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Introduction
The commonly known five Vs of big data are volume, variety, value, veracity, and velocity. 
The enormous volume of big data poses unique challenges, e.g., in a binary classification 
problem, the number of instances in the positive class (the class of interest) is miniscule 
compared to the number of instances in the negative class. This brings up issues such 
as how to handle the very high-class imbalance in big data, the presence of class rarity 
of the positive class instances in big data [1–4], and modeling bias toward the negative 
class (the class of less interest). Variety indicates that big data can have data obtained 
from multiple sources. Value is often considered the most important aspect of big data, 
and that is because mining such large data corpus should yield results that of practical 
business value to the end user. Veracity in big data often refers to the truthfulness of the 
data points in the big data set—for example, how to handle missing data points? How to 
cleanse the data set? And how accurate are the data points? Velocity indicates the rate 
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at which data is incoming and how it could potentially change the characteristics of the 
volume of big data. Is it better to have limited data in real time than lots of data a low 
speed?

While we do not attempt to put focus on every aspect of big data in this paper, we 
focus on how one-class classification (OCC) can aid specific issues attributed to big data. 
Some of these include severe class imbalance, presence of class rarity, data cleansing for 
improved data quality, feature selection, and data volume reduction. Toward that end, it 
is important to clearly understand the area of one-class classification in the field of data 
mining and machine learning. In this paper, we put emphasis on exploring various works 
done in one-class classification. In addition, we comment on whether sufficient work has 
been done on OCC with big data to provide researchers with techniques to address big 
data problems mentioned above. We felt a current survey of OCC methodologies would 
provide insight into their use for addressing some of the specific problems encountered 
with big data.

In a binary classification problem with instances from the positive and negative 
classes, a traditional machine learning algorithm aims to discriminate between the two 
classes and build a prediction model that can accurately classify unlabeled (previously 
unseen) instances of the two classes. However, in the case of class imbalance, the num-
ber of instances in the negative class is disproportionately high compared to the same 
in the positive class (the class of interest). Under such circumstances, a typical classifier 
will show bias toward the class with the larger number of instances, i.e., the negative 
class. When the class imbalance is severe, accurately classifying the positive class is very 
challenging and sometimes impractical with traditional binary classifiers. For example, 
detecting illegal bank transactions is fraught with severe class imbalance as the num-
ber of positive instances (illegal transactions) is much smaller than the number of nega-
tive instances (legal transactions). In such a scenario, if data on the positive instances is 
available while data on the negative instances is either not available or is unlabeled, how 
does one perform classification-based prediction modeling? To address such a problem, 
approaches based on the one-class classification (OCC) concept can be used.

One-class classification is a specific type of multi- or binary-classification where 
the classification problem is addressed by examining and analyzing instances of only 
one class, which is usually the class of interest. In an OCC problem scenario, labeled 
instances of the positive class(es) are either not available or are not in adequate numbers 
to train a traditional machine learner. Revisiting the problem of classifying legal/illegal 
bank transactions, OCC can be used to classify a previously unseen transaction as legal 
or illegal. We discuss OCC further in the next section. In this study, we present a survey 
of approaches, methodologies, and algorithms for OCC in the literature approximately 
over the last 10–11  years, i.e., 2010–2021 (May). The goal of the survey is to provide 
a good cross section of different methods and approaches to OCC and its applications 
investigated during the last 10–11 years and is not meant to be an exhaustive survey of 
all related works.

Outlier detection and novelty detection are observed as the primary areas of use 
for one-class classification in our surveyed works. In addition, we also categorize sur-
veyed works based on the use of deep learning in the context of one-class classification. 
Outlier detection and novelty detection have a subtle difference in their concepts and 
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applications. In novelty detection, the anomalies are detected in the test dataset while 
the training dataset does not contain any anomalous data points. In outlier detection, 
the training dataset may contain both normal and anomalous data points and the task is 
to determine the boundary(ies) between the two. The boundary is subsequently applied 
on the test dataset, which again may contain both normal and anomalous data points.

The remainder of the paper is structured as follows. “One-class classification” section 
provides further detail on OCC and its primary types. “Summary of surveyed works” 
section provides detailed summaries of the surveyed works on OCC in the context of 
outlier detection, novelty detection, and application of deep learning in OCC. This sec-
tion also discusses previous survey papers on OCC, and how this paper is different from 
those papers. “Discussion” section provides a discussion of the surveyed works and the 
overall OCC problem. “Conclusion” section provides a conclusion of this paper, includ-
ing some suggestions for future work.

One‑class classification
In several real-world datasets, labeled examples are available for only one class. Since 
the number of unlabeled samples can be large, it increases the learning time for standard 
classification approaches, primarily due to the large size of the dataset. At this point, one 
of the solutions to solve the problem of classification is applying one-class classification 
to classify the unseen transaction as legal (normal) or illegal (abnormal). Since one-class 
classification is performed by only instances of one class, it involves more complex solu-
tions to attain accurate results. One-class classification (OCC) is a specific type of multi- 
or binary-classification task done by only instances of one class. The other class samples 
are either not available or not adequate in numbers for training a more traditional (non-
OCC) classifier. In some cases, the number of collected samples is unsatisfactory.

To clarify the concept of OCC, we consider some examples. Consider specific prob-
lems such as granting credit cards to customers. In this example, organizations that give 
credit cards need to evaluate new customers’ applications or the behavior of existing 
customers to accept or reject them. Since most customers pay their loan and very few 
people default, we do not have an acceptable portion of defaulters, and the datasets are 
extremely imbalanced. As another example, the normal data regarding device status are 
abundant in the health monitoring of turbines or offshore platforms. However, abnor-
mal statuses occur infrequently, and experts are interested in detecting those rare condi-
tions. Other similar examples can be cited to explain the use and importance of OCC.

The class of well-sampled adequate instances of the training set is assumed as the tar-
get class while the outlier class instances are very sparse or unavailable. Unavailability of 
the outlier class may result in measurement difficulty, or the high cost of collecting the 
examples. In several one-class classification algorithms, finding the decision boundary 
over the training set is a goal. The primary characteristic of OCC is that it can distin-
guish one class object from other objects by only one-class learning. It means that even 
when there is no sample of another class, OCC is applicable. Furthermore, since one of 
the goals of OCC is identifying hidden outliers against target-class samples, producing 
robust decision boundaries is a fundamental part of OCC. The objective of a one-class 
classifier may be obtained as different types, such as assigning a class label, considering 
an area around one class, or belonging (and not-belonging) of an object to a class. One 
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of the popular reasons for utilizing OCC is its potency in detecting abnormal objects or 
outliers or suspicious patterns. Using just target class objects for the training empowers 
OCC to be a practical choice of outlier detection and novelty detection.

The lack of instances from one-class has the potential to disrupt the class discrimina-
tion process. Having only one well-trained class makes the decision boundary differenti-
ation among its examples hard. Moreover, single class instances impose problems on the 
feature selection [5, 6] as we must deal with only one class as compared to the traditional 
binary or multi-class problem. Consequently, finding the best subset of features to have a 
proper separation between classes is burdensome. As outlier instances are not available, 
the training set only contains target instances, making the data boundary non-convex 
[7]. As a result, additional number of instances are needed to train the model in com-
parison with the more conventional or traditional multi/binary classification problem. In 
a typical one-class classification, the decision to accept a data point as an inlier or out-
lier is based on two parameters: a parameter to calculate the distance of a sample to the 
target class and a threshold limit defined by a user to compare the distance and accept 
or reject the object as inlier [8]. Khan et  al. [9] categorize OCC techniques based on 
the model of the classifier, the data types being analyzed, and temporal relations of the 
features. The model of the classifier is divided into three types, such as density-based, 
boundary-based, and reconstruction-based.

Density-based one-class classification methods perform based on estimating the train-
ing data density, which is compared to a threshold, a model parameter. These types of 
methods are applicable in well-sampled data with a high number of training samples. 
The Gaussian Method, Mixture of Gaussians, and Parzen Density are categorized as 
density-based methods. In boundary-based methods, a closed border and boundary 
around the inliers are built, which makes the optimization of the boundary a modeling 
challenge. Any sample outside the border of the boundary is considered as an outlier. 
One-class support vector machine (OCSVM) is one of the kernel-based methods based 
on support vector machines (SVMs). OCSVM is built by developing a hyperplane that 
maximizes the distance from the origin and separates the outliers from inliers [10]. 
Another kernel-based one-class classification method, Support Vector Data Description 
(SVDD), builds a hypersphere with a minimum radius, which comprises target samples, 
and any sample outside of the hypersphere is considered as outlier [11]. Boundary-
based methods require fewer data samples comparing to density-based methods for 
similar performances. In reconstruction-based methods, domain-specific historical data 
(prior knowledge) is needed as an assumption in generating the models. Outlier sam-
ples would typically not comply with the historical data assumption embedded in the 
models, and thus, any sample with a high reconstruction error is considered an outlier. 
In this method, an input pattern is represented as output, and the reconstruction error 
is minimized. The K-means clustering-based one-class classifier [12], Principal Compo-
nent Analysis (PCA) based one-class classifier [13], Learning Vector Quantization (LVQ) 
based one-class classifier [14], and Auto-Encoder [15] or Multi-layer Perceptron (MLP) 
[16] methods are reconstruction-based models.

An ensemble-based one-class classifier is the combination of multiple one-class classi-
fiers to collectively benefit from each of them. Desir et al. [17] proposed One-Class Ran-
dom Forest (OCRF), which boosts some weak classifiers and where an artificial outlier 
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generation process is integrated to change the one-class classification to a binary learner. 
One-Class Clustering-based Ensemble (OCClustE) builds clusters from feature space 
[18]. This method considerably reduces processing time. One-Class Linear Program-
ming (OCLP) is an efficient method to detect dissimilarity representations [19]. The 
OCLP method has the advantage of reducing the number of objects for testing. Graph-
based semi-supervised one-class classification with OCSVM is used to detect abnormal 
lung sounds with few labeled normal samples [20]. The authors built a spectral graph 
to show relationships between samples. A comprehensive comparison of extreme learn-
ing (ELM) based one-class classification, which includes two types of boundary-based 
methods and reconstruction-based methods, is presented by [21]. Weighted one-class 
support vector machine with incremental learning and forgetting is presented by Krawc-
zyk and Wozniak [22]. In incremental learning, the data is regularly used to increase the 
model knowledge, which changes the prior decision boundaries. This method is useful 
for data streaming modeling and analysis.

Summary of surveyed works
A select group of works on one-class classification is summarized in this section. The 
select group is obtained from OCC related works during the last decade (2010–2021). 
While not meant to be an exhaustive survey of all OCC related works, we have attempted 
to present a good cross section (to the best of our knowledge) of one-class classification 
works published during the last ten years. Based on the focus and approach of the sur-
veyed work, we group them into three categories: outlier detection and OCC, novelty 
detection and OCC, and deep learning and OCC.

Outlier detection and OCC

Bartkowiak [7] presents a case study on detecting abnormal patterns (or masqueraders) 
in computer system calls. The data set represents 50 users with each having a sequence 
of 15,000 system calls. The collection of system calls was abstracted into two sets, i.e., 50 
blocks (Part A) and 100 blocks (Part B), each containing 100 calls. Part A contained no 
masqueraders, while in Part B some of the blocks were replaced by blocks from 20 users 
posing as masqueraders. The OCC problem here is to detect these masquerader blocks. 
A detailed analysis is provided for the blocks of one user that has about 20 abnormal 
blocks. In masquerader detection, decision boundaries are built by using OCC to model 
the density of data. Constructions are based on classic Gaussian distribution, robust 
Gaussian distribution, and SVM. The author shows that to monitor an unusual event 
in the context of the case study, applying OCC methods is practical. It is also shown 
that reconstruction methods may be useful since the user investigated about half of the 
implanted blocks (masqueraders) needed to be detected. In addition to the case study, 
the paper discusses the benefits of statistical method and machine learning methods for 
network anomaly detection. The study could have more reliable appeal for masquerader 
detection if actual alien (unauthorized) users were involved in the data set and were 
detected. Moreover, a case study with a larger number of users and system calls would 
lend to improved generalizability of the work.

Leng et  al. [23] present a one-class classifier based on extreme learning machine 
(ELM), in which the hidden layer of the neural network does not need tuning, and the 
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output weights are computed analytically leading to relatively faster learning time. They 
compare their proposed method with the autoencoder neural networks, with a recon-
struction method for building a one-class classifier. An outlier detection analysis in the 
context of seven UCI data sets and three artificially generated data sets is conducted. 
While both random feature mappings and kernels can be used for the proposed clas-
sifier, the latter yields better results than the former. The primary comparative study 
between their ELM-based model and the autoencoder neural network suggested the for-
mer has an analytical solution that obtains better generalization performance and that 
too at relatively faster network learning times. A downside of this study is that the data 
sets investigated in the study are relatively small in size, leaving the research gap of how 
the proposed method would scale up to much larger data sets especially since neural 
networks are notorious for relatively slow learning. How would the authors’ ELM-based 
approach work effectively with big data?

Gautam et  al. [21] present six OCC approaches, grouped into two categories: three 
reconstruction-based OCC methods and three boundary-based OCC methods. The pro-
posed OCC methods are based on ELM and online sequential extreme learning machine 
(OSELM). The authors discuss both online and offline approaches for OCC. Among 
the four offline methods, two approaches perform random feature mapping while the 
other two perform kernel feature mapping. The case study data sets consisted of two 
artificially created data sets and eight benchmark data sets from different domains for 
evaluating the performance of the OCC models. The authors state that the proposed 
classifiers perform better than ten traditional OCC and two ELM-based classifiers. ELM, 
in the context of OCC, is used by other studies as well, e.g., Dai et al. [24] and Leng et al. 
[23]. While the authors use some benchmark datasets, their analysis and conclusion are 
also based on artificially generated datasets.

Dreiseitl et al. [25] examine outlier detection with one-class support vector machines 
in the context of detecting abnormal cases of melanoma prognosis. The one-class clas-
sification aims to model the distribution of melanoma patients who have not obtained 
metastases status, which in this context is the normal class (case) for patients with mela-
noma. The case study data was obtained from the Department of Dermatology of the 
Medical University of Vienna. The post-cleansing data set consisted of 270 serologic 
blood tests, including those from 37 patients with metastatic disease and 233 patients 
without metastatic disease. The one-class SVM approach was compared with regular 
two-class SVM and Artificial Neural Networks (ANN) algorithms. These were investi-
gated using the WEKA data mining tool [26]. Their empirical work suggests that one-
class SVMs are a good alternative to standard classification algorithms in the case where 
there are only few cases available from the class of interest, i.e., patients with metastatic 
disease in this context. The one-class SVM models performed better than the two-class 
models when the latter used less than half the number of cases in the minority class. A 
potential problem with this study is the very small data set size of the case study, and 
whether their approach is scalable to larger data sets, such as big data.

Mourão-Miranda et al. [27] present a method that classifies patient brain activity by 
one-class SVM (OCSVM). The method analyzes Functional Magnetic Resonance Imag-
ing (fMRI) feedback to sad facial expressions in patients with depression. They exam-
ine the fMRI of those patients, compare them to healthy (not depressed) patients, and 
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conclude that fMRI responses of depressed patients are classified as outliers. The data 
set consisted of 19 depressed patients and 19 not-depressed patients. The OCSVM clas-
sification reveals that there is a strong interconnection between healthy patient bound-
aries and the Depression Hamilton Rating Scale. Moreover, two subcategories among 
patients are discovered by OCSVM. These subcategories are categorized based on the 
patient’s reactions to treatment. To classify the individual as depressed and healthy, the 
proposed algorithm used two types of brain data such as voxel (the voxel size is the spa-
tial 3D resolution of an image) of whole brain and regions of the brain, and it extracts 
around 500 for the whole brain and 348 features for the region. The consideration of 
brain region-based images and using OCSVM to treat patients makes this study a nota-
ble work in the application of OCC in the healthcare. The very small data set size of the 
case study makes it difficult to make broad generalization conclusions, especially in the 
context of big data.

Bartkowiak and Zimroz [28] investigate the planetary gearbox (placed in a bucket 
wheel excavator) vibration signal and detected outlier data. They collected the two 
datasets from segmented vibration signal spectrums as a “Good” dataset and a “Bad” 
dataset. In the case that the gearbox is in bad condition, it makes many harmonic sig-
nals with high Signal to Noise Ratio (SNR), and when in good condition, harmonics and 
SNR become relatively lower. The number of samples in the good dataset is 951, with 15 
attributes. They applied the Neuroscale technique (a visualization method) to reduce the 
attributes to two features, and thus, the data can be plotted on an x–y plane. To estimate 
the distribution of the data, the authors used three methods, including Parzen Windows, 
Support Vector Data Description (SVDD), and a mixture of Gaussians. Since these 
methods are boundary methods, the decision boundary of one-class is built for the good 
data, and the bad data are used to test the models. Results show that on the test dataset, 
the models identify 98% as bad, i.e., outliers. This work is a good example of finding out-
liers as faults in a mechanical system as such information is useful in system diagnostics.

Desir et  al. [29] present an empirical study to investigate the behavior of their pre-
viously proposed One Class Random Forests (OCRF) [17], which is based on the ran-
dom forest learner and a novel outlier generation procedure. The latter reduces both the 
number of artificial outliers to create as well as the size of the feature space in which the 
outliers are generated. In [29] the authors present, in the context of several UCI datasets, 
a comparative case study of OCRF with a number of reference one class classification 
algorithms, namely Gaussian density models, Parzen estimators, Gaussian mixture mod-
els and one class support vector machines. Their work shows that the OCRF approach 
with outlier generation performs similar to or better than the above-mentioned refer-
ence algorithms. Moreover, their proposed solution demonstrates stable performance 
in the presence of higher dimension feature spaces, where some other OCC algorithms 
may not fare well. While not explored in [29], we feel their approach can potentially be 
investigated for big data where a large number of features is often a problematic issue.

Krawczyk et al. [18] present a multiple classifier system based on weighted one-class 
support vector machines (OCSVM) and in the context of clustering of the data points 
in the target class. A multiple classifier system builds an ensemble of classifiers, which 
in this case is a classifier built upon clusters derived from the pool of instances of the 
target class. The authors propose “an elastic and efficient framework for this task, which 
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requires only the selection of several components, namely, the clustering algorithm, 
individual classifier model, and fusion method [18].” Empirical case studies with sev-
eral benchmark datasets (including 19 from the UCI library) demonstrate that the pro-
posed method outperforms several OCC methods, including OCSVM for single class 
and multi-class problems. The authors do not compare with SVDD, an effective OCC 
approach based on our observation of the various studies explored in the survey. Moreo-
ver, all of the case study datasets were relatively small in size, putting the question of 
model scalability up front.

Lang et  al. [20] present a novel approach using a graph-based semi-supervised 
OCSVM. The application domain is the detection of abnormal lung sounds which is 
important in the diagnosis of pulmonary diseases and patient monitoring in telemedi-
cine. The proposed approach can describe normal lung sounds and detect the abnormal 
ones by using a small number of labeled normal instances and a large number of unla-
beled instances. “A spectral graph is constructed to indicate the relationship of all the 
samples, which enriches the information provided by only a small number of labeled 
normal samples. Then, a graph-based semi-supervised OCSVM model is built, and its 
solution is provided. Employing the information in the spectral graph, the proposed 
method can enhance the effect of recognition and generalization which are crucial for 
the effective detection of abnormal lung sounds.” [20]. The performance of the proposed 
method improves as the number of unlabeled abnormal instances increases.

Krawczyk and Woźniak [22] address the problem of coping with data streams espe-
cially in the presence of concept-drift. The authors discuss that OCC is a promising 
research direction for data stream analysis and can be used for binary classification with 
only instances from one class, outlier detection, and novelty detection. The authors pre-
sent a novel weighted OCSVM, which can deal with gradual concept drift. The proposed 
OCC can adapt its decision boundary to new, incoming data as it also employs a forget-
ting scheme that boosts the ability of the classifier to follow the changes in the model. 
Moreover, different strategies for incremental learning and forgetting are proposed, 
which are evaluated in the context of several case studies. The primary conclusion was 
the effective usability of the proposed OCC for the problem of data stream classification 
with the presence of concept drift. It would be interesting to observe the efficacy of the 
proposed solution in the context of concept drift in big data. A comparison with other 
popular OCC methods would provide stronger validation for the proposed method.

Das et al. [30] study OCC in the context of applying sensor networks in smart homes 
to monitor activities of persons with dementia. Monitoring such events is invariably 
associated with detection errors, which in the context of [30] implies that the person 
(with dementia) does not correctly complete an activity. The problem of activity com-
pletion and errors is formulated as one class classification for outlier detection. Case 
studies were based on monitoring completion or lack thereof of common household 
activities, such as vacuuming, dusting, watering plants, answering phones, etc. A prob-
lem in completing an activity completely is considered an outlier. Different types of sen-
sors for motion detection and pressure detection vibration are used for data collection. 
The proposed classification model, Detecting Activity Errors in Real-Time (DERT), is 
trained with no-error data (i.e., one class) consisting of 580 data points. DERT, based 
upon OCSVM, is shown to outperform a simple baseline outlier detection approach. 
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The validation of the proposed approach needs support via a comparative study with 
other OCC techniques, including SVDD.

Deng et  al. [31] focus on the problem of outlier detection in IoT sensor data. They 
developed the One-Class Support Tucker Machine (OCSTuM), which is an unsuper-
vised outlier detection approach involving the Tucker decomposition technique. Tucker 
decomposition represents tensors by the production of a core tensor and factor matri-
ces. The case study data is inflicted with the high dimensionality problem, requiring 
feature subset selection as part of the solution. The authors propose a method (called 
GA-OCSTuM) applying a genetic algorithm that improves feature selection and outlier 
detection in OCSTuM. Their work involved several datasets including the Montes Sen-
sor dataset, TAO Project Sensor dataset, Daily and Sports Activities dataset (DSAD), 
Gas Sensor Arrays in Open Sampling Settings dataset (GSAOSD), and University of 
South Florida Gait Dataset (USFGD). The OCC training data set is clean without any 
outliers, but the testing data is mixed with 5% outlier samples. The proposed algorithms 
were compared with baseline methods, for example OCSVM. The empirical results show 
that the GA-OCSTuM approach outperforms the baseline methods (including SVDD, 
R-SVDD, OCSVM, and OCSTuM) for all datasets. The datasets considered in the study 
is less of a big data problem than a high dimensionality problem in the context of OCC 
outlier detection. Moreover, genetic algorithms (GAs) are known to have slow compu-
tational performance, and the study does not shed light onto GAs impact on the time 
performance of the proposed solution, GA-OCSTuM.

Gautam et al. [32] developed a Deep Kernel-based One-class Classifier (DKRLVOC) 
model to reduce object variance and improve feature learning with the aid of a couple of 
autoencoders. The proposed method is examined over 18 datasets and two real-world 
datasets, which consist of an Alzheimer’s detection by the fMRI dataset and breast 
cancer detection by pathological images dataset. The proposed minimum variance 
embedded deep kernel-based one class classification approach consists of three layers: 
minimum variance embedded kernel-based autoencoder, kernel-based autoencoder, and 
kernel-based OCC. The approach is compared with three kernel-based extreme learning 
machine approaches, including OCKELM, VOCKELM [33], and ML-OCKELM. Addi-
tional details on these models are presented in [32]. Empirical results show that for the 
smaller biomedical datasets, the proposed approach performed best with respect to the 
F1 score. For the mid-size biomedical datasets, the proposed approach is higher than 
that of ML-OCKELM and OCKELM, but lower than that of VOCKELM. The authors 
compare the different models in the context of small and medium biomedical datasets, 
which puts some doubt on how their recommended approaches would perform on 
much larger datasets, such as big data.

Kauffmann et  al. [34] developed a method, One-Class Deep Taylor Decomposition 
(OCDTD), to explain outliers in one class support vector machines. After the outlier 
detection process, it is beneficial to provide an interpretive explanation, which indicates 
that those inputs are responsible for generating the outliers. The explanation maxi-
mized the advantage of the structure created by a neural network. In their approach, an 
OCSVM is fed to a “neuralized” process to reveal the structure of the explanation of out-
liers. Subsequently, the structure is fed to the Deep Taylor Decomposition and the pre-
diction is propagated backward to the show the inputs that are effective in generating the 
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outliers. The features that are the most impactful in generating outliers are represented 
as a heat map. To maximize the advantage of using a neural network, the Layer-wise 
Relevance Propagation technique is applied, where a collection of propagation rules is 
applied to propagate the prediction backward [35]. Given backward propagation is used 
in the neural network environment, a computational time performance study would 
provide an improved insight into the experimental results and analysis of the study.

Aguilera et  al. [36] propose two variants of the k-Strongest-Strengths (kSS) algo-
rithm [37] in the context of OCC. The two algorithms are named OCC-kSS and Global 
Strength Classifier (gSC) and are evaluated using depression and anorexia benchmark 
datasets. In addition, the authors introduce mass in the context of the kSS methods as 
a measure to determine relevance of texts for depression and anorexia in social media 
data. The algorithms are evaluated with four datasets, named Dep2017, Dep2018, 
Anx2018, and Anx2019, which are datasets from the 2017–2109 editions of the eRisk 
shared tasks. The authors conclude that in general the gSC algorithm yielded better 
results than the OCC-kSS algorithm. The work lacks comparison with other existing 
OCC approaches, especially several of the ones discussed in this paper.

Wang et al. [38] propose a combined approach to anomaly detection in the context of 
network intrusion detection systems (NIDS) using a modified version of the KDD intru-
sion detection dataset, abbreviated as NSL-KDD. The approach combines Sub-Space 
Clustering (SSC) and OCSVM for anomaly detection for NIDS, and compare the same 
with the K-means, DBSCAN, and SSC-EA methods [39]. Based on true positive rate, 
false positive rate, and the ROC curve (for two thresholds), the authors demonstrate 
their approach yields better performance than the other three methods. The computa-
tion time of the proposed method was reported to be higher than that of K-means and 
DBSCAN. The KDD dataset and its variations are a bit outdated in network security 
and intrusion detection. There are more current datasets in the area for researchers to 
explore, which however, is not done in their study.

In the context of autonomous structural health monitoring of bridges, Favarelli and 
Giorgetti [40] present a machine learning approach toward the automatic detection of 
anomalies in a bridge structure from vibrational data. They propose two anomaly detec-
tion methods, named One-Class Classifier Neural Networks, OCCNN and OCCNN2. 
The case study data is based on a database of accelerometric data collected for a bridge 
structure (Z-24) [40]. The OCCNN detects the normal class boundaries of the feature 
space under normal operating conditions using a two-step approach: coarse boundary 
estimate and fine boundary estimate. The OCCNN2 is based on combining the two-
step approach of the OCCNN method with an autoassociative neural network (ANN) 
[40]. The two approaches are compared with some existing anomaly detection methods, 
including: PCA, Kernel PCA, Gaussian mixture model (GMM), and ANN. The OCCNN 
method demonstrates better accuracy and F1 scores compared to the other approaches; 
however, the OCCNN2 method demonstrates the best performance with respect to 
responsiveness, accuracy, and F1 score.

Mahfouz et  al. [41] present an OCSVM based model for network intrusion detec-
tion, where the model trains on normal network traffic samples forming regions in the 
n-dimensional feature space where the normal data has a high probability density. Sub-
sequently, data samples that do not occur within or represent those (normal) regions 
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are tagged as anomalous (i.e., intrusions). While their definition of network instruction 
anomaly detection is not novel, the paper’s primary contribution lies in the network 
intrusion dataset created and used in its case study. The authors implement the modern 
honey network (MHN), a centralized server to manage and collect data from honeypots 
[41]. They create a data set tool using Excel that aggregates data from the separate net-
work monitors (of the different honeypots) into a single data set. With a 70:30 training 
and testing data split, the accuracy of the proposed model is slightly under 98%. The 
authors do not compare their approach with the several existing methods for network 
intrusion anomaly detection.

In a preliminary study, Zaidi and Lee [42] discussed that existing methods for bug tri-
age in software development cannot assign a newly added developer to the bug report. 
“Bug triage is a software engineering problem in which a developer is assigned to a bug 
report.” [42]. The authors cite existing methods that use social network analysis, topic 
modeling, mining repositories, machine learning, and deep learning for the task where 
a developer is assigned to a bug report. However, such methods cannot assign a newly 
added developer to the bug report. Bug report data from the Eclipse [43] and Mozilla 
[44] software projects are used in their empirical study. An OCSVM model is built using 
the positive samples, which can thus detect negative samples. The authors state their 
empirical results are acceptable, and additional research is warranted for the challenging 
problem of assigning a newly added developer to the bug report.

Table  1 summarizes the key information of the surveyed work on OCC and outlier 
detection.

Novelty detection and OCC

As stated previously, outlier detection and novelty detection have a subtle difference 
in their concepts and applications. In novelty detection, the anomalies are detected in 
the test dataset while the training dataset does not contain any anomalous data points. 
In outlier detection, the training dataset may contain both normal and anomalous data 
points and task is to determine the boundary(ies) between the two, and then apply the 
boundary on the test dataset which again may contain both normal and anomalous data 
points.

Clifton et al. [45] utilize an improved OCSVM approach for the novelty detection in 
the context of identification of patient deterioration based on vital-sign health data, such 
as respiration rate, blood oxygen saturation, heart rate, etc. The novelty detection model 
is trained by normal data and then examined to classify test data as normal or abnor-
mal. The training data is collected by monitoring 19 patients, yielding a dataset of 1500 
instances. Two models, Gaussian mixture model (GMM) and the OCSVM, are tested 
with the proposed method and the OCSVM outperforms the GMM model. The case 
study data is collected from the Step-Down Unit (SDU) which is less acute than data 
from the Intensive Care Unit. The very small size of the dataset puts some doubt in the 
generalization of the results and conclusions obtained.

Kemmler et al. [46] proposed a novelty detection framework with a Gaussian Process 
regression and approximate Gaussian classification in the context of one class classifica-
tion. Their approach is compared with novelty detection methods of SVDD and Parzen 
Density Estimation methods. Experiments are performed using datasets from multiple 
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domains and using different image kernel functions. The case study results demonstrate 
that the proposed approach either performs similar to, or outperforms, both of the other 
methods. The application of their approach, especially Gaussian process regression-
based OCC scores, would be an interesting study in understanding the class rarity prob-
lem in big data.

Beghi et al. [47] investigated an OCSVM approach for novelty detection in HVAC sys-
tems. Monitoring likely faults preemptively helps save costs and energy. In such systems, 

Table 1 Surveyed works on outlier detection and OCC

# Paper Method(s) Domain

1 Anomaly, novelty, one-class classification: a 
comprehensive introduction [7]

Gaussian, OCSVM Masquerader detection

2 One-class classification with extreme learning 
machine [23]

OCC based on ELM UCI datasets

3 Outlier detection with one-class SVMs: an 
application to melanoma prognosis [25]

OCSVM, ANN Healthcare

4 Patient classification as an outlier detection 
problem: an application of the one-class sup-
port vector machine [27]

OCSVM Healthcare

5 Outlier analysis and one class classification 
approach for planetary gearbox diagnosis [28]

Parzen, SVDD, Gaussian Vibration signal
Outlier detection

6 One class random forests [29] OCRF UCI datasets

7 Clustering-based ensembles for one-class clas-
sification [18]

OCSVM Miscellaneous datasets

8 Graph-based semi-supervised one-class sup-
port vector machine for detecting abnormal 
lung sounds [20]

Graph-based Semi-
Supervised OCSVM

Healthcare

9 On the construction of extreme learning 
machine for online and offline one-class clas-
sification—an expanded toolbox [21]

ELM, OSELM Miscellaneous datasets

10 One-class classifiers with incremental learning 
and forgetting for data streams with concept 
drift [22]

Weighted OCSVM Streaming data classification

11 One-class classification-based real-time activity 
error detection in smart homes [30]

OCSVM Smart home sensors
Healthcare

12 An intelligent outlier detection method with 
one class support tucker machine and genetic 
algorithm toward big sensor data in Internet of 
Things [31]

OCSTuM, GA-OCSTuM Miscellaneous datasets
Internet of things

13 Minimum variance-embedded deep kernel 
regularized least squares method for one-class 
classification and its applications to biomedical 
data [32]

Deep Kernel OCC Miscellaneous datasets 
Healthcare

14 Towards explaining anomalies: a deep Taylor 
decomposition of one-class models [34]

OCDTD
OCSVM

Miscellaneous datasets

15 Depression and anorexia detection in social 
media as a one-class classification problem 
[36]

OCC-kSS, gSC Healthcare

16 A Hybrid Unsupervised Clustering-Based 
Anomaly Detection Method [38]

SSC, OCSVM Network intrusion detection

17 Machine Learning for Automatic Processing 
of Modal Analysis in Damage Detection of 
Bridges [40]

OCCNN, OCCNN2 Bridge structural vibration analysis

18 Network intrusion detection model using one-
class support vector machine [41]

OCSVM Novel NIDS Dataset

19 One-class classification based bug triage Sys-
tem to assign a newly added developer [42]

OCSVM Software bug triage
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data for anomalies are rare and usually unavailable. The authors study four types of 
faults, including condenser fouling, refrigerator leak, evaporator water flow reduc-
tion, and condenser water flow reduction. The case study data investigated is obtained 
from the American Society of Heating, Refrigeration and Air Conditioning Engineers 
(ASHRAE). The authors incorporate Principal Component Analysis (PCA) with the 
OCSVM model and observed that the AUC performance improves when combining 
PCA with OCSVM as compared to using OCSVM alone. The authors do not compare 
with other novelty detection methods in the literature, which limits the generalization 
and application validity of their work in a broader sense.

Domingues et al. [48] propose an unsupervised modeling approach for novelty detec-
tion based on Deep Gaussian Processes (DGP) in autoencoder configuration. The pro-
posed DGP autoencoder is trained by approximating the DGP layers using random 
feature expansions, and by conducting stochastic variational inference on the subsequent 
approximate model. The DGP autoencoder can model the complicated data distribu-
tion and helps to propose a scoring method of novelty detection. In the context of seven 
UCI datasets and four datasets obtained from an international airline service provider, 
the proposed model is compared to the Isolation Forest and Robust Density Estimation 
methods. The empirical results demonstrate the proposed model outperforms the other 
two methods. While the authors experiment on multiple datasets, most of them are rela-
tively small in size, providing little insight into their approach’s performance on big data.

Sadooghi and Khadem [49] introduce a preprocessing step to OCSVM toward improv-
ing its performance. The context of their work is novelty detection in bearing vibration 
signals of a rotating system. The preprocessing consists of a novel denoising scheme, 
feature extraction, vectorization, normalization, and dimensionality reduction, each of 
which is implemented using a detailed systematic approach. The case study is obtained 
from the Case Western Reserve University bearing data center, the Tarbiat Modares 
University test rig data, and the PRONOSTIA platform data. For further details on these 
data resources, the reader is referred to [49]. The proposed systematic approach shows 
that nonlinear features alone elevate the performance of novelty detection effectively, 
including improving the classification rate of OCSVM significantly (up to 95% to 100% 
in some cases). The proposed modification schemes to OCSVM appear to be tightly 
coupled with the domain of the case study, and the application of those schemes to other 
domains is not identified which limits the application of the same to other domains.

Yin et al. [50] investigate and propose an active learning-based approach to improve 
SVDD in the context of novelty detection. SVDD is one of the most widely used 
approach for novelty detection, and hence making improvements to it is a good research 
direction adopted by the authors in this paper. However, SVDD may perform poorly 
when the amount of data is too large, or the data is of poor quality. Describing the data 
distribution with a small number of labeled samples has its benefits in machine learn-
ing, e.g., one can assure the limited data is noise free and of good quality. The pro-
posed active learning-based approach for SVDD can reduce the amount of labeled data 
needed, generalize the distribution of the data, and reduce the impact of noise by using 
the local density to guide the selection process. The case study data includes three UCI 
datasets (Ionosphere, Splice, and Image Segmentation) and the Tennessee Eastern Pro-
cess benchmark data. The empirical results show that the active learning based SVDD is 
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significantly better for the UCI datasets. The active learning is based on supplanting the 
unlabeled data with data labeled by experts (“specialists”), but little to no information is 
provided on the expert-based data labeling process. Moreover, while the paper’s goal is 
to incorporate active learning with SVDD for improving its performance on larger data-
sets, a study on varying the dataset size and investigating the performance of the active 
learning based SVDD is not performed.

Mohammadian et  al. [51] study a novelty detection method based on OCSVM to 
detect anomalous activities of Parkinson and Autism patients. Patient monitoring with 
wearable and Inertial Measurement Unit (IMU) sensors has gained considerable atten-
tion in Parkinson and Autism Spectrum Disorders (ASD) diseases. Early detection of an 
unusual physical move by a patient is crucial and helpful in terms of their care and treat-
ment. The authors compensate for the usual deficiency of OCSVM’s low performance in 
large data and noisy data by using deep normative modeling. Because of the limitation of 
labeled data, a normal model is generated to demonstrate the normal movement of the 
patient, and large (substantial) changes to the normal movement model are considered 
as abnormalities. The method is tested on the Freezing of Gait (FOG) and Stereotypi-
cal Motor Movements (SMMs) datasets and it is shown that the model is an alternative 
option of novelty detection in relatively larger data, and it has potential for real-time 
atypical movement detection. The authors state that their approach is limited only to 
distance-based novelty detection methods, and thus, is not applicable to density-based 
novelty detection methods.

Sabokrou et al. [52] proposed a Generative Adversarial Network (GAN) [53] for nov-
elty detection in context of different image and video datasets. The authors propose 
an end-to-end deep network of the OCC problem. The architecture consists of two 
modules, R and D. The R module refines the input and gradually injects discrimina-
tive rules into the learning process to create the positive and novelty instances (inliers 
and outliers), while the second module (the detector) separates the positive and novelty 
instances. Their approach is investigated with two image datasets including the MNIST 
and Caltech-256 dataset. In addition, they also investigate one video dataset, UCSD-
Ped2. For the image datasets, the approach is shown to yield a higher F1-score com-
pared to the Local Outlier Factor (LOF) and Discriminate Reconstructions AutoEncoder 
(DRAE) methods. For the video dataset, pedestrians in the video data are considered as 
the positive class and anything else are considered as anomalies. The anomaly detection 
approach is shown as comparable to some novelty detection methods. In a related work 
(Sabokrou et al. [54]), propose an adversarial training model to detect outliers in an end-
to-end deep learning model. They test their approach on image and video datasets and 
conclude that the proposed model can effectively learn to detect outliers. The efficacy of 
their approaches remains to be seen in the context of domains other than image/video 
data, especially big data.

Oosterlinck et al. [55] present a study in novelty detection in which one-class classifi-
cation is compared with an expert-based two class classification. The authors investigate 
an approach to detect fraud in a Telecom company’s subscription of a new mobile family 
plan service. Financial loss to organization and corporations can be quite substantial due 
to fraud, and detection of those transactions is appealing. An efficient fraud detection 
system is a pivotal prerequisite of every service provider corporation. To deal with this 
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issue, human behavior tracking is practical to detect anomalies of human activities and 
fraud detection. The authors investigated the usefulness of combining synthetic negative 
samples, which are prepared by experts with positive samples. This work confirms that 
using expert knowledge in building negative samples and converting the one-class clas-
sification to binary classification boost the performance of the classifier. The two-class 
expert generated sample method outperforms the artificially generated and traditional 
one-class classification methods. Incorporating experts for decision making during the 
modeling process can lead to human-errors, and its impact on model performance is not 
studied in the paper.

Xing and Liu [56] proposed a modified AdaBoost algorithm combined with OCSVM 
to improve the performance of one-class classification. AdaBoost [57] combined with 
SVM generally improves performances of binary and multi-class classification problems; 
however, AdaBoost combined with OCSVM does not improve performance of OCC. 
The authors present a Robust AdaBoost based Ensemble of OCSVM, which applied the 
Newton–Raphson technique to change the weights of AdaBoost. The case study data 
consisted of two synthetic datasets, sine-outlier and square-outlier, and twenty datasets 
from the UCI repository. The proposed approach is shown to outperform various one-
class classification methods, including AdaBoost Ensemble of OCSVM, Random Sub-
space Method based Ensemble of OCSVM, Clustering-based Ensemble of OCSVM, and 
OCSVM with Gaussian Kernel. The average performance of the proposed approach out-
performed most of the other methods. The scalability of the proposed approach needs 
further investigation, since all the datasets explored are relatively small.

A one-class GAN (OCGAN) model is proposed by Perera et al. [58] for novelty detec-
tion, where the solution is based on learning latent representations of in-class samples 
using a denoising auto-encoder network. The authors contend that novelty detection 
involves modeling two types of representations, which include ensuring in-class sam-
ples are well represented and ensuring out-of-class samples are poorly represented. They 
state the latter has not been addressed by prior existing work in novelty detection, and 
that is where their primary contribution is made. Their proposed model considers mod-
eling both types of representation requirements. The case study data consists of four 
publicly available multi-class object recognition data sets, including MNIST, FMNIST, 
COIL100, and CIFAR10 [58]. The proposed model performs better than some existing 
one-class novelty detection methods for the four data sets considered in the paper. The 
comparative work between the different techniques lacks statistical verification and vali-
dation with respect to the models’ performances. Moreover, the applicability of the pro-
posed approach to non-image datasets is not discussed by the authors.

In the context of image novelty detection, Zhang et al. [59] propose their “adversari-
ally learned one-class novelty detection with confidence estimation” model. The authors 
contend that most existing methods for novelty detection, especially those using deep 
learning technology, are not end-to-end and tend to be overconfident in the novelty 
detection predictions. The proposed model consists of two modules: representation 
module and detection module, which are adversarially modeled to collaboratively train 
and learn the inlier distribution of the data corpus. In addition, the model uses confi-
dence-based estimation to ensure higher efficacy in its predictions. The model is exam-
ined with four publicly available image datasets, namely: MNIST, FMINST, COIL100, 



Page 16 of 31Seliya et al. J Big Data           (2021) 8:122 

and CIFAR10, and is compared with several existing methods for novelty detection [59]. 
The authors conclude that their proposed model outperformed several existing one-class 
novelty detection methods. Moreover, an ablation study indicated that each module of 
the proposed model is critical in its functionality. Similar to the previous study, the com-
parative work between the different techniques in this study lacks statistical verification 
and validation with respect to the models’ performances.

Table 2 summarizes the key information of the surveyed work on OCC and novelty 
detection.

Deep learning and OCC

Kim et  al. [60] present a novel deep learning model that involves the Restricted 
Boltzmann Machine and a modified SVDD, called Deep SVDD (DSVDD). The lat-
ter involves hidden layers where each layer has k SVDD nodes for a typical k-class 

Table 2 Surveyed works on novelty detection and OCC

# Paper Method(s) Domain

1 Identification of patient deteriora-
tion in vital-sign data using one-
class support vector machines 
[45]

GMM, OCSVM Healthcare

2 One-class classification with 
Gaussian processes [46]

Gaussian, SVDD Generic datasets

3 A one-class SVM based tool for 
machine learning novelty detec-
tion in HVAC chiller systems [47]

PCA, OCSVM HVAC systems

4 Deep Gaussian Process autoen-
coders for novelty detection [48]

DGP UCI datasets

5 Improving one class support 
vector machine novelty detection 
scheme using nonlinear features 
[49]

OCSVM Vibration signals

6 Active learning-based Support 
Vector Data Description method 
for robust novelty detection [50]

Active Learning based SVDD UCI datasets

7 Novelty detection using deep nor-
mative modeling for imu-based 
abnormal movement monitoring 
in Parkinson’s disease and Autism 
Spectrum Disorders [51]

OCSVM Patient monitoring, healthcare

8 Adversarially learned one-class 
classifier for novelty detection 
[52, 54]

OCC GAN, LOF, DRAE Image processing, video processing

9 From one-class to two-class clas-
sification by incorporating expert 
knowledge: Novelty detection in 
human behaviour [55]

Expert-based Two-Class Clas-
sification

Fraud detection

10 Robust AdaBoost based ensemble 
of one-class support vector 
machines [56]

AdaBoost, OCSVM UCI datasets

11 OCGAN: One-class novelty detec-
tion using GANs with constrained 
latent representations [58]

OCGAN Image processing, object recogni-
tion

12 Adversarially learned one-class 
novelty detection with confi-
dence estimation [59]

Adversarial OCC Image processing
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problem. All layers in the network include hidden layers and the last layer extracts 
the decision for the test data samples. The context of the proposed study is reduc-
ing the overfitting problem by combining deep learning’s representation capability 
and the generalization performance of SVDD. The case study data includes three UCI 
datasets, including Wisconsin Breast Cancer, Climate Model Simulation Crashes, and 
Pima Indians Diabetes datasets. A confidence measure of 0.55 is set to filter the sam-
ples as suspicious or confident. Empirical results demonstrate DSVDD yielded bet-
ter performance than SVM, SVDD, and Deep Belief Networks. As the datasets used 
in the study are relatively small, the performance goodness of the different methods 
needs to be investigated in the context of big data, i.e., does the DSVDD model per-
form well with datasets that are very large and are severely imbalanced.

Erfani et  al. [61] address the high-dimensionality problem in context of anomaly 
detection. The presence of irrelevant features can hide anomalous samples, mak-
ing their detection difficult. Anomaly detection in the context of high-dimensional 
data poses some issues, such as exponential search space, data-snooping bias, and 
irrelevant extracted features. Toward addressing such issues, the proposed method 
combines a deep learning model with a one-class classifier. The paper presents an 
unsupervised method of anomaly detection called DBN-1SVM, which benefits from 
DBN for extracting robust features and OCSVM for training purposes. Since DBNs 
are efficient in the learning of complex high dimensional datasets and it reduces the 
dimensionality of the data, it is advantageous to combine it with OCSVM, i.e., the 
results of the non-linear dimensional reduction of DBNs are fed into OCSVMs for 
learning. The authors performed a test on the Forest Adult Gas Sensor Array Drift, 
Opportunity Activity Recognition, Daily and Sport Activity, and Human Activity 
Recognition using the Smartphones datasets as real-life datasets and the Banana and 
Smile datasets as synthetic ones. The DBN-1SVM is compared to Plane-based one-
class SVM (PSVM), SVDD, and an AutoEncoder (AE) with the choice of linear or RBF 
kernels. Experiments reveal that DBN-1SVM is more robust compared to other meth-
ods and yields better performance. Given the good results obtained by the proposed 
approach, it would be interesting to investigate the approach’s efficacy and efficiency 
in the context of other domains as well as with very large and complex datasets.

Sun et al. [62] present a deep one-class classification (DOC) learner for detecting 
anomalies in surveillance videos. Automated detection of abnormal events (anoma-
lies) in video surveillance data is an important problem for intelligent monitoring 
and alarm systems. The DOC model is the integration of an SVM and Convolutional 
Neural Network (CNN) [63], where the SVM performs as an optimizer in addition to 
discriminating between normal and abnormal objects. The proposed model, DOC, is 
compared to four other methods, including mixtures of dynamic textures [64], sparse 
reconstruction cost [65], appearance and motion deepnet [66], and the approach for 
anomaly detection in surveillance videos by Adam et  al. [67]. The case study data 
are the UCSD pedestrian datasets, Ped1 and Ped2. The different approaches were 
compared at both the frame-level and the pixel-level. Results for the pixel-level 
experiments show the proposed approach, DOC, outperforms the others. At the 
frame-level, both DOC and the appearance and motion deepnet approach yield com-
parable performance. It would be interesting to compare the proposed method with 
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SVDD and Deep SVDD, as they are commonly very effective with OCC for anomaly 
detection.

Zhang et al. [68] evaluate a one-class CNN classifier model by comparing it to a typical 
two-class classifier CNN model. The model represents an integration of OCC and Deep 
Neural Network, and where the hybrid model is applied to image defect detections. The 
general architectures of the two models are similar, except that the two-class classifier 
CNN model has an additional two-neuron output layer fully connected to the last layer 
of the one-class classifier. The loss function of the one-class classifier is the contrastive 
loss function while that of the two-class classifier is the softmax loss function. The case 
study dataset consists of a small and limited number of electronic component images. 
The defect images are of various types, including incomplete white part, incomplete gray 
part, deformation, spots, scratches, pits, etc. The manually labeled dataset consists of 
1090 images with 600 non-defective images and 490 defective images. The two models 
are applied to the electronic component dataset, and the one-class classifier outperforms 
the two-class classifier and is more robust as well. An OCC scheme should be compared 
with other OCC approaches for gauging an effective and fair comparison of the pro-
posed OCC scheme; however, that is not done in this study.

Gutoski et  al. [69] investigate an image anomaly detection classifier using the Deep 
Embedded Clustering (DEC) method, which is based on a “Deep Autoencoder.” Images 
that do not contain anomalies are considered as normal, and only normal data are 
used in their one-class classification studies. Model training is started with the Stacked 
Denoising AutoEncoder (SDAE) with normal instances and its output is entered into the 
Deep Embedded Clustering optimizer which also determines the cluster center simul-
taneously. The case study data consists of three datasets: (1) STL-10, which consists of 
96 × 96 pixels color image data divided into 10 classes, each with 800 images of which 
500 are labeled instances; (2) MNIST, which consists of 60,000 images as training data 
and 10,000 images as test data, where each image is in gray scale and 28 × 28 pixels; (3) 
NOTMINST, which is a printed character dataset consisting of 10 classes of letters from 
A to J, and contains 200,000 images as training data and 10,000 images as test data with 
the images in gray scale and 28 × 28 pixels. The authors conclude that applying SDAE 
followed by Deep Embedded Clustering improves accuracy of the one-class classifica-
tion, i.e., performance of anomaly detection in image classification.

Ruff et  al. [70] introduce the Deep Support Vector Data Description (Deep SVDD) 
method in the context of anomaly detection and one-class classification. As noted ear-
lier the performance of the commonly used OCC-based anomaly detection is degraded 
with high dimensional datasets, largely due to the high computational costs and data 
complexity. The Deep SVDD model parameters are optimized using the Adam [71] and 
Stochastic Gradient Descent (SGD) approaches. SGD leads to the parallel execution of 
the training data batches and helps with scalability of Deep SVDD. The authors conduct 
two case studies in this work. The first one involves the MNIST and CIFAR-10 data-
sets. The second one focuses on the possibility of adversarial attacks, such as boundary 
attack [72], in the context of the German Traffic Sign Recognition Benchmark (GTSRB) 
[73] dataset. The Deep SVDD approach is compared to some OCC approaches, such 
as SVDD, kernel density estimation, Isolation Forest, deep convolutional autoencoder, 
and anomaly detection based on Generative Adversarial Networks (GANs) [74]. For the 
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MNIST and GTSRB datasets, the Deep SVDD approach yields the best performance. 
However, for the CIFAR-10 dataset, the kernel density estimation approach and the 
SVDD approach outperform Deep SVDD. Because of the mixed results across the three 
datasets the efficacy of Deep SVDD is not quite clear in the case of image datasets as 
well as other domain datasets.

Chalapathy et  al. [75] present a deep neural network-based approach to one-class 
classification in the context of anomaly detection. It is a hybrid approach based on the 
work of Ruff et al. [70]; however, the authors replace SVDD with OCSVM in their overall 
anomaly detection approach. The hidden layer of the network performs the data repre-
sentation, while in the subsequent stage OCSVM detects any anomalies that occurred. 
The case study data included the German Traffic Sign Recognition Benchmark dataset 
[73], MNIST, CIFAR-10, and a synthetically produced dataset. The proposed strategy 
is a different than other approaches which use a hybrid method of learning deep fea-
tures using an autoencoder and then feeding the features to a separate anomaly detec-
tion method like OCSVM or OCSVDD. The case study results show that the proposed 
approach performs similar to state-of-the-art OCC methods. Some of the methods that 
the proposed approach was compared with include OCSVDD, Isolation Forest, kernel 
density estimation, deep convolutional autoencoder, etc.

Schlachter et al. [76] investigate Intra-Class Splitting (ICS) in the context of using deep 
learning networks for OCC. The approach splits data from one class (normal class) into 
two subsets, “typical normal” and “atypical normal.” By splitting the normal class into 
two subsets, the approach uses a binary loss and defines an auxiliary subnetwork for 
distance-based constraints. Three different rules are considered for the distance-based 
constraints for the subsets: small distances with typical normal instances; large distances 
between typical and atypical normal instances; and large distances among atypical nor-
mal instances. The OCC uses an arbitrary deep neural network in which the first layer 
performs the feature extraction, and the subsequent layer represents the classification 
subnetwork. A third subnetwork, the distance subnetwork, is used only during the train-
ing process to satisfy constraints of the two subsets. The case study data consists of 
applications to the MNIST, Fashion-MNIST, and CIFAR-10 datasets, for which the pro-
posed approach is compared to other OCC methods, including OCSVM with RBF ker-
nel, Isolation Forest, ImageNet with OCSVM, Naïve neural network without ICS, neural 
network with ICS but without the subset distance constraints, and Deep SVDD [70]. The 
comparative results determine that the proposed method performs better than most of 
the other OCC methods.

Perera and Patel [77] present a deep-learning method for one-class transfer learning 
where labeled data from an unrelated task is used for feature learning in OCC (for a 
survey study on transfer learning please refer to Pan and Yang [78]). The authors intro-
duce a joint optimization framework based on two loss functions—compactness loss 
and descriptiveness loss. The former is for assessing the compactness of the class under 
consideration in the learned feature space, while the latter assesses the descriptiveness 
based on the use of an external multi-class dataset. The neural networks backbone archi-
tectures are Alexnet and VGG16, which are two successful pre-trained neural networks 
[77]. The case study involves studying datasets addressing three scenarios respectively: 
image novelty detection, abnormal image detection, and active authentication. For the 
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image novelty detection, the Caltech 246 dataset is used with 30,607 images and 256 
classes. Again, the performance of both neural networks showed improvement over 
other OCC methods. The 1001 abnormal objects datasets with six classes are used in 
the abnormal detection study, in which performance of both neural networks showed 
improvement over other OCC methods. In the case of the active authentication study, 
the UMDAA-02 mobile AA dataset [79] is used, which contains multi-modal sensor face 
observations from 48 users. The proposed approach did not show promising results for 
this case for both neural networks.

Burlina et  al. [80] present an unsupervised approach for diagnosing myopathic dis-
ease (myositis is a rare form of disease in myopathies), in which they investigate deep 
learning and one-class novelty detection for the Myositis3K benchmark dataset. The 
latter, developed by the authors, is composed of ultrasound images acquired of seven 
muscle groups imaged bilaterally per subject [80]. The complete dataset consisted of 
images of size 476 × 476 from a total of 89 subjects, including 35 normal/control and 
54 with myositis (19 with inclusion body myositis, 15 with polymyositis, and 20 with 
dermatomyositis). This acquisition resulted in a dataset of 3586 images. The general 
approach is as such: by applying deep feature embedding, a new ultrasound image rep-
resentation is built; performing PCA to reduce the dimensionality of the images; apply-
ing t-Distributed Stochastic Neighbor Embedding (t-SNE) [81]; and finally, the novelty 
detection scoring algorithm is applied to detect the anomalies. The proposed approach 
is compared to other one-class novelty detection methods, such as Isolation Forest (IF), 
Elliptic Envelope (EE), Local Outlier Factor (LOF), OCSVM, and Generative Adversarial 
Network for anomaly detection (GANomaly). The ultrasound images are partitioned 
using two ways: image-based partitioning (IP) and patient-based partitioning (PP). The 
experiments found promising results for the use of deep learning techniques for novelty 
detection applied to myositis. The best results were obtained by OCSVM, followed by 
EE, IF, and LOF. Deep learning is applied only to part (i.e., deep feature embedding) of 
the modeling process instead of the entire process for unsupervised learning for detect-
ing myopathic disease.

Ghafoori and Leckie [82] present the Deep Multi-sphere Support Vector Data 
Description (DMSVDD) approach, which assumes the training dataset can have multi-
ple data distributions compared to the conventional assumption of a singular data dis-
tribution by most classification schemes. Applying the k-means clustering method [83], 
data is mapped into clusters and projection from input space into hyper-spherical clus-
ters considering the minimum volume of the sphere as a metric. Parametric mapping 
is done using an autoencoder which helps to reduce the reconstruction error. The case 
study datasets are MNIST, CIFAR10, and MobiAct, where the latter includes data for 67 
persons, capturing 11 normal activities and four abnormal activities. The following ver-
sions of the MNIST datasets are considered: MNIST0, where the 0 digit is normal and 
other digits are abnormal; MNIST01, where the 0 and 1 digits are normal and other dig-
its are abnormal; and MNIST013, where the 0, 1, and 3 digits are normal and other digits 
are abnormal. The proposed method is compared with SVDD, kernel density estimation 
(KDE), RBF, IF, OCSVM, Deep SVDD (DSVDD), and Deep Convolutional AutoEncod-
ers (DCAE). Since OCSVM, SVDD, and RBF converge to similar solutions, results of 
only SVDD are reported. For the MNIST0 dataset, DCAE, DSVDD, and DMSVDD have 
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similar accuracy. For the MNIST01 dataset there is a slight performance decrease for 
DCAE and DSVDD, and considerable performance decrease for SVDD, KDE, and IF. 
The proposed approach, DMSVDD, showed promising results for MNIST01. For the 
MNIST013 dataset, DMSVDD yielded the best result followed by DCAE; however, a 
performance decrease was observed for SVDD, KDE, IF, and DSVDD. For the CIFAR-
10 dataset, the best performance was observed with SVDD, followed by DSVDD and 
then DMSVDD, indicating that the proposed method performed poorly compared to a 
non-deep method. For the MobiAct dataset, DMSVDD performed the best followed by 
DCAE, while poor performances were observed with SVDD, KDE, and IF. The proposed 
method is sensitive to the underlying dataset, as observed in the results of the paper. 
Because of the mixed results across the three datasets the efficacy of DMSVDD is not 
quite clear.

Liu et al. [84] present a One-Class Presentation Attack Detection (OCPAD) method 
for Optical Coherence Technology (OCT) images based on fingerprint presentation 
attack detection. The dataset used in their empirical study consists of 121 (121 × 400 
B-scans) presentation attacks from 101 materials and 233 (233 × 400 B-scans) bonafides 
(real fingerprints) from 137 subjects. The proposed model is compared with existing 
PAD methods, including a feature-based method, a supervised learning-based method, 
and a one-class GAN approach. The empirical studies demonstrate that the proposed 
method outperforms those three methods. More specifically, the proposed method 
obtains a true positive rate (TPR) of 99.43% when the false positive rate (FPR) is 10%, 
and a TPR of 96.59% when the FPR is 5%. While ROC curves for performances of the 
three methods are shown in the paper, the AUC values are not reported. Moreover, a 
statistical verification and validation study is not provided toward the significance of 
performance differences between the three methods.

Cao et al. [85] argue that existing approaches of OCC approaches for outlier detection, 
while being robust to the Gaussian noises, are less effective in detecting large number of 
outliers. To address this problem, they propose a maximum correntropy criterion-based 
OCC ELM model (MC-OCELM) and the model is further extended to a hierarchical 
network to improve its capability in characterizing complex data, where the extended 
model is abbreviated at HC-OCELM. Their empirical case study is based on eight UCI 
benchmark data sets to illustrate the efficacy of the proposed model, which is then com-
pared with several existing methods, including Parzen, Naïve Parzen, K-means, K-cent-
ers, 1-NN, KNN, AutoEncoder, PCA, minimum spanning tree (MST) based OCC, 
Minimax probability machine (MPM), SCDD, linear programming dissimilarity-data 
description (LPDD), SVM, and OC-ELM. The two proposed methods outperform the 
other methods with respect to the F-score metric. The paper also examines the CIFAR-
10 data set, for which the proposed methods are compared against Deep SVDD, IF, Deep 
Convolutional AEs, kernel density estimation, Soft-Boundary Deep SVDD, and Deep 
Convolutional GAN. The HC-OCELM model provides better results for seven of the ten 
CIFAR-10 data sets, which Deep SVDD provides better results on two data sets. Overall, 
the authors conclude their proposed method is better than the other methods in their 
empirical study.

Fontella-Romero et  al. [86] present the distributed singular value decomposition 
autoencoder (DSVD-AUTO) that facilitates learning in distributed scenarios without 
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the need to share raw data. Moreover, data privacy preservation is addressed by the 
proposed method. Sharing data in distributed learning environments and data privacy 
are two issues facing big data analytics. The case study includes 10 datasets, with sizes 
ranging from 420 samples to 11,000,000 samples, with instances with missing data being 
omitted in the modeling. The proposed method is compared with four other methods 
for OCC anomaly detection, including LOF, OCSVM, AUTO-NN, and APE [86]. While 
the mean AUC of the OCSVM method yielded better results than those of the proposed 
method, the authors contend the former requires tuning of multiple hyperparameters. 
However, additional investigation is required before the efficacy of the proposed method 
can be stated confidently from a generalization point of view.

Moustafa et al. [87] present a Distributed Anomaly Detection (DAD) system to detect 
zero-day attacks in edge networks. The system uses Gaussian Mixture-based Corren-
tropy, which is an OCC model. Important data features are selected using PCA and are 
then passed to the proposed system to detect anomalies. The datasets included in their 
case studies include the NSL-KDD and UNSW-NB15 datasets. Using 350,000 data sam-
ples from both datasets, the proposed model is compared with five anomaly detection 
approaches, including Multivariate Correlation Analysis (MCA), Triangle Area Near-
est Neighbors (TANN), Geometric Area Analysis (GAA-ADS), Outlier Dirichlet Mix-
ture (ODM), and Attack Detection-based Convolutional Neural Network (AD-CNN). 
The authors conclude that their approach outperforms these five approaches for anom-
aly detection, with respect to detection rate, false positive rate, and processing time. It 
would be interesting to investigate the performance of the proposed model using the 
complete datasets (NSL-KDD and UNSW-NB15) instead of using a limited-size sample 
from both datasets. Such a study would be considered an application of the proposed 
approach to big data; however, this is not done in the above paper.

Pourreza et al. [88] present a GAN-based deep learning approach for one-class clas-
sification. The authors state that training and implement GANs for OCC is often cum-
bersome. Toward simplifying the process, they treat the OCC problem as a binary 
classification task, in which two deep neural networks (generator and discriminator) are 
trained in a GAN setting on the normal samples. During the early stages of the training 
process, the generator is likely to fail to produce the normal samples correctly, which 
is then consequently considered an anomaly sample generator. By doing so, two sets 
of samples are generated by the deep neural networks—normal and anomalies. Subse-
quently, a binary classifier is trained on these generated samples (using both normal and 
anomaly samples) for anomaly detection. The proposed G2D model consists of three 
primary modules [88]: (1) irregularity generator network, (2) critic network, and (3) 
detector network. The case study involves image anomaly detection and video anomaly 
detection and includes the following data sets [88]: UCSD, MNIST, and Caltech-256. The 
proposed approach is shown to be competitive with the compared approaches for outlier 
detection, including R-graph, REAPER, OutlierPursuit, LRR, SSGAN, and ALOCC [88].

We now present a very brief coverage of some other works in OCC involving deep learn-
ing in some form or another. We do so because the surveyed works presented in this sec-
tion represents a good cross section of works that involved deep learning in OCC. Chong 
et al. [89] address the problem of hypersphere collapse (or mode collapse) in the context of 
Deep SVDD. This problem tends to occur if the architecture of the model does not comply 
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with specific architectural constraints, such as removal of bias terms, thereby constraining 
the adaptability and performance of the model. Variations of the approach in both problem 
context and application context are presented by Tan et al. [90] and Golan et al. [91]. A 
Deep Semi-Supervised Anomaly Detection (Deep SAD) is presented and evaluated by Ruff 
et al. [92]. The focus of the study is to improve performance of the traditional unsupervised 
approach to anomaly detection with the aid of some labeled instances. Goyal et  al. [93] 
address the mode collapse problem by proposing and evaluating a deep robust one-class 
classification approach, which is motivated by the assumption that the interesting class lies 
on a locally linear low dimensional manifold.

Table  3 summarizes the key information of the surveyed work on Deep Learning and 
OCC.

Surveys on OCC

In their 2014 survey, Khan and Madden [9] provide “a unified view of the general problem 
of OCC by presenting a taxonomy of study for OCC problems, which is based on the avail-
ability of training data, algorithms used, and the application domains applied.” The litera-
ture works that are grouped based on availability of training data involve learning only with 
positive data or learning with unlabeled data, positive data, and some outlier instances. The 
works grouped based on methodology used involved approaches based on one-class sup-
port vector machines (OSVMs) or non-OSVM approaches (e.g., classification ensemble 
methods). The third group in the taxonomy, application domain, involves whether OCC 
was applied for text analysis/classification or applied to other application domains. We 
believe the taxonomy used by the authors is apt; thus, we do not provide a similar categori-
zation of the surveyed works in our study. However, we do feel the survey presented in this 
study provides a much more updated collection of OCC related works compared to those 
covered in [9], particularly since several works in OCC have been published since 2014.

Pimentel et al. [94] present a review of novelty detection as an OCC problem. The sur-
veyed works are categorized into five groups, including probabilistic-based, distance-based, 
reconstruction-based, domain-based, and information theoretic-based approaches. The 
application domains surveyed in their work include electronic information technology 
security, healthcare informatics, medical diagnostics and monitoring, industrial monitor-
ing and damage detection, image processing, video surveillance, text mining, and sensor 
networks [94]. When selecting novelty detection methods, various considerations were 
made, such as training data availability, application domain, and data characteristics includ-
ing data dimension, data format, and data continuity. Compared to [94], this survey paper 
summarizes works in OCC-based outlier detection and deep learning in OCC, in addition 
to OCC-based novelty detection. Thus, we provide a more expansive survey study on one-
class classification compared to the survey work presented in [94].

Discussion
Outlier detection and novelty detection are observed as the primary areas of use for one-
class classification in our surveyed works. However, important issues in data mining and 
machine learning, such as class imbalance problems in big data as well as other associ-
ated big data related problems are not addressed in the surveyed works. These and their 
related topics could be good application areas of OCC, e.g., class rarity detection and 
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influence of severe class imbalance in big data. For example, when data is highly imbal-
anced, detecting classes of interest could potentially be done more efficiently with OCC 
as the latter focuses on detecting the positive class(es) of interest.

Among the surveyed works, OCC is frequently applied in the analysis of biomedical 
data. The Parzen Windows approach is used often; however, kernel-based methods such 
as SVDD and OCSVM perform relatively better. In outlier detection, OCSVM appears 
to be a prominent choice. It has been applied to detect outliers in various diseases, 
including tuberculosis, depression, and Alzheimer’s. In the context of patient moni-
toring applications, novelty detection helps in early detection of the disease. Since the 

Table 3 Surveyed works on deep learning and OCC

# Paper Method(s) Domain

1 Deep learning with Support Vec-
tor Data Description [60]

Deep SVDD UCI datasets

2 High-dimensional and large-scale 
anomaly detection using a linear 
one-class SVM with deep learning 
[61]

DBN-1SVM Anomaly detection

3 Abnormal event detection for 
video surveillance using deep 
one-class learning [62]

DOC, SVM, CNN Video surveillance

4 The application of one-class classi-
fier based on CNN in image defect 
detection [68]

One-Class CNN, CNN Image processing

5 A clustering-based deep autoen-
coder for one-class image clas-
sification [69]

SDAE, Deep Embedded Clustering Image processing

6 Deep one-class classification [70] Deep SVDD Image processing object recogni-
tion

7 Anomaly detection using one-
class neural networks [75]

Deep OCC, OCSVM, OCSVDD, IF, 
KDE

Image processing object recogni-
tion

8 Deep one-class classification using 
intra-class splitting [76]

OCSVM-RBF, IF, ImageNet-OCSVM, 
NN with/without ICS, Deep SVDD

Image processing

9 Learning deep features for one-
class classification [77]

Deep OCC, Alexnet, VGG16, Image processing

10 Deep embeddings for novelty 
detection in myopathy [80]

IF, EE, LOF, OCSVM, GANomaly Healthcare

11 Deep multi-sphere support vector 
data description [82]

DMSVDD Image processing human activity

12 One-class fingerprint presentation 
attack detection using auto-
encoder network [84]

OCPAD, PAD, OCGAM Image processing attach detection

13 Maximum Correntropy criterion-
based hierarchical one-class 
classification [85]

OC-ELM, Parzen, K-means, 
K-centers, 1-NN, KNN, AE, PCA, MS-
OCC, MPM, SCDD, LPDD, SVM,

Image processing

14 DSVD‐autoencoder: A scalable 
distributed privacy‐preserving 
method for one‐class classifica-
tion [86]

AUTO-NN, LOF, OCSVM, APE Miscellaneous datasets
Privacy preserving

15 DAD: A distributed anomaly 
detection system using ensemble 
one-class statistical learning in 
edge networks [87]

DAD, MCA, TANN, GAA-ADS, ODM, 
AD-CNN

Network intrusion detection

16 G2D: generate to detect anomaly 
[88]

G2D, GAN, DNN, LPR, R-graph, 
REAPER, Outlier Pursuit, SSGAN, 
ALOCC

Image/video processing
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abnormal activities are rare data points, the datasets related to these applications are 
severely imbalanced. Moreover, labeling data for supervised learning is time-consuming 
and difficult, making supervised one-class learning not practical in this context.

In the neuroimaging domain, data has high dimensionality in the feature space and 
with relatively few one class samples available. Under such circumstances, traditional 
learners tend to perform poorly. Moreover, in cases where the clinical diagnosis data are 
not clear or where the interest is in identifying subgroups of patients, traditional binary 
classification tends to perform poorly. High class imbalance is the key problem associ-
ated under such circumstances. OCC has been applied to address classification prob-
lems in dementia detection and activity completion performance of the elderly. For these 
domain-specific problems, OCSVM yields promising results. It is observed that applying 
ensemble method along with OCSVM does not boost performance.

Among the one-class classifiers, SVDD is well suited for outlier detection and loss 
reduction of outliers. However, SVDD may show overfitting in the case of noisy or 
uncertain data. In some data types, like sensor data, which may have sampling error, the 
target hypersphere is not optimized. SVDD performs well in high dimensional feature 
space without any prior information about the data. In the field of knowledge discov-
ery in databases, SVDD, Parzen Windows, LOF, and LOCI are commonly used outlier 
detection approaches using OCC. Among them, SVDD and LOF have yielded better 
results in related literature.

As noted previously, another application of one-class classification is novelty detec-
tion, where outliers are detected in the test dataset while the training dataset is does 
not contain any outliers. In the case of heterogeneous or high dimensional data, novelty 
detection is a solution to detect anomalies. In general, novelty detection is an unsuper-
vised learning solution when labeled data is difficult to obtain.

Since industrial data distribution is not Gaussian, Gaussian process regression is ben-
eficial for one-class classification in terms of mitigating implementation overhead and 
improving performance. With the help of deep learning methods, many supervised 
learning problems have been addressed in the context of OCC. However, in this area 
considerable research remains to be done regarding choice of the unsupervised learning 
method. To address the problem of overfitting in deep neural networks used for novelty 
detection, Deep Gaussian Processes are advantageous and empower the deep model to 
train overly high complex data or mixed-type features. One of the preferred methods 
to monitor the reliability and safety of moving parts of industrial machines is novelty 
detection since plenty of high-quality data is available. The novelty detection methods 
require preprocessing to improve performance; particularly, nonlinear features because 
nonlinear vibration signals affect the performance dramatically.

Big data obtained by IoT requires profound consideration in terms of computing time 
and complexity. Since the accuracy of outlier detection in such systems is related to the 
number of features extracted, finding perfect subsets of features is critical. With most 
one-class classification methods, however, vector-based representation is applicable 
and IoT data is the most suitable for tensor-based methods. For such complex and high 
dimensional datasets, tensor-based one-class classification methods surpass the vector-
based methods. One of the applicable methods to deal with insufficient labeled data in 
big data, such as industrial data, is one-class active learning which accepts unlabeled 
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data and requires relatively fewer labeled data points. In HVAC systems, finding system 
faults is hard due to the variability of data in such systems, and the anomalous condi-
tion is mistaken with normal conditions. PCA is observed to be a practical solution for 
ignoring those mistaken conditions and when combined with OCSVM shows promising 
performance.

Fraud detection is essential in all financial services and transactions. To detect the 
fraudulent transaction, one of the best solutions is human behavior tracking and using a 
one-class classification method. However, such a problem suffers from a few numbers of 
negative samples; thus, generating a negative sample either artificially or using experts is 
one of the practical ways to overcome the issue of sample shortage. The performance of 
the model based on expert knowledge in one-class classification is significantly different 
especially because of the high diversity of human behavior in data creation. In general, 
the most popular one-class classification method for novelty detection is OCSVM. How-
ever, as noted earlier, ensemble learning with OCSVM does not improve learning. One 
of the practical and feasible methods to raise the performance is loss function modifica-
tion such as a combination of two or more loss functions.

SVDD has high generalization performance, and it is robust with outliers in the data-
set. Furthermore, SVDD is stable under noisy data conditions. However, the overfit-
ting problem is still relatively prevalent and an important topic of continuing research. 
Using a deep network method adopted to SVDD algorithm boosts the generalization 
performance. The deep layers embedded with SVDDs grants representational power to 
the combined model and it boosts performance. In addition to advantages of the deep 
learning with one-class classification, deep SVDD has the problem of having some con-
straints and limitations like mode collapse or hypersphere collapse. While regularization 
by introducing random noise may help, this problem needs further continuing research.

There is some weakness regarding traditional one-class classification methods such as 
low performance in high dimensional data due to sensitive hyper-parameters [76]. Fur-
thermore, they need expert labeled data which is time-consuming and cumbersome to 
obtain. To improve the performance and speed of anomaly detection in complex data-
sets, using OCSVM-based hybrid model with deep neural networks is promising. Inte-
grating SVM and deep neural networks provides accuracy improvement in anomaly 
detection. Among linear and RBF kernels, some works confirm that non-linear kernels 
are more efficient and provide improvements. While OCSVM has been shown to be 
beneficial for OCC, it suffers from high computational complexity due to its iterative 
nature during modeling and needs some kind of regularization such as kernel regular-
ized least squares.

In anomaly detection for computer vision, one of the best methods to alleviate the 
problem of high dimensionality is the application of deep learning methods along with 
optimization algorithms such as Stochastic Gradient Descent (SGD) with one-class clas-
sification. In this way, the optimization algorithm brings scalability and online learning 
to the hybrid model [70]. Incorporating deep learning with one-class anomaly detection 
and novelty detection shows promise in the detection of abnormal instances; however, 
continuing research in a variety of domains is needed to further verify this potential.

There are practically no studies exclusively on big data and one-class classification. A 
recent study [95] developed an edge-processing unit in the context of railway condition 
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monitoring systems. The unit consists of two components: a data classification model 
and a data transmission unit. By using data sampling instead of using the entire big 
data corpus available, we feel this work is not an example of OCC applied for big data 
analytics.

The problem of high dimensionality is a big data problem in certain domains; however, 
in the surveyed works the publicly available image datasets are not big data. While class 
imbalance remains at the core of the one-classification problem, datasets with severe 
class imbalance have not been studied in the literature. Nor has the problem of class 
rarity in big data and one-class classification. While the application of deep learning to 
OCC problems is actively being investigated, more research needs to be undertaken in 
this area. For example, the presence of noise in big data and other datasets needs bet-
ter solutions than those observed in the literature. Moreover, feature engineering in the 
context of one-class classification with big data is a promising area of research. Innova-
tive approaches, such as transfer learning, need additional attention in the context of 
one-class classification solutions. Investigating boosting-based methods in the context 
of OCC may yield interesting results; particularly, since it has shown extensive promise 
in traditional classification problems.

Conclusion
This study presented a large survey of one-class classification methods and approaches, 
including domain-specific applications, presented in the literature over the last decade, 
i.e., 2010–2021 (May 2021). Our survey categorizes the different works into three cat-
egories: outlier detection and OCC, novelty detection and OCC, and deep learning and 
OCC. The paper examined selected works on one-class classification such that a good 
cross section of approaches, methods, and application domains is represented in the 
survey. In addition, the paper highlighted potential applications of OCC in the context of 
various problems faced when dealing with big data.

While not meant to be an exhaustive survey, to our knowledge this is the most recent 
survey paper on one-class classification works in the literature. One area that has been 
largely omitted in one-class classification is the application context of big data and its 
inherently associated problems, such as severe class imbalance, class rarity, noisy data, 
and feature engineering. We feel this survey paper on one-class classification will be 
much appreciated by researchers and scientists working in the big data area of data 
mining and machine learning. Moreover, regarding one-class classification, additional 
research is needed in areas such as transfer learning [96], deep learning, feature engi-
neering and selection [97], data quality and data collection, active learning [98], semi-
supervised learning, and for additional domain applications [99].
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Sign Recognition Benchmark; OCSVDD: One-Class Support Vector Data Description; ICS: Intra-Class Splitting; t-SNE: T-Dis-
tributed Stochastic Neighbor Embedding; IF: Isolation forest; EE: Elliptic Envelope; DMSVDD: Deep Multi-sphere Support 
Vector Data Description; KDE: Kernel Density Estimation; RBF: Radial basis function; DCAE: Deep Convolutional AutoEn-
coders; OCPAD: One-Class Presentation Attack Detection; OCT: Optical Coherence Technology; TPR: True positive rate; 
FPR: False positive rate; MC-OCEL: Maximum Correntropy One-Class Classification Model; KNN: K-nearest neighbor; MST: 
Minimum spanning trees; MPM: Minimax probability machine; LPDD: Linear programming dissimilarity-data description; 
MCA: Multivariate Correlation Analysis; TANN: Triangle Area Nearest Neighbors; GAA-ADS: Geometric Area Analysis Attack 
Detection System; ODM: Outlier Dirichlet Mixture; AD-CNN: Attack Detection-based Convolutional Neural Network.
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