of cost function leads to the development of a
more robust model. Moreover, neural network-based tech-
niques are highly customizable and can be applied to vari-
ous learning problems, such as supervised, unsupervised, or
reinforcement, which make them highly flexible in terms of

12 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

applicability.
Table 3 contains the complete list of articles (263) used in

this paper showing ML techniques employed in those articles
with respect to SDLC stages along with their contribution
facet.

VII. CHALLENGES, LIMITATIONS AND FUTURE
RESEARCH DIRECTIONS
This section also relates to the fourth goal of this study (G4)
and deals with challenges, limitations, and future research
directions in this field.

A. CHALLENGES
One of the major challenges in this domain, as also re-
ported by other experts, e.g., [150, 157], is the uncertain and
stochastic nature of the employed ML techniques, and the
difference in the captured data and results, e.g., the difference
in the DL model output values when executing it multiple
times over the same input data. The approaches need to be
reproducible and rigorous in order to build high confidence
for their application.

The availability of sufficiently labeled and structured
datasets is also a challenge as also reported by other re-
searchers, e.g., [32, 170, 184]. However, this can be over-
come rather easily as more and more researchers have started
sharing their datasets publicly. An associated issue is the
imbalanced sizes of software projects and datasets. Using
new techniques for dataset balancing, such as SMOTE and
ClassBalancer (both evaluated by Percorelli et al. [30]), or
devising new ones is highly recommended in this context.

The ever-increasing software complexity is also one of the
greater challenges for this domain. Meinke et al. [63] also
attest to our observation and further suggest that the scalabil-
ity problem should be given proper attention by researchers
of this domain. We also invite researchers to conduct more
studies investigating the impact of ML techniques on differ-
ent software sizes.

B. LIMITATIONS
As observed in some studies, e.g., [140, 176], the lack of
generalizability regarded as over-fitting problems is one of
few major limiting factors, which decreases the accuracy of
results. This leads to lesser results when ML models are
applied to diverse cross-project datasets. Using standard data
preprocessing techniques such as SMOTE, ClassBalancer,
and Resample [30], and performing K-fold cross-validation
or hold-out validation could reduce the problem of over-fitted
and under-fitted models.

As observed in some studies, e.g., Ghaffarian et al. [219],
the current state of evaluation of ML techniques, especially
for software vulnerability testing is not well grounded. The
dataset often lacks sufficient vulnerability types, which re-
sults in less generalizable outcomes. In order to improve
results’ precision, lesser false positives, and false negatives
while maintaining recall can help produce meaningful re-
sults.

In a distributed software development environment, man-
ual inspection/allocation of work items, excessive time
consumption, potentially fallible outcomes, and lack of
production-ready approaches are some of the limitations
identified by Barcus et al. [279] and Achimugu et al. [280].

C. FUTURE RESEARCH DIRECTIONS
In order to facilitate requirements traceability, researchers
have suggested that devising a feedback mechanism, such
as adding user feedback during the model training process
in order to improve feature selection and performance, can
really help the cause of generalizability. One of such works is
presented by Sultanov et al. [3], which provides a very good
basis for further developments.

In order to improve prediction accuracy and better reli-
ability of results, more experiments using larger numbers
of datasets and software applications have also been sug-
gested [99, 115, 188, 237].

Researchers in the articles have also suggested investigat-
ing further regarding the suitable metrics and loss functions
employed in the evaluation of ML for SE-focused techniques,
especially for multi-class classification problems [125].

Future research directions also include automata learning
for emergent middle-wares and using ML to address complex
system integration problems, especially in system of systems
such as the internet of things. Moreover, researchers are en-
couraged to devise adaptable, easily integrable, and scalable
solutions in the area.

VIII. THREATS TO VALIDITY
Similar to other secondary studies, this study is also prone
to some validity threats. The threats and their mitigation
strategies are described in this section.

A. EXTERNAL VALIDITY
The extraction of articles and choice of repositories constitute
a threat to internal validity. In order to minimize the former,
we adopted the PICO (Population, Intervention, Comparison,
Outcomes) criteria suggested by Petersen et al. [19] to for-
mulate the search terms. The selected terms unequivocally
represent the goals of our work. An associated issue corre-
sponds to the frequently used specific ML terms. Although
the query used did not explicitly include ML terms, such
as classification, regression, SVM, ANN, inductive logic,
Bayesian network, or deep belief network, this would not
affect the analysis much because such information is usually
available in abstracts, hence accessible. In order to minimize
the latter, we used five digital libraries as the primary source
for this research. All selected digital libraries are well known
in the computer science discipline for including the most
relevant results [281]. Additionally, according to Wohlin et
al. [282], having a larger set of papers is not necessarily
better for such reviews. The important thing is that the found
studies are a good representation of the population, which we
ensured in this study by adopting a rigorous paper selection
process.

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

TABLE 3: Articles by ML techniques

Refs. SDLC Stages Contribution Facet ML techniques

1 [58] All Stages Approach/Technique/Method RNN
2 [63] All Stages Other Other
3 [64] All Stages Other Other
4 [56] All Stages Comparative Analysis Other
5 [57] All Stages Other Other
6 [69] All Stages Other RNN, RBM
7 [14] All Stages Model/Framework Other
8 [67] All Stages Tool RF
9 [49] All Stages Other Other
10 [62] All Stages Tool NLP
11 [61] All Stages Other DT
12 [48] All Stages Other Other
13 [65] All Stages Other Other
14 [1] All Stages Other Other
15 [60] All Stages Other Other
16 [68] All Stages Comparative Analysis LR, SVM, NB
17 [66] All Stages Approach/Technique/Method LSTM
18 [11] All Stages Other Other
19 [59] All Stages Other Other
20 [21] Requirements Approach/Technique/Method NB, KNN, RF
21 [70] Requirements Approach/Technique/Method SVM, SMO, NB
22 [82] Requirements Approach/Technique/Method PN
23 [75] Requirements Model/Framework ProbPoly
24 [71] Requirements Approach/Technique/Method Text2Model
25 [84] Requirements Approach/Technique/Method RF
26 [72] Requirements Approach/Technique/Method Other
27 [22] Requirements Approach/Technique/Method NB, RF, LR, SGD, DT
28 [23] Requirements Approach/Technique/Method Boosting
29 [81] Requirements Approach/Technique/Method NSGA-II algorithm
30 [24] Requirements Model/Framework CNN
31 [73] Requirements Approach/Technique/Method FL
32 [76] Requirements Approach/Technique/Method LP, SMO, NB, KNN
33 [86] Requirements Approach/Technique/Method J48, FSS, CFS
34 [25] Requirements Model/Framework RNN
35 [85] Requirements Model/Framework KNN
36 [79] Requirements Other Other
37 [3] Requirements Approach/Technique/Method RL
38 [80] Requirements Model/Framework LSTM, GRU, CNN
39 [51] Requirements Approach/Technique/Method LSTM
40 [74] Requirements Approach/Technique/Method Spacy NLP model
41 [77] Requirements Comparative Analysis LR, SVM, MNB, kNN
42 [83] Requirements Approach/Technique/Method RNN
43 [78] Requirements Approach/Technique/Method RNN, CNN, SVM, KNN, LR, NB, RF
44 [117] Architecture and Design Approach/Technique/Method KNN, CTM, MARS, CART
45 [102] Architecture and Design Tool Modelware
46 [98] Architecture and Design Model/Framework DARVIZ
47 [96] Architecture and Design Approach/Technique/Method RF
48 [97] Architecture and Design Model/Framework Other
49 [87] Architecture and Design Model/Framework CNN
50 [27] Architecture and Design Approach/Technique/Method RNN, GAN
51 [89] Architecture and Design Approach/Technique/Method SVM
52 [122] Architecture and Design Other CBR, ANN, DT, BN, SVR, GA, AR
53 [112] Architecture and Design Comparative Analysis CBR, ANN, CART
54 [101] Architecture and Design Approach/Technique/Method NB, SMO, RF
55 [92] Architecture and Design Model/Framework Restricted Boltzmann Machine
56 [99] Architecture and Design Model/Framework GRBF
57 [53] Architecture and Design Approach/Technique/Method RNN, DT
58 [111] Architecture and Design Model/Framework ANN

14 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

TABLE 3: Articles by ML techniques

Refs. SDLC Stages Contribution Facet ML techniques

59 [93] Architecture and Design Model/Framework Other
60 [113] Architecture and Design Other NN
61 [110] Architecture and Design Comparative Analysis SVR
62 [115] Architecture and Design Approach/Technique/Method NB
63 [90] Architecture and Design Model/Framework NN
64 [116] Architecture and Design Model/Framework GP, LMS, LR, MP, RBFN, SMO, AR, BAG,

CR, DT, MSR, ZR, DS, RT
65 [94] Architecture and Design Model/Framework CNN
66 [120] Architecture and Design Approach/Technique/Method DT, NN
67 [119] Architecture and Design Comparative Analysis GP, NN
68 [108] Architecture and Design Model/Framework RBF, SVR, PCA
69 [4] Architecture and Design Approach/Technique/Method RT, MLP, SVR
70 [5] Architecture and Design Comparative Analysis ANN, RI, FL, CART, CBR
71 [26] Architecture and Design Other NN
72 [114] Architecture and Design Approach/Technique/Method ANN, SVM
73 [118] Architecture and Design Other ANN, GA
74 [28] Architecture and Design Approach/Technique/Method ANN
75 [121] Architecture and Design Other ANN, GA
76 [100] Architecture and Design Approach/Technique/Method Other
77 [109] Architecture and Design Approach/Technique/Method NB, LR, RF
78 [105] Architecture and Design Algorithm/Process CNN, RF
79 [123] Architecture and Design Model/Framework DNN
80 [95] Architecture and Design Tool LSTM
81 [106] Architecture and Design Approach/Technique/Method SBL
82 [107] Architecture and Design Model/Framework RF
83 [88] Architecture and Design Approach/Technique/Method LR, NB, DT, RF, KNN
84 [9] Architecture and Design Model/Framework k-means clustering
85 [104] Architecture and Design Approach/Technique/Method Other
86 [103] Architecture and Design Approach/Technique/Method ANN, SVM, RF
87 [91] Architecture and Design Tool NB, NN, KNN, RF, SVM, DT
88 [131] Implementation Approach/Technique/Method RNN
89 [29] Implementation Approach/Technique/Method CNN
90 [128] Implementation Tool KNN
91 [132] Implementation Approach/Technique/Method Fica
92 [33] Implementation Approach/Technique/Method NN, RF
93 [125] Implementation Model/Framework CNN
94 [145] Implementation Approach/Technique/Method RNN
95 [127] Implementation Approach/Technique/Method CNN
96 [147] Implementation Approach/Technique/Method DNN
97 [133] Implementation Approach/Technique/Method DT
98 [138] Implementation Approach/Technique/Method OGUST
99 [32] Implementation Approach/Technique/Method NB, DT, SVM
100 [140] Implementation Approach/Technique/Method RF, NB, KNN
101 [31] Implementation Approach/Technique/Method RF, NB, LR
102 [137] Implementation Comparative Analysis NB
103 [146] Implementation Model/Framework RNN
104 [143] Implementation Approach/Technique/Method CNN, RNN, LSTM
105 [135] Implementation Approach/Technique/Method SVM
106 [126] Implementation Tool ANN
107 [30] Implementation Approach/Technique/Method Other
108 [124] Implementation Approach/Technique/Method LSTM
109 [141] Implementation Approach/Technique/Method RF, J48, SMO, MLP, NB, LogitBoost, Ad-

aBoost
110 [134] Implementation Approach/Technique/Method DT, GBT, SVM, RF, ANN
111 [142] Implementation Approach/Technique/Method RNN
112 [129] Implementation Approach/Technique/Method RNN
113 [130] Implementation Approach/Technique/Method KNN, RF
114 [136] Implementation Approach/Technique/Method DNN
115 [139] Implementation Approach/Technique/Method NB, LR, SVM, RF, XGB, CNN

VOLUME 4, 2016 15



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

TABLE 3: Articles by ML techniques

Refs. SDLC Stages Contribution Facet ML techniques

116 [144] Implementation Approach/Technique/Method RNN
117 [150] Quality Assurance and Analytic Approach/Technique/Method SVM, DT
118 [267] Quality Assurance and Analytic Approach/Technique/Method COBWEB/3
119 [224] Quality Assurance and Analytic Tool DT, RF, LR, NB, TAN
120 [256] Quality Assurance and Analytic Model/Framework CNN
121 [161] Quality Assurance and Analytic Approach/Technique/Method OC-SVM
122 [219] Quality Assurance and Analytic Other Other
123 [41] Quality Assurance and Analytic Approach/Technique/Method KStar
124 [163] Quality Assurance and Analytic Approach/Technique/Method NN
125 [266] Quality Assurance and Analytic Other DT
126 [211] Quality Assurance and Analytic Tool NN
127 [228] Quality Assurance and Analytic Model/Framework RF, NB
128 [40] Quality Assurance and Analytic Approach/Technique/Method AdaBoostM1, JRIP 3
129 [207] Quality Assurance and Analytic Approach/Technique/Method ANN, DT, KNN, NB, RF, SVM
130 [254] Quality Assurance and Analytic Model/Framework RNN
131 [206] Quality Assurance and Analytic Algorithm/Process DNN
132 [255] Quality Assurance and Analytic Approach/Technique/Method LSTM
133 [157] Quality Assurance and Analytic Approach/Technique/Method SVM, CNN
134 [265] Quality Assurance and Analytic Model/Framework RNN
135 [210] Quality Assurance and Analytic Algorithm/Process SVM
136 [54] Quality Assurance and Analytic Model/Framework GA
137 [253] Quality Assurance and Analytic Model/Framework EDAs
138 [262] Quality Assurance and Analytic Model/Framework MBR, BBN
139 [205] Quality Assurance and Analytic Other Other
140 [212] Quality Assurance and Analytic Approach/Technique/Method K-means clustering, Expecta-

tion–Maximization, Incremental Conceptual
Clustering

141 [252] Quality Assurance and Analytic Other Other
142 [246] Quality Assurance and Analytic Comparative Analysis DT, BNN, RBNN, SVM
143 [44] Quality Assurance and Analytic Approach/Technique/Method NN
144 [223] Quality Assurance and Analytic Model/Framework Other
145 [257] Quality Assurance and Analytic Approach/Technique/Method SVM
146 [233] Quality Assurance and Analytic Other Other
147 [170] Quality Assurance and Analytic Approach/Technique/Method NB, DT, SVM
148 [182] Quality Assurance and Analytic Comparative Analysis ANN, Particle Swarm Optimization, DT, NB
149 [151] Quality Assurance and Analytic Tool SVM, DT
150 [268] Quality Assurance and Analytic Model/Framework ANN
151 [264] Quality Assurance and Analytic Other STP, LTP
152 [220] Quality Assurance and Analytic Approach/Technique/Method DT, RF, KNN , SVM
153 [213] Quality Assurance and Analytic Approach/Technique/Method NB
154 [204] Quality Assurance and Analytic Algorithm/Process GA
155 [200] Quality Assurance and Analytic Approach/Technique/Method CNN
156 [208] Quality Assurance and Analytic Approach/Technique/Method Evolutionary Algorithm
157 [158] Quality Assurance and Analytic Approach/Technique/Method DT
158 [188] Quality Assurance and Analytic Comparative Analysis LR, ANN
159 [173] Quality Assurance and Analytic Comparative Analysis NB
160 [176] Quality Assurance and Analytic Approach/Technique/Method LR
161 [187] Quality Assurance and Analytic Approach/Technique/Method ANN
162 [258] Quality Assurance and Analytic Other NN
163 [229] Quality Assurance and Analytic Model/Framework NN
164 [218] Quality Assurance and Analytic Model/Framework RF, PART
165 [245] Quality Assurance and Analytic Comparative Analysis NN, NB
166 [261] Quality Assurance and Analytic Other Other
167 [263] Quality Assurance and Analytic Model/Framework ANN
168 [167] Quality Assurance and Analytic Other SVM, RF
169 [244] Quality Assurance and Analytic Approach/Technique/Method SBL
170 [184] Quality Assurance and Analytic Model/Framework DT, SVM, ANN

16 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

TABLE 3: Articles by ML techniques

Refs. SDLC Stages Contribution Facet ML techniques

171 [153] Quality Assurance and Analytic Comparative Analysis LM, MAE, LR, PR, SVR, NNC, SVLR, NND,
LoR, NB, IBL, JDT, 1R

172 [152] Quality Assurance and Analytic Model/Framework DT, MLP, RBF
173 [6] Quality Assurance and Analytic Comparative Analysis SVR, ANN
174 [246] Quality Assurance and Analytic Comparative Analysis DT, SVM
175 [249] Quality Assurance and Analytic Approach/Technique/Method C4.5, NB, SVM
176 [214] Quality Assurance and Analytic Comparative Analysis DT, NB, SVM-C, KNN, RF
177 [247] Quality Assurance and Analytic Approach/Technique/Method SVM
178 [160] Quality Assurance and Analytic Other Other
179 [251] Quality Assurance and Analytic Approach/Technique/Method NN
180 [250] Quality Assurance and Analytic Model/Framework NN
181 [216] Quality Assurance and Analytic Model/Framework SVM
182 [186] Quality Assurance and Analytic Other DT, CBR, ANN, SVM
183 [217] Quality Assurance and Analytic Approach/Technique/Method Recurrent Neural Network, LSTM
184 [248] Quality Assurance and Analytic Other NN
185 [178] Quality Assurance and Analytic Model/Framework CNN
186 [177] Quality Assurance and Analytic Approach/Technique/Method CNN
187 [165] Quality Assurance and Analytic Approach/Technique/Method SVM, RNN
188 [171] Quality Assurance and Analytic Model/Framework CNN
189 [231] Quality Assurance and Analytic Model/Framework FL
190 [237] Quality Assurance and Analytic Model/Framework SVM
191 [230] Quality Assurance and Analytic Approach/Technique/Method CNN
192 [189] Quality Assurance and Analytic Comparative Analysis MLP, RBF, CART, KNN
193 [221] Quality Assurance and Analytic Approach/Technique/Method CNN
194 [174] Quality Assurance and Analytic Other Single Layer Perceptron, Multi Layer Percep-

tron, LVQ, SOM, AIRS, CLONAL, Immune
195 [193] Quality Assurance and Analytic Other RF, DT, SVM, NB, LR
196 [222] Quality Assurance and Analytic Approach/Technique/Method LSTM, NB, RF
197 [197] Quality Assurance and Analytic Approach/Technique/Method DBN
198 [162] Quality Assurance and Analytic Model/Framework CNN
199 [38] Quality Assurance and Analytic Comparative Analysis ANN, CNN, SOM, LVQ, LVQ
200 [43] Quality Assurance and Analytic Model/Framework Linear Regression, Ridge, Lasso, Random For-

est Regression
201 [259] Quality Assurance and Analytic Other Other
202 [34] Quality Assurance and Analytic Approach/Technique/Method DT, LR
203 [236] Quality Assurance and Analytic Approach/Technique/Method SVM
204 [198] Quality Assurance and Analytic Approach/Technique/Method RNN
205 [155] Quality Assurance and Analytic Comparative Analysis DNN
206 [202] Quality Assurance and Analytic Model/Framework RNN
207 [35] Quality Assurance and Analytic Comparative Analysis LR, NB, DT, J48
208 [37] Quality Assurance and Analytic Approach/Technique/Method DT, RF, NB, SVM, ANN
209 [234] Quality Assurance and Analytic Other NN, RF, DT
210 [203] Quality Assurance and Analytic Model/Framework SDNN
211 [164] Quality Assurance and Analytic Comparative Analysis GMMs, ANN
212 [180] Quality Assurance and Analytic Other CNN
213 [242] Quality Assurance and Analytic Approach/Technique/Method DT, KNN, SVM, NB
214 [149] Quality Assurance and Analytic Tool RF
215 [239] Quality Assurance and Analytic Approach/Technique/Method SGD
216 [227] Quality Assurance and Analytic Approach/Technique/Method LSTM
217 [175] Quality Assurance and Analytic Approach/Technique/Method LSTM
218 [39] Quality Assurance and Analytic Other Other
219 [192] Quality Assurance and Analytic Approach/Technique/Method ANN
220 [226] Quality Assurance and Analytic Approach/Technique/Method RF, NB, J48
221 [201] Quality Assurance and Analytic Model/Framework LSTM
222 [241] Quality Assurance and Analytic Model/Framework LSTM
223 [36] Quality Assurance and Analytic Approach/Technique/Method SVM
224 [191] Quality Assurance and Analytic Model/Framework NaN
225 [185] Quality Assurance and Analytic Approach/Technique/Method RF

VOLUME 4, 2016 17



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

TABLE 3: Articles by ML techniques

Refs. SDLC Stages Contribution Facet ML techniques

226 [156] Quality Assurance and Analytic Approach/Technique/Method LSTM
227 [169] Quality Assurance and Analytic Approach/Technique/Method GA
228 [42] Quality Assurance and Analytic Model/Framework TF-IDF, IG, DNN
229 [215] Quality Assurance and Analytic Model/Framework LSTM
230 [240] Quality Assurance and Analytic Model/Framework RFCM, LR, CART, KNN
231 [225] Quality Assurance and Analytic Algorithm/Process RL
232 [194] Quality Assurance and Analytic Tool RF, DT
233 [179] Quality Assurance and Analytic Comparative Analysis LR, KNN, DT, RF, SVM, NN
234 [7] Quality Assurance and Analytic Approach/Technique/Method RF
235 [172] Quality Assurance and Analytic Model/Framework LSTM
236 [209] Quality Assurance and Analytic Tool RNN
237 [238] Quality Assurance and Analytic Model/Framework RL
238 [159] Quality Assurance and Analytic Model/Framework LR, DT, RF
239 [235] Quality Assurance and Analytic Other CART, kNN, KRR, MR, RF, SVR
240 [243] Quality Assurance and Analytic Other Other
241 [196] Quality Assurance and Analytic Approach/Technique/Method NHANES dataset
242 [190] Quality Assurance and Analytic Approach/Technique/Method SVM, RF, ANN, DT, NBG, LR, CNN
243 [195] Quality Assurance and Analytic Approach/Technique/Method NN
244 [232] Quality Assurance and Analytic Approach/Technique/Method ANN
245 [154] Quality Assurance and Analytic Approach/Technique/Method CNN
246 [260] Quality Assurance and Analytic Model/Framework SVM, ANN, NB
247 [183] Quality Assurance and Analytic Approach/Technique/Method RF, NB, SVM, ANN
248 [166] Quality Assurance and Analytic Model/Framework RF, NB, DT, LR, ANN
249 [181] Quality Assurance and Analytic Approach/Technique/Method MLP, CNN
250 [148] Quality Assurance and Analytic Model/Framework NB, LR, C4.5, SVM, RF, MLP
251 [199] Quality Assurance and Analytic Approach/Technique/Method CNN
252 [168] Quality Assurance and Analytic Approach/Technique/Method RF
253 [274] Maintenance Model/Framework SVM
254 [46] Maintenance Approach/Technique/Method NB, SMO
255 [269] Maintenance Algorithm/Process FL
256 [47] Maintenance Approach/Technique/Method SVM
257 [272] Maintenance Approach/Technique/Method M5P
258 [275] Maintenance Approach/Technique/Method DT, ANN, SVM
259 [273] Maintenance Comparative Analysis DT, SVM, DBN
260 [45] Maintenance Model/Framework LSTM
261 [271] Maintenance Approach/Technique/Method RF, NB, KNN, SVM, ANN
262 [270] Maintenance Other ANN, SVM/R, DT
263 [276] Maintenance Approach/Technique/Method RNN

B. INTERNAL VALIDITY

Another threat is regarding the quality assessment of this
study. As discussed by Petersen et al. [283] and Kitchenham
et al. [284], quality assessment is not common in such kind
of studies as their overall aim is to give a broad overview of
the topic area. However, despite these observations, we have
adopted a rigorous process for the inclusion and classification
of papers, which ensures that only high-quality related papers
are selected as primary studies.

C. CONCLUSION VALIDITY

Each article in this study was reviewed by the first author,
which may lead to a threat to the reliability of the results.
This threat was reduced by double-checking the article by
the second, the third, and the fourth author. A random set
of articles was distributed among the second and the third
author. Their review results were then compared with the
results of the first author. In case of a disagreement, the
opinion of the fourth author was sought. Although this did
not happen much.

IX. CONCLUSION

The conclusion of the study is manifold. We have provided an
overview of the state-of-the-art in the area of machine learn-
ing for software engineering by evaluating carefully selected
studies. We also proposed a classification scheme that high-
lights the overall applications of machine learning for soft-
ware engineering in terms of SDLC stages. The classification
shows the primary focus of researchers towards specific
stages. This observation is one of the major contributions of
this study. This study also reveals that the quality of primary
studies in the domain of ML and SE is evidence-based with
respect to the techniques being empirically evaluated by the
researchers. We have also shown the relationship of SDLC
stages with ML types, tools, and techniques. Although this
research area is showing moderate growth in terms of the
number of publications, further primary studies need to be
conducted to emphasize other lesser explored SDLC stages
such as maintenance. The challenges, limitations and future
directions reported in this article should motivate and further
guide researchers in the future. We believe this study provides
the necessary impetus and further motivation to explore those
SDLC stages, which have been given lesser attention to date

18 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

with respect to the application of ML.
In the future, we intend to perform a more comprehensive

study investigating the relationship between ML and SDLC
stages. To this end, we intend to narrow down our search
query by including ML terms such as classification, regres-
sion, SVM, ANN, inductive logic, Bayesian network, or deep
belief network. We believe in this way, we can grasp a more
focused view of the state-of-the-art.

REFERENCES
[1] Mark Harman. The Role of Artificial Intelligence

in Software Engineering. In 2012 First International
Workshop on Realizing AI Synergies in Software En-
gineering (RAISE), pages 1–6. IEEE, 2012.

[2] Du. Zhang. Machine learning and software develop-
ment. In 14th IEEE International Conference on Tools
with Artificial Intelligence, number May, pages 87–
119. IEEE, 2010.

[3] Hakim Sultanov and Jane Huffman Hayes. Applica-
tion of reinforcement learning to requirements engi-
neering: Requirements tracing. In 2013 21st IEEE
International Requirements Engineering Conference,
RE 2013 - Proceedings, pages 52–61. IEEE, 2013.

[4] Petrônio L Braga, Adriano L I Oliveira, and Silvio
R L Meira. Software Effort Estimation using Machine
Learning Techniques with Robust Confidence Inter-
vals. In Seventh International Conference on Hybrid
Intelligent Systems, pages 352–357, 2007.

[5] Juan J Cuadrado-gallego, Pablo Rodríguez-soria, and
Borja Martín-herrera. Analogies and differences be-
tween Machine Learning and Expert based Software
Project Effort Estimation. In 11th ACIS International
Conference on Software Engineering, Artificial Intel-
ligence, Networking and Parallel/Distributed Comput-
ing, pages 269–276, 2010.

[6] Daniel G Silva, Mario Jino, and Bruno T De Abreu.
Machine learning methods and asymmetric cost func-
tion to estimate execution effort of software testing. In
Third International Conference on Software Testing,
Verification and Validation, pages 275–284. IEEE,
2010.

[7] Hung Duy Tran, Le Thi My Hanh, and Nguyen Thanh
Binh. Combining feature selection, feature learning
and ensemble learning for software fault prediction.
In Proceedings of 2019 11th International Conference
on Knowledge and Systems Engineering, KSE 2019,
pages 1–8. IEEE, 2019.

[8] Vinicius H. S. Durelli, Rafael S. Durelli, Simone S.
Borges, Andre T. Endo, Marcelo M. Eler, Diego R. C.
Dias, Marcelo P Guimar, and Marcelo P. Guimaraes.
Machine Learning Applied to Software Testing : A
Systematic Mapping Study. IEEE Transactions on
Reliability, pages 1–24, 2019.

[9] Carlos Vinicius Bindewald, Willian M. Freire,
Aline M.M.Miotto Amaral, and Thelma Elita Colanzi.
Supporting user preferences in search-based prod-

uct line architecture design using machine Learn-
ing. ACM International Conference Proceeding Se-
ries, pages 11–20, 2020.

[10] Santiago Fajardo, García-Galvan, Federico R., Violeta
Barranco, Juan C. Galvan, and Sebastian Feliu Batlle.
Data Mining and Machine Learning for Software En-
gineering. Intech, i(tourism):13, 2016.

[11] Zhiyuan Wan, Xin Xia, David Lo, and Gail C. Murphy.
How does Machine Learning Change Software De-
velopment Practices? IEEE Transactions on Software
Engineering, PP(c):1–1, 2019.

[12] Du Zhang. Machine Learning and Software Engineer-
ing. Software Quality Journal, 11(3):87–119, 2003.

[13] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recog-
nition. 3rd International Conference on Learning
Representations, ICLR 2015 - Conference Track Pro-
ceedings, pages 1–14, 2015.

[14] Fabio Falcini, Giuseppe Lami, Information Science,
Alessandra Mitidieri Costanza, and Fiat Chrysler Au-
tomobiles. Deep Learning in Automotive Software.
IEEE Software, 34(3):56–63, 2017.

[15] S. B. Kotsiantis. Supervised Machine Learning: A
Review of Classification Techniques. Informatica,
31:249–268, 2007.

[16] Victor R Basili, Gianluigi Caldiera, and H Dieter
Rombach. The goal question metric approach. Ency-
clopedia of software engineering, 2:528–532., 1994.

[17] IEEE Computer Society, Pierre Bourque, and
Richard E Fairley. Guide to the Software Engineering
Body of Knowledge (SWEBOK(R)): Version 3.0.
IEEE Computer Society Press, Los Alamitos, CA,
USA, 3rd edition, 2014.

[18] Ishan Banerjee, Bao Nguyen, Vahid Garousi, and Atif
Memon. Graphical user interface (GUI) testing: Sys-
tematic mapping and repository. Information and
Software Technology, 55(10):1679–1694, 2013.

[19] Kai Petersen, Robert Feldt, Shahid Mujtaba, and
Michael Mattsson. Systematic Mapping Studies in
Software Engineering. 12Th International Conference
on Evaluation and Assessment in Software Engineer-
ing, 17(June):10, 2008.

[20] Lianipng Chen, Muhammad Ali Babar, and He Zhang.
Towards an Evidence-Based Understanding of Elec-
tronic Data Sources. In 14th International Conference
on Evaluation and Assessment in Software Engineer-
ing (EASE, number April, pages 1–4, 2010.

[21] Richa Sharma, Jaspreet Bhatia, and K. K. Biswas.
Machine learning for constituency test of coordinat-
ing conjunctions in requirements specifications. In
International Workshop on Realizing Artificial Intel-
ligence Synergies in Software Engineering, pages 25–
31. ACM, 2014.

[22] Maninder Singh, Vaibhav Anu, Gursimran S. Walia,
and Anurag Goswami. Validating Requirements Re-
views by Introducing Fault-Type Level Granularity. In

VOLUME 4, 2016 19



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

SIGSOFT Innovations in Software Engineering Con-
ference, number M, pages 1–11, 2018.

[23] Anna Perini, Angelo Susi, and Paolo Avesani. A Ma-
chine Learning Approach to Software Requirements
Prioritization. IEEE Transactions on Software Engi-
neering, 39(4):445–461, apr 2013.

[24] Guillermo Licea. Towards supporting Software En-
gineering using Deep Learning : A case of Software
Requirements Classification. In 5th International Con-
ference in Software Engineering Research and Innova-
tion, pages 116–120, 2017.

[25] Jin Guo, Jinghui Cheng, and Jane Cleland-huang.
Semantically Enhanced Software Traceability Using
Deep Learning Techniques. In IEEE/ACM 39th In-
ternational Conference on Software Engineering Se-
mantically, pages 3–14. IEEE, 2017.

[26] Martin White, Christopher Vendome, Mario Linares-
v, and Denys Poshyvanyk. Toward Deep Learning
Software Repositories. In 12th Working Conference
on Mining Software Repositories Toward, pages 334–
345, 2015.

[27] Tam The Nguyen, Phong Minh Vu, Hung Viet Pham,
and Tung Thanh Nguyen. Deep learning UI de-
sign patterns of mobile apps. In 40th International
Conference on Software Engineering: New Ideas and
Emerging Results Deep, pages 65–68, 2018.

[28] Vlad-sebastian Ionescu. An approach to software
development effort estimation using machine learn-
ing. In 13th IEEE International Conference on Intelli-
gent Computer Communication and Processing, pages
197–203, 2017.

[29] Mohammad Alahmadi, Jonathan Hassel, Biswas Para-
juli, Sonia Haiduc, and Piyush Kumar. Accurately
Predicting the Location of Code Fragments in Pro-
gramming Video Tutorials Using Deep Learning. In
Proceedings of the 14th International Conference on
Predictive Models and Data Analytics in Software
Engineering, pages 2–11, 2018.

[30] Fabiano Pecorelli, Dario Di Nucci, Coen De Roover,
and Andrea De Lucia. On the role of data balancing for
machine learning-based code smell detection. In 3rd
ACM SIGSOFT International Workshop on Machine
Learning Techniques for Software Quality Evaluation,
pages 19–24, 2019.

[31] Nakarin Maneerat. Bad-smell Prediction from Soft-
ware Design Model Using Machine Learning Tech-
niques. In Eighth International Joint Conference on
Computer Science and Software Engineering, pages
331–336. IEEE, 2011.

[32] Harsh Lal. Code Review Analysis of Software System
using Machine Learning Techniques. In 2017 11th
International Conference on Intelligent Systems and
Control (ISCO), pages 8–13. IEEE, 2017.

[33] Yesol Kim, Jonghyuk Park, and Minkyu Park. Ma-
chine Learning-based Software Classification Scheme
for Efficient Program Similarity Analysis. In Confer-

ence on research in adaptive and convergent systems,
pages 114–118, 2015.

[34] Jaswitha Abbineni and Ooha Thalluri. Software De-
fect Detection Using Machine Learning Techniques.
In 2nd International Conference on Trends in Elec-
tronics and Informatics, number Icoei, pages 471–475.
IEEE, 2018.

[35] Yasser Ali Alshehri, Katerina Goseva-popstojanova,
Dale G Dzielski, Thomas Devine, and West Virginia.
Applying machine learning to predict software fault
proneness using change metrics , static code metrics ,
and a combination of them. In SoutheastCon, pages
1–7. IEEE, 2018.

[36] Sam Halali, Miroslaw Staron, Miroslaw Ochodek, and
Wilhelm Meding. Improving Defect Localization by
Classifying the Affected Asset Using Machine Learn-
ing. In International Conference on Software Quality,
volume 338, pages 125–148. Springer International
Publishing, 2019.

[37] Guru Prasad Bhandari and Ratneshwer Gupta. Ma-
chine learning based software fault prediction utilizing
source code metrics. In IEEE 3rd International Con-
ference on Computing, Communication and Security,
pages 40–45. IEEE, 2018.

[38] Guru Prasad Bhandari and Ratneshwer Gupta. Mea-
suring the Fault Predictability of Software using Deep
Learning Techniques with Software Metrics. In 5th
IEEE Uttar Pradesh Section International Conference
on Electrical, Computer and Electronics, pages 1–6.
IEEE, 2018.

[39] R. Bharathi and R. Selvarani. A Machine Learning
Approach for Quantifying the Design Error Propaga-
tion in Safety Critical Software System. IETE Journal
of Research, 0(0):1–15, 2019.

[40] Ronyérison Braga, Pedro Santos Neto, Ricardo
Rabêlo, José Santiago, and Matheus Souza. A ma-
chine learning approach to generate test oracles. In
XXXII BRAZILIAN SYMPOSIUM ONSOFTWARE
ENGINEERING, pages 142–151, 2018.

[41] Ariel Rosenfeld, Odaya Kardashov, and Orel Zang.
Automation of Android Applications Testing Using
Machine Learning Activities Classification. In 5th In-
ternational Conference on Mobile Software Engineer-
ing and Systems Automation, pages 122–132, 2017.

[42] Guoyan Huang, Yazhou Li, Qian Wang, Jiadong Ren,
Yongqiang Cheng, and Xiaolin Zhao. Automatic clas-
sification method for software vulnerability based on
deep neural network. IEEE Access, 7:28291–28298,
2019.

[43] Cuijiao Fu. Estimating Software Energy Consumption
with Machine Learning Approach by Software. In
IEEE Confs on Internet of Things, Green Comput-
ing and Communications, Cyber, Physical and Social
Computing, Smart Data, Blockchain, Computer and
Information Technology, Congress on Cybermatics,
pages 490–496. IEEE, 2018.

20 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

[44] Yoshinobu Tamura. Software Reliability Model Selec-
tion Based on Deep Learning. In 2016 International
Conference on Industrial Engineering, Management
Science and Application (ICIMSA), pages 1–5. IEEE,
2016.

[45] Raghvendra Kumar, L E Hoang Son, Mohamed
Abdel-basset, Ishaani Priyadarshini, Rohit Sharma,
and Hoang Viet Long. Deep Learning Approach for
Software Maintainability Metrics Prediction. IEEE
Access, 7:2169–3536, 2019.

[46] Artur Andrzejak, Luis Silva, and Dep Engenharia In-
formática. Using Machine Learning for Non-Intrusive
Modeling and Prediction of Software Aging. In
NOMS 2008 - 2008 IEEE Network Operations and
Management Symposium, pages 25–32. IEEE, 2008.

[47] Dimple Chandra and Mehak Choudhary. Prophecy
of Software Maintenance Effort with Univariate and
Multivariate approach. In International Conference on
Computing, Communication and Automation, num-
ber 1, pages 876–880, 2017.

[48] Tao Xie. The Synergy of Human and Artificial Intel-
ligence in Software Engineering. In 2013 2nd Inter-
national Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering (RAISE), pages 4–
6. IEEE, 2013.

[49] Nathalia Nascimento. Toward Human-in-the-Loop
Collaboration Between Software Engineers and Ma-
chine Learning Algorithms. In IEEE International
Conference on Big Data, pages 3534–3540. IEEE,
2018.

[50] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie,
Stephen Oney, and Amit Paradkar. Inferring method
specifications from natural language API descriptions.
In Proceedings - International Conference on Software
Engineering, pages 815–825. IEEE, 2012.

[51] Munima Jahan, Zahra Shakeri Hossein Abad, and
Behrouz Far. Detecting emergent behaviors and im-
plied scenarios in scenario-based specifications: A
machine learning approach. Proceedings - 2019
IEEE/ACM 11th International Workshop on Mod-
elling in Software Engineering, MiSE 2019, pages 8–
14, 2019.

[52] Alessio Ferrari and Andrea Esuli. An NLP approach
for cross-domain ambiguity detection in requirements
engineering. Automated Software Engineering, 2019.

[53] Ashish Kumar Dwivedi, Anand Tirkey,
Ransingh Biswajit Ray, and Santanu Kumar Rath.
Software Design Pattern Recognition using Machine
Learning Techniques. In 2016 IEEE Region 10
Conference (TENCON), pages 222–227. IEEE, 2016.

[54] Du Zhang. Machine Learning in Value-Based Soft-
ware Test Data Generation. In 18th IEEE International
Conference on Tools with Artificial Intelligence, pages
732–736. IEEE, 2006.

[55] Onkar Malgonde and Kaushal Chari. An ensemble-
based model for predicting agile software develop-

ment effort, volume 24. 2019.
[56] Lucy Ellen Lwakatare B, Aiswarya Raj, Jan Bosch,

and Helena Holmstr. A Taxonomy of Software En-
gineering Challenges for Machine Learning Systems:
An Empirical Investigation. International Conference
on Agile Software Development, 149:227–243, 2013.

[57] Tao Xie. Dependable Software Engineering. Theories,
Tools, and Applications. In International Sympo-
sium on Dependable Software Engineering: Theories,
Tools, and Applications, volume 10998, pages 3–7.
Springer International Publishing, 2018.

[58] Bernd Bruegge, Joern David, Jonas Helming, and
Maximilian Koegel. Classification of tasks using
machine learning. In 5th International Conference on
Predictor Models in Software Engineering, pages 1–
11, 2009.

[59] W. T. Tsai, K. G. Heisler, D. Volovik, and I. A.
Zualkernan. A critical look at the relationship between
AI and software engineering. In 1988 IEEE Workshop
on Languages for Automation@m_Symbiotic and In-
telligent Robotics, pages 2–18, 1988.

[60] Hoa Khanh Dam. Empowering Software Engineering
with Artificial Intelligence. In Australian Sympo-
sium on Service Research and Innovation, pages 3–12.
Springer International Publishing, 2019.

[61] Dimitris Kalles. Artificial Intelligence meets Software
Engineering in Computing Education. In 9th Hel-
lenic Conference on Artificial Intelligence, pages 1–5,
2016.

[62] Bin Lin, Gabriele Bavota, Massimiliano Di Penta,
and Michele Lanza. Sentiment Analysis for Software
Engineering : How Far Can We Go ? In ACM/IEEE
40th International Conference on Software Engineer-
ing, pages 94–104. ACM, 2018.

[63] Karl Meinke and Amel Bennaceur. Machine Learn-
ing for Software Engineering: Models, Methods, and
Applications. In Proceedings of the 40th Interna-
tional Conference on Software Engineering: Compan-
ion Proceeedings, number 1, pages 548–549. ACM,
2018.

[64] D Michie. Methodologies from Machine Learning
in Data Analysis and Software. THE COMPUTER
JOURNAL, 34(6), 1991.

[65] Florham Park. Artificial Intelligence and Software
Engineering : Breaking the Toy Mold. Automated
Software Engineering, 270:255–270, 1997.

[66] Romain Robbes and Andrea Janes. Leveraging small
software engineering data sets with pre-trained neural
networks. In Proceedings - 2019 IEEE/ACM 41st
International Conference on Software Engineering:
New Ideas and Emerging Results, ICSE-NIER 2019,
pages 29–32. IEEE, 2019.

[67] Benjamin Schreck, Shankar Mallapur, Sarvesh Damle,
and Nitin John James. Augmenting Software Project
Managers with Predictions from Machine Learning.
In IEEE International Conference on Big Data, pages

VOLUME 4, 2016 21



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

2004–2011. IEEE, 2018.
[68] Jingyi Shen, Olga Baysal, and M. Omair Shafiq. Eval-

uating the performance of machine learning sentiment
analysis algorithms in software engineering. In Pro-
ceedings - IEEE 17th International Conference on
Dependable, Autonomic and Secure Computing, IEEE
17th International Conference on Pervasive Intelli-
gence and Computing, IEEE 5th International Confer-
ence on Cloud and Big Data Computing, 4th Cyber
Scienc, pages 1023–1030. IEEE, 2019.

[69] Martin White. Deep Representations for Software
Engineering. In 37th IEEE International Conference
on Software Engineering, pages 781–783. IEEE, 2015.

[70] Syed Nadeem Ahsan and Franz Wotawa. Impact
analysis of SCRs using single and multi-label machine
learning classification. In International Symposium
on Empirical Software Engineering and Measurement,
pages 1–4, 2010.

[71] Erol Valeriu Chioaşcǎ. Using machine learning to en-
hance automated requirements model transformation.
Proceedings - International Conference on Software
Engineering, pages 1487–1490, 2012.

[72] Hojat Khosrowjerdi and Karl Meinke. Learning-based
testing for autonomous systems using spatial and tem-
poral requirements. In 1st International Workshop
on Machine Learning and Software Engineering in
Symbiosis, pages 6–15, 2018.

[73] Andres J. Ramirez and Betty H.C. Cheng. Automatic
derivation of utility functions for monitoring software
requirements. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), 6981
LNCS:501–516, 2011.

[74] Francois Georis Matthias Galster, Fabian Gilson.
What Quality Attributes Can We Find in Product
Backlogs? A Machine Learning Perspective. In Euro-
pean Conference on Software Architecture, pages 88–
96, 2019.

[75] Cualin-Rarecs Turliuc. ProbPoly: A Probabilistic In-
ductive Logic Programming Framework with Applica-
tion in Model Checking. Proceedings of the Interna-
tional Workshop on Machine Learning Technologies
in Software Engineering, pages 43–50, 2011.

[76] Syed Nadeem Ahsan, Javed Ferzund, and Franz
Wotawa. Automatic Classification of Software
Change Request Using Multi-Label Machine Learn-
ing Methods. In 2009 33rd Annual IEEE Software
Engineering Workshop, pages 79–86. IEEE, 2009.

[77] Edna Dias Canedo and Bruno Cordeiro Mendes. Soft-
ware requirements classification using machine learn-
ing algorithms. Entropy, 22(9), 2020.

[78] Armin Kobilica, Mohammed Ayub, and Jameleddine
Hassine. Automated Identification of Security Re-
quirements: A Machine Learning Approach. ACM
International Conference Proceeding Series, (1):475–
480, 2020.

[79] Giovanni Moranna. Natural Engineering Applying a
Genetic Computing Model to Engineering Self-Aware
Software Abhi. In 1st International Workshop on
Software Engineering for Cognitive Services, pages
25–28, 2018.

[80] Md. Abdur Rahman, Md. Ariful Haque, Md. Nu-
rul Ahad Tawhid, and Md. Saeed Siddik. Classifying
non-functional requirements using RNN variants for
quality software development. In 3rd ACM SIGSOFT
International Workshop on Machine Learning Tech-
niques for Software Quality Evaluation, pages 25–30,
2019.

[81] Lorijn Van Rooijen, Frederik Simon B, Marie Christin
Platenius, Michaela Geierhos, Heiko Hamann, and
Gregor Engels. From User Demand to Software
Service : Using Machine Learning to Automate the
Requirements Specification Process. In 25th Inter-
national Requirements Engineering Conference Work-
shops, pages 379–385, 2017.

[82] Jane Cleland-Huang, Adam Czauderna, Marek Gibiec,
and John Emenecker. A machine learning approach
for tracing regulatory codes to product specific re-
quirements. In 32nd ACM/IEEE International Con-
ference on Software Engineering, page 155, 2010.

[83] Ana C. Marcén, Raúl Lapeña, Óscar Pastor, and Carlos
Cetina. Traceability Link Recovery between Require-
ments and Models using an Evolutionary Algorithm
Guided by a Learning to Rank Algorithm: Train con-
trol and management case. Journal of Systems and
Software, 163, 2020.

[84] Chris Mills and Sonia Haiduc. A machine learning
approach for determining the validity of traceability
links. Proceedings - 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering Compan-
ion, ICSE-C 2017, pages 121–123, 2017.

[85] Kawser Wazed Nafi, Banani Roy, Chanchal K Roy,
and Kevin A Schneider. CroLSim : Cross Language
Software Similarity Detector using API documenta-
tion. In 18th International Working Conference on
Source Code Analysis and Manipulation CroLSim:,
pages 139–148. IEEE, 2018.

[86] Mateusz Wieloch, Sorawit Amornborvornwong, and
Jane Cleland-huang. Trace-by-Classification : A Ma-
chine Learning Approach to Generate Trace Links for
Frequently Occurring Software Artifacts. In 7th Inter-
national Workshop on Traceability in Emerging Forms
of Software Engineering, pages 110–114. IEEE, 2013.

[87] Shinyoung Ahn and Joongheon Kim. Poster : A Novel
Shared Memory Framework for Distributed Deep
Learning in High-Performance Computing Architec-
ture. In 2018 ACM/IEEE 40th International Confer-
ence on Software Engineering: Companion Proceed-
ings Poster:, pages 191–192, 2018.

[88] Younes Boubekeur, Gunter Mussbacher, and Shane
McIntosh. Automatic assessment of students’ soft-
ware models using a simple heuristic and machine

22 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

learning. Proceedings - 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages
and Systems, MODELS-C 2020 - Companion Pro-
ceedings, pages 84–93, 2020.

[89] Oscar Castro-Lopez and Ines F. Vega-Lopez. Fast
deployment and scoring of support vector machine
models in CPU and GPU. In 1st International Work-
shop on Machine Learning and Software Engineering
in Symbiosis, pages 45–52, 2018.

[90] Stéphanie Chollet, Philippe Lalanda, and Jonathan
Bardin. Software Service Recommendation Base on
Collaborative Filtering Neural Network Model. In
International Conference on Service-Oriented Com-
puting, pages 1–20. Springer International Publishing,
2013.

[91] Warteruzannan Soyer Cunha, São Carlos, and São
Carlos. InSet: A Tool to Identify Architecture Smells
Using Machine Learning. Number July 2017, pages
760–765, 2020.

[92] Ahmed Dawoud, Seyed Shahristani, and Chun Raun.
Internet of Things Deep learning and software-defined
networks : Towards secure IoT architecture. Internet
of Things, 3-4:82–89, 2018.

[93] Quality Factors, Life-cycle Revised, José Hernández-
orallo, and Mª José Ramírez-quintana. Software as
Learning: Quality Factors and Life-Cycle Revised. In
International Conference on Fundamental Approaches
to Software Engineering, pages 147–162, 2000.

[94] Panagiotis G. Mousouliotis; and Loukas P. Petrou.
Software-Defined FPGA Accelerator Design for Mo-
bile Deep Learning Applications, volume 11444.
Springer International Publishing, 2019.

[95] Henry Muccini and Karthik Vaidhyanathan. Arch-
Learner: Leveraging Machine-learning Techniques for
Proactive Architectural Adaptation. Proceedings of
the 13th European Conference on Software Architec-
ture - Volume 2, pages 38–41, 2019.

[96] Kenneth O Neal, Philip Brisk, Ahmed Abousamra,
Zack Waters, Emily Shriver, and Intel Corporation.
GPU Performance Estimation using Software Ras-
terization. Transactions on Embedded Computing
Systems, 16(5), 2017.

[97] Universitat Oberta, De Catalunya Uoc, and Robert
Clarisó. Applying Graph Kernels to Model-Driven
Engineering Problems. In 1st International Workshop
on Machine Learning and Software Engineering in
Symbiosis, pages 1–5, 2018.

[98] Anush Sankaran, Rahul Aralikatte, Senthil Mani,
Shreya Khare, Naveen Panwar, and Neelamadhav
Gantayat. DARVIZ : Deep Abstract Representation
, Visualization , and Verification of Deep Learning
Models. In International Conference on Software
Engineering: New Ideas and Emerging Technologies
Result, pages 47–50, 2017.

[99] Miyoung Shin and Amrit L Goel. Modeling Software
Component Criticality Using a Machine Learning Ap-

proach. In International Conference on AI, Simula-
tion, and Planning in High Autonomy Systems, pages
440–448, 2005.

[100] Brahmaleen K Sidhu, Kawaljeet Singh, and Neeraj
Sharma. A Catalogue of Model Smells and Refactor-
ing Operations for Object - Oriented Software. In 2nd
International Conference on Inventive Communica-
tion and Computational Technologies, number Icicct,
pages 313–319. IEEE, 2018.

[101] Qinbao Song, Xiaoyan Zhu, Guangtao Wang, Heli
Sun, He Jiang, and Chenhao Xue. A machine learn-
ing based software process model recommendation
method. Journal of Systems and Software, 118:85–
100, 2016.

[102] Xizhu WU and Zhihua ZHOU. Model reuse with
domain knowledge. In Proceedings of the 12th
ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, volume 47,
pages 1483–1492, 2017.

[103] C. Lakshmi Prabha and N. Shivakumar. Improving
Design Quality of Software Using Machine Learning
Techniques. 2020 6th International Conference on
Advanced Computing and Communication Systems,
ICACCS 2020, pages 583–588, 2020.

[104] R. Rajaraman, P. K. Kapur, and Deepak Kumar. De-
termining Software Inter-Dependency Patterns for In-
tegration Testing by applying Machine learning on
Logs and Telemetry data. ICRITO 2020 - IEEE
8th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future
Directions), pages 1080–1084, 2020.

[105] Hannes Thaller, Lukas Linsbauer, and Alexander
Egyed. Feature Maps : A Comprehensible Soft-
ware Representation for Design Pattern Detection. In
26th International Conference on Software Analysis,
Evolution and Reengineering, pages 207–217. IEEE,
2019.

[106] Nuno Silva Vasil Borozanov, Simon Hacks. Using
Machine Learning Techniques for Evaluating the Sim-
ilarity of Enterprise Architecture Models. In Interna-
tional Conference on Advanced Information Systems
Engineering, pages 563–578. Springer International
Publishing, 2019.

[107] Mahmood Mohd Al Asheeri and Mustafa Hammad.
Machine learning models for software cost estimation.
In 2019 International Conference on Innovation and
Intelligence for Informatics, Computing, and Tech-
nologies, 3ICT 2019, pages 1–6. IEEE, 2019.

[108] Bilge Ba and Burak Turhan. Software Effort Esti-
mation Using Machine Learning Methods. In 22nd
international symposium on computer and information
sciences, pages 1–6. IEEE, 2007.

[109] Ahmed Banimustafa. Predicting Software Effort Esti-
mation Using Machine Learning Techniques. In 8th
International Conference on Computer Science and
Information Technology, number 1, pages 249–256.

VOLUME 4, 2016 23



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

IEEE, 2018.
[110] Anna Corazza, Sergio Di Martino, Filomena Ferrucci,

Carmine Gravino, and Emilia Mendes. Using Support
Vector Regression for web development effort estima-
tion. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 5891 LNCS:255–
271, 2009.

[111] Egemen Ertugrul, Zakir Baytar, Çagatay Çatal, and
Ömer Can Mauratli. Performance tuning for machine
learning-based software development effort prediction
models. Turkish Journal of Electrical Engineering &
Computer Sciences, pages 1308–1324, mar 2019.

[112] Jianglin Huang, Yan-Fu Li, and Min Xie. An empirical
analysis of data preprocessing for machine learning-
based software cost estimation. Information and Soft-
ware Technology, 67:108–127, nov 2015.

[113] Ali Idri, Azeddine Zahi, Emilia Mendes, and Abdelali
Zakrani. Software cost estimation models using radial
basis function neural networks. Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 4895 LNCS:21–31, 2008.

[114] Kazunori Iwata, Toyoshiro Nakashima, Yoshiyuki
Anan, and Naohiro Ishii. Effort Estimation for
Embedded Software Development Projects by Com-
bining Machine Learning with Classification. In
4th Intl Conf on Applied Computing and Infor-
mation Technology/3rd Intl Conf on Computational
Science/Intelligence and Applied Informatics/1st Intl
Conf on Big Data, Cloud Computing, Data Science &
Engineering, pages 265–270. IEEE, 2016.

[115] Osamu Mizuno, Takanari Hamasaki, Yasunari Takagi,
and Tohru Kikuno. An Empirical Evaluation of Pre-
dicting Runaway Software Projects Using Bayesian
Classification. In International Conference on Product
Focused Software Process Improvement, pages 263–
273, 2010.

[116] Juan Murillo-Morera, Christian Quesada-López, Car-
los Castro-Herrera, and Marcelo Jenkins. A genetic
algorithm based framework for software effort predic-
tion. Journal of Software Engineering Research and
Development, 5(1), 2017.

[117] Shashank Mouli Satapathy and Santanu Kumar Rath.
Empirical Assessment of Machine Learning Models
for Effort Estimation of Web-based Applications. In
10th Innovations in Software Engineering Conference,
pages 74–84, 2017.

[118] Pinkashia Sharma. Systematic Literature Review on
Software Effort Estimation Using Machine Learn-
ing Approaches. In International Conference on
Next Generation Computing and Information Sys-
tems, pages 43–47. IEEE, 2017.

[119] Evandro N. Regolin, Gustavo A De Souza, Aurora
R T Pozo, and Silvia R Vergilio. Exploring Machine
Learning Techniques for Software Size Estimation. In

XXIII International Conference of the Chilean Com-
puter Science Society, pages 130–136, 2003.

[120] Krishnamoorthy Srinivasan and Douglas Fisher. Ma-
chine Learning Approaches to Estimating Software
Development Effort. TRANSACTIONS ON SOFT-
WARE ENGINEERING, 21(2), 1995.

[121] Om Prakash Sangwan. Software Effort Estimation
using Machine Learning Techniques. In 7th Interna-
tional Conference on Cloud Computing, Data Science
& Engineering-Confluence, volume 5, pages 92–98,
2017.

[122] Jianfeng Wen, Shixian Li, Zhiyong Lin, Yong Hu,
and Changqin Huang. Systematic literature review of
machine learning based software development effort
estimation models. Information and Software Tech-
nology, 54(1):41–59, jan 2012.

[123] Ian Wright and Albert Ziegler. The standard coder:
A machine learning approach to measuring the effort
required to produce source code change. Proceedings
- 2019 IEEE/ACM 7th International Workshop on
Realizing Artificial Intelligence Synergies in Software
Engineering, RAISE 2019, pages 1–7, 2019.

[124] José Cambronero, Seohyun Kim, and Satish Chandra.
When Deep Learning Met Code Search. In ESEC/FSE
2019 - Proceedings of the 2019 27th ACM Joint Meet-
ing European Software Engineering Conference and
Symposium on the Foundations of Software Engineer-
ing, pages 964–974, 2019.

[125] Ben Gelman, Bryan Hoyle, Jessica Moore, Joshua
Saxe, and David Slater. A language-agnostic model
for semantic source code labeling. In 1st International
Workshop on Machine Learning and Software Engi-
neering in Symbiosis, pages 36–44, 2018.

[126] Golam Mostaeen, Jeffrey Svajlenko, Banani Roy,
Chanchal K. Roy, and Kevin A. Schneider. CloneCog-
nition: Machine learning based code clone validation
tool. ESEC/FSE 2019 - Proceedings of the 2019 27th
ACM Joint Meeting European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, pages 1105–1109, 2019.

[127] Jordan Ott, Abigail Atchison, Paul Harnack, Adrienne
Bergh, and Erik Linstead. A Deep Learning Approach
to Identifying Source Code in Images and Video. In
15th International Conference on Mining Software
Repositories, pages 376–386, 2018.

[128] Terence Parr. Towards a Universal Code Formatter
through Machine Learning. In SIGPLAN Interna-
tional Conference on Software Language Engineering,
pages 137–151, 2016.

[129] Max Eric Henry Schumacher, Kim Tuyen Le, and
Artur Andrzejak. Improving Code Recommendations
by Combining Neural and Classical Machine Learn-
ing Approaches. Proceedings - 2020 IEEE/ACM
42nd International Conference on Software Engineer-
ing Workshops, ICSEW 2020, pages 476–482, 2020.

[130] Abdullah M. Sheneamer. An Automatic Advisor

24 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

for Refactoring Software Clones Based on Machine
Learning. IEEE Access, 8:124978–124988, 2020.

[131] Martin White, Michele Tufano, Christopher Vendome,
and Denys Poshyvanyk. Deep Learning Code Frag-
ments for Code Clone Detection. In 31st IEEE/ACM
International Conference on Automated Software En-
gineering, pages 87–98, 2016.

[132] Jiachen Yang, Keisuke Hotta, Yoshiki Higo, Hiroshi
Igaki, and Shinji Kusumoto. Filtering Clones for
Individual User Based on Machine Learning Analysis.
In 6th International Workshop on Software Clones,
pages 76–77, 2012.

[133] Marco Azadi, Umbarto, Fontana, Arcelli, Francesca,
Zanoni. Poster: Machine Learning Based Code Smell
Detection Through WekaNose. In ACM/IEEE 40th
International Conference on Software Engineering:
Companion Proceedings, pages 29–32, 2018.

[134] Mohammad Y Mhawish and Manjari Gupta. Predict-
ing Code Smells and Analysis of Predictions: Using
Machine Learning Techniques and Software Metrics.
Science of Computer Programming Journal - Elsevier,
35(6):1428–1445, 2020.

[135] Noor Ayesha and N G Yethiraj. Review on Code
Examination Proficient System in Software Engineer-
ing by Using Machine Learning Approach. In Pro-
ceedings of the International Conference on Inventive
Research in Computing Applications, number Icirca,
pages 324–327. IEEE, 2018.

[136] Krishna Teja Ayinala, Kwok Sun Cheng, Kwangsung
Oh, Teukseob Song, and Myoungkyu Song. Code
Inspection Support for Recurring Changes with Deep
Learning in Evolving Software. Proceedings - 2020
IEEE 44th Annual Computers, Software, and Applica-
tions Conference, COMPSAC 2020, pages 931–942,
2020.

[137] Kanika Chandra, Gagan Kapoor, Rashi Kohli, and
Archana Gupta. IMPROVING SOFTWARE QUAL-
ITY USING MACHINE LEARNING. In 1st Inter-
national Conference on Innovation and Challenges in
Cyber Security, number Iciccs, pages 115–118. IEEE,
2016.

[138] Gilles Fouqu and Christel Vrain. Building a Tool
for Software Code Analysis A Machine Learning Ap-
proach structures. In International Conference on
Advanced Information Systems Engineering, pages
278–289, 1992.

[139] Verena Geist, Michael Moser, Josef Pichler, Stefanie
Beyer, and Martin Pinzger. Leveraging Machine
Learning for Software Redocumentation. SANER
2020 - Proceedings of the 2020 IEEE 27th Interna-
tional Conference on Software Analysis, Evolution,
and Reengineering, pages 622–626, 2020.

[140] Michał Madera and Rafał Tomoń. A case study
on machine learning model for code review expert
system in software engineering. In Proceedings of the
2017 Federated Conference on Computer Science and

Information Systems, volume 11, pages 1357–1363,
2017.

[141] Mehwish Naseer, Wu Zhang, and Wenhao Zhu. Pre-
diction of coding intricacy in a software engineering
team through machine learning to ensure cooperative
learning and sustainable education. Sustainability
(Switzerland), 12(21):1–15, 2020.

[142] Anubhav Trivedi. Code Nano-Pattern Detection using
Deep Learning. In Proceedings of the 13th Inno-
vations in Software Engineering Conference on For-
merly known as India Software Engineering Confer-
ence, 2020.

[143] Alexander Leclair, Zachary Eberhart, and Collin
Mcmillan. Adapting Neural Text Classification for Im-
proved Software Categorization. In IEEE International
Conference on Software Maintenance and Evolution,
pages 461–472. IEEE, 2018.

[144] Zhensu Sun, Yan Liu, Ziming Cheng, Chen Yang, and
Pengyu Che. Req2Lib: A semantic neural model for
software library recommendation. arXiv, pages 542–
546, 2020.

[145] Michele Tufano, College William, Cody Watson,
Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. Deep Learning Sim-
ilarities from Different Representations of Source
Code. In 15th International Conference on Mining
Software Repositories, pages 542–553, 2018.

[146] Xian Zhang and Kerong Ben. A Neural Language
Model with a Modified Attention. In 9th International
Conference on Software Engineering and Service Sci-
ence, pages 232–236. IEEE, 2018.

[147] Gang Zhao. DeepSim : Deep Learning Code Func-
tional Similarity. In 26th ACM Joint European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 141–151,
2018.

[148] Samar M Abozeed. Software Bug Prediction Employ-
ing Feature Selection and Deep Learning. 2020.

[149] Markus Borg, Oscar Svensson, Kristian Berg, and
Daniel Hansson. SZZ unleashed: an open implementa-
tion of the SZZ algorithm - featuring example usage in
a study of just-in-time bug prediction for the Jenkins
project. In 3rd ACM SIGSOFT International Work-
shop on Machine Learning Techniques for Software
Quality Evaluation, pages 7–12, 2019.

[150] Y. Brun and M.D. Ernst. Finding latent code errors via
machine learning over program executions. In 26th
International Conference on Software Engineering,
pages 480–490, 2004.

[151] Mariela Cerrada, Diego Cabrera, Jean Macancela,
Pablo Lucero, Fannia Pacheco, Rene Vinicio Sanchez,
Diego Cabrera, Jean Macancela, and Pablo Lucero.
SOA Based Integrated Software to Develop Fault Di-
agnosis Models Using Machine Learning in Rotating
Machinery. In Proceedings - 11th IEEE International
Symposium on Service-Oriented System Engineering,

VOLUME 4, 2016 25



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

SOSE 2017, pages 28–37, 2017.
[152] Evren Ceylan, F Onur Kutlubay, and B Bener. Soft-

ware Defect Identification Using Machine Learning
Techniques. In 32nd EUROMICRO Conference on
Software Engineering and Advanced Applications,
pages 240–247, 2006.

[153] Venkata U B Challagulla, Farokh B Bastani, I-ling
Yen, and Raymond A Paul. Empirical Assessment of
Machine Learning based Software Defect Prediction
Techniques. In 10th IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems,
pages 389–400, 2005.

[154] Jinyin Chen, Keke Hu, Yue Yu, Zhuangzhi Chen,
Qi Xuan, Yi Liu, and Vladimir Filkov. Software
visualization and deep transfer learning for effective
software defect prediction. Proceedings - International
Conference on Software Engineering, pages 578–589,
2020.

[155] Caesar Jude Clemente, Fehmi Jaafar, and Yasir Ma-
lik. Is Predicting Software Security Bugs using Deep
Learning Better than the Traditional Machine Learn-
ing Algorithms ? In IEEE International Conference
on Software Quality, Reliability and Security Is, pages
95–102. IEEE, 2018.

[156] Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen
Tran, John Grundy, Aditya Ghose, Taeksu Kim, and
Chul Joo Kim. Lessons learned from using a deep tree-
based model for software defect prediction in practice.
In IEEE International Working Conference on Mining
Software Repositories, volume 2019-May, pages 46–
57. IEEE, 2019.

[157] Anurag Dwarakanath, Manish Ahuja, Samarth Sikand,
Raghotham M. Rao, R. P. Jagadeesh Chandra Bose,
Neville Dubash, and Sanjay Podder. Identifying Im-
plementation Bugs in Machine Learning based Image
Classifiers using Metamorphic Testing. In 27th ACM
SIGSOFT International Symposium on Software Test-
ing and Analysis, pages 118–128, 2018.

[158] Javed Ferzund, Syed Nadeem Ahsan, and Franz
Wotawa. Analysing bug prediction capabilities of
static code metrics in open source software. Lecture
Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 5338 LNCS:331–343, 2008.

[159] Aashish Gupta, Shilpa Sharma, Shubham Goyal, and
Mamoon Rashid. Novel XGBoost Tuned Machine
Learning Model for Software Bug Prediction. Pro-
ceedings of International Conference on Intelligent
Engineering and Management, ICIEM 2020, pages
376–380, 2020.

[160] Tracy Hall and David Bowes. The State of Machine
Learning Methodology in Software Fault Prediction.
In 11th International Conference on Machine Learning
and Applications, pages 308–313. IEEE, 2012.

[161] Kihong Heo, Hakjoo Oh, and Kwangkeun Yi.
Machine-Learning-Guided Selectively Unsound Static

Analysis. Proceedings - 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering, ICSE
2017, pages 519–529, 2017.

[162] Xuan Huo, Yang Yang, Ming Li, and De-chuan Zhan.
Learning Semantic Features for Software Defect Pre-
diction by Code Comments Embedding. In IEEE In-
ternational Conference on Data Mining, pages 1049–
1054. IEEE, 2018.

[163] Vasu Jindal. Towards an Intelligent Fault Prediction
Code Editor to Improve Software Quality using Deep
Learning. In 2nd International Conference on the
Art, Science, and Engineering of Programming, pages
222–223, 2018.

[164] Julen Kahles and Alexander Jung. Automating Root
Cause Analysis via Machine Learning in Agile Soft-
ware Testing Environments. In 12th IEEE Confer-
ence on Software Testing, Validation and Verification,
pages 379–390. IEEE, 2019.

[165] Neha M Kalibhat and Shreya Varshini. Software
Troubleshooting using Machine Learning. In 24th
International Conference on High Performance Com-
puting Workshops, pages 3–10, 2017.

[166] Prashanth Kambli. Predicting Bug in a Software using
ANN Based Machine Learning Techniques. pages 1–
5, 2020.

[167] Syaeful Karim, Harco Leslie, Hendric Spits, Edi Ab-
durachman, and Benfano Soewito. Software Metrics
for Fault Prediction Using Machine Learning Ap-
proaches. In IEEE International Conference on Cy-
bernetics and Computational Intelligence, pages 19–
23, 2017.

[168] Mijung Kim, Jaechang Nam, Jaehyuk Yeon, Soon-
hwang Choi, and Sunghun Kim. REMI: Defect
prediction for efficient API testing. In 2015 10th
Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, ESEC/FSE
2015 - Proceedings, pages 990–993, 2015.

[169] Amod Kumar and Ashwni Bansal. Software Fault
Proneness Prediction Using Genetic Based Machine
Learning Techniques. In Proceedings - 2019 4th
International Conference on Internet of Things: Smart
Innovation and Usages, IoT-SIU 2019, pages 1–5.
IEEE, 2019.

[170] Harsh Lal. Root Cause Analysis of Software Bugs
using Machine Learning Techniques. In 2017 7th
International Conference on Cloud Computing, Data
Science & Engineering - Confluence, pages 105–111.
IEEE, 2017.

[171] Jian Li, Pinjia He, Jieming Zhu, and Michael R Lyu.
Software Defect Prediction via Convolutional Neural
Network. In IEEE International Conference on Soft-
ware Quality, Reliability and Security, pages 318–328,
2017.

[172] Hongliang Liang, Yue Yu, Lin Jiang, and Zhuosi Xie.
Seml: A Semantic LSTM Model for Software Defect

26 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

Prediction. IEEE Access, 7:83812–83824, 2019.
[173] Yunfeng Luo, Kerong Ben, and Lei Mi. Software

metrics reduction for fault-proneness prediction of
software modules. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), 6289
LNCS:432–441, 2010.

[174] Sushant; Priya Pragati Malhotra, Ruchika; Bahl, Laa-
vanye; Sehgal. Empirical Comparison of Machine
Learning Algorithms for Bug Prediction in Open
Source Software. In International Conference on Big
Data Analytics and Computational Intelligence, pages
40–45, 2017.

[175] Amirabbas Majd, Mojtaba Vahidi-Asl, Alireza Khalil-
ian, Pooria Poorsarvi-Tehrani, and Hassan Haghighi.
SLDeep: Statement-level software defect prediction
using deep-learning model on static code features.
Expert Systems with Applications, 147:113156, 2020.

[176] Chao Ni, Wang Shu Liu, Xiang Chen, Qing Gu,
Dao Xu Chen, and Qi Guo Huang. A Cluster Based
Feature Selection Method for Cross-Project Software
Defect Prediction. Journal of Computer Science and
Technology, 32(6):1090–1107, 2017.

[177] Anh Viet Phan and Minh Le Nguyen. Convolutional
Neural Networks on Assembly Code for Predicting
Software Defects. In 21st Asia Pacific Symposium
on Intelligent and Evolutionary Systems, pages 37–42,
2017.

[178] Anh Viet Phan and Minh Le Nguyen. Convolutional
Neural Networks over Control Flow Graphs for Soft-
ware Defect Prediction. In International Conference
on Tools with Artificial Intelligence Convolutional,
pages 45–52, 2017.

[179] Thi Minh Phuong Ha, Duy Hung Tran, Le Thi My
Hanh, and Nguyen Thanh Binh. Experimental study
on software fault prediction using machine learning
model. In Proceedings of 2019 11th International
Conference on Knowledge and Systems Engineering,
KSE 2019, pages 1–5. IEEE, 2019.

[180] Sravya Polisetty, Andriy Miranskyy, and Ayşe Başar.
On Usefulness of the Deep-Learning-Based Bug Lo-
calization Models to Practitioners. In Fifteenth Inter-
national Conference on Predictive Models and Data
Analytics in Software Engineering, number Ml, pages
16–25, 2019.

[181] Osama Al Qasem, Mohammed Akour, and Mamdouh
Alenezi. The Influence of Deep Learning Algorithms
Factors in Software Fault Prediction. IEEE Access,
8:63945–63960, 2020.

[182] Anuradha Chug Praman Deep Singh. Software Defect
Prediction Analysis Using Machine Learning Algo-
rithms. In 7th International Conference on Cloud
Computing, Data Science & Engineering-Confluence,
pages 775–781, 2017.

[183] C. Lakshmi Prabha and N. Shivakumar. Software De-
fect Prediction Using Machine Learning Techniques.

Proceedings of the 4th International Conference on
Trends in Electronics and Informatics, ICOEI 2020,
(Icoei):728–733, 2020.

[184] Rakesh Rana, Miroslaw Staron, Jörgen Hansson, Mar-
tin Nilsson, and Wilhelm Meding. A Framework
for Adoption of Machine Learning in Industry for
Software Defect Prediction. In 9th International Con-
ference on Software Engineering and Applications,
pages 383–392, 2003.

[185] M. Floramary S. Delphine Immaculate, M. Farida
Begam. Software Bug Prediction Using Supervised
Machine Learning Algorithms. In 2019 Interna-
tional Conference on Data Science and Communica-
tion (IconDSC), pages 1–7. IEEE, 2019.

[186] Martin Shepperd, Tracy Hall, David Bowes, and Tracy
Hall. Researcher Bias : The Use of Machine Learning
in Software Defect Prediction. TRANSACTIONS ON
SOFTWARE ENGINEERING, 40(6):603–616, 2014.

[187] Suyash Shukla, Ranjan Kumar Behera, Sanjay Misra,
and Santanu Kumar Rath. Software Reliability As-
sessment Using Deep Learning Technique. In Interna-
tional Conference on Computational Science and Its
Applications, pages 57–68. Springer Singapore, 2018.

[188] Yogesh Singh, Arvinder Kaur, and Ruchika Malho-
tra. Predicting software fault proneness model using
neural network. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), 5089
LNCS:204–214, 2008.

[189] Prabhpahul Singh and Ruchika Malhotra. Assessment
of Machine Learning Algorithms for Determining De-
fective Classes in an Object-Oriented Software. In
6th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future
Directions), pages 204–209, 2017.

[190] Rituraj Singh, Jasmeet Singh, Mehrab Singh Gill,
Ruchika Malhotra, and Garima. Transfer Learning
Code Vectorizer based Machine Learning Models for
Software Defect Prediction. 2020 International Con-
ference on Computational Performance Evaluation,
ComPE 2020, (Lm):497–502, 2020.

[191] Uma Subbiah, Muthu Ramachandran, and Zaigham
Mahmood. Software Engineering Framework for Soft-
ware Defect Management Using Machine Learning
Techniques with Azure. In Software Engineering in
the Era of Cloud Computing. Springer International
Publishing, 2020.

[192] D. Sudharson and D. Prabha. A novel machine learn-
ing approach for software reliability growth modelling
with pareto distribution function. Soft Computing,
23(18):8379–8387, 2019.

[193] Yuanyuan Sun and Yong Ming Wang. Utilizing
Deep Architecture Networks of VAE in Software Fault
Prediction. In Intl Conf on Parallel & Distributed
Processing with Applications, Ubiquitous Computing
& Communications, Big Data & Cloud Computing,

VOLUME 4, 2016 27



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

Social Computing & Networking, Sustainable Com-
puting & Communications, pages 870–877, 2018.

[194] Kazuya Tanaka, Akito Monden, and Zeynep Yu-
cel. Prediction of Software Defects Using Auto-
mated Machine Learning. In Proceedings - 20th
IEEE/ACIS International Conference on Software En-
gineering, Artificial Intelligence, Networking and Par-
allel/Distributed Computing, SNPD 2019, pages 490–
494, 2019.

[195] Junfeng Tian and Yongqing Tian. A Model Based on
Program Slice and Deep Learning for Software Defect
Prediction. Proceedings - International Conference on
Computer Communications and Networks, ICCCN,
2020-Augus, 2020.

[196] Hannes Thaller, Lukas Linsbauer, Alexander Egyed,
and Stefan Fischer. Towards Fault Localization via
Probabilistic Software Modeling. arXiv, pages 24–27,
2020.

[197] Song Wang, Taiyue Liu, Jaechang Nam, and Lin Tan.
Deep Semantic Feature Learning for Software Defect
Prediction. Transactions on Software Engineering,
5589(c):1–26, 2018.

[198] Ming Wen, Rongxin Wu, and Shing-chi C. Cheung.
How Well Do Change Sequences Predict Defects ?
Sequence Learning from Software Changes. Trans-
actions on Software Engineering, 5589(c):1–20, 2018.

[199] Kittisak Wongpheng and Porawat Visutsak. Software
Defect Prediction using Convolutional Neural Net-
work. ITC-CSCC 2020 - 35th International Techni-
cal Conference on Circuits/Systems, Computers and
Communications, pages 240–243, 2020.

[200] Zhiwu Xu, Kerong Ren, Shengchao Qin, and Florin
Craciun. CDGDroid: Android Malware Detection
Based on Deep Learning Using CFG and DFG. In In-
ternational Conference on Formal Engineering Meth-
ods, volume 3308, pages 177–193. Springer Interna-
tional Publishing, 2004.

[201] Siqi Yang, Shuaipeng Yang, Zigang Fang, Xiuzhi Yu,
Lanlan Rui, and Yucheng Ma. Fault Prediction for
Software System in Industrial Internet: A Deep Learn-
ing Algorithm via Effective Dimension Reduction.
In International Conference on Cyber-Living, Cyber-
Syndrome and Cyber-Health, volume 1137 CCIS,
pages 572–580. Springer Singapore, 2019.

[202] Xian Zhang, Kerong Ben, and Jie Zeng. Cross-
Entropy : A New Metric for Software Defect Pre-
diction. In IEEE International Conference on Soft-
ware Quality, Reliability and Security, pages 111–122.
IEEE, 2018.

[203] Linchang Zhao, Student Member, and Zhaowei Shang.
Siamese Dense Neural Network for Software Defect
Prediction With Small Data. IEEE Access, 7:7663–
7677, 2019.

[204] Faezeh Sadat Babamir, Alireza Hatamizadeh, and
Seyed Mehrdad Babamir. Application of Genetic
Algorithm in Automatic Software Testing. In Inter-

national Conference on Networked Digital Technolo-
gies, pages 545–552, 2010.

[205] Lionel C Briand. Novel Applications of Machine
Learning in Software Testing. In Eighth International
Conference on Quality Software Novel, pages 3–10.
IEEE, 2008.

[206] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun,
Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li,
Yang Liu, Jianjun Zhao, and Yadong Wang. Deep-
Gauge: Multi-Granularity Testing Criteria for Deep
Learning Systems. In 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineer-
ing, pages 120–131, 2018.

[207] Valdivino Alexandre de Santiago, Leoni Augusto Ro-
main da Silva, and Pedro Ribeiro de Andrade Neto.
Testing Environmental Models supported by Machine
Learning. In III Brazilian Symposium on Systematic
and Automated Software Testing, pages 3–12, 2018.

[208] Norbert Oster. Automated generation and evaluation
of dataflow-based test data for object-oriented soft-
ware. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 3712 LNCS:212–
226, 2005.

[209] Ciprian Paduraru, Marius-constantin Melemciuc, and
Miruna Paduraru. Automatic Test Data Generation for
a Given Set of Applications Using Recurrent Neural
Networks. In International Conference on Software
Technologies, volume 1, pages 307–326. Springer In-
ternational Publishing, 2019.

[210] Robert Gove and Jorge Faytong. Machine Learning
and Event-Based Software Testing : Classifiers for
Identifying Infeasible GUI Event Sequences. Ad-
vances in Computers, 86:109–135, 2012.

[211] Gang Hu, Linjie Zhu, and Junfeng Yang. AppFlow:
using machine learning to synthesize robust, reusable
UI tests. In 26th ACM Joint European Software En-
gineering Conference and Symposium on the Founda-
tions of Software Engineering, pages 269–282, 2018.

[212] Alexandre Rafael Lenz, Aurora Pozo, and Silvia
Regina. Linking software testing results with a ma-
chine learning approach. Engineering Applications of
Artificial Intelligence, 26(5-6):1631–1640, 2013.

[213] Wei Zheng, Yutong Bai, and Haoxuan Che. A
computer-assisted instructional method based on ma-
chine learning in software testing class. Computer
Applications in Engineering Education, 26(5):1150–
1158, sep 2018.

[214] Javier Alonso. Predicting Software Anomalies using
Machine Learning Techniques. In IEEE International
Symposium on Network Computing and Applications
Predicting, pages 163–170, 2011.

[215] Aziz Alotaibi. Identifying Malicious Software Using
Deep Residual Long-Short Term Memory. IEEE Ac-
cess, 7:163128–163137, 2019.

[216] Federica Bisio, Paolo Gastaldo, Rodolfo Zunino, and

28 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

Sergio Decherchi. Semi-supervised machine learning
approach for unknown malicious software detection.
In International Symposium on Innovations in Intel-
ligent Systems and Applications, pages 52–59. IEEE,
2014.

[217] Hoa Khanh Dam, Truyen Tran, Trang Pham,
Shien Wee Ng, John Grundy, and Aditya Ghose.
Automatic feature learning for predicting vulnerable
software components. IEEE Transactions on Software
Engineering, 14(8):1–19, 2015.

[218] Xpdu H Dqg, Vrsqlo Vdpudw, Jpdlo Frp, Pdkexefvh
Dkrr, F R P Dqg, and Pnudlkdq Jpdlo. Detection
of Flow Based Anomaly in OpenFlow Controller :
Machine Learning Approach in Software Defined Net-
working. In 4th International Conference on Electrical
Engineering and Information & Communication Tech-
nology, pages 416–421, 2018.

[219] Seyed Mohammad Ghaffarian and Hamid Reza
Shahriari. Software Vulnerability Analysis and Dis-
covery Using Machine-Learning and Data-Mining
Techniques : A Survey. ACM Computing Surveys,
50(4), 2017.

[220] Sumanth Gowda, Divyesh Prajapati, Ranjit Singh, and
Swanand S. Gadre. False Positive Analysis of soft-
ware vulnerabilities using Machine learning. In 2018
IEEE International Conference on Cloud Computing
in Emerging Markets (CCEM), pages 3–6. IEEE, nov
2018.

[221] Zhuobing Han, Xiaohong Li, Zhenchang Xing, Hong-
tao Liu, and Zhiyong Feng. Learning to Predict Sever-
ity of Software Vulnerability Using Only Vulnerability
Description. In IEEE International Conference on
Software Maintenance and Evolution Learning, pages
125–136, 2017.

[222] Fabian Huch, Mojdeh Golagha, Ana Petrovska, and
Alexander Krauss. Machine Learning-Based Run-
Time Anomaly Detection in Software Systems : An
Industrial Evaluation. In IEEE Workshop on Machine
Learning Techniques for Software Quality Evaluation,
pages 13–18. IEEE, 2018.

[223] Gong Jie, Kuang Xiao-Hui, and Liu Qiang. Survey
on Software Vulnerability Analysis method based on
Machine Learning. In 2016 IEEE First International
Conference on Data Science in Cyberspace (DSC),
pages 642–647. IEEE, jun 2016.

[224] Jorrit Kronjee and Harald Vranken. Discovering soft-
ware vulnerabilities using data-flow analysis and ma-
chine learning. In International Conference on Avail-
ability, Reliability and Security, pages 1–10, 2018.

[225] Alexandr Kuznetsov, Yehor Yeromin, Oleksiy Shapo-
val, Kyrylo Chernov, Mariia Popova, and Kostyantyn
Serdukov. Automated software vulnerability testing
using deep learning methods. In 2019 IEEE 2nd
Ukraine Conference on Electrical and Computer En-
gineering, UKRCON 2019 - Proceedings, pages 837–
841. IEEE, 2019.

[226] Muhammad Noman Khalid, Humera Farooq, Muham-
mad Iqbal, Muhammad Talha Alam, and Kamran
Rasheed. Predicting Web Vulnerabilities in Web Ap-
plications Based on Machine Learning Muhammad.
In International Conference on Intelligent Technolo-
gies and Applications, volume 932, pages 496–510.
Springer Singapore, 2019.

[227] Weina Niu, Xiaosong Zhang, Xiaojiang Du, Lingyuan
Zhao, Rong Cao, and Mohsen Guizani. A Deep
Learning Based Static Taint Analysis Approach for
IoT Software Vulnerability Location. Measurement,
152:107139, 2019.

[228] Saahil Ognawala, Ricardo Nales Amato, Alexander
Pretschner, and Pooja Kulkarni. Automatically As-
sessing Vulnerabilities Discovered by Compositional
Analysis. In 1st International Workshop on Machine
Learning and Software Engineering in Symbiosis,
pages 16–25, 2018.

[229] Invited Paper. Deep Learning Approach for Network
Intrusion Detection in Software Defined Networking.
In International Conference on Wireless Networks and
Mobile Communications, pages 1–6. IEEE, 2016.

[230] Edmar Rezende, Guilherme Ruppert, Tiago Carvalho,
Fabio Ramos, and Paulo De Geus. Malicious Software
Classification using Transfer Learning of ResNet-50
Deep Neural Network. In 16th IEEE International
Conference on Machine Learning and Applications
Malicious, pages 1011–1014, 2017.

[231] Guanhua Yan and Junchen Lu. ExploitMeter :
Combining Fuzzing with Machine Learning for Au-
tomated Evaluation of Software Exploitability. In
2017 IEEE Symposium on Privacy-Aware Computing,
pages 164–175, 2017.

[232] Mohammed Zagane, Mustapha Kamel Abdi, and
Mamdouh Alenezi. Deep Learning for Software
Vulnerabilities Detection Using Code Metrics. IEEE
Access, 8:74562–74570, 2020.

[233] Falk Howar B, Karl Meinke, and Andreas Rausch.
Learning Systems : Machine-Learning in Software
Products and Learning-Based Analysis of Software
Systems. In International Symposium on Leveraging
Applications of Formal Methods, volume 1, pages
651–654, 2016.

[234] Hoa Khanh Dam. Explainable Software Analytics. In
40th International Conference on Software Engineer-
ing: New Ideas and Emerging Results, pages 53–56.
ACM, 2018.

[235] Christian Kaltenecker, Alexander Grebhahn, Norbert
Siegmund, and Sven Apel. The Interplay of Sampling
and Machine Learning for Software Performance Pre-
diction. IEEE Software, 37(4):58–66, 2020.

[236] Hyun-il Lim and A Code Vector. Applying Code
Vectors for Presenting Software Features in Machine
Learning. In 42nd IEEE International Conference on
Computer Software & Applications Applying, pages
803–804. IEEE, 2018.

VOLUME 4, 2016 29



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

[237] Qin Liu, Xiaolong Li, Hongming Zhu, and Hongfei
Fan. Acquisition of Open Source Software Project
Maturity Based on Time Series Machine Learning.
In 10th International Symposium on Computational
Intelligence and Design, pages 10–13, 2017.

[238] Mahshid Helali Moghadam. Machine Learning-
Assisted Performance Testing. In ESEC/FSE 2019
- Proceedings of the 2019 27th ACM Joint Meeting
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
pages 12–14, 2019.

[239] Federico Quin, Danny Weyns, Thomas Bamelis,
Singh Buttar Sarpreet, and Sam Michiels. Efficient
analysis of large adaptation spaces in self-adaptive
systems using machine learning. In ICSE Work-
shop on Software Engineering for Adaptive and Self-
Managing Systems, volume 2019-May, pages 1–12,
2019.

[240] Gopi Krishnan Rajbahadur, Shaowei Wang, Yasutaka
Kamei, and Ahmed E. Hassan. Impact of Discretiza-
tion Noise of the Dependent variable on Machine
Learning Classifiers in Software Engineering. IEEE
Transactions on Software Engineering, (c), 2019.

[241] Sefa Eren Sahin, Kubilay Karpat, and Ayse Tosun.
Predicting Popularity of Open Source Projects Using
Recurrent Neural Networks. In IFIP International
Conference on Open Source Systems, volume 556,
pages 80–90. Springer International Publishing, 2019.

[242] Ramtine Tofighi-Shirazi, Irina-Mariuca Asavoae,
Philippe Elbaz-Vincent, and Thanh-Ha Le. Defeating
Opaque Predicates Statically through Machine
Learning and Binary Analysis. In 3rd Software
Protection Workshop, pages 3–14, 2019.

[243] Hironori Washizaki, Hironori Takeuchi, Foutse
Khomh, Naotake Natori, Takuo Doi, and Satoshi
Okuda. Practitioners’ insights on machine-learning
software engineering design patterns: A preliminary
study. Proceedings - 2020 IEEE International
Conference on Software Maintenance and Evolution,
ICSME 2020, (Ml):797–799, 2020.

[244] Mehdi T Harandi and Hing-yan Lee. Acquiring Soft-
ware Design Schemas : A Machine Learning Perspec-
tive. In 6th International Conference on Knowledge-
Based Software Engineering, pages 188–197, 1991.

[245] Hakim Lounis and Lynda Ait-mehedine. Machine-
Learning Techniques for Software Product Quality
Assessment. In Fourth International Conference on
Quality Software, pages 102–109. IEEE, 2004.

[246] Hakim Lounis, Tamer Fares Gayed, and Mounir
Boukadoum. Machine-Learning Models for Software
Quality : a Compromise Between Performance and
Intelligibility Machine-Learning Models for Software
Quality : a Compromise Between Performance and
Intelligibility. In 23rd International Conference on
Tools with Artificial Intelligence, number November
2011, pages 64–67, 2014.

[247] Hitesh Sajnani. Automatic Software Architecture Re-
covery : A Machine Learning Approach. In 20th IEEE
International Conference on Program Comprehension,
pages 265–268. IEEE, 2012.

[248] Matthew C Simpson. Automatic Algorithm Selection
in Computational Software Using Machine Learning.
In 15th IEEE International Conference on Machine
Learning and Applications Automatic, pages 355–
360. IEEE, 2016.

[249] Ning Chen, Steven C H Hoi, and Xiaokui Xiao. Soft-
ware Process Evaluation : A Machine Learning Ap-
proach. In 26th IEEE/ACM International Conference
on Automated Software Engineering, number ii, pages
333–342. IEEE, 2011.

[250] Cuauhtemoc Lopez-martin, Arturo Chavoya, and
Maria Elena Meda-campaña. A Machine Learn-
ing Technique for Predicting the Productivity of
Practitioners from Individually Developed Software
Projects. In IEEE/ACIS International Conference
on Software Engineering, Artificial Intelligence, Net-
working and Parallel/Distributed Computing, pages 1–
6, 2014.

[251] Diego Rughetti, Pierangelo Di Sanzo, Bruno Ciciani,
and Francesco Quaglia. Machine Learning-based
Self-adjusting Concurrency in Software Transactional
Memory Systems. In 20th International Sympo-
sium on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems, pages 278–
285. IEEE, 2012.

[252] Hamdi A Al-jamimi and Moataz Ahmed. Machine
Learning-based Software Quality Prediction Models :
State of the Art. In 2013 International Conference on
Information Science and Applications (ICISA), pages
1–4. IEEE, 2013.

[253] Nicolas Baskiotis, Marie-claude Gaudel, and Sandrine
Gouraud. A Machine Learning Approach for Statis-
tical Software Testing. In IJCAI International Joint
Conference on Artificial Intelligence, pages 2274–
2279, 2006.

[254] Chris Cummins, Pavlos Petoumenos, Alastair Murray,
and Hugh Leather. Compiler fuzzing through deep
learning. Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and
Analysis - ISSTA 2018, pages 95–105, 2018.

[255] Hasan Ferit Enişer and Alper Sen. Testing service
oriented architectures using stateful service visual-
ization via machine learning. In ACM/IEEE 13th
International Workshop on Automation of Software
Test Testing, pages 9–15, 2018.

[256] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Ji-
aguang Sun. DLFuzz: Differential Fuzzing Testing of
Deep Learning Systems. In 26th ACM Joint European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 739–
743, 2018.

[257] Upulee Kanewala, James M. Bieman, and Asa Ben-

30 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

Hur. Predicting metamorphic relations for testing
scientific software: a machine learning approach using
graph kernels. Software Testing, Verification and
Reliability, 26(3):245–269, may 2016.

[258] Yu. Karpov, Yu. Smetanin, and L. Karpov. Adap-
tation of general software testing concepts to neural
networks. Programming and Computer Software,
44(5):43–56, 2019.

[259] Satoshi Masuda, Kohichi Ono, Toshiaki Yasue, and
Nobuhiro Hosokawa. A Survey of Software Quality
for Machine Learning Applications. In International
Conference on Software Testing, Verification and Val-
idation Workshops, pages 279–284. IEEE, 2018.

[260] Maskura Nafreen, Saikath Bhattacharya, and Lance
Fiondella. Architecture-based software reliability in-
corporating fault tolerant machine learning. Proceed-
ings - Annual Reliability and Maintainability Sympo-
sium, 2020-Janua, 2020.

[261] Shin Nakajima. Quality Assurance of Machine Learn-
ing Software. In 7th Global Conference on Consumer
Electronics, pages 601–604. IEEE, 2018.

[262] Raymond A Paul. A Machine Learning-Based Reli-
ability Assessment Model for Critical Software Sys-
tems. In 31st Annual International Computer Soft-
ware and Applications Conference, number Compsac,
pages 79–86, 2007.

[263] Rakesh Rana and Miroslaw Staron. Machine Learning
Approach for Quality Assessment and Prediction in
Large Software Organizations. In 6th IEEE Interna-
tional Conference on Software Engineering and Ser-
vice Science, pages 1098–1101. IEEE, 2015.

[264] D Shanthi, R K Mohanty, and G Narsimha. Appli-
cation of Machine Learning Reliability Data Sets. In
2018 Second International Conference on Intelligent
Computing and Control Systems (ICICCS), number
Iciccs, pages 1472–1474. IEEE, 2018.

[265] Jinyong Wang and Ce Zhang. Software reliability
prediction using a deep learning model based on the
RNN encoder – decoder. Reliability Engineering &
System Safety, 170(October 2017):73–82, feb 2018.

[266] Mauricio A De Almeida, De Mont, P O Box,
Mcgill College Ave, and K I N On. An Investigation
on the Use of Machine Learned Models for Estimating
Correction Costs. In Proceedings of the 20th inter-
national conference on Software engineering, pages
473–476, 1998.

[267] Thomas J Cheatham and Nancy J Wahl. Software
Testing : A Machine Learning Experiment. In 23rd
annual conference on Computer science, pages 135–
141, 1995.

[268] Subburaj Ramasamy and Indhurani Lakshmanan. Ma-
chine Learning Approach for Software Reliability
Growth Modeling with Infinite Testing Effort Func-
tion. Mathematical Problems in Engineering, 2017,
2017.

[269] Hamdi A. Al-Jamimi and Moataz A. Ahmed. Machine

learning approaches for predicting software maintain-
ability: a fuzzy-based transparent model. IET Soft-
ware, 7(6):317–326, 2013.

[270] Sara Elmidaoui, Laila Cheikhi, Ali Idri, and Alain
Abran. Machine Learning Techniques for Software
Maintainability Prediction: Accuracy Analysis. Jour-
nal of Computer Science and Technology, 35(5):1147–
1174, 2020.

[271] Sandeep Reddivari and Jayalakshmi Raman. Soft-
ware quality prediction: An investigation based on
machine learning. In Proceedings - 2019 IEEE 20th
International Conference on Information Reuse and
Integration for Data Science, IRI 2019, pages 115–
122. IEEE, 2019.

[272] Javier Alonso and Jordi Torres. Adaptive on-line
software aging prediction based on Machine Learning.
In IEEEIIFIP International Conference on Dependable
Systems & Networks, number July 2004, pages 507–
516, 2010.

[273] Shouyu Huo, Dongdong Zhao, Xing Liu, Jianwen
Xiang, Yingshou Zhong, and Haiguo Yu. Using
Machine Learning for Software Aging Detection in
Android System. In Tenth International Conference
on Advanced Computational Intelligence, pages 741–
746. IEEE, 2018.

[274] Sangho Lee, Changhee Jung, and Santosh Pande. De-
tecting memory leaks through introspective dynamic
behavior modelling using machine learning. In 36th
International Conference on Software Engineering,
pages 814–824, 2014.

[275] Yongquan Yan and Ping Guo. A Practice Guide of
Software Aging Prediction in a Web Server Based
on Machine Learning. SECURITY SCHEMES AND
SOLUTIONS, (June):225–235, 2016.

[276] Kui Zhang, Xu Wang, Jian Ren, and Chao Liu. Ef-
ficiency Improvement Of Function Point-Based Soft-
ware Size Estimation With Deep Learning Model.
IEEE Access, 4:1–1, 2020.

[277] Vincent François-Lavet, Peter Henderson, Riashat Is-
lam, Marc G. Bellemare, and Joelle Pineau. An in-
troduction to deep reinforcement learning, volume 11.
2018.

[278] Saad Shafiq, Christoph Mayr-Dorn, Atif Mashkoor,
and Alexander Egyed. Towards Optimal Assembly
Line Order Sequencing with Reinforcement Learn-
ing: A Case Study. IEEE International Conference
on Emerging Technologies and Factory Automation,
ETFA, 2020-Septe:982–989, 2020.

[279] Ana Barcus and Gilberto Montibeller. Supporting the
allocation of software development work in distributed
teams with multi-criteria decision analysis. Omega,
36(3):464–475, 2008.

[280] Philip Achimugu, Ali Selamat, Roliana Ibrahim, and
Mohd Naz Ri Mahrin. A systematic literature review
of software requirements prioritization research. In-
formation and Software Technology, 56(6):568–585,

VOLUME 4, 2016 31



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119746, IEEE Access

2014.
[281] Tore Dyba, Torgeir Dingsøyr, and Geir K. Hanssen.

Impact analysis of missing values on the prediction
accuracy of analogy-based software effort estimation
method AQUA. In Proceedings - 1st International
Symposium on Empirical Software Engineering and
Measurement, ESEM 2007, number 7465, pages 126–
135, 2007.

[282] Claes Wohlin, Per Runeson, Paulo Anselmo Da Mota
Silveira Neto, Emelie Engström, Ivan Do Carmo
Machado, and Eduardo Santana De Almeida. On the
reliability of mapping studies in software engineering.
Journal of Systems and Software, 86(10):2594–2610,
2013.

[283] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuz-
niarz. Guidelines for conducting systematic mapping
studies in software engineering: An update. Informa-
tion and Software Technology, 64:1–18, 2015.

[284] Barbara A. Kitchenham, David Budgen, and O. Pearl
Brereton. The value of mapping studies – A
participant-observer case study. In 14th international
conference on evaluation and assessment in software
engineering (ease), pages 1–9, 2010.

SAAD SHAFIQ is a PhD student at the Johannes
Kepler University. His research interests include
applications of machine learning, requirements
engineering, and empirical software engineering.
He received his degree in Software Engineering
(MSc) from the National University of Computer
and Emerging Sciences. He worked as a Software
Engineer with ample experience in software devel-
opment and data science.

ATIF MASHKOOR is a Senior Research Sci-
entist at Johannes Kepler University Linz (Aus-
tria). Previously, he was the Scientific Head at
Software Competence Center Hagenberg GmbH
– the Austrian center of excellence in data and
software science. He has taught at the Univer-
sity of Lorraine (France), COMSATS Institute of
Information Technology (Pakistan), and National
University of Modern Languages (Pakistan). He
worked as a Research Associate at the University

of Minho (Portugal). He holds a doctoral degree from the University of
Lorraine (France) and a master degree from Umeå University (Sweden), both
in Computer Science. Additionally, he studied Computational Linguistics at
Rovira i Virgili University (Spain).

CHRISTOPH MAYR-DORN is a Post-Doctoral
Researcher at the Institute for Software Systems
Engineering at the Johannes Kepler University,
Linz. He currently leads the FWF-funded Project:
“C4S – Coordination-centric Change and Con-
sistency Support”. Previously, Christoph held a
University Assistant (post-doctoral) position at
the Distributed Systems Group (TU Vienna). He
has worked since 2006 as a research assistant at
the Technical University of Vienna. He received

his degree in Computer Science and Economics (Wirtschaftsinformatik)
(MSocEcSc/Mag. rer. soc. oec.) in 2004 and his Dr. Techn./PhD in Computer
Science in 2009. His research interest is focused on Collaborative Engineer-
ing Environments, Adaptive Collaboration Patterns, Software Architecture,
Change Propagation, and Adaptive Processes. Awarded an FWF Schrödinger
Mobility Fellowship (Marie Curie Co-funded), Christoph was a visiting
researcher with Prof. Richard Taylor at U.C. Irvine from March 2011 to
August 2012.

ALEXANDER EGYED received the doctorate
degree from the University of Southern California
(USC). He is a Full Professor at the Johannes
Kepler University (JKU), Austria. He was with
Teknowledge Corporation (2000-2007) and Uni-
versity College London, United Kingdom (2007-
2008). He is most recognized for his work on
software and systems modeling—particularly on
the consistency and traceability of models. His
work has been published in more than 100 refereed

scientific books, journals, conferences, and workshops, with more than 3,000
citations to date. He was recognized as the 10th best scholar in software
engineering in Communications of the ACM, was named an IBM Research
Faculty Fellow in recognition to his contributions to consistency checking,
received a Recognition of Service Award from the ACM, a Best Paper
Award from COMPSAC, and an Outstanding Achievement Award from
USC. He has given many invited talks, including four keynotes, served
on scientific panels and countless program committees, and has served as
program (co)chair, steering committee member, and editorial board member.
He is a member of the IEEE, IEEE Computer Society, ACM, and ACM
SigSoft.

32 VOLUME 4, 2016


