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Abstract. Active learning is a supervised machine learning technique in
which the learner is in control of the data used for learning. That control
is utilized by the learner to ask an oracle, typically a human with extensive
knowledge of the domain at hand, about the classes of the instances for
which the model learned so far makes unreliable predictions. The active
learning process takes as input a set of labeled examples, as well as a larger
set of unlabeled examples, and produces a classifier and a relatively small
set of newly labeled data. The overall goal is to create as good a classifier as
possible, without having to mark-up and supply the learner with more data
than necessary. The learning process aims at keeping the human annotation
effort to a minimum, only asking for advice where the training utility of the
result of such a query is high.

Active learning has been successfully applied to a number of natural
language processing tasks, such as, information extraction, named entity
recognition, text categorization, part-of-speech tagging, parsing, and word
sense disambiguation. This report is a literature survey of active learning
from the perspective of natural language processing.
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Chapter 1

Introduction

This report is a survey of the literature relevant to active machine learning
in the context of natural language processing. The intention is for it to act
as an overview and introductory source of information on the subject.

The survey is partly called for by the results of an on-line questionnaire
concerning the nature of annotation projects targeting information access in
general, and the use of active learning as annotation support in particular
(Tomanek and Olsson 2009). The questionnaire was announced to a number
of emailing lists, including Corpora, BioNLP, UAI List, ML-news, SIG-
IRlist, and Linguist list, in February of 2009. One of the main findings
was that active learning is not widely used; only 20% of the participants
responded positively to the question “Have you ever used active learning in
order to speed up annotation/labeling work of any linguistic data?”. Thus,
one of the reasons to compile this survey is simply to help spread the word
about the fundamentals of active learning to the practitioners in the field of
natural language processing.

Since active learning is a vivid research area and thus constitutes a mov-
ing target, I strive to revise and update the web version of the survey pe-
riodically.1 Please direct suggestions for improvements, papers to include,
and general comments to fredrik.olsson@sics.se.

In the following, the reader is assumed to have general knowledge of
machine learning such as provided by, for instance, Mitchell (1997), and
Witten and Frank (2005). I would also like to point the curious reader to
the survey of the literature of active learning by Settles (Settles 2009).

1The web version is available at <http://www.sics.se/people/fredriko>.
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Chapter 2

Approaches to Active
Learning

Active machine learning is a supervised learning method in which the learner
is in control of the data from which it learns. That control is used by
the learner to ask an oracle, a teacher, typically a human with extensive
knowledge of the domain at hand, about the classes of the instances for
which the model learned so far makes unreliable predictions. The active
learning process takes as input a set of labeled examples, as well as a larger
set of unlabeled examples, and produces a classifier and a relatively small set
of newly labeled data. The overall goal is to produce as good a classifier as
possible, without having to mark-up and supply the learner with more data
than necessary. The learning process aims at keeping the human annotation
effort to a minimum, only asking for advice where the training utility of the
result of such a query is high.

On those occasions where it is necessary to distinguish between “ordi-
nary” machine learning and active learning, the former is sometimes referred
to as passive learning or learning by random sampling from the available set
of labeled training data.

A prototypical active learning algorithm is outlined in Figure 2.1. Active
learning has been successfully applied to a number of language technology
tasks, such as

• information extraction (Scheffer, Decomain and Wrobel 2001; Finn
and Kushmerick 2003; Jones et al. 2003; Culotta et al. 2006);

• named entity recognition (Shen et al. 2004; Hachey, Alex and Becker
2005; Becker et al. 2005; Vlachos 2006; Kim et al. 2006);

• text categorization (Lewis and Gale 1994; Lewis 1995; Liere and
Tadepalli 1997; McCallum and Nigam 1998; Nigam and Ghani 2000;
Schohn and Cohn 2000; Tong and Koller 2002; Hoi, Jin and Lyu
2006);
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• part-of-speech tagging (Dagan and Engelson 1995; Argamon-Engelson
and Dagan 1999; Ringger et al. 2007);

• parsing (Thompson, Califf and Mooney 1999; Hwa 2000; Tang, Luo
and Roukos 2002; Steedman et al. 2003; Hwa et al. 2003; Osborne and
Baldridge 2004; Becker and Osborne 2005; Reichart and Rappoport
2007);

• word sense disambiguation (Chen et al. 2006; Chan and Ng 2007; Zhu
and Hovy 2007; Zhu, Wang and Hovy 2008a);

• spoken language understanding (Tur, Hakkani-Tür and Schapire 2005;
Wu et al. 2006);

• phone sequence recognition (Douglas 2003);

• automatic transliteration (Kuo, Li and Yang 2006); and

• sequence segmentation (Sassano 2002).

One of the first attempts to make expert knowledge an integral part of
learning is that of query construction (Angluin 1988). Angluin introduces
a range of queries that the learner is allowed to ask the teacher, such as
queries regarding membership (“Is this concept an example of the target
concept?”), equivalence (“Is X equivalent to Y?”), and disjointness (“Are
X and Y disjoint?”). Besides a simple yes or no, the full answer from
the teacher can contain counterexamples, except in the case of membership
queries. The learner constructs queries by altering the attribute values of
instances in such a way that the answer to the query is as informative as
possible. Adopting this generative approach to active learning leads to prob-
lems in domains where changing the values of attributes are not guaranteed
to make sense to the human expert; consider the example of text catego-
rization using a bag-of-word approach. If the learner first replaces some of
the words in the representation, and then asks the teacher whether the new
artificially created document is a member of a certain class, it is not likely
that the new document makes sense to the teacher.

In contrast to the theoretically interesting generative approach to active
learning, current practices are based on example-driven means to incorporate
the teacher into the learning process; the instances that the learner asks
(queries) the teacher to classify all stem from existing, unlabeled data. The
selective sampling method introduced by Cohn, Atlas and Ladner (1994)
builds on the concept of membership queries, albeit from an example-driven
perspective; the learner queries the teacher about the data at hand for which
it is uncertain, that is, for which it believes misclassifications are possible.
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1. Initialize the process by applying base learner B to labeled training data set
DL to obtain classifier C.

2. Apply C to unlabeled data set DU to obtain DU
′.

3. From DU
′, select the most informative n instances to learn from, I.

4. Ask the teacher for classifications of the instances in I.

5. Move I, with supplied classifications, from DU
′ to DL.

6. Re-train using B on DL to obtain a new classifier, C ′.

7. Repeat steps 2 through 6, until DU is empty or until some stopping criterion
is met.

8. Output a classifier that is trained on DL.

Figure 2.1: A prototypical active learning algorithm.

2.1 Query by uncertainty

Building on the ideas introduced by Cohn and colleagues concerning se-
lective sampling (Cohn, Atlas and Ladner 1994), in particular the way the
learner selects what instances to ask the teacher about, query by uncertainty
(uncertainty sampling, uncertainty reduction) queries the learning instances
for which the current hypothesis is least confident. In query by uncertainty,
a single classifier is learned from labeled data and subsequently utilized for
examining the unlabeled data. Those instances in the unlabeled data set
that the classifier is least certain about are subject to classification by a
human annotator. The use of confidence scores pertains to the third step in
Figure 2.1. This straightforward method requires the base learner to provide
a score indicating how confident it is in each prediction it performs.

Query by uncertainty has been realized using a range of base learners,
such as logistic regression (Lewis and Gale 1994), Support Vector Machines
(Schohn and Cohn 2000), and Markov Models (Scheffer, Decomain and Wro-
bel 2001). They all report results indicating that the amount of data that
require annotation in order to reach a given performance, compared to pas-
sively learning from examples provided in a random order, is heavily reduced
using query by uncertainty.

Becker and Osborne (2005) report on a two-stage model for actively
learning statistical grammars. They use uncertainty sampling for selecting
the sentences for which the parser provides the lowest confidence scores.
The problem with this approach, they claim, is that the confidence score
says nothing about the state of the statistical model itself; if the estimate of
the parser’s confidence in a certain parse tree is based on rarely occurring
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1. Initialize the process by applying EnsembleGenerationMethod using base
learner B on labeled training data set DL to obtain a committee of classifiers
C.

2. Have each classifier in C predict a label for every instance in the unlabeled
data set DU , obtaining labeled set DU

′.

3. From DU
′, select the most informative n instances to learn from, obtaining

DU
′′.

4. Ask the teacher for classifications of the instances I in DU
′′.

5. Move I, with supplied classifications, from DU
′′ to DL.

6. Re-train using EnsembleGenerationMethod and base learner B on DL to
obtain a new committee, C.

7. Repeat steps 2 through 6 until DU is empty or some stopping criterion is
met.

8. Output a classifier learned using EnsembleGenerationMethod and base
learner B on DL.

Figure 2.2: A prototypical query by committee algorithm.

information in the underlying data, the confidence in the confidence score
is low, and should thus be avoided. The first stage in Becker and Osborne’s
two-stage method aims at identifying and singling out those instances (sen-
tences) for which the parser cannot provide reliable confidence measures. In
the second stage, query by uncertainty is applied to the remaining set of
instances. Becker and Osborne (2005) report that their method performs
better than the original form of uncertainty sampling, and that it exhibits
results competitive with a standard query by committee method.

2.2 Query by committee

Query by committee, like query by uncertainty, is a selective sampling method,
the fundamental difference between the two being that query by committee
is a multi-classifier approach. In the original conception of query by com-
mittee, several hypotheses are randomly sampled from the version space
(Seung, Opper and Sompolinsky 1992). The committee thus obtained is
used to examine the set of unlabeled data, and the disagreement between
the hypotheses with respect to the class of a given instance is utilized to de-
cide whether that instance is to be classified by the human annotator. The
idea with using a decision committee relies on the assumption that in or-
der for approaches combining several classifiers to work, the ensemble needs
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to be made up from diverse classifiers. If all classifiers are identical, there
will be no disagreement between them as to how a given instance should be
classified, and the whole idea of voting (or averaging) is invalidated. Query
by committee, in the original sense, is possible only with base learners for
which it is feasible to access and sample from the version space; learners re-
ported to work in such a setting include Winnow (Liere and Tadepalli 1997),
and perceptrons (Freund et al. 1997). A prototypical query by committee
algorithm is shown in Figure 2.2.

2.2.1 Query by bagging and boosting

Abe and Mamitsuka (1998) introduce an alternative way of generating mul-
tiple hypotheses; they build on bagging and boosting to generate committees
of classifiers from the same underlying data set.

Bagging, short for bootstrap aggregating (Breiman 1996), is a technique
exploiting the bias-variance decomposition of classification errors (see, for
instance, Domingos 2000 for an overview of the decomposition problem).
Bagging aims at minimizing the variance part of the error by randomly
sampling – with replacement – from the data set, thus creating several data
sets from the original one. The same base learner is then applied to each data
set in order to create a committee of classifiers. In the case of classification,
an instance is assigned the label that the majority of the classifiers predicted
(majority vote). In the case of regression, the value assigned to an instance
is the average of the predictions made by the classifiers.

Like bagging, boosting (Freund and Schapire 1997) is a way of combining
classifiers obtained from the same base learner. Instead of building classifiers
independently, boosting allows for classifiers to influence each other during
training. Boosting is based on the assumption that several classifiers learned
using a weak1 base learner, over a varying distribution of the target classes
in the training data, can be combined into one strong classifier. The basic
idea is to let classifiers concentrate on the cases in which previously built
classifiers failed to correctly classify data. Furthermore, in classifying data,
boosting assigns weights to the classifiers according to their performance;
the better the performance, the higher valued is the classifier’s contribution
in voting (or averaging). Schapire (2003) provides an overview of boosting.

Abe and Mamitsuka (1998) claim that query by committee, query by
bagging, and query by boosting form a natural progression; in query by
committee, the variance in performance among the hypotheses is due to the
randomness exhibited by the base learner. In query by bagging, the variance
is a result of the randomization introduced when sampling from the data set.
Finally, the variance in query by boosting is a result of altering the sampling

1A learner is weak if it produces a classifier that is only slightly better than random
guessing, while a learner is said to be strong if it produces a classifier that achieves a low
error with high confidence for a given concept (Schapire 1990).
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according to the weighting of the votes given by the hypotheses involved.
A generalized variant of query by bagging is obtained if the EnsembleGene-
rationMethod in Figure 2.2 is substituted with bagging. Essentially, query by
bagging applies bagging in order to generate a set of hypotheses that is then
used to decide whether it is worth querying the teacher for classification of a
given unlabeled instance. Query by boosting proceeds similarly to query by
bagging, with boosting applied to the labeled data set in order to generate
a committee of classifiers instead of bagging, that is, boosting is used as
EnsembleGenerationMethod in Figure 2.2.

Abe and Mamitsuka (1998) report results from experiments using the
decision tree learner C4.5 as base learner and eight data sets from the UCI
Machine Learning Repository, the latest release of which is described in
(Asuncion and Newman 2007). They find that query by bagging and query
by boosting significantly outperformed a single C4.5 decision tree, as well
as boosting using C4.5.

2.2.2 ActiveDecorate

Melville and Mooney (2004) introduce ActiveDecorate, an extension to the
Decorate method (Melville and Mooney 2003) for constructing diverse com-
mittees by enhancing available data with artificially generated training ex-
amples. Decorate – short for Diverse Ensemble Creation by Oppositional
Relabeling of Artificial Training Examples – is an iterative method gener-
ating one classifier at a time. In each iteration, artificial training data is
generated in such a way that the labels of the data are maximally different
from the predictions made by the current committee of classifiers. A strong
base learner is then used to train a classifier on the union of the artificial
data set and the available labeled set. If the resulting classifier increases the
prediction error on the training set, it is rejected as a member of the com-
mittee, and added otherwise. In ActiveDecorate, the Decorate method is
utilized for generating the committee of classifiers, which is then used to de-
cide which instances from the unlabeled data set are up for annotation by the
human oracle. In terms of the prototypical query by committee algorithm
in Figure 2.2, ActiveDecorate is used as EnsembleGenerationMethod.

Melville and Mooney (2004) carry out experiments on 15 data sets from
the UCI repository (Asuncion and Newman 2007). They show that their
algorithm outperforms query by bagging and query by boosting as intro-
duced by Abe and Mamitsuka (1998) both in terms of accuracy reached,
and in terms of the amount of data needed to reach top accuracy. Melville
and Mooney conclude that the superiority of ActiveDecorate is due to the
diversity of the generated ensembles.
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2.3 Active learning with redundant views

Roughly speaking, utilizing redundant views is similar to the query by com-
mittee approach described above. The essential difference is that instead of
randomly sampling the version space, or otherwise tamper with the existing
training data with the purpose of extending it to obtain a committee, using
redundant views involves splitting the feature set into several sub-sets or
views, each of which is enough, to some extent, to describe the underlying
problem.

Blum and Mitchell (1998) introduce a semi-supervised bootstrapping
technique called Co-training in which two classifiers are trained on the same
data, but utilizing different views of it. The example of views provided by
Blum and Mitchell (1998) is from the task of categorizing texts on the web.
One way of learning how to do that is by looking at the links to the target
document from other documents on the web, another way is to consider the
contents of the target document alone. These two ways correspond to two
separate views of learning the same target concept.

As in active learning, Co-training starts off with a small set of labeled
data, and a large set of unlabeled data. The classifiers are first trained
on the labeled part, and subsequently used to tag an unlabeled set. The
idea is then that during the learning process, the predictions made by the
first classifier on the unlabeled data set, and for which it has the highest
confidence, are added to the training set of the second classifier, and vice-
versa. The classifiers are then retrained on the newly extended training set,
and the bootstrapping process continues with the remainder of the unlabeled
data.

A drawback with the Co-training method as it is originally described
by Blum and Mitchell (1998) is that it requires the views of data to be
conditionally independent and compatible given the class, that is, each view
should be enough for producing a strong learner compatible with the target
concept. In practice, however, finding such a split of features may be hard;
the problem is further discussed in Section 2.3.1.

Co-training per se is not within the active learning paradigm since it
does not involve a teacher, but the work by Blum and Mitchell (1998) forms
the basis for other approaches. One such approach is that of Corrected
Co-training (Pierce and Cardie 2001). Corrected Co-training is a way of
remedying the degradation in performance that can occur when applying
Co-training to large data sets. The concerns of Pierce and Cardie (2001)
include that of scalability of the original Co-training method. Pierce and
Cardie investigate the task of noun phrase chunking, and they find that when
hundreds of thousands of examples instead of hundreds, are needed to learn a
target concept, the successive degradation of the quality of the bootstrapped
data set becomes an issue. When increasing the amount of unlabeled data,
and thus also increasing the number of iterations during which Co-training
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1. Initialize the process by applying base learner B using each v in views V to
labeled training set DL to obtain a committee of classifiers C.

2. Have each classifier in C predict a label for every instance in the unlabeled
data set DU , obtaining labeled set DU

′.

3. From DU
′, select those instances for which the classifiers in C predicted

different labels to obtain the contention set2DU
′′.

4. Select instances I from DU
′′ and ask the teacher for their labels.

5. Move instances I, with supplied classifications, from DU
′′ to DL.

6. Re-train by applying base learner B using each v in views V to DL to obtain
committe C ′.

7. Repeat steps 2 through 6 until DU is empty or some stopping criterion is
met.

8. Output the final classifier learned by combining base learner B, views in V ,
and data DL.

Figure 2.3: A prototypical multiple view active learning algorithm.

will be in effect, the risk of errors introduced by the classifiers into each
view increases. In Corrected Co-training a human annotator reviews and
edits, as found appropriate, the data produced by both view classifiers in
each iteration, prior to adding the data to the pool of labeled training data.
This way, Pierce and Cardie point out, the quality of the labeled data is
maintained with only a moderate effort needed on behalf of the human
annotator. Figure 2.3 shows a prototypical algorithm for multi-view active
learning. It is easy to see how Corrected Co-training fits into it; if, instead
of having the classifiers select the instances on which they disagree (step
3 in Figure 2.3), each classifier selects the instances for which it makes
highly confident predictions, and have the teacher correct them in step 4,
the algorithm in Figure 2.3 would describe Corrected Co-training.

Hwa et al. (2003) adopt a Corrected Co-training approach to statistical
parsing. In pursuing their goal – to further decrease the amount of cor-
rections of parse trees a human annotator has to perform – they introduce
single-sided corrected Co-training. Single-sided Corrected Co-training is like
Corrected Co-training, with the difference that the annotator only reviews
the data, parse trees, produced by one of the view classifiers. Hwa et al.
(2003) conclude that in terms of parsing performance, parsers trained using
some form of sample selection technique are better off than parsers trained

2The instance or set of instances for which the view classifiers disagree is called the
contention point, and contention set, respectively.
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in a pure Co-training setting, given the cost of human annotation. Further-
more, Hwa and colleagues point out that even though parsing performance
achieved using single-sided Corrected Co-training is not as good as that re-
sulting from Corrected Co-training, some corrections are better than none.

In their work, Pierce and Cardie (2001) note that corrected Co-training
does not help their noun phrase chunker to reach the expected performance.
Their hypothesis as to why the performance gap occurs, is that Co-training
does not lend itself to finding the most informative examples available in
the unlabeled data set. Since each classifier selects the examples it is most
confident in, the examples are likely to represent aspects of the task at hand
already familiar to the classifiers, rather than representing potentially new
and more informative ones. Thus, where Co-training promotes confidence in
the selected examples over finding examples that would help incorporating
new information about the task, active learning works the other way around.
A method closely related to Co-training, but which is more exploratory
by nature, is Co-testing (Muslea, Minton and Knoblock 2000, 2006). Co-
testing is an iterative process that works under the same premises as active
learning in general, that is, it has access to a small set of labeled data, as
well as a large set of unlabeled data. Co-testing proceeds by first learning
a hypothesis using each view of the data, then asking a human annotator
to label the unlabeled instances for which the view classifiers’ predictions
disagree on labels. Such instances are called the contention set or contention
point. The newly annotated instances are then added to the set of labeled
training data.

Muslea, Minton and Knoblock (2006) introduce a number of variants of
Co-testing. The variations are due to choices of how to select the instances
to query the human annotator about, as well as how the final hypothesis is
to be created. The former choice pertains to step 4 in Figure 2.3, and the
options are:

Näıve – Randomly choose an example from the contention set. This strat-
egy is suitable when using a base learner that does not provide confi-
dence estimates for the predictions it makes.

Aggressive – Choose to query the example in the contention set for which
the least confident classifier makes the most confident prediction. This
strategy is suitable for situations where there is (almost) no noise.

Conservative – Choose to query the example in the contention set for which
the classifiers makes predictions that are as close as possible. This
strategy is suitable for noisy domains.

Muslea, Minton and Knoblock (2006) also present three ways of forming the
final hypothesis in Co-testing, that is, the classifier to output at the end of
the process. These ways concern step 8 in Figure 2.3:
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Weighted vote – Combine the votes of all view classifiers, weighted accord-
ing to each classifier’s confidence estimate of its own prediction.

Majority vote – Combine the votes of all view classifiers so that the label
predicted by the majority of the classifiers is used.

Winner-takes-all – The final classifier is the one learned in the view that
made the least amount of mistakes throughout the learning process.

Previously described multi-view approaches to learning all relied on the
views being strong. Analogously to the notion of a strong learner in ensemble-
based methods, a strong view is a view which provides enough information
about the data for a learner to learn a given target concept. Conversely,
there are weak views, that is, views that are not by themselves enough to
learn a given target concept, but rather a concept more general or more spe-
cific than the concept of interest. In the light of weak views, Muslea, Minton
and Knoblock (2006) redefine the notion of contention point, or contention
set, to be the set of examples, from the unlabeled data, for which the strong
view classifiers disagree. Muslea and colleagues introduce two ways of mak-
ing use of weak views in Co-testing. The first is as tie-breakers when two
strong views predict a different label for an unlabeled instance, and the sec-
ond is by using a weak view in conjunction with two strong views in such
a way that the weak view would indicate a mistake made by both strong
views. The latter is done by detecting the set of contention points for which
the weak view disagrees with both strong views. Then the next example
to ask the human annotator to label, is the one for which the weak view
makes the most confident prediction. This example is likely to represent a
mistake made by both strong views, Muslea, Minton and Knoblock (2006)
claim, and leads to faster convergence of the classifiers learned.

The experimental set-up in used by Muslea, Minton and Knoblock (2006)
is targeted at testing whether Co-testing converges faster than the corre-
sponding single-view active learning methods when applied to problems in
which there exist several views. The tasks are of two types: classifica-
tion, including text classification, advertisement removal, and discourse tree
parsing; and wrapper induction. For all tasks in their empirical validation,
Muslea, Minton and Knoblock (2006) show that the Co-testing variants
employed outperform the single-view, state-of-the art approaches to active
learning that were also part of the investigation.

The advantages of using Co-testing include its ability to use any base
learner suitable for the particular problem at hand. This seems to be a rather
unique feature among the active learning methods reviewed in this chapter.
Nevertheless, there are a couple of concerns regarding the shortcomings of
Co-testing aired by Muslea and colleagues that need to be mentioned. Both
concerns relate to the use of multiple views. The first is that Co-testing
can obviously only be applied to tasks where there exist two views. The
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other of their concerns is that the views of data have to be uncorrelated
(independent) and compatible, that is, the same assumption brought up by
Blum and Mitchell (1998) in their original work on Co-training. If the views
are correlated, the classifier learned in each view may turn out so similar
that no contention set is generated when both view classifiers are run on
the unlabeled data. In this case, there is no way of selecting an example
for which to query the human annotator. If the views are incompatible,
the view classifiers will learn two different tasks and the process will not
converge.

Just as with committee-based methods, utilizing multiple views seems
like a viable way to make the most of a situation that is caused by having
access to a small amount of labeled data. Though, the question remains of
how one should proceed in order to define multiple views in a way so that
the they are uncorrelated and compatible with the target concept.

2.3.1 How to split a feature set

Acquiring a feature set split adhering to the assumptions underlying the
multi-view learning paradigm is a non-trivial task requiring knowledge about
the learning situation, the data, and the domain. Two approaches to the
view detection and validation problem form the extreme ends of a scale;
randomly splitting a given feature set and hope for the best at one end, and
adopting a very cautions view on the matter by computing the correlation
and compatibility for every combination of the features in a given set at the
other end.

Nigam and Ghani (2000) report on randomly splitting the feature set
for tasks where there exists no natural division of the features into separate
views. The task is text categorization, using Näıve Bayes as base learner.
Nigam and Ghani argue that, if the features are sufficiently redundant, and
one can identify a reasonable division of the feature set, the application of
Co-training using such a non-natural feature set split should exhibit the
same advantages as applying Co-training to a task in which there exists
natural views.

Concerning the ability to learn a desired target concept in each view,
Collins and Singer (1999) introduce a Co-training algorithm that utilizes
a boosting-like step to optimize the compatibility between the views. The
algorithm, called CoBoost, favors hypotheses that predict the same label for
most of the unlabeled examples.

Muslea, Minton and Knoblock (2002a) suggest a method for validating
the compatibility of views, that is, given two views, the method should pro-
vide an answer to whether each view is enough to learn the target concept.
The way Muslea and colleagues go about is by collecting information about
a number of tasks solved using the same views as the ones under investi-
gation. Given this information, a classifier for discriminating between the
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tasks in which the views were compatible, and the tasks in which they were
not, is trained and applied. The obvious drawback of this approach is that
the first time the question of whether a set of views is compatible with a de-
sired concept, the method by Muslea, Minton and Knoblock (2002a) is not
applicable. In all fairness, it should be noted that the authors clearly state
the proposed view validation method to be but one step towards automatic
view detection.

Muslea, Minton and Knoblock (2002b) investigate view dependence and
compatibility for several semi-supervised algorithms along with one algo-
rithm combining semi-supervised and active learning (Co-testing), CoEMT.
The conclusions made by Muslea and colleagues are interesting, albeit per-
haps not surprising. For instance, the performance of all multi-view algo-
rithms under investigation degrades as the views used become less compat-
ible, that is, when the target concept learned by view classifiers are not the
same in each view. A second, very important point made in (Muslea, Minton
and Knoblock 2002a) is that the robustness of the active learning algorithm
with respect to view correlation is suggested to be due to the usage of an
active learning component; being able to ask a teacher for advice seems to
compensate for the views not being entirely uncorrelated.

Balcan, Blum and Yang (2005) argue that, for the kind of Co-training
presented by Blum and Mitchell (1998), the original assumption of condi-
tional independence between views is overly strong. Balcan and colleagues
claim that the views do not have to denote conditionally independent ways
of representing the task to be useful to Co-training, if the base learner is
able to correctly learn the target concept using positive training examples
only.

Zhang et al. (2005) present an algorithm called Correlation and Com-
patibility based Feature Partitioner, CCFP for computing, from a given set
of features, independent and compatible views. CCFP makes use of feature
pair-wise symmetric uncertainty and feature-wise information gain to detect
the views. Zhang and colleagues point out that in order to employ CCFP,
a fairly large number of labeled examples are needed. Exactly how large a
number is required is undisclosed. CCFP is empirically tested and Zhang
et al. (2005) report on somewhat satisfactory results.

Finally, one way of circumventing the assumptions of view independence
and compatibility is simply not to employ different views at all. Goldman
and Zhou (2000) propose a variant of Co-training which assumes no redun-
dant views of the data; instead, a single view is used by differently biased
base learners. Chawla and Karakoulas (2005) make empirical studies on
this version of Co-training. Since the methods of interest to the present
thesis are those containing elements of active learning, which the original
Co-training approach does not, the single-view multiple-learner approach to
Co-training will not be further elaborated.

In the literature, there is to my knowledge no report on automatic means
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to discover, from a given set of features, views that satisfy the original Co-
training assumptions concerning independence and compatibility. Although
the Co-training method as such is not of primary interest to this thesis, off-
springs of the method are. The main approach to active multi-view learning,
Co-testing and its variants rely on the same assumptions as does Co-training.
Muslea, Minton and Knoblock (2002b) show that violating the compatibil-
ity assumption in the context of an active learning component, does not
necessarily lead to failure; the active learner might have a stabilizing effect
on the divergence of the target concept learned in each view. As regards the
conditional independence assumption made by Blum and Mitchell (1998),
subsequent work (Balcan, Blum and Yang 2005) shows that the indepen-
dence assumption is too strong, and that iterative Co-training, and thus
also Co-testing, works under a less rigid assumption concerning the expan-
sion of the data in the learning process.
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Chapter 3

Quantifying disagreement

So far, the issue of disagreement has been mentioned but deliberately not
elaborated on. The algorithms for query by committee and its variants
(Figure 2.2) as well as those utilizing multiple views of data (Figure 2.3) all
contain steps in which the disagreement between classifiers concerning in-
stances has to be quantified. In a two-class case, such quantification is simply
the difference between the positive and negative votes given by the classi-
fiers. Typically, instances for which the distribution of votes is homogeneous
is selected for querying. Generalizing disagreement to a multi-class case is
not trivial. Körner and Wrobel (2006) empirically test four approaches to
measuring disagreement between members of a committee of classifiers in a
multi-class setting. The active learning approaches they consider are query
by bagging, query by boosting, ActiveDecorate, and Co-testing. The dis-
agreement measures investigated are margin-based disagreement, uncertainty
sampling-based disagreement, entropy-based disagreement, and finally a mea-
sure of their own dubbed specific disagreement. Körner and Wrobel (2006)
strongly advocate the use of margin-based disagreement as a standard ap-
proach to quantifying disagreement in an ensemble-based setting.

Sections 3.1 through 3.4 deal with the different measures used by Körner
and Wrobel (2006), followed by the treatment of Kullback-Leibler divergence,
Jensen-Shannon divergence, vote entropy, and F-complement in Sections 3.5
to 3.8.

3.1 Margin-based disagreement

Margin, as introduced by Abe and Mamitsuka (1998) for binary classifica-
tion in query by boosting, is defined as the difference between the number of
votes given to the two labels. Abe and Mamitsuka base their notion of mar-
gins on the finding that a classifier exhibiting a large margin when trained
on labeled data, performs better on unseen data than does a classifier that
has a smaller margin on the training data (Schapire et al. 1998). Melville
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and Mooney (2004) extend Abe and Mamitsuka’s definition of margin to in-
clude class probabilities given by the individual committee members. Körner
and Wrobel (2006), in turn, generalize Melville and Mooney’s definition of
margin to account for the multi-class setting as well. The margin-based dis-
agreement for a given instance is the difference between the first and second
highest probabilities with which an ensemble of classifiers assigns different
class labels to the instance.

For example, if an instance X is classified by committee member 1 as
belonging to class A with a probability of 0.7, by member 2 as belonging class
B with a probability of 0.2, and by member 3 to class C with 0.3, then the
margin for X is A−C = 0.4. If instance Y is classified by member 1 as class
A with a probability of 0.8, by member 2 as class B with a probability of 0.9,
and by member 3 as class C with 0.6, then the margin for Y is B−A = 0.1.
A low value on the margin indicates that the ensemble disagree regarding
the classification of the instance, while a high value signals agreement. Thus,
in the above example, instance Y is more informative than instance X.

3.2 Uncertainty sampling-based disagreement

Originally, uncertainty sampling is a method used in conjunction with single
classifiers, rather than ensembles of classifiers (see Section 2.1). Körner and
Wrobel (2006), though, prefer to view it as another way of generalizing the
binary margin approach introduced in the previous section. In uncertainty
sampling, instances are preferred that receives the lowest class probability
estimate by the ensemble of classifiers. The class probability is the highest
probability with which an instance is assigned a class label.

3.3 Entropy-based disagreement

The entropy-based disagreement used in (Körner and Wrobel 2006) is what
they refer to as the ordinary entropy measure (information entropy or Shan-
non entropy) first introduced by Shannon (1948). The entropy H of a ran-
dom variable X is defined in equation 3.1 in the case of a c class problem,
that is, where X can take on values x1, . . . , xc.

H(X) = −
c∑

i=1

p(xi)log2p(xi) (3.1)

where p(xi) denotes the probability of xi. A lower value on H(X) indicates
less confusion or less uncertainty concerning the outcome of the value of X.



19

3.4 The Körner-Wrobel disagreement measure

The specific disagreement measure, here referred to as the Körner-Wrobel
disagreement measure is a combination of margin-based disagreement M and
the maximal class probability P over classes C in order to indicate disagree-
ment on a narrow subset of class values. The Körner-Wrobel disagreement
measure, R, is defined in equation 3.2.

R = M + 0.5
1

(|C|P )3
(3.2)

Körner and Wrobel (2006) find that the success of the specific disagreement
measure is closely related to which active learning method is used. Through-
out the experiments conducted by Körner and Wrobel, those configurations
utilizing specific disagreement as selection metric perform less well than the
margin-based and entropy-based disagreement measures investigated.

3.5 Kullback-Leibler divergence

The Kullback-Leibler divergence (KL-divergence, information divergence) is
a non-negative measure of the divergence between two probability distribu-
tions p and q in the same event space X = {x1, . . . , xc}. The KL-divergence,
denoted D(· ‖ ·), between two probability distributions p and q is defined in
equation 3.3.

D(p ‖ q) =
c∑

i=1

p(xi)log
p(xi)
q(xi)

(3.3)

A high value on the KL-divergence indicates a large difference between the
distributions p and q. A zero-valued KL-divergence signals full agreement,
that is p and q are equivalent.

Kullback-Leibler divergence to the mean (Pereira, Tishby and Lee 1993)
quantifies the disagreement between committee members; it is the average
KL-divergence between each distribution and the mean of all distributions.
KL-divergence to the mean, Dmean for an instance x is defined in equa-
tion 3.4.

Dmean(x) =
1
k

k∑
i=1

D(pi(x) ‖ pmean(x)) (3.4)

where k is the number of classifiers involved, pi(x) is the probability distri-
bution for x given by the i-th classifier, pmean(x) is the mean probability
distribution of all k classifiers for x, and D(· ‖ ·) is the KL-divergence as
defined in equation 3.3.
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KL-divergence, as well as KL-divergence to the mean, has been used for
detecting and measuring disagreement in active learning, see for instance
(McCallum and Nigam 1998; Becker et al. 2005; Becker and Osborne
2005)

3.6 Jensen-Shannon divergence

The Jensen-Shannon divergence, (JSD) is a symmetrized and smoothed ver-
sion of KL-divergence, which essentially means that it can be used to mea-
sure the distance between two probability distributions (Lin 1991). The
Jensen-Shannon divergence for two distributions p and q is defined in equa-
tion 3.5.

JSD(p, q) = H(w1p + w2q) − w1H(p) − w2H(q) (3.5)

where w1 and w2 are the weights of the probability distributions such that
w1, w2 ≥ 0 and w1 + w2 = 1, and H is the Shannon entropy as defined in
equation 3.1.

Lin (1991) defines the Jensen-Shannon divergence for k distributions as
in equation 3.6.

JSD(p1, . . . , pk) = H(
k∑

i=1

wipi) −
k∑

i=1

wiH(pi) (3.6)

where pi is the class probability distribution given by the i-th classifier for
a given instance, wi is the vote weight of the i-th classifier among the k
classifiers in the set, and H(p) is the entropy as defined in equation 3.1. A
Jensen-Shannon divergence value of zero signals complete agreement among
the classifiers in the committee, while correspondingly, increasingly larger
JSD values indicate larger disagreement.

3.7 Vote entropy

Engelson and Dagan (1996) use vote entropy for quantifying the disagree-
ment within a committee of classifiers used for active learning in a part-
of-speech tagging task. Disagreement V E for an instance e based on vote
entropy is defined as in equation 3.7.

V E(e) = − 1
log k

|l|∑
i=0

V (li, e)
k

log
V (li, e)

k
(3.7)

where k is the number of members in the committee, and V (li, e) is the num-
ber of members assigning label li to instance e. Vote entropy is computed
per tagged unit, for instance per token. In tasks where the smallest tagged
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unit is but a part of the construction under consideration, for instance in
phrase chunking where each phrase may contain one or more tokens, the
vote entropy of the larger unit is computed as the mean of the vote entropy
of its parts (Ngai and Yarowsky 2000; Tomanek, Wermter and Hahn 2007a).

Weighted vote entropy (Olsson 2008) is applicable only in committee-
based settings where the individual members of the committee has received
weights reflecting their performance. For instance, this is the case with
Boosting (Section 2.2.1), but not with Decorate (Section 2.2.2).

Weighted vote entropy is calculated similarly to the original vote entropy
metric (equation 3.7), but with the weight of the committee members sub-
stituted for the votes. Disagreement based on weighted vote entropy WV E
for an instance e is defined as in equation 3.8.

WV E(e) = − 1
log w

|c|∑
i=1

W (ci, e)
w

log
W (ci, e)

w
(3.8)

where w is the sum of the weights of all committee members, and W (ci, e)
is the sum of the weights of the committee members assigning label ci to
instance e.

3.8 F-complement

Ngai and Yarowsky (2000) compare the vote entropy measure, as introduced
by Engelson and Dagan, with their own measure called F-complement (F-
score complement). Disagreement FC concerning the classification of data
e among a committee based on the F-complement is defined as in equation
3.9.

FC(e) =
1
2

∑
ki,kj∈K

(1 − Fβ=1(ki(e), kj(e))) (3.9)

where K is the committee of classifiers, ki and kj are members of K, and
Fβ=1(ki(e), kj(e)) is the F-score, Fβ=1 (defined in equation 3.10), of the
classifier ki’s labelling of the data e relative to the evaluation of kj on e.

In calculating the F-complement, the output of one of the classifiers in
the committee is used as the answer key, against which all other committee
members’ results are compared and measured (in terms of F-score).

Ngai and Yarowsky (2000) find that the task they are interested in, base
noun phrase chunking, using F-complement to select instances to annotate
performs slightly better than using vote entropy. Hachey, Alex and Becker
(2005) use F-complement to select sentences for named entity annotation;
they point out that the F-complement is equivalent to the inter-annotator
agreement between |K| classifiers.
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The F-score is the harmonic mean of precision (equation 3.11) and recall
(equation 3.12) such that

F =
(β2 + 1) × P × R

β2 × P + R
(3.10)

where β is a constant used for determining the influence of precision over
recall, or vice-versa. β is usually set to 1, which is commonly referred to
as F1 or Fβ=1. Precision, P , is defined as the ratio between the number of
correctly classified instances and the number of classified instances:

P =
TP

TP + FP
(3.11)

Recall, R, is defined as the ratio between the number of correctly classi-
fied instances and the total number of instances:

R =
TP

TP + FN
(3.12)



Chapter 4

Data access

There are several issues related to the way that the active learner has access
to the data from which it learns. First of all, the seed set of instances
used to start the process (e.g., item 1 in Figure 2.1) may have impact on
how the learning proceeds (Section 4.1). Further, the way that the learner
is provided access to the unlabeled data has implications for the overall
setting of the learning process; is the data made available as a stream or as
a pool (Section 4.2)? A related question is whether a batch or singletons of
unlabeled instances is processed in each learning iteration (Section 4.3).

4.1 Selecting the seed set

The initial set of labeled data used in active learning should be representative
with respect to the classes that the learning process is to handle. Omitting
a class from the initial seed set might result in trouble further down the
road when the learner fits the classes it knows of with the unlabeled data
it sees. Instances that would have been informative to the learner can go
unnoticed simply because the learner, when selecting informative instances,
treat instances from several classes as if they belong to one and the same
class.

A related issue is that of instance distribution. Given that the learner
is fed a seed set of data in which all classes are represented, the number
of examples of each class plays a crucial role in whether the learner is able
to properly learn how to distinguish between the classes. Should the dis-
tribution of instances in the seed set mirror the (expected) distribution of
instances in the unlabeled set?

In the context of text categorization, McCallum and Nigam (1998) report
on a method that allows for starting the active learning process without any
labeled examples at all. They select instances (documents) from the region
of the pool of unlabeled data that has the highest density. A dense region
is one in which the distance (based on Kullback-Leibler divergence, defined
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in equation 3.3) between documents is small. McCallum and Nigam (1998)
combine expectation-maximization (Dempster, Laird and Rubin 1977) and
active learning in a pool-based setting (Section 4.2); their results show that
the learning in this particular setting might in fact benefit from being initi-
ated without the use of a labeled seed set of documents.

Tomanek, Wermter and Hahn (2007b) describe a three-step approach to
compiling a seed set for the task of named entity recognition in the biomed-
ical domain. In the first step, a list of as many named entities as possible
is gathered, the source being either a human domain expert, or some other
trusted source. The second step involves matching the listed named entities
against the sentences in the unlabeled document pool. Third, the sentences
are ranked according to the number of diverse matches of named entities to
include in the seed set. Tomanek, Wermter and Hahn (2007b) report results
from running the same active learning experiment with three different seed
sets; a randomly selected set, a set tuned according to the above mentioned
method, and no seed set at all. Though the learning curves seem to con-
verge, initially the tuned seed set clearly contributes to a better progression
of learning.

Olsson (2008) compares random selection of documents to include in the
seed set for a named entity recognition task, to a seed set made up from
documents selected based on their distance from the centroids of clusters
obtained by K-means clustering. Olsson concludes that neither query by
uncertainty, nor query by committee produced better classification results
when the seed sets were selected based on clustering. However, the clustering
approach taken did affect the variance of the performance of the classifier
learned in a positive way.

In experimental settings, a work-around to the seed set selection problem
is to run the active learning process several times, and then present the
average of the results achieved in each round. Averaging rounds, combined
with randomly selecting a fairly large initial seed set – where its size is
possibly related to the number of classes – might prove enough to circumvent
the seed set problem when conducting controlled experiments. How the issue
is best addressed in a live setting is not clear.

4.2 Stream-based and pool-based data access

There are two ways in which a learner is provided access to data, either
from a stream, or by selecting from a pool. In stream-based selection used
by, among others, Liere and Tadepalli (1997) and McCallum and Nigam
(1998), unlabeled instances are presented one by one. For each instance, the
learner has to decide whether the instance is so informative that is should
be annotated by the teacher. In the pool-based case – used by for example
Lewis and Gale (1994), and McCallum and Nigam (1998) – the learner has
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access to a set of instances and has the opportunity to compare and select
instances regardless of their individual order.

4.3 Processing singletons and batches

The issue of whether the learner should process a single instance or a batch
of instances in each iteration has impact on the speed of the active learn-
ing process. Since in each iteration, the base learner generates classifiers
based on the labeled training data available, adding only one instance at
a time slows the overall learning process down. If, on the other hand, a
batch of instances is added, the amount of data added to the training set
in each iteration increases, and the learning process progresses faster. The
prototypical active learning algorithms presented previously, see Figures 2.1,
2.2 and 2.3, respectively, do not advocate one approach over the other. In
practice though, it is clearly easier to fit singleton instance processing with
the algorithms. Selecting a good batch of instances is non-trivial since each
instance in the batch needs to be informative, both with respect to the other
instances in the batch, as well as with respect to the set of unlabeled data
as a whole.

While investigating active learning for named entity recognition, Shen et
al. (2004) use the notions of informativeness, representativeness, and diver-
sity, and propose scoring functions for incorporating these measures when
selecting batches of examples from the pool of unlabeled data. Informative-
ness relates to the uncertainty of an instance, representativeness relates an
instance to the majority of instances, while diversity is a means to avoid rep-
etition among instances, and thus maximize the training utility of a batch.

The pool-based approach to text classification adopted by McCallum and
Nigam (1998) facilitates the use of what they refer to as density-weighted
pool-based sampling. The density in a region around a given document – to
be understood as representativeness in the vocabulary of Shen et al. (2004)
– is quantified as the average distance between that document and all other
documents. McCallum and Nigam (1998) combine density with disagree-
ment, calculated as the Kullback-Leibler divergence (equation 3.3), such that
the document with the largest product of density and Kullback-Leibler diver-
gence is selected as a representative of many other documents, while retain-
ing a confident committee disagreement. McCallum and Nigam show that
density-weighted pool-based sampling used in conjunction with Kullback-
Leibler divergence yields significantly better results than the same experi-
ments conducted with pool-based Kullback-Leibler divergence, stream-based
Kullback-Leibler divergence, stream-based vote entropy, and random sam-
pling.

Tang, Luo and Roukos (2002) also experiment with representativeness,
or density, albeit in a different setting; that of statistical parsing. They
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propose to use clustering of the unlabeled data set based on the distance be-
tween sentences, the resulting clusters are then used to compute the density
of examples. Tang and colleagues define the distance between two sentences
based on the parse trees corresponding to the sentences. A parse tree can be
uniquely represented by a series of events, each of which is constituted by a
parse action and its context. Sentence similarity is calculated as the Ham-
ming edit distance between two sequences of events. The Hamming distance
measures the number of substitutions (or errors) required to turn one se-
quence into the other (Hamming 1950). The results reported by Tang, Luo
and Roukos (2002) show that taking density into account helps in keeping
the amount of training data needed down, compared to random sampling.

Brinker (2003) addresses the issue of incorporating a diversity measure
when selecting batches of instances. Brinker’s work is carried out with
Support Vector Machines, and his batch selection method is accordingly
described in terms of feature vectors in a high-dimensional space. When
selecting single instances for querying, an instance with a minimal distance
to the classification hyperplane is usually favored, since choosing such an
instance will result in halving the version space. When selecting several
unlabeled instances, Brinker (2003) argue that picking instances such that
their angles are maximal with respect to each other, rather than relative to
the decision hyperplane, is a batch selection technique which is both com-
putationally cheap and scalable to large data sets. Brinker (2003) conducts
empirical investigations using a number of UCI data sets (Asuncion and
Newman 2007), and reports results indicating that previously approaches
to active learning with Support Vector Machines are outperformed by his
batch selection strategy.

Hoi, Jin and Lyu (2006) present work on large-scale text categorization
in which a batch of documents is selected in each learning iteration. Hoi
and colleagues report on the development of an active learning algorithm
utilizing logistic regression as base learner, capable of selecting several doc-
uments at a time, while minimizing the redundancy in the selected batch.
The uncertainty of the logistic regression model is measured using Fisher
matrix information, something which is claimed to allow for the batch se-
lection problem to be re-cast as an optimization problem in which instances
from the unlabeled pool are selected in such as way that the Fisher informa-
tion is maximized. The notion of Fisher information and Fisher matrix is
described by Hoi, Jin and Lyu (2006). Hoi and colleagues carry out exper-
iments on several document collections, using a range of learning methods,
and conclude that their active learning approach equipped with the batch
selection method is more effective than the margin-based active learning
methods tested.



Chapter 5

The creation and re-use of
annotated data

Under some circumstances, active learning can evidently be used to identify
the most informative units in a corpus. What really takes place is the
reordering, and elicitation, of available examples highly biased towards the
preferences of the base learner and task in effect. The data produced is
often viewed as a side effect of an annotation process that is really intended
to produce a classifier with as little human effort as possible. An effect of
this classifier-centric view of active learning is that the resulting annotated
data may be hard to re-use by base learners other than the one used in
the active learning process. Research addressing the re-usability of actively
annotated data is reviewed in Section 5.1. Further, a number of research
efforts adopting a more data-centric approach to active learning in that it
is used as a technique when creating annotated corpora are described in
Section 5.2.

5.1 Data re-use

Baldridge and Osborne (2004) use active learning to create a corpus on
which to train parsers. In doing that, their principal worry is whether the
selected material will be useful if used with a base learner different than the
one used to select the data. Indeed, for their particular task, they find that
the gains of using active learning may turn out minimal or even negative.
The reason lies in how complex it is for a human annotator to assign parse
trees to the selected sentences. In response to this finding, Baldridge and
Osborne formulate a strategy involving semi-automatic labeling to operate
in concert with active learning. The semi-automatic technique makes use of
the fact that the parser used can provide ranked partial parses, of which the
ones with higher probability than chance is presented to the user in a drop-
down list. Baldridge and Osborne (2004) conclude that n-best automation
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can be used to increase the possibility of the annotations produced being
re-usable.

Tomanek, Wermter and Hahn (2007a) conduct two experiments address-
ing the re-usability of training material obtained by employing active learn-
ing to annotate named entities in a biomedical domain. In their first ex-
periment, the base learners used for selecting data – called selectors – and
the learning schemes used for testing the data – called testers – are var-
ied. By keeping the feature set fixed and using the best selector, generated
by a conditional random field base learner, Tomanek and colleagues show
that feeding the tester with data generated by faster, albeit worse perform-
ing selectors based on maximum entropy and näıve Bayes, still yield results
far better than passive learning. Comparable results are reported for the
variation of the tester’s base learner.

In the second experiment outlined in Tomanek, Wermter and Hahn
2007a, the feature sets used by the selectors are reduced, while that of
the tester remain fixed and full. The three reduced feature sets contain,
in turn, all but the syntactic features, all but the syntactic and morpho-
logical features, and finally, only orthographic features. A committee of
conditional random field selectors employs each of the three reduced feature
sets. Tomanek, Wermter and Hahn (2007a) show that, even when using
selectors in concert with the most reduced feature set, a tester (also based
on conditional random fields) still can make use of the data and generate
results better than those resulting from passive learning.

Vlachos (2006) approaches the production of marked-up data slightly
different than the rest; instead of employing active learning for the purpose
of selecting sentences to annotate with names, Vlachos uses it to select the
automatically inserted named entity annotations that need to be corrected.
Vlachos finds that his approach to use active learning to select errors to
correct outperforms active learning for selecting instances to annotate in
all cases except for the one where very noisy data had been used to train
the initial pre-tagger. Vlachos (2006) points out that his approach is likely
to yield data more re-usable than the data created using “ordinary” active
learning. This claim is based on the observation that the corpus produced
by Vlachos’s method contains all data that the initial corpus does, and
although only parts of the data is manually corrected, the errors in the
uncorrected parts are possibly non-significant to a machine learner. Since
the distribution of the data in the resulting corpus is the same as in the
original one, the former is likely to be as re-usable as the latter.

5.2 Active learning as annotation support

Olsson (2008) present a three-stage method called BootMark for bootstrap-
ping the marking up of named entities in documents. What differentiates
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BootMark from other similar methods, such as Melita (Ciravegna, Petrelli
and Wilks 2002), is that BootMark makes use of active learning to select en-
tire documents to annotate. The BootMark method consists of three phases:
(1) Manual annotation of a set of documents; (2) Bootstrapping – active ma-
chine learning for the purpose of selecting which document to annotate next;
(3) The remaining unannotated documents of the original corpus are marked
up using pre-tagging with revision. Olsson identifies and emprically inves-
tigates five emerging issues pertaining to the realization of BootMark. The
issues are related to: the characteristics of the named entity recognition task
and the base learners used in conjunction with it; the constitution of the
set of documents annotated by the human annotator in phase one in order
to start the bootstrapping process; the active selection of the documents to
annotate; the monitoring and termination of the active learning; and the
applicability of the actively learned named entity recognizer as a pre-tagger
for annotating unlabeled data.

Chklovski and Mihalcea (2002) direct their efforts towards collecting a
word sense-tagged corpus involving the general public as annotators by using
the World Wide Web as communications channel. The active learning com-
ponent used to select instances to tag is made up from two classifiers created
by two different base learners. An instance is picked out for annotation if
the labels assigned to it by the classifiers are not equal.

In setting up the experiment, Chklovski and Mihalcea faced two rather
uncommon challenges; that of ensuring the quality of annotations provided
by a potentially very large and uncontrolled selection of annotators, and that
of drawing attention to their task in order to bring in enough annotators.
Chklovski and Mihalcea dealt with the first challenge by limiting the number
of tags of an item to two, and also by limiting the number of tags assigned to
an item to one per contributor. The authors proposed to make the tagging
task “game-like”, including awarding prizes to the winners, in order for
people to be inclined to contribute. Mihalcea and Chklovski (2003) report
that after the first nine months of being available on the web, their system
had collected 90 000 high-quality tagged items.

Tomanek et al. (2007a; 2007b) describe the Jena annotation environ-
ment (Jane), a client-server-based workbench for accommodating and man-
aging the labeling of texts. The task described by Tomanek and colleagues
is that of named entity recognition in the immunogenetics domain, although
they point out that other types of tasks are possible too. Jane contains tools
supporting a single annotator, as well as for managing teams of annotators.
The administrative tool facilitating the latter include modules for managing
users, creating and editing projects, monitoring the annotation progress and
inter-annotator agreement, and deploying the data once the annotation of it
is completed. Single annotators have the option to choose focused annota-
tion, that is, being supported by a server-side active annotation module that
selects the sentences to be marked-up. Active learning is realized as query
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by committee employing three different base learners – conditional random
fields (Lafferty, McCallum and Pereira 2001), maximum entropy, and Näıve
Bayes – with vote entropy as disagreement quantification. Tomanek et al.
(2007a; 2007b) perform a real-world annotation experiment, indicating a
reduction in the number of annotations with between 50% and 75%. One
conclusion drawn from the experiment is that active learning is particularly
advantageous when the instances of interest are sparsely distributed in the
texts. The density of named entities, that is, the number of entities per sen-
tence, in the corpus produced in the experiment is almost 15 times greater
than the density of names in the test corpus. Another set of conclusions is
realized as a list of requirements for facilitating deployment of active learning
in practical circumstances:

• the turn-around time for selecting what to annotate needs to be kept
short;

• the data produced in the annotation process need to be re-usable by
other machine learners; and,

• the criterion for stopping the active learning needs to be sensitive to
the progress of the performance in the annotation process.

The requirements list presented by Tomanek and colleagues is one of several
manifestations of increasing awareness in the research community of the
conditions under which the human annotators operate. Concerns are raised
regarding the usefulness of the resulting data sets for tasks other than that
which originally created the data.



Chapter 6

Cost-sensitive active learning

The performance of active learning is often measured along the lines of how
much data is required to reach some given performance compared to reaching
the same performance by learning from randomly sampled data from the
same set of unlabeled data. However, only taking the amount of data into
consideration is not always appropriate, e.g., when some types of data are
harder for the user to annotate than others, or when the acquisition of certain
types of unlabeled examples is expensive. In these cases, it is necessary
to model the cost of learning as being attributed to other characteristics
of the data and the annotation situation than simply the sheer amount
of data processed. Cost in this sense is typically derived from monetary,
temporal, or effort-based issues. A cost model should reflect the constraints
currently in effect; for instance, if annotator time is more important than
the presumed cognitive load put on the user, then the overall time should
take precedence in the evaluation of the plausibility of the method under
consideration. If on the other hand a high cognitive load causes the users to
produce annotations with too high a variance, resulting in poor data quality,
then the user situation may have to take precedence over monetary issues
in order to allow for the recruitment and training of more personnel.

Using a scale mimicking the actions made by the user when annotating
the data is one way of facilitating a finer grained measurement of the learn-
ing progress. For instance, Hwa (2000) uses the number of brackets required
for marking up parse trees in the training data as a measure of cost, rather
than using the sheer number of sentences available. Hwa (2000) uses active
learning to select sentences to be marked-up with parse trees. The corpus
constructed is then used to induce a statistical grammar. The sample selec-
tion method used by Hwa is based on a single learner using sentence length
and tree entropy as means to select the sentences to annotate. Hwa points
out that creating a statistical grammar (parser) is a complex task which dif-
fers from the kind of classification commonly addressed by active learning
in two significant respects; where a classifier selects labels from a fixed set
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of categories for each instance, in parsing, every instance has a different set
of possible parse trees. While most classification problems concern a rather
limited set of classes, the number of parse trees may be exponential with
respect to the length of the sentence to parse. These two characteristics
have bearing towards the complexity of the task faced by the human an-
notator acting as oracle in the learning process. Hwa’s aim is to minimize
the amount of annotation required by the human in terms of the number of
sentences processed, as well as in terms of the number of brackets denoting
the structure of each sentence.

Osborne and Baldridge (Osborne and Baldridge 2004; Baldridge and
Osborne 2004) distinguish between unit cost and discriminant cost in their
work on ensemble-based active learning for selecting parses. In their set-
ting, unit cost is the absolute number of sentences selected in the learning
process. Discriminant cost assigns a variable cost per sentence and concerns
the decision an annotator has to make concerning the example parse trees
provided by the system.

Culotta et al. (2006) design their system so that segmentation decisions
are converted into classification tasks. They use what they refer to as Ex-
pected Number of User Actions (ENUA) to measure the effort required by
the user to label each example in an information extraction setting. The
ENUA is computed as a function of four atomic labeling actions, corre-
sponding to annotating the start and end boundaries, the type of a field to
be extracted, as well as to an option for the user to select the correct anno-
tation among k predicted ones. The use of ENUA reflects the authors’ goal
with the system; to reduce the total number of actions required by the user.
Culotta et al. (2006) notice that there is a trade-off between how large k is,
that is, how many choices the user is presented with, and the reduction in
amount of required user actions caused by introducing the multiple-choice
selection.

It seems reasonable to assume that, on average, it must be harder to
annotate the units provided by active learning, than it is annotating units
randomly drawn from the same corpus simply because the former is, by
definition, more informative. Along these lines, Hachey, Alex and Becker
(2005) find that the three selection metrics they used in a live annotation
experiment yield three distinct annotation time per token/data size curves.
Hachey and colleagues measure maximum Kullback-Leibler divergence, av-
erage Kullback-Leibler divergence and F-complement for selecting the sen-
tences in which the annotators are to mark up named entities. Hachey, Alex
and Becker (2005) demonstrate that the time spent on marking up an ex-
ample is correlated with its informativeness. Similarly, in the experiments
conducted by Ringger et al. (2007), the selection metric resulting in the best
performance in terms of amount of data needed to reach a given accuracy, is
also the one demanding the most attention from the user; the amount of cor-
rections made by the oracle is clearly larger for the most complex selection
method used.
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Sometimes failure according to one cost model is success when measured
under different model. Ganchev, Pereira and Mandel (2007) design their
process so as to require binary decisions only, as opposed to full annota-
tions/corrections, from the user. They show that the effectiveness of their
approach is inferior to that of learning from fully manually annotated data.
Their semi-automatic method requires the annotator to process more data
than he would have had if he had chosen to manually annotate it. This
is an effect of reducing the load on the user to binary decisions. On the
other hand, Ganchev and colleagues show that less effort is required by the
annotator to produce annotations of a quality superior to that of manu-
ally tagging. In all, Ganchev, Pereira and Mandel (2007) conclude that, in
the conducted experiments, the suggested semi-automatic method reduced
annotation time by 58%.

Haertel et al. (2008) show that the active learning strategy which per-
forms the best depends on how the annotation cost is measured. They
examine the performance of query by uncertainty and query by committee
for the task of part-of-speech tagging under a number of cost models. The
models used include what Haertel and colleagues refer to as an hourly cost
model. As an example of how a cost model can be used in their particular
setting, Haertel et al. (2008) show that when a low tag accuracy is required,
random selection of what to annotate is cheapest according to the hourly
cost model. On the other hand, query by uncertainty is cost-effective (com-
pared to a random baseline) starting at around 91% tag accuracy, while
query by committee is more effective than both the baseline and query by
uncertainty at tag accuracies starting at around 80%.

Settles, Craven and Friedland (2008) describe four active learning tasks
involving human annotators; the annotating of entities and relations from
news-wire text, the classification of images in a content-based image retrieval
system, the annotation of speculative vs. definite statements in biomedical
text, and the annotation of contact information from email text. Burr and
colleagues investigate various aspects of the time required to annotate data,
and use that as the cost model in their experiments. They ask questions
such as: Are annotation times variable for a given task or domain? Do
times vary from one annotator to the next? Can we improve active learning
by utilizing cost information? Burr and colleagues conclude that the cost,
i.e., time, can vary considerably across the instances of data annotated, that
active learning can fail if the variability of the cost of instances are not taken
into account, and that, in some domains, it is possible to learn to predict
the annotation costs.

Castro et al. (2008) investigate what they refer to as human active learn-
ing. They conduct a series of experiments in which humans are to categorize
instances as belonging to one of two classes. The conclusions made by Castro
and colleagues include that humans are capable of actively selecting infor-
mative examples from a pool of unlabeled examples, and when doing so, the
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humans learn faster and better than they would have done if the examples
were provided to them based on random sampling. However, the human ac-
tive learning does not show as much improvement as that obtained by active
machine learning on the same task. Further, Castro and colleagues conclude
that human active learning sensitive to noise, and do not approach the the-
oretical bounds set out in active machine learning, that is, humans are not
as good as machines in selecting informative queries from an unlabeled data
set.

Although the work by Castro et al. (2008) is not directly geared towards
cost-sensitive learning, my interpretation is that it raises important ques-
tions pertaining to the cost of the of labeling data in terms of effort required
by the human annotator: Are the examples located between the human up-
per bound and the machine upper bound are too hard for the human to
label? Does this mean that it is not necessary to let the machine select
the most informative queries, that is, the ones hardest to label, in order for
machine active learning (involving a human) to work optimally? Ultimately,
does this mean that the human is the weakest point in active learning in
that he cannot assimilate the most informative examples provided to him
by the active machine learning algorithm?

The research on cost-sensitive active learning in general, and the re-
sults obtained by Castro et al. (2008) in particular, indicate that we should
pay more attention to the practical situation of the human annotator when
striving to make active learning an operational tool for practitioners of NLP.



Chapter 7

Monitoring, assessing and
terminating the learning
process

The monitoring, assessing and terminating of the active learning process go
hand in hand. The purpose of assessing the learning process is to provide the
human annotator with means to form a picture of the learning status. Once
the status is known, the annotator has the opportunity to act accordingly,
for instance, to manually stop the active learning process.

The purpose of defining the stopping criterion is slightly different than
that of assessing the learning process. A stopping criterion is used to auto-
matically terminate the learning process, and ideally the realization of the
definition, e.g., the setting of any thresholds necessary, should not hinder
nor disturb the human annotator.

It should be remembered that there is a readily available way of assessing
the process, and thus also to be able to manually decide when the active
learning should be stopped; to use a marked-up, held-out test set on which
the learner is evaluated in each iteration. This is the way that active learning
is usually evaluated in experimental settings. The drawback of this method
is that the user has to manually annotate more data before the annotation
process takes off. As such, it clearly counteracts the goal of active learning
and should only be considered a last resort.

7.1 Measures for monitoring learning progress

A very common way of monitoring how an active learner behaves is by
plotting a learning curve, typically with the classification error or F-score
along one axis, commonly the Y-axis, and something else along the other
axis. It is that something else that is of interest here. The X-axis is usually
indicating the amount of data seen – depending on the granularity of choice
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for that particular learning task it can be for instance tokens, named entities,
or sentences – or the number of iterations made while learning. The purpose
of a learning curve is to depict the progress in the learning process; few
variations of how to measure progress exist, and consequently there are
few differences in how the axes of a graph illustrating a learning curve are
labeled.

There are times when the graphical nature of learning curves is not an
appropriate means to describe the learning process. Abe and Mamitsuka
(1998) calculate the data efficiency achieved by using an active learning
approach as the ratio between the number of iterations required by a base
learner to reach top performance when data is drawn at random, and the
number of iterations required for the base learner in an active learning setting
to reach the same performance.

Melville and Mooney (2004) defines the data utilization ratio – which is
similar to the data efficiency introduced by Abe and Mamitsuka (1998) –
as the number of instances an active learner requires to reach a target error
rate divided by the number that the base learner – Decorate – requires to
reach the same error rate. Both data efficiency and data utilization ratio
reflect how good an active learner is at making use of the data.

Baram, El-Yaniv and Luz (2004) propose to use a quantification of the
deficiency of the querying function with respect to randomly selecting in-
stances from which to learn. The deficiency is defined in equation 7.1.

Deficiencyn(A) =
∑n

t=1(Accn(L) − Acct(A))∑n
t=1(Accn(L) − Acct(L))

(7.1)

where t is the training set size, Accn(L) is the maximal achievable accu-
racy when using algorithm L and all available training data, Acct(A) is the
average accuracy achieved by active learning algorithm A and t amount
of training data, and Acct(L) is the average accuracy achieved using ran-
dom sampling and learning algorithm L and t amount of training data.
The deficiency measure captures the global performance of active learner
A throughout the learning process. Smaller values indicate more efficient
learning.

There are, of course, more parameters than data-related ones to consider
when using active learning in a practical setting, such as time, money, cog-
nitive load on the user; Chapter 6 brings up a number of issues relating to
the cost of annotation.

7.2 Assessing and terminating the learning

A number of different approaches for assessing and deciding when to stop
the active learning process have been suggested in the literature. These
approaches include to decide on a target accuracy and stop when it has
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been reached, to go on for a given number of active learning iterations, or
to exhaust the pool of unlabeled data.

Some more elaborate methods monitor the accuracy as the learning pro-
cess progresses and stop when accuracy deterioration is detected. Schohn
and Cohn (2000) observe, while working with Support Vector Machines for
document classification, that when instances are drawn at random from the
pool of unlabeled data, the classifier performance increases monotonically.
However, when Schohn and Cohn add instances according to their active
learning selection metric, classifier performance peaks at a level above that
achieved when using all available data. Thus, they obtain better perfor-
mance by training on a subset of data, than when using all data available.
Schohn and Cohn (2000) use this observation to form the basis for a stop-
ping criterion; if the best, most informative instance is no closer to the
decision hyperplane than any of the support vectors, the margin has been
exhausted and learning is terminated. This is an approximation of true peak
performance that seem to work well, Schohn and Cohn (2000) claim.

Zhu and Hovy (2007) investigate two strategies for deciding when to stop
learning – max-confidence and min-error – in a word sense disambiguation
task. Max-confidence relies on an entropy-based uncertainty measure of
unlabeled instances, while min-error is based on the classification accuracy
of predicted labels for instances when compared to the labels provided by
the human annotator. Thresholds for max-confidence and min-error are set
such that when the two conditions are met, the current classifier is assumed
to provide high confidence in the classification of the remaining unlabeled
data. The experiments carried out by Zhu and Hovy indicate that min-error
is a good choice of stopping criterion, and that the max-confidence approach
is not as good as min-error.

Zhu, Wang and Hovy (2008a) extend the work presented in (Zhu and
Hovy 2007) and introduce an approach called minimum expected error strat-
egy. The strategy involves estimating the classification error on future unla-
beled instances in the active learning process. Zhu and colleagues test their
stopping criterion on two tasks; word sense disambiguation, and text clas-
sification. Zhu, Wang and Hovy (2008a) conclude that the minimum error
strategy achieves promising results.

In addition to the max-confidence and min-error strategies, Zhu, Wang
and Hovy (2008b) introduce and evaluate overall-uncertainty and classifi-
cation-change. Overall-uncertainty is similar to max-confidence, but instead
of taking only the most informative instances into consideration, overall-
uncertainty is calculated using all data remaining in the unlabeled pool.
Classification-change builds on the assumption that the most informative
instance is the one which causes the classifier to change the predicted la-
bel of the instance. Zhu and colleagues realize the classification-change-
based stopping criterion such that the learning process is terminated once
no predicted label of the instances in the unlabeled pool changes during two
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consecutive active learning iterations. Zhu, Wang and Hovy (2008b) pro-
pose ways of combining max-confidence, min-error, and overall-uncertainty
with classification-change in order to come to terms with the problem of
pre-defining the required thresholds. Zhu and colleagues conclude that the
proposed criteria work well, and that the combination strategies can achieve
even better results.

Vlachos (2008) suggests to use classifier confidence as a means to define
a stopping criterion for uncertainty based sampling. Roughly, the idea is
to stop learning when the confidence of the classifier, on an external possi-
bly unannotated test set, remains at the same level or drops for a number
of consecutive iterations during the learning process. Vlachos shows that
the criterion indeed is applicable to the two tasks he investigates; text clas-
sification and named entity recognition carried out using Support Vector
Machines, maximum entropy models, and Bayesian logistic regression.

Laws and Schütze (2008) investigate three ways of terminating uncertain-
ty-based active learning for named entity recognition; minimal absolute per-
formance, maximum possible performance, and convergence. The minimal
absolute performance of the system is set by the user prior to starting the
active learning process. The classifier then estimates its own performance us-
ing a held-out unlabeled data set. Once the desired performance is reached,
the learning is terminated. The maximum possible performance strategy
refers to the optimal performance of the classifier given the data. Once the
optimal performance is achieved, the process is aborted. Finally, the conver-
gence criterion aims to stop the learning process when the pool of available
data does not contribute to the classifier’s performance. The convergence
is calculated as the gradient of the classifier’s estimated performance or
uncertainty. Laws and Schütze (2008) conclude that both gradient-based
approaches, that is, convergence, can be used as stopping criteria relative
to the optimal performance achievable on a given pool of data. Laws and
Schütze also show that while their method lend itself to acceptable esti-
mates of accuracy, it is much harder to estimate the recall of the classifier.
Thus, the stopping criteria based on minimal absolute performance as well
as maximum possible performance are not reliable.

Tomanek and Hahn (2008) examine two ways of monitoring the progres-
sion of learning in the context of a query by committee setting for training
named entity recognizers. Their first approach relies on the assumption
that the agreement within the decision committee concerning the most in-
formative instance selected in each active learning iteration approaches one
as the learning process progresses. Tomanek and Hahn refer to this as the
selection agreement, originally introduced in Tomanek, Wermter and Hahn
2007a. The motivation for using the selection agreement score is that ac-
tive learning should be aborted when it no longer contributes to increasing
the performance of the classifier; at that time, active learning is nothing
more than a computationally expensive way of random sampling from the
remaining data.
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The second approach taken by Tomanek and Hahn is to calculate the
agreement within the committee regarding a held-out, unannotated test set.
This is referred to as the validation set agreement. The idea is to calcu-
late the agreement on a test set with a distribution of names that reflects
that of the data set on which the active learning takes place. In doing so,
Tomanek and Hahn (2008) aim at obtaining an image of the learning pro-
gression that is more true than that obtained by calculating the selection
agreement, simply because the distribution of the held-out set, and thus
also the validation set agreement score, is not affected by the progression of
the learning process in the same manner as the selection agreement score is.
Tomanek and Hahn (2008) carry out two types of experiments. In the first
type, the human annotator is simulated in the sense that the active learn-
ing utilizes pre-annotated data; the annotated training examples supplied
to the system are in fact not annotated by a human at the time the system
requests assistance in classifying them, but comes from the pre-annotated
corpus. In this type of experiment, the amount of data is typically limited.
The second type of experiment conducted by Tomanek and Hahn (2008) in-
volves real human annotators who operate on a substantially larger amount
of data, approximately 2 million sentences, as opposed to the at most 14
000 sentences used in the experiments with simulated annotators.

Tomanek and Hahn (2008) find that, for the experiments with simu-
lated annotators (using relatively small amounts of data), both the selection
agreement curves and the validation set agreement curves can be useful
for approximating a learning curve, thus indicating the progression of the
learning process. However, for the experiments employing human annota-
tors and large amounts of unlabelled data, the selection agreement does not
work at all. Tomanek and Hahn conclude that monitoring the progress of
active learning should always be based on a separate validation set instead
of the data directly affected by the learning process. Thus, validation set
agreement is preferred over selection agreement.

Olsson (2008) proposes an intrinsic stopping criterion (ISC) for committe-
based active learning. The criterion is further elaborated by Olsson and
Tomanek (2009). The ISC is intrinsic, relying only on the characteristics of
the base learner and the data at hand in order to decide when the active
learning process may be terminated. The ISC does not require the user to
set any external parameters prior to initiating the active learning process.
Further, the ISC is designed to work with committees of classifiers, and
as such, it is independent of how the disagreement between the commit-
tee members is quantified. The ISC does neither rely on a particular base
learner, nor on a particular way of creating the decision committee.

The ISC combines the selection agreement and the validation set agree-
ment (Tomanek, Wermter and Hahn 2007a; Tomanek and Hahn 2008) into
a single stopping criterion by relating the agreement of the committee on
a held-out validation set with that on the (remaining) pool of unlabeled



40

data. If the selection agreement is larger than the validation set agreement,
it is a signal that the decision committee is more in agreement concerning
the most informative instances in the (diminishing) unlabeled pool than it
is concerning the validation set. This, in turn, implies that the committee
would learn more from a random sample from the validation set (or from
a data source exhibiting the same distribution of instances), than it would
from the unlabeled data pool. Based on this argument, a stopping criterion
for committee-based active learning can be formulated as: Active learning
may be terminated when the Selection Agreement is larger than, or equal
to, the Validation Set Agreement.

Olsson and Tomanek define and empirically test the ISC for committee-
based active learning. The results of the experiments in two named entity
recognition scenarios show that the stopping criterion is a viable one, rep-
resenting a fair trade-off between data use and classifier performance. In a
setting in which the unlabeled pool of data used for learning is static, termi-
nating the learning process by means of the ISC results in a nearly optimal
classifier. The ISC can also be used for deciding when the pool of unlabeled
data needs to be refreshed.

Of the approaches to defining a stopping criterion for active learning
reviewed, the work described by Tomanek and colleagues, and the work by
Olsson is explicitly directed towards committee-based active learning. The
other approaches involve single classifier active learning strategies.
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