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1. INTRODUCTION . -

... ' The problems concerned with clear-air turbulence (CAT) we're not .revealed

until the latter stages of World War II. Until that time aviators as well as

meteorologists felt that the air would be Increasingly "smooth" as one went

higher into the troposphere. Above the tropopause, in the stratosphere,' it

was generally conceded that the airflow would be laminar and that powered

flight in this region would be comfortable, safe, and smooth. "

However, high-flying cumbat aircraft often encountered birapi.icfs and ' '

irregular flight at altitudes above the tropopause. Pilots, reported that the

bumpiness was similar in nature to that encountered at lower altitudes, with

one important difference. That difference was the fact that the turbulence

was encountered in clear air and could not be attributed to convective activ-

ity or any other obvious cause.

As aircraft began flying higher and faster, the reports of turbulence

in a clear sky be.ame more numerous. More importantly, the potential danger

to aircraft flying through these regions was recognized. With this recognition,

CAT became the problem of aircraft engineers, meteorologists (both theoretical

and practical),.military leaders, commercial airlines personnel, and many

others involved with flight through the atmosphere.

CAT is important to the communications engineer since it scatters signals

transmitted by electromagnetic waves (Tatarski, 1961). As pointed out by

Reiter (1963), CAT is responsible also for the scintillation of stars, and

hence the astronomer becomes concerned with the problem. Apart from the

problem of forecasting the occurrence of CAT for flight operations, the

meteorologist also mast determine the effect of turbulence on the energy budget

of the atmosphere and any possible influence on global weather phenomena.

Even though CAT is an important problem, the definition of clear-air .

turbulence is not agreed .upon univarsally. Reiter (1962el suggested th«t

"bv-apiness in flight through clear air" mi&lic be a suitable definition.

Others refer to the phenomenon as critical air turbulence (Burton l%7

Monson, et al., 1969), or in special instances, as undul.inct. iHiUtreth vt. al..

1963). In 1966, the National Committee for Clear Air lurbultiue U'.S iK'pi .

of Commerce, 1966) ndoptcd Liie following definition of C-\T

"...all turbulence in the free atmosphere of interest in .u'lusn.uo

operations that is not in, or adjacent to, visible coiivi-i i i v>

activity. This includes turbulence found in cirrus cloml« not in

1

or adjacent to visible-convective activity."

In addition, most studies of CAT are.restrieted to altitudes greater than

10,OOO'.ft '(Anderson, 1956; Clodman and.Ball, 1959; Colson and Panofsky,

1965; etc.) with no absoluteiupper limit. Any upper limit would realistically

ba Imposed by the specific problem or area of application with which one is

concerned.



2. TECHNIQUES OF OBSERVING CAT

Numerous techniques exist by which we may determine the structure,

characteristics, and scale of CAT."" In this section we snail be concerned -

primarily with those techniques which provide insight into the problem

and data from which we might deduce the physical processes which lead to the

formation of CAT. This is opposed to those techniques that'exist as a

means of providing a forewarning or probable existence of CAT. These latter

types will be included in the auction on detection of CAT.

2.1 Primary Observational Toold

2.11 Observations by Aircraft

Many types of aircraft have contributed data to the CAT problem. In

many instances, the data consisted of nothing more than the pilot's report

on the location of the turbulence and his own personal reaction to it. Much

of the earliest data come from VGH (velocity, acceleration, and altitude)

instruments which represent time-history measurements of the acceleration of

the aircraft's center of gravity, air speed, and pressure altitude (Hislop,

1951; Pinus 1957; Zbrozek, 1965). The data obtained from VGH measurements

depend heavily on aircraft type, assumptions involved in computations of

aircraft gust-loading, pilot response, and to some degree the analyst or the

method used to analyze the data.

In order to obtain gust velocities from VGH measurements, the dynamic

response of the aircraft to the gust must be removed (Pratt and Walker, 1954).

As pointed out by Zbrozek (1965), it is impossible to account for all the

dynamic properties of the aircraft and therefore some simplifying assumptions

must be made.

The assumptions used to derive the maximum airplane acceleration are

(Crooks et al., I968a):

a.) i-he airplane is rigid,

b.) the airplane is free to rise but not pitch;

c.) prior to entry into a gust, the airplane is in steady and level

flight; and

d.) Che gust velocity profile Is a onc-minus-cosine shape with a length

of 25 wing chords.

This approach to the problem of gust loads on aircraft is known aa the diicrotc-

gust technique. With the above asoumptlons, measured acceleration increments An

can be converted into derived gust velocities by the equation

2Win_
ude 2.11(1)

where:

VI is aircraft weight (Ib),

la is wing lift curve slope, (rad"1),

pQ is air density at sea level (Ib sec
3 ft"*),

S is wing area (ft3),

V is equivalent airspeed (ft sec 1),

K is gust alleviation factor, and

U. is the derived equivalent gust velocity (ft sec *), positive upward.

The alleviation factor, R , is equivalent to

0.88 U

5.3 + U_ '

where

ZW
(Pratt and Walker, 1954)

and C is the mean aerodynamic chord, g is the acceleration of gravity (ft sec 2),

and p is air density at flight level (Ib sec2ft"*). K allows for some of the.
8

dynamic properties of the airc-aft including unsteady lift and is determined

empirically. It must be stressed that V. is a derived gust velocity and is not

the same as might be measured by in anemometer. Also, U(lc «• U^Cp'pg) , so that

at sea level, U, is equal to U . A more detailed explanation of Eq. 2.11(1)
de d

may be found in Pratt and Walker (1954), Houbolt j2t al. (1964), Zbrozek (1965),

and Crooks et al. (1968a).

The use of the discrete-gust concept is a convenient and simple way of re-

lating the accelerations experienced bv une airplanu to those which are llki-ly

to be experienced by another. The conrvpt further implies that the rclnttvt



loads {or tingle, isolated guete are a measure of the relative load* in a

sequence of ptitt (Houbolt et al., 1964). The overall description of atmos-

pheric turbulence In terms of discrete gusts Is usually given an a frequency

of gusts of given magnitude per mile for a range of altitudes (Forrt et al.,

1962).

As aircraft configuration and response characteristics began to change, as

airframes became larger and more flexible, and as their mass distributions be-

came different, an approach nore general than the discrete-gust concept was

needed. The approach adopted was "hat of power jpectral techniques or peneral-

ized harmonic analysis. A complete treatment of this subject can be found in

Press (1957), Press and Houbolt (1955), Houbolt et al. (1964) and others. A

simplified cumary of this concept can be found in Zbrozek (1965) and Dutton

(1967).

The power spectral approach has many advantages over the discrete-gust

method. According to Hlldreth et al. (1963), the main assets are:

1. A more realistic representation of the continuous nature of atmos-

pheric turbulence;

2. A more realistic accounting for aircraft configuration and response

characteristics; and

3. Allowance for design and operational changes.

There are many methods in existence for obtaining continuous or at least

high-frequency measurements of the wind field relative to a flying aircraft. If

some desired quantity cannot be measured directly, another quantity is measured

that can be related to the one desired. The instrumentation used in Project

HICAT (Crooks .et_ a_^», 1968a), for example, provided measurements of dynamic

pressure, static pressure, temperature, aircraft attitude (pitch, roll, and yaw),

angular rates, components of linear acceleration, eve. The angle of attack and

angle of sideslip are measured from flow vanes or differencial (-ressure probes

(Houbolt et al., 1964; Burns and Rider, 1965). These lattc" measurements are

the basis for the description of atmospheric turbulence. Methods for treating

the data and means of correcting the measurements can be found In the works of

Burns and Rider (1965), Vlnnichenko (1966), Crooks et ol. (1968a). and others.

Dutton (1967) shows that the vertical component of (.lie gusl velocity can be

obtained from aircraft measurements by using the equation

g - v e 2.11(2)

Houbolt et al. (1964) give the lateral and longitudinal components, respec-

tively, as

and

v = -VP - V( + 1 f + (a + g*)dt + 148 v x Jn y z

u - (V - V) - (a - g9)dt,

2.11(3)

2.11(4)

where:

a ,a ,a are longitudinal, lateral, and vertical accelerations,
x y z '

respectively;

g is acceleration due to gravity;

1 ,1 are longitudinal and vertical distances from accelcromcter
x z

to flow vane;

u ,v ,w are longitudinal, lateral, and vertical gust velocities;

V is airplane speed;

or is vertical vane angle;

0 is side vane angle;

9 is pitch angle;

$ is roll angle; and

f is yaw angle.

Equations 2.11(2) to 2.11(4) contain the assumptions (Houbolt ct al., 1964) that

boom flexure is negligible, that disturbances are small enough that the angle in

radians can be used in place of the sine of the angle, and that the effects o£

variation in upwash on vane indications may be allowed for or are negligible.

Using the time histories of u , v , and w obtained from Eqs. 7.11(2) ro

2.11(4), one can employ standard techniques to obtain the spectral character-

istics of atmospheric gusts. A standard analysis generally consists of pre-

whitenlng the iljta, estimating values of the auto-coi rcl jtion function, obtaining

raw estimates of power, smoothing the estimates of power, and then pootdnrkcning

the smoothed estimates to obtain the final estimates of the power npcctrum

(Blackman and Tukey, 1959; Houbolt ct oK, (Appcmlls D), 1964).



An alternate method may be used to find the spectrum of atmospheric gusts.

If .one knows the response function of the data-gathering aircraft, then the

frequency spectrum of atmospheric gusts is characterized by (Reiter, 1962e)

2.11(5)

where t^M and *Q(UJ) are the frequency spectra of input and output, respec-

tively, and T<<u) IP the response function of the aircraft. Figure 1, taken

from o roport by Houbolt and Kordej (1954), Illustrates Eq.

Fig. 1 Illustration of Eq. 2.11(5)

(after Houbolt and Kordes, 1954)

sponse

Input

2,12 Observations by Balloons

Balloons have been employed as wind sensors for many years. In most

instances, the balloon is tracked through space by either radar or theodolites,

and the balloon may or may not carry instrumentation. Wind profile data are

obtained from the positional records of the balloon, but as shown by Scogglns

(1963c), most of the small-scale motions are averaged out. An excellent

discussion of the errors associated with standard wind measurements by balloons

can be found In Reiter (1963). Balloons may also carry accelerometers and

thus provide data on atmospheric gusts. This latter system is often referred

to as a gust-sonde (Anderson, 1956). Reiter (1962c) suggests that constant-

level balloons might carry microbarographs and produce more reliable data than

gust-sondes. In the past few years, superpressure balloons ana highly

accurate tracking systems have been employed to determine the fine structure

of detailed vertical wind profiles (Leviton, 1962, Johnston, 1962; Si-o£,gins,

1963b).

Experimental results of flow around spheres may be found in m.mv books

on fluid dynamics (e.g., Goldstein, 1938; Schlichting, 1960). A brd'f summary

of the lhcoretl<:.il cou&ldurations of balloon dynamics may be , found In Scogglns

(1964). A more detailed treatment is given by Eckstrom (1965) am!. SvofcRlns

(1967).

The chief difficulty in using balloons to measure atmospheric turbulence IB

that smooth-skinned balloons experience spurious, self-induced oscillations even

when rising in calm air (Scoggins, 1964; Murrow and Henry, 1965). Hence, it Is

impossible to measure true wind motions on a small scale.

• This difficulty has been overcome largely by using a superpressure, rough-

skinned balloon known as the Jimsphere (Eckstrom, 1965; Scogglns, 1967). When

coupled with a highly accurate tracking radar such as the FPS-16, detailed ver-

tical wind profiles may be obtained. Some of these profiles and possible ex-

planations for the exhibited structure of the profiles may be found in Scogglns

(1964, 1965), Scoggins and Vaughan (1965), Welnsteln ot £l. (1966), UeMandel and

Scoggins (1967), and others.

2.13 Cloud Observations

Perturbations in the upper-level winds may be deduced by detailed analysis

of cloud photographs. This technique has been used by Ludlam (1952), Reiter

(1962b), Reiter and Hayman (1962), and Reiter and Nania (1964). The photographs

allow one to determine (or at least infer) the wave lengths and orlentotion of

perturbations at the cirrus level. An excellent photograph of turbulence indi-

cated by cirrus clouds was taken by Regula (1968) while flying near Newfoundland

in 1967. According to Colson (1962), the presence of high clouds appears to in-

crease the probability of the occurrence of turbulence. Kadlec (1963) has found

evidence of a strong relation between CAT and the thickness of cirrus clouds.

Other workers have attempted to use satellite pictures of cloud patterns in

order to study CAT relationships (Wcigman, 1965; Cooley and Ball, 1969), but

little progress has been made in this area. The primary reason for the failure

of satellites to detect cloud patterns associated with CAT is that the resolu-

tion threshold of weather satellite data is too large.

2.14 Observations by Artificial Tracers

Various methods using artificial tracers have been employed to measure

the effects of upper-level turbulence or to measure this turbulence directly.

Clodman (1958a) studied the effects 01 turbulence on the behavior of aircmlt

contrails, and smoke trails have been studied by Durst (1948). Henry et al.

(1961) have shown how detailed vertical wind profiles may be obtained from

smoke trails released from rockets. Uaitcr (l06An) used smoke as ,) tr.Ki-i to

follow CAT "patches" when they were found In research flights over Australia.

Other techniques use aluminum foil or some oihi-r radio-reflective m;itprltil

released at high levels and these materials an1 then tracked by rod.ir. far

- 8



• . -- :, \- • wj i i
high-altitude study, I.e., 80-150 km,' sodium vapor released-from rockets is used. '

to determine the structure of the wind and properties' of'diffusion (Manring,

1961). ' ,

Relter (1962c) Hits two basic difficulties" in'the application'of the above

techniques to the study of CAX. They are: ' • '>

a.) The aircraft or rocket may disturb the airflow to a degree so as to

produce serious Imperfections In the data, and

b.) Contrails ur smoke trails will spread out ami dissipate due to small-

. scale turbulence and diffusion processes.

Motions on a scale corresponding to CAI may therefore be extremely di'fflcult to

separate from these 'superimposed small-scale effects. "-

2.2 Supporting Observational Tools

The techniques vhich' are deemed to be of a support nature are those which

either have been used sparingly or do not lend themselves to widespread use by

the scientific community. Included in this group are direct observations of CAT

by radar (Atlas and Naito, 1966; Arias et al., 1968), lidar observations (Collis,

1964; Bourquln and Shigemoto, 1965; Collis stJti., 1969), acoustical sensing

techniques (Bates, 1965), and astronomical observations such as the scintillation

of starlight (Protheroe, 1961; Battan, 1962) and the trembling in the Sun's image

(Okoshi, 1967).

Microbarograph traces may be used to deduce the presence of gravity waves

which may be associated with CAT. Kuettner (1952b) discusses this technique,

and Gossard (1960) presents spectra on pressure variations associated with

gravity waves over California. Hodge and Voltz (1968) have studied the possible

relationship between mesoscale surface pressure waves and CAT.

3. CAT-STUDIES , .<. , • • .

A great deal of time, money, and effort has been expended to gather data

and determine the relevant" properties of CAT. Because of the''immense scope

of the problem, most studies of CAT have been conducted or sponsored by

governmental agencies from all parts of the world. >• ' ,

One of the first CAT-oriented programs was conducted by the Royal

Aircraft Establishment In the United Kingdom during the period'1946-1948

(Met. Office Dls., 1958). From'1948 to 1950, thc'Mlnistry of Supply

supported a night program to study CAT over the air routes' of British

European Airway's (Hislop, 1951). Measurements of free-atmosphere turbulence

were conducted by the National,Advisory. Committee for-Aeronautics (NACA)

during the period 1951-52 with' the use of gust-sondes (Anderson,, 1956). The

U.S. Air Force sponsored Project Jetstream during the winter months of 1953-54

and 1954-55, and again from 1956-1958 (Brundldge, 1958; Reiter, 1963; etc.).

Project Cloud Trail was established in the U.S. Air Force Air Defense Command

and ran for one year, December 1954 to December 1955 (Clem, 1957).

Another CAT measurement program, Project TOPCAT, was conducted over

South Australia during 1963 (Radok and Relter, 1964; Burns and Rider, 1965).

A massive program to locate and measure atmospheric gusts (and other parameters

as well) is currently being sponsored by the U.S. Air Force under the code

name ALLCAT (Dutton, 1967; Atnip, 1969; Loving, 1969). Project ALLCAT Is

designed to measure atmospheric properties from the surface to 200,000 fl

(61 km). A comprehensive measurement program has been and continues to he-

conducted in the U.S.S.R. (Vinnichenko, 1969). Other specialized but loss

comprehensive programs have been conducted by Che Air Force Cambridge

Research Laboratories (Penn and Pislnski, 1967), as well as by commorci.il

airlines In the United States (Harrison, 1961; Kadlec, 1964).

Noi\r)y nil of the above studies, plus many others, were or arc

conduct?'1 on the basis of obtaining accurate mrtvoroiogical data. Numorou >

other data have been compiled using CAT reports such as might be received

via PIREPS, etc. Studies using data of this ty|<u have been reported by

Bannon (1951), Turner (1959), Colson and Rustciilnuk (196ft Kroll .iml

Rublcnbfik (1961), Briggs (1961a, 1961b, 19bJ), lot.ion (1961, l<ji,l. I'M, |,

1969), Soronson (1964), Colquhoun and Bourkc (l"07a), Endllch and Mmu ii*n

(19('H), .-mil manv others.
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4. PROPERTIES OF CAT

The one dominant face chat has emerged from studies such as the ones listed

above Is that CAT can and does occur at any altitude, at any location, and at

any time. This means, of course, that all present-day aircraft must face the

possibility of encountering some degree of turbulence while In flight. This is

true also for spacecraft that are ascending or descending through Earth's atmos-

phere as well as for the proposed SST which will be operational In the near

future (Reir.er, l%4a; Kordes and Love, 196/; Ehp.rnbergar, 1968b; Burnham, 1968).

Thus a knowledge of the properties of CAT Is mandatory so that aerospace opera-

tions may be conducted in a reasonable and safe manner.

4.1 Seasonal Distribution

Nearly all statistical studies of CAT have shown that aircraft encounter -

CAT most frequently during the winter months. Clem (1957) showed that CAT

occurrence for all sectors of the U.S. was greatest on a percentage basis

during the winter. Table 1 is a summary of Clem's findings.

Table 1. Seasonal occurrence of CAT in the United States
(after Clem, 1957).

Winter

Spring

Summer

Fall

NW US

287.

24%

23%

227.

SW US

33%

19%

147.

167.

NE US

44%

32%

28%

27%

Briggs (1963) showed that the seasonal variation of turbulence at heights

of 20,000 to 40,000 ft ovci' Europe ranges from a summer minimum of about

6700 n mi per incident of turbul.-'nae to an autumn maximum of about 3500 i mi

per incident. This is an increase of nearly 46 per cent from summer to autumn.

He further shows that the variation in the eastern Mediterranean is from a

summer minimum of 7570 n mi per incident to a winter maximum of 2910 n mi per

incident. Thet-e latter figures represent a scabotuil v'h.'in̂ e of 38 per cent in

the encounter of turbulence by aircraft. Other studios In the N. Hemisphere,

such as those by Col son (1963), Rao and Sadogopan (I'Kitl), and others, show

results of a similar nature. An exception to this n<Mu>ral fact was reported by

Berenger and Helssat (1959), who found moro turbulence over France during the

summer than during the winter.

Recent measurements in the S. Hemisphere show that the occurrence of CAT

on a percentage basis is greatest during the fall and winter. Colquhoun (1967c)

found that the greatest percentage of CAT occurred in March (autumn) and that

b2 per cent of all aircraft flights In the measuring program encountered some

degree of turbulence in this time period. In summarizing the results of the

Australian phase of the U.S. Air Force's HICAT program, Spillane (1967) reports

that th2 greatest frequency of occurrence of CYT is in the winter and early

spring.

4.2 Geographical Distribution

Among the studies which attempt to define the geographical distribution ot

CAT, there is no universal agreement. Several facts must be kept In mind when

comparing one study with another. First, the method of quoting results is not

uniform (Ctodman et al., 1961). Furthermore, different methods of collecting

the data might give different results for the same location. Terrain effects

differ from one location to another so that strict comparisons become very dif-

ficult. Finally, many studies are based on data collected from scheduled

airline flights so that a statistical bias might be introduced. These latter

flights also use turbulence-avoidance techniques so that an additional bias is

possible.

The study by Clem (1957) of Project Cloud Trail data showed that tht high-

est incidence of CAT between 25,000 and 45,000 ft was in the northeastern United

States. Balzer and Harrison (1959) report that there is reason to believe that

the exposure to high-level CAT over the United States is fairly uniform. Colson

(1963), in studying over 12,000 CAT reports covering the period September I960

to August 1962, found a maximum of CAT occurrence over southeast Colorado with a

secondary maximum over southern New England.

Variations of CAT occurrence over Western Europe have been found by Hislop

(1951), berenge- and Heissat (1959), Briggs 0963), and ethers. Colquhoun -

(1967a, 1967b, 1967c) and Colquhoun and Bourko (1967a, 1967b) show that CAT

occurrences in the South Pacific have maximum values over southern Australia

with another area of high occurrence tn flu- vicinity of Borneo.

Coleman and Steiner (1960) and Stoinar (MG6) have analysed data from U-2

flights made over the U.S., Japan, Turkey, fttiilnnd, and Germany. Their refill's

•show that the frequency of exceeding given v.thiuu of gust velocity per ratio of
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flight differ* very little among these locations

(see Fig. 2). Figure 3 shows values of average tur-

bulence frequency vs height for the United States.

These values were obtained by Endlich and Mancuso

(1968) in their attempt to estimate a turbulence

climatology between 20,000 and 45,000 ft.

A study by Clodman et al. (1961) shows that the

frequency of occurrence of CAT over the oceans is

about ens-tenth of that over the continents. In an

04 8 12 16 20 experiment to relate CAT to terrain, Turner (1959)
Gust velocity, U, > —

Fig. i. frequency o± ex-
ceeding given

values of gust velocity
per mile of flight for
five areas (after Coleman
and Steiner, i960).

found that over the British Isles, CAT was four

times as frequent over the coastlines and more than

twice as frequent over land as over the sea. He

noted also that the difference was less marked dur-

ing the simmer.

To explain the variability of CAT occurrences

over land and over the ocean, one is led naturally to consider the effects of

terrain on high-level turbulence. Ludlam (1952) suggests that cirrus clouds can

be caused by hills 1000 ft high. According to Jenkins (1952), some obstacles

can affect the air flow up to 25 times their height. Wave patterns that are

orographically induced have been detected in the ozonosphere (Paetzold and

Zscliorner, 1955). Terrain effects of CAT occurrence are reported for areas

over Australia (Colquhoun, 1967c), the Middle East (Rao and Sadogopan, 1968),

and the United States (Clodman and Ball, 1959;

Endlich and Mancuso, 1965a; Foltz, 1967). The

importance of terrain in the production of CAT

will be discussed in Section 7.

4.3 Meso-scnle Properties of CAT

4.31 Horizontal Dimensions

CAT encountered by aircraft is normally

described as being of a patchy nature. The

occurrence ratio of turbulent patches to smooth

patches within a given turbulent aron vnrips

from the order of 1:1 to about 1:10 (Ctian, 1957).

Clodman et al. (1961) conclude that, on the ave-

rage, about 3 per cent of the distance 1lown by

Fig. 3. Curves of average
turbulence fre-

quency vs height for the
United States (after Endlich
and Mancuso, 1963).

an aircraft in the range of 20,000 to 45,000 ft over land will be turbulent.

Hielop (1951) found that the mean horizontal extent of turbulent areas was 75

to 100 km. Clodman (1953) gives this figure at about 90 km with an extreme of

approximately 450 km. Press et al. (1953) report horizontal extents of 15 to

60 km, while Clem (1957) reports that 50 per cent of the cases have horizontal

dimensions less than 80 km. Clem also found that CAT patches are elongated in

the direction of the wind and that they are frequently several times longer than

they are wide. Cunningham (1958), using the data from Project Jet Stream

(Fetner, 1956), gives the frequency distribution of horizontal extent shown in

Table 2. These data pertain to the continental United States.

Table 2. Horizontal extent of turbulent regions
(after Fetner, 1956)

Extent (ml)
% Occurrence

Extent (ml)
% Occurrence

Extent (mi)
% Occurrence

10.0
31.5

50-59.9
4.8

100-149.9
6.5

10-19.9
21.4

60-69.9
2.4

150-199.9
2.4

20-29.9
9.5

70-79.9
2.4

200.0
0.6

30-39.9
10.1

80-89.9
0.6

40-49.9
6.5

90-99.9
1.2

Steiner (1966) found that in the flights of the U-2 aircraft, 50 per cent of the

turbulent areas exceeded 10 mi in length.

when various intensities of CAT are categorized, the statistical distribu-

tion is found to change. Clodman (1953), for example, states that areas with

strong turbulence usually are larger and thicker. This fact was noted also by

Press et al. (1953). Briggs and Roach (1963) report that in 22 flights through

jet streams, the following was found:

Turbulence Intensity

slight

moderate

sevt-re

Duration (mln) T, of Total Flying Time

165 5.4

122 4.0

5 ".?

These data seem to show that the more severe CAT .irons are smaller, or juat the

opposite from what was fount! by Clodman and I'rr̂ s ot al., mentioned above. A

summary of some recent flight data is shown in Fin. 4 (after Burnham, 1968).

The horizontal dimensions of CAT over the Atlantic Ocean have been reported

by Morgan (Clodman et al., 1961) to be about 100 n mi, on the average. His
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Fig. 4.

0 20 40 60 80 103

Patch length (miles)

Percentage of turbulence exceeding a
given length encountered between 40,1
and 70,000 ft during a number of re-
search flights (after Burnham, 1968)

HlCAT Australia
figures, when broken down into All HICAT Ph 2

intensity categories, flhow 100 Dfc. HICAT Edwards
Kvs* XB-70

that CAT areas of moderate, 3 I vVv.^--^ — RAE Okla. at onus
12

severe, and violent have horl- ,2

zontal dimensions of 93.4,

124.6, and 87.0 n ml, respec-

tively.

4.32 Vertical Dimensions

CAT areas are generally

quite thin in the vertical

with 2000 ft being the aver-

age thickness (Htslop, 1951;

Clem, 1957; Farthing, 1959;

Clodman et al., 1961; etc.).

Press et al. (1953) report

that 50 per cent of the cases they studied were less than 2000 ft thick. The!

extreme thickness values which have been reported range from 100 to 20,000 ft

(Clodman, 1953; Berenger and Heissat, 1959; Farthing, 1959). Turbulent patch

often occur in multiple layers which may have several thousand feet of relati

ly smooth air separating them (Anderson, 1956; Clem, 1957). ,

Figure 5 is a compilation of the variati

with altitude of the percentage of time

spent in rough air by aircraft (Coleman

and Steiner, 1960). Also shown in the

figure, for comparison purposes, are th

results obtained by Press and Steiner

(1958). This figure indicates that CAT

encountered 7 to 10 per cent of the tlm

at flight Icvelc between 30,000 and 40,

ft, and less than about 2 per cent ol t

time at altitudes greater than 50,000 f

Anderson's (1956) gustr-sonde analysis ,
I

showed the following altitudes whuiv I"

80

li -e- Coleman and

70 H

60

~ 50
4J

*"

a 40

•5u

S 3°3
20

10

Steiner (1960)
press and

Steiner (1958)

4 8 1 2 1 6
Percent of rough air

20

Fig. 5. Variation in percentage ol ro»i
air with altitude (after ivlou|
and Steiner, 1960).
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bulence encounters were maxima and minima:

Minimum Exposure

6.2 km

9.5 km

12.8 km

Maximum Exposure

7.4 km

11.0 km

14.4 km

His data showed a rapid decrease in turbulence encounters above 15,000 m. A re-

cent study 5/y Spillane (19b7) showed that the expectation of encountering CAT

per 100 flights is greatest in the height range of 50,000 to 55,000 ft. His

results are summarized in Table 3.

Table 3. Expectation of encountering CAT per 100 flights
(after Spillane, 1967)

Height (x 103 ft)

10-15

15-20

20-25

25-30

30-35

35-40

1

20

19

11

20

37

13

Height (x 103 ft)

40-45

45-50

50-55

55-60

60-65

T,

11

15

43

35

17

Temporal Distribution

CAT is often called a "random" phenomenon (Reiter, 1963) and this would

certainly be in keeping with the statistical approach to the theory of CAT.

This idea Is not unfounded since oftentimes an aircraft will report turbulence

while another aircraft passing through the same area a short time later will not

(Hislop, 1951). However, many observations tend to show that CAT, although

transient, is persistent. Endlich (1963) has reported that moderate or severe

CAT may persist for many hours, while Colson (I9t3) has shown that CAT areas

may persist for periods up to a day. Some datalloJ vertical wind profiles

have shown persistent fine structure for periods up to several hours (Weinstein

£t£l., 1966; DeMandel and Scoggins, 1967). Rcltor (1964a) has written of a

turbulent patch over South Australia that was m.u Uul by smoke. The research

aircraft was able to follow this patch of turbulence for about 45 minutes. The

distance traversed by the patch was approximately 100 mi. Reiter also states

16



that the Intensity level of CAT as well aa the size of the patch stayed about

the uae during the entire period.

4.34 Intensity of CAT

The Intensity of CAT Is of extreme Importance to the aircraft engineer,

for this la one of the parameters that determine the structural loads which the

aircraft oust be built to withstand. Aircraft controllability and pilot/passen-

ger comfort also are dependent on this factor.

Various classifications have been used to describe the Intensity of CAT.

One subjecfve classification uses the categories mild, light, nnderate, severe,

and violent (Hyde, 1954b). The meaning of these categories is as follows:

ffild - "Cobblestone", 6-8 cycles sec 1, discernable to
passengers;

Light - "Cobblestone", control displacement, passenger
discomfort;

Moderate - uncomfortable control, unstable all axes, seat
belts required;

Severe - Cb-type turbulence, extremely uncomfortable for
passengers; and

Violent - intense bumps, high "g", completely unacceptable,
threshold of structural failure.

Other classifications use incremental vertical acceleration as a basis for

catagorizing intensity. Crooks et al. (1968a) offer the following:

CAT Description

very light

light

moderate

severe

extreme

Peak

± 0.

± 0.

= 0.

i 0.

± 0.

"g"

05

10

25

50

75

1 Increment

to ± 0.10

to i 0.25

to ± 0.50

to i 0.75

or greater

For a basis of comparison, Burnham (1968) states thnt acceleration Increments

of ± 0.06 g would be of somt inconvenience to a passenger who was t.ying fo

drink. Figure 6 shows the human reaction to a range of aircraft accelerations.

Since structural damage is possible for an nlrcraft encountering intense

turbulence (Reitcr, 1962a), it is of interest to note some of the extreme values

which have been found by various workers. His lop {Hi I) reported that the

"Mosquito" aircraft flyinij over Europe espcrlencnl incremental accelerations of

1.5 g or 35 ft sec"lU, . Other values which hovr been reported are Bindon
do -i

(1951), 3 g; Hyde (1954a), 2.5 to 4.0 g; Farthing (1959), 36 ft sec Udfi;
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Fig. 7. Estimated overall gust
distributions for oper-

ations at various altitudes
(after Rhyne and Stcincr, 1962).
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Frequency - cps

Fig. t>. Vibration threshold levels of
human feeling (after Hlldreth
et al., 1963).

Steiner (1966), 58 ft sec "'Û ; and Crooks

et al. (1968a), 1.1 g or 22 ft sec"lUde.

Some of the most severe encounters with CAT

have occurred in mountainous regions. In a

spectacular accident in which a B-52 lost 85

10 °

ID"1

10~a

10"3

io-*
10

45-50
50-55 Alt->

5-60 ft x 103

,0-65
-70

0 2 4 6 8 10 12

U. (ft/sec)
per cent of its vertical stabilizer, lateral Fig> 8> Avcragc £rcqutncies at

gusts were estimated to exceed 100 ft sec'1 which given values of
derived gust velocity were ex-

Button, 1967). Later measurements using ceedcd per mjle of £Ught. during
F-106 fighter aircraft in the Sangre de the phase 2 HICAT program (after

, . Burnham, 1968).
Cristos Mountains, Colorado, revealed more

than 25 gusts with amplitudes exceeding 100 ft sec"1. The maximum gust recorded

during the tests was 175 ft sec T (Dutton, 1967).

In the interest of aircraft design, data of the above nature have been sub-

jected to various statistical treatments. Hislop (1951) offers Che following

analysis: Operating a fleet of 20 Comet aircraft at an annual utilization of

3,000 hr, one would expect that one of the airplanes would encounter a 36 ft sec"1

gust on the average of every 2 wk and a 50 ft sec"1 gust once every 4 yr. Other

examples of studies of this type are those made by Rhyne ond Stciner (1962),

Coy (1967), Burnham (1968), and Crooks £t al. (1968a). Figures 7 and 8 illus-

trate several of the estimates for overall gust distributions in the vertical.
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4.35 Lateral va Vertical GmtlncBS

Horizontal atmospheric gusts may cause aerospace vehicles to experience

vertical accelerations due to the change of lift Induced across the wings-or •

other lifting elements. Clodman (1957, 1958b) indicates that for speeds of.high

flying aircraft, it vould take horizontal gusts of about 30 ft sec"1 (on the

average) to produce moderate to heavy Dumpiness. Gusts of this magnitude are

about four times as great as the vertical velocities needed to produce equiva-

lent alrciaft acceleration (Hlslop, 1951). In the light, of the measurements ,

made in the Saivjre de Crlstos which were mentioned earlier, It SECTS that, under

certain conditions and In'certain locations, horizontal gusts become very im-

portant.

In an experiment to determine the relative magnitude of vertical and hori-

zontal gusts in the atmosphere, Donely (1940) found that eddies of the sizes .

which affect airplanes arc largely isotropic. His results pertained to the low-

and mid-troposphere.

In a stable stratification, vertical motions will be suppressed because of

the large amount of work which would be required to overcome the force of gravity.

Theoretically, then, horizontal gusts should prevail in the stratosphere (Reiter,

1963). This is verified somewhat by the findings of Clodman and Ball (1959).

Their statistical investigation based on 25 flights in the vicinity of the jet

stream show that horizontal gustiness prevails in the stratosphere while verti-

cal gustiness is prevalent in the troposphere. Reiter and Burns (1966) found

that long wave perturbations tend to be anisotropic when found in stable layers

of the stratosphere and the upper troposphere; but perturbations with wave lengths

below a certain critical value (see Section 7) break down Into isotropic turbu-

lence. Findings of this nature suggest that the atmospheric modes which produce

either isotropic or anisotropic turbulence must be considered when forecasting

high-level turbulence.

4.4 Distribution of CAT with Respect to Atmospheric Phenomena

4.41 Jet Streams

Theoretical"considerations made by Richardson (1920), Arakawa (1951), and

others suggest that vertical and horizontal wind shears are Important mechanisms

for the formation of turbulence. It follows then Lh.it Che jet stream should be

a region with a high incidence of CAT. This fact has been borne out by the

studies of Bannon (1952), Cltan (1957), Endlich and McLean (1957), Sasaki (1958),

Balzer and Harrison (1959), Brlggs and Roach (1963), Kao and Sizoo (1966), and

Penn and Plslnskl (1967), just to name a few. Studies In the S. Hemisphere

(Spillane, 1965, 1967; Colquhoun and Bourke, 1967a, 1967b;>etc.) also show the

Jet stream to be a preferred region for the occurrence of CAT. The now-classic

study made by Bannon (1952) showed that CAT appeared to be grouped In particular

zones relative to the jet axis. He found also that 75 per cent of the cases

studied occurred on the low-pressure side of the stream. Bannon's results have

been verified by Sasaki (1958) in his analysis of nine Project Jet Stream flights.

Sasaki's results are shown In Fig. 9. The figure is expressed In percentage of

turbule.it flying time of the total flying time. This figure clearly shows that

NORTH ° SOUTH »

Fig. 9. Mean distribution of turbulent flying time (CAT) in
per cent of total flying time for nine Project Jet
Stream flights 1956-1957 (after Sasaki, 1958).

the turbulence frequency on the cyclonic (low-pressure) side ot the jet exceeds

that on the anticyclonlc side. Contrary to this, turbulence over the ocean

seems to favor rhe anticyclonic side of the jet stream above the axis (Clodman

et al., 1961). As pointed out by Reiter (1963), Che positions of the Individual

turbulence maxima coincide with the locations of stable Ijaroclini; zones. This

corresponds quite well with Endlich's and McLean's (19571 jet-stream "front"

(a stable layer characterized by extreme vertical wind shears). This further-

more agrees with numerous findings of turbulence nc.ii Clio tropopanse (sec

Danielsen, 1959) in the vicinity of the jet stream (Clem, 1957; Briggs and Roach,

1963; Penn and Pisinski, 1967; Panofsky c_t al., 1968).
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The distribution of a ever e CAT In relation to the jet stream has been Inves-

tigated by Harrison (19S9), Roller (1962c), and Endllch (1963). Harrison's study

discriminated between CAT occurrence versus various jets and positions of jets;

•viz., occurrence relative to polar Jets, occurrence between two jets, and occur-

rence relative to subtropical jets. He found that severe CAT occurred primarily

below and poleward of the polar jet axis. His study of severe CAT occurrences

between two jets revealed that nearly all cases occurred below and equatorward

of the northernmost jet. He could reach no conclusion concerning the relation

'•etveen severe CAT and the subtropica1 jet because of a very small sample size.

Other examples of the distribution of CAT relative to the jet stream are

shown in Figs. 10 to 13. Figure 14 shows the location of reported occurrences

Fig. 10. Schematic cross-section
through the jet stream (J):

potential temperatures (thin lines),
and isotachs (semi-heavy lines). The
boundaries of the stable baroclinic
frontal zone are marked by heavy dash-
ed lines, the tropopause by heavy so-
lid lines. The shaded area within
the "isentrope trough" indicates The
region in which Che occurrence of
moderate to severe CAT (A) is most
likely. The dotted line represents
the northern boundary of extensive
cirrus-cloud sheets (after Reiter,
1962c).

Kig. 11. Distribution ol turbulence- Fig. »-. Turbulent regions in
in the vicinity of a sharp straight jet streams (in

trough and jet stream (alter Endlich, tho ohspncc of mountnin wnvcs)
1963). (after fndlich, 19631.

Fig. 13. Turbulent regions In
sharply-curved anti-

cyclonic jet streams (a.'ter
Endlich, 1963).

Fig. 14. 25-mb isotachs (t-eas > 100 knots
shaded) and isotherms (°C),

13 April 1962, 0000 GCT, and moderate and
severe cases of CAT observed within ± 6
hours of map time (after Reiter, 1962c).

}f moderate and severe CAT rela-

tive to synoptic features on an

jpper-level chart for 13 April

1962. Figure 15 depicts the distribution about the jet stream of reported high-

level turbulence over the North Atlantic Ocean.

The longitudinal distribution of CAT along the jet stream also has been

investigated. Studies by Clem (1954) and Chambers (1955) indicate that turbu-

lence may be somewhat more prevalent in the exit region of an isotach maximum.

\ study by Lonnic (1969) shows that turbulence occurs near the exit region of

the jet stream under conditions of cyclonic development. On the other hand,

nore turbulence was found in the entrance region of an isotach maximum by Bannon

(1951) and by Kalzcr and Harrison (1959). Reiter (1962b) and Reiter and Nanio

(1964) have found evidence which suggests that CAT is concentrated at the con-

Eluence region of two jet streams.

Jver the oceans, the delta region

seems o be more turbulent than

any other section of the jet stream

(Reiter, 19C3).

4.42 Troughs, Ridges, and Other
Features

In order to develop practi-

cal forecasting techniques, numer-

ous studies have been made in which

SAT was correlated with synoptic

features other than jet streams.

Bannon (1952) found that, of those

o

! ig. O. J'ei > «'iil occurrence of hiftn-lrvol
Luihulcni-0 about the jet stream

over the North Atlantic Ocean in vertical
"boxes" of 40 ml- -• 120 n ml (after Cloilm.in
et al., 19M1.
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cases not related to the jet stream, moat were associated with upper lows, upper

troughs, or discontinuous tropopausc surfaces. He reported also that less than

7 per cent of the cases appeared to have no obvious association with any con-

figuration of the upper-air pattern. CAT associated with sharp trough lines

aloft and deep upper-level cold lows has been reported by Clem (1957), Sralglelski

(1960), Brigga (1961a), Srlnlvasan (1961), and Endlich (1963).

Kronebach (1964) has studied the distribution of CAT with respect to

troughs, ridges, and closed lows at 300 mb. His findings are shown in Table 4.

Table 4. Distribution of CAT at 300 mb (afcer Kronebach, 1964).

Cycloni c

Ant i cycloni c

Feature X

, Troughs

• Closed low

' Ridges

Total % Within 5°Lat
At or Behind

44 25

-

13 7

43Z Undefined

Z Within 5°Lat
At or Ahead

18

-

6

% Within
2.5"l.at

-
1

-

Surface synoptic features also have been related to occurrence of CAT.

Turner (1959) found that over the land and coasts of the British Isles, only

one- third of the cases were associated with fronts. On the other hand, three-

fourths of the cases over the sea apparently were connected with fronts and half

of these were warm fronts. In a study of satellite photographs, Wcigman (19651

found that most turbulence below 20,000 ft was located in the warm air above the

warm frontal boundary in advance of its surface position.

Sorenson (1964) studied all available CAT reports for December 1963 in Che

hope of finding means of delimiting CAT forecast areas. His study indicates

that certain synoptic conditions and areas are favorable for CAT formation.

Some of these are as follows:

a.) regions of increasing thermal gradients,

b.) areas of sharp horizontal shiftiiiH nf wind aloft, and

c.) areas of sharp vertical direction Hhe.ni- (see also, Reiter and Nanla,

Sorenson also points, out that CAT seldom dovulops in' areas of

a.) uniformly curved flow or straight I low,

b.) decreasing winds or decreasing lliurmal gradients, or

23

c.) above the tropopause east of 100° If. longitude unless there is fairly

strong evidence of thermal convergence occurring above It.

Spectral Properties of CAT

In order to evaluate the effect of turbulence on aircraft, wo must know

turbulence energy Is distributed over various eddy sizea (see Eq. 2.11(5)).

spectrum of turbulent energy also Is Important for an understanding of the

sical processes leading to the formation of CAT (Reiter and Bums, 1966;

us et al., 1967).

Many of the early studies of the spectrum of turbulence in clear air were

ducted at altitudes below 5,000 ft (Press, 1957; Houbolt et aU. 1964).

bulence spectra have been computed also for turbulence in cumulus clouds and

thunderstorms (Steiner, 1965, 1966). Examples of typical power spectra of

turb'ulence measured in these three weather conditions are given in Fig. 16.

More recently, the micro-structure of free-atmospheric turbulence has been

estigated. Specially instrumented aircraft over the U.S.S.R. (Vinnichenko

al., 1965), Australia (Burns and Rider, 1965), and the United States (Crooks

si., I968a) have produced sets of power spectra of CAT at the level of the

stream. As pointed out by Plnus et al. ( 1967), data of this nature give indl-

ions, for the first time, of processes that lead r«< t-he formation of turbulent

>ht conditions in clear air. Kao and Woods (.1964) have obtained encrp."

;tra of mesoscale turbulence along

across the jet stream. Thus, tur-

;nce spectra are available for the

•stream level over wave lengths

;ing from approximately 50 ra to

900 km (Pinus et al., 1967).

The shape of the energy spec-

i has been disputed for many years.

las been shown by Kolmogorov (1941)

• Batchelor, 1959) that in the in-

al subrange, the energy is pro-

ional to the inverse five-thirds

r of frequency. This can be ex-

scd by

(ID) = ae3"* ufwv, 4\5 (I)

10s

•ere storm
13.38 .

Cumulus cloud!
6.14- .';

Clear air '
4.48 '

V
Y

ID1'I
10

10* 10' ICf 10
Wavelength, X , ft

Fig. Ib.

103 103 io1 To
Reduced frequency, fi,

rjdi.ins/t't
Typical power spectra of verti-
cal component of turbulence
measured In I'U.ir air, cumulus
cloud, and tlmmlwrstorm (after
lloubolt ct at.. 1«(>4).
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where E (a) it the frequency-dependent energy of turbulence motion, or Is a

universal constant, « is the rate of dissipation of energy, and w Is frequency

(tualey and Panofsky, 1964). The minus-five-thirds relationship has been well

substantiated at low levels. Evidence that this shape holds for higher levels

in the ataosphere has been presented by MacCready (1962), Houbolt &t al. (1964),

Better and Burns (1966), and others. Under certain conditions, the spectral

curves see* to follow a minus two relationship (Lappe and Davidson, 1962; Kao

ard Uoods, 1964), minus four-thirds, minus eleven-fifths (Belter and Burns,

1966). as well as others (Cgura, 1958).

The power spectra obtained by some of the investigations mentioned tbove

are shown In Fig. 17. Table 5 lists the sources and characteristics of the

spectra in Fig. 17.

Fig. 17. Schematic presentation of spectral density,
(kEi/hr)0/(rad/kin), no a function of wave

number (cycleo/tan), or wavelength in meters, Tor tur-
bulence in the free atmosphere. Dnta sources of spec-
tra are identified In Table V. (after Pinus ot al.,
1967). ~
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Table 5. Power Spectra of Turbulence in the Free Atmosphere
(Plnus, et al., 1966).

Spectrum
No.

Source Characteristics (turbulence components
given with respect to course of aircraft)

1 Shur, 1962

2 Reiter and Burns
1965

"5 Reiter and Bunts
1965

4 Reiter and Burns
1965

5 Vinnichenko, Pi mis
and Shur, 1965

6 Reiter and Burns
1965

7 Vinnichenko, Plnus
and Shur, 1965

8 Kao and Woods
1964

9 Kao and Woods
1964

10 Kao and Woods
1964

11 Pinus, 1963

12 Pinus, 1963

13 Pinus, 1963

14 Shur, 1962

15 Shu-, 1562

w-component, severe CAT, near jet stream
level, stable stratification.

u, v-components, moderate CAT, jet stream
level, stable stratification.

w-component, flight parallel to wind,
moderate CAT, jet stream level, stable
i.'.ratification.

w-component, flight nearly normal to wind,
moderate CAT, jet stream level, stable
stratification.

u-component, no CAT. near jet stream level,
stable stratification.

u,v,w-components, light turbulence at 100 ra
altitude, unstable stratification.

u-component, light turbulence at 1000 m
altitude, unstable stratification.

u-component, at jet stream level, flight
parallel to jet stream.

v-component, at jet stream level, flight
parallel to jet stream.

u,v-components, at jet stream level, flight
normal to jet stream.

u-component, severe CAT, under core of jet
stream, flight normal to jet stream.

u-component, moderate CAT, under core of jet
stream, flight normal to jet stream.

u-component, light CAT, over core of \et
stream, flight normal to jet stream.

w-coraponent, moderate CAT, at jet stri.-.m
level, stable stratification.

w-component, moderate CAT. at ',et stream
level, stable stiatification.
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5. RELATIONSHIPS BETWEEN CAT AND SYNOPTIC PARAMETERS

We know from studies of the type covered in the preceding section that CAT

IB a nicroscale phenomenon. However, numerous correlations have been attempted

to find a relation between CAT and macroscale parameters (Endlich, 1964; Endlich

and Mancuso, 1964; Scoggins et al., 1969; etc.). As a result, correlation

studies have shown large discrepancies. Furthermore, as pointed out by Moore

and Krishnamurti (1966), the usual parameters such as the Richardson number,

etc., are probably important in the region where turbulence is created, and are

important only in that region a: or just before the time the flow breaks down

into turbulence. This means that once turbulence is initiated, it may be

too late to look at these parameters since the flow field will be changed

because of the onset of turbulence. In a similar fashion, others have pointed

out that it is difficult to determine whether certain features (e.g., lapse

rate of temperature, Richardson number, etc.) arc responsible for turbulence or

whether they themselves are caused by the turbulence (Gruzinova and Sofiev,

.1964; Reed, 1969). In spite of the foregoing limitations, some success has been

achieved using certain gross dynamic parameters.

5.1 CAT and Horizontal Wind Speed

Studies which have attempted to show a relation between CAT and horizontal

wind speed have been largely unsuccessful. For example. Lake (1956) concluded

that wind speed alone was a poor forecasting tool. Colson (1962X and Briggs

and Roach (1963) reached this same conclusion. Others finding a poor relation-

ship between CAT and horizontal wind speed Include Hislop (1951), Davies i1951;,

Colquhoun and Bourke (1967a,b), and Colquhoun (1967a,b,c,). An exception to

those general findings is reported by Ehernberger (1968o). He found that tur-

bulence of significant intensity at SST supersonic climb and cruise altitudes

Is related in some degree to horizontal wind speeds in excess of 70 kt.

5.2 CAT Versus Horizontal and Vertical Wind Shear

liisiop 0951), Lake (1956), Clera (1957), Briggs (196lb), and George (1961)

l\avc all Eound that vertical shear is an important parameter in high-level

turbulence.' The results concerning horizontal sho«r are,not so clear. Harrison

V1959, 1961) states that horizontal shear is important in the forecasting of

i'AT. However, Briggs and Roach (1963) conclude in their study that horizontal

Mind shear is not highly correlated with the occurrence of CAT. Kroncbach

ll9f>4) also obtained a poor relationship between the occurrence of CAT and

horizontal shear of wind. According to Colson ami IVnofsky (1965), any corre-

28



50lation between Cat

and horizontal shear

is probably due to a

statistical relation

between horizontal and 200

vertical wind shear.

Fig. 18. Characteristic temp-
erature profile pro-

duced by ageostrophic meridional
wind component above and (a) on
the poleward and (be) equator-
ward side of a sharp subtropical
wind maximum (after Spillane,
1967).

RI - -S 5.4(1)

5.3 CAT Vers s Hydrostatic Stability and/or Lapse Rate of Temperature

Lake (1956) found that moderate turbulence was most likely to be associated

with lapse rates which were less than dry ad1abatic but greater than isothermal.

He also found that, with either the adlabatic or Inverslonal class of lapse

rates, no turbulence was likely. The data from Project Rough Rider (Clem, 1957)

showed that a useful relationship existed between CAT and steep lapse rates of

temperature. Endllch (1964) found that a discontinuity of lapse rate at an up-

per front or at the tropopause was Important for the existence of CAT. Flights

with Jindivlk target aircraft over the Woomera Rocket Range in S. Australia have

shown that CAT is most likely to occur when there is a sharp "kink" in the temp-

erature profile between 50 and 200 mb (Spillane, 1967). The characteristic

temperature profiles discussed by Spillane are shown schematically in Fig. 18.

Keitz (1959) found that a significant correlation existed between the ob-

servation of CAT and a forecasted change In the hydrostatic stability. The

change in stability was determined to be caused by differential advection.

Based on Keitz's observation, Schwerdtfeger and Radok (1959) have suggested a

simple method using hodographic techniques to detect changes in static stability.

As indicated earlier, individual turbulence maxima coincide with the loca-

tion of stable barocllnlc zones. According to Oanielsen (1959), the stable and

barocUnic zones associated with CAT formation are rather thin. Hence, slr.ce

accurate measurements of sta'jilitv ever thin layers are difficult Co obtain, any

relationship between hydrostatic stability and high-level turbulence is dif-

ficult to examine.

5.4 CAT Versus the Richardson Number (Ri)

A criterion widely used to describe the stability of tluid flow is the

Richardson number (Ri) (Richardson, 1920; Calder, 1949; Dugstad, 1958a; etc.).

Ri expresses the ratio of buoyancy forces to shearing stresses and can be writ-

ten in the form

In this equation, K^ Is the eddy conductivity, ^ is the eddy viscosity, g the

acceleration of gravity, and f the mean temperature. The factor 0 expresses the

sum of the observed lapse rate of temperature and the dry adiabatic lapse rate,

i.e., 3T/3z +• T, while y is the vertical wind shear squared, viz., y = Ou/3z)a.

it should be noted that u Is the mean vector wind.

Theoretically, If RI Is smaller than some critical value, Ric> laminar Ilov

will break down into turbulence. Richardson suggested that turbulence would de-

velop and grow if Ri< 1. Other values given for Ric are 0.5 by Prandtl (Scorer,

1956), 0.25 by Taylor (1931), 0.25 to 1.0 by Wanta (1953), plus many others (see,

e.g., Lyons et^ â ., 1964; Lumley and Panofsky, 1964; Webster, 1964; Panofsky

et al., 1968).
It is generally assumed that the ratio Kj, to ̂  is equal to 1. However,

this ratio is dependent on stability and other parameters. Values ranging from

0.83 to 3 have been reported (Lumley and Panofaky, 1964, p. 105-106), and a

value of 0.65 has been reported for the free atmosphere by Pettersscn and

Swinbank (1947). Host studies which have attempted to correlate CAT with Ri

have assumed that / = 1 so that Eq. 5.4(1) becomes simply

Ri = gB/Tv. 5.4(2)

Many shortcomings are inherent in the evaluation or computation of Ri.

These have been discussed by Scorer (1956), Colson and Panofsky (1965), Reitcr

and Lester (1967), and Scoggins et al. (1969). In summary, these shortcomings

include:

a.) Poorly resolved data, i.e., significant vertical wind shears and

la,>se rates are often smoothed out (Ileiter. 1963; Colson and Panofskv,

1965; Scoggins et al., 1969);
b.) improper choice of scale length (Reiter and Lester, 1967, Scorer, 1956);

c.) non-synchronous data collection (Eavarina and Yudln, I960), and

d.) failure to take into account the sign of the vortical wind olidir

(Lake, 1956).
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With these shortcomings, It is no wonder then that relationships between Ri and

CAT have ehown little consistency.

Table 6 Is a compilation of the results obtained by several investigators

as regards relationships between CAT and Ri. As expected, the results are high-

ly divergent.

5.5 CAT Indices and Other Relationships

Since the Richardson number fails as a suitable Indicator of turbulence,

other dynamic parameters have heen combined in the search for a consistent

indicator of turbulence. One of these Indices is due to Colson and Pannfsky

(1965), and the other to Endlich and Mancuso (1964).

The CAT index of Colson and Panofsky Is really an Index of CAT energy. The

Index is derived by using energy considerations, dimensional analysis, and

similarity theory. By making several simplifying assumptions, one may write the

index as

I = (Av)3 (1 - Ri/Ric), 5.5(1)

where AV is the vector change of the horizontal wind in a layer. The parameters

used in computing 1 may be taken from ordinary meteorological data. Analyses by

Colquhoun (1967c) and Blackburn (1969) have shown that the index is, in general,

a poor Indicator of turbulence.

Endlich and Hancuso give their index as

V(oo7oz)(oBT/azs), 5.5(2)

in which V is wind speed, a Is wind direction, and T is temperature. Hence, this

index incorporates the vertical directional shear and the curvature of the verti-

cal profile of temperature. Both of these quantities have been shown to be of

some importance In CAT processes (Sasaki, 1958; Retter and Nanla, 1964, Sorenson,

1964). Correlation studies have shown that this Index also is unreliable

(Endlich and Mancuso, 1965b; Colquhoun, 1967c).

Klemin and Pinus (1954), Pinus (1957), and Balzer and Harrison (1959) have

found that cold air ndvcction Is nore conducive to the occurrence of CAT than

either warm or neutral advection. Sorenson (1964) has shown that either cold or

warm advection is associated with CAT occurrence depending on the particular

synoptic situation. Differential advoctlon of temperature, which is Indicated
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4

3

g

a.

g
m

^^
In

2

' §
a

0

i

£
S

U

o

JJ

-H
f-4

•H

X*
O
14
a

en

aJ
>-i

ex
»
o
u
CO
14

to

c
•H

a

H

u

*a)

2
to
a

8
4J

«

t-4

u tn
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by • turning of the wind with height, hit been shown to be Important by Keltz

(19S9). Reltor (1964c), Relter and Hanla (1964), and others.

Several Investigations have shown that more turbulence is found with cy-

clonic curvature and shear than with anticyclonic conditions (Flnus, 1957;

Clodnan, 1958a; Balzer and Harrison, 1959). This Is in agreement with the find-

Ings cited in Section 4.42. Sorenson (1964) reported that he found a significant

number of CAT cases during December 1963, which occurred In connection with anti-

cyclonic curvature. According to Clodman et al. (1961), turbulence over the

ocean is favored by anticyclonic snear and curvature. Some of the evidence sup-

porting these conclusions is given in Tables 7 and 8.

Table 7. Recurrence (7.) of aircraft bumping in relation to the
character of the barometric field (after Firms, 1957>

Character of Cyclonic Curvature of the Height Anticyclonic Curvature of the
Current Contours in the Layer Height Contours in the Layer

3-8 km 8-14 km 3-14 km 3-8 km 8-14 km 3-14 km

Convergence

Divergence

Parallel
Structure

Table 8.

300-mb Contour
Curvature

Anticyclonic

Cyclonic

Total

57.4 50.0

17.3 8.0

17.2 9.6

Turbulence cases
(after Clodman et

Season

APR. - SEP.

OCT. - MAR.

YEAR

APR. - SEP.

OCT. - MAR.

YEAR

APR. - SEP.

OCT. - MAR.

YEAR

3O.U

15.6

14.9

(all intensities)
al., 1961)

t«..C •>«. fc

7.3 5.3

8.7 4.4

for amount of

6.8

7.0

flying tt)

Horizontal Wind Shear
Anticyclonic Cyclonic Total

2.84

21.80

24.64

2.41

8.86

11.27

5.25

30.66

35.91

7.80

16.31

24.11

1.91

3.87

5.78

9.71

20.18

29.89

10.64

38.11

48.75

4.32

12.73

17.05

15.00

51.00

66.00
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Other parameters that have bean related to CAT Include strong horizontal

gradients of temperature (Relter, 1962c; Sorenson, 1964; George, 1965; Moore

and Kriohrumurtl 1966; Kadlec, 1969), curvature of the vertical profile of wind

(Lake, 1956; Endlich and Mancuso, 1965a), vorticity patterns and advectlon of

vortlclty (Colquhoun and Bourke, 1967a,b; Colquhoun, 1967c), deformation of the

vlnd field (Mancuso and Endlich, 1966), horizontal and vertical gradients.of

kinetic energy (Briggs and Roach, 1963; Kronebach, 1964), and the Scorer para-

meter (Lake, 1956). None of these parameters have shown a consistent and reliable

relationship with the occurrence of CAT. • -, " >

McKay (19ti8) suggested that CAT might be associated with atmospheric elec-

tric phenomena. He correlated reports of CAT with radar-detected sporadic

E(Es) activity. The correlation can only be described as inferential because

of the extremely small sample.

6. FORECASTING CAT

6.1 A Brief History of CAT Forecasting

As was pointed out in the introduction, the phenomenon of CAT was first

discovered in the latter stages of World War II. Formal forecast procedures

were not in use, however, until 1959 when commercial flights with turbojet

aircraft were initiated. At this time. United Air Lines began to issue routine

CAT forecasts (Sorenson, 1964). Early procedures were based on a meandering

jet-etream model related to horisontal wind ."hear as outlined by Harrison

(j.959). In 1960, Eastern Air Lines ad-pted the procedures formulated by George

(1960b, 1961). Procedures for forecasting CAT were introduced by the U.S.

Weather Bureau in 1962 (Hanson et al., 1962). The USAF Air Weather Service

established its CAT Forecast Section at Kansas City, Mo., in 1961. The proce-

dures used by AWS were basically those of Harrison and George (Kronebach, 1964).

Modifications to some of the above procedures have been introduced as new

knowledge has been gained (Harrison, 1961; Kronebach, 1964; Relter, 1964c;

Sorenson, 1964).

6.2 Routine Forecast Procedures

The forecast procedures and rules which are presented in this section lend

themselves to routine usage by the operational forecaster. The only require-

ment for application of the techniques is access to ordinary meteorological

data, viz., standard synoptic reports, rawinsonde or pibal data, upper-level

charts, etc. Success of the forecasts is dependent on several factors, viz.,

a.) accuracy of the data,

b.) accurate data analysis,

c.) degree of correlation between CAT and forecast parameters, and

d.) skill of the forecaster.

A technique developed by Pinus (1957) is based on the thermal wind equation

along with an expression for Ri. It can be shown, for o btable current of air

of sufficiently large scale, that

Ri f3T r-Y 6.2(1)
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where f la the coriolis parame-

ter, p the density of the air

(average value for the atmospher-
o

Ic level under consideration), T °
the observed temperature of the J°

air, T the dry adiabatlc lapse ""

rate, v the observed lapse rate,

and $l the horizontal tempera-

ture gradient. Values of y and

0j are determined from analyzed

charts and these values are then

used to enter the nomogram shown

15 30 45 60

Pi (d eg/ 1000km)

Fig. 19. Nomogram for forecasting Dumpiness
in flight (after Pinus, 1957).

in Fig. 19. The success of this technique is highly dependent on the relation-

ship between CAT and Ri, which, as was seen in Section 5.4, is unreliable.

Following a study of 76 cases of severe CAT occurrence, Harrison (1959)

proposed a set of forecasting rules. Bis rules are as follows:

Rule 1. Severe CAT occurs in a layer of strong horizontal wind shear.

Rule 2. Three out of four severe CAT occurrences are found to the left of

the jet core facing downwind.

Rule 3. CAT has a strong tendency to be associated with a meandering polar

jet stream.

Rule 4. About one severe CAT case in ten occurs between the polar and sub-

tropical jet streams when they are in close proximity.

Rule 5. At least one severe CAT case in 20 Is mountain wave In origin.

The forecast procedures of United Air Lines are based upon these rules in

addition to some modifications proposed by Harrison (1961) and Sorenson (1964).

The UAL forecasting model Is shown in Fig. 20. Figure 71 Is the UAL mountain

wave nomogram which is used for forecasting Type IV CAT occurrences. According

to Sorenson, CAT zones also should be ipHirnfed In the following regions:

1. In troughs where horizontal sheer is a 40 kt per 150 n mi and the

thermal gradient is steepening.

a.) Between the thermal trough and jet axis.

b.) In areas where the wind direction changes by 30° or more in 4° of

latitude.

-̂1. Horizontal wind shear should be 40 k/150 n mi

2. Vertical wind shear may be substituted for Types
II and HI (6 k/1,000 ft) ^

3. Use Fig. 21 for Type IV - Mountain Wave cases

Fig. 20. UAL CAT forecasting model - 1961 Revision

30

J£S 20
<U -H 0)
M -o 00

10

No
Wave Moderate or

s trong wave

Weak wave

££ ° 70 40 fin «n knots
IS

Strongest wind from 10,000 to
20,000 ft msl

Fig. 21. UAL Mountain wave nomogram.

c.) Ahead of the trough when southerly winds at 700 or 500 mb turn

sharply eastward.

d.) In areas of pronounced i'untlcrcuttlng".

e.) In areas of cold advoctlon lit 200 mb.

2. In sharp ridges, when winds at 1.MW (level of maximum wmd) are nt le

3B



40 kt and the radius of curvature at 700 or SOO mb is smaller than 4° of

latitude (and tending to sharpen further). Include the area 3° of

latitude on either aide of the ridge line with the required curvature.

3. In tightening thermal gradients along mountain ranges when winds are

nearly normal to the range.

4. Limit CAT to 3,000 ft above the tropopause (5,000 ft over mountain areas)

unless significant thermal convergence is occurring above these limits.

Vertical wir.J shear has been incorporated into a technique pi.-opcr.ed by

George (1961). His Investigations show that in severe CAT case-, it is usually

possible to draw smooth isollnes connecting equal altitudes of the base of

significant shear layers. Wind shears greater than 6 kt per 1000 ft are deemed

as being significant. George has found that severe CAT occurs where large

gradients of horizontal wind shear (SO kt per 150 n ml) cross the centers of the

vertical shear isotacha (defined as the inner two closed isotachs when drawn for

intervals of 3 kt per 1000 ft). CAT usually occurs within a few thousand feet

above the base of the vertical shear layer. George indicates that it is best to

forecast CAT occurrence in a layer about 10,000 ft deep from 3,000 ft below to

7,000 ft above the base of the shear layer. The details of chart preparation to

use this method can be found In Shell Aviation News. No. 273, March 1961.

The U.S. Weather Bureau (ESSA) issues CAT forecasts on the basis that there

is more than a 50 per cent chance for moderate-severe CAT in areas of strong

vertical vector shear where the atmosphere is unstable or rapidly becoming so

(ESSA, 1966). Areas where these conditions are most likely to occur are:

1. To left of strong jet (one isotach 2 125 kt at 300 mb) looking down-

stream between the trough and upstream ridge where the averaged vertical

scalar shear is greater than 6 kt per 1000 ft. This area is most likely

to have moderate or greater CAT when on the latest 300 mb chart, an area

of cold air advectlon also is indicated as impinging on the left side

of the jet stream.

2. In the confluent region between two jet cores where the cores are less

than 5" of latitude apart.

3. In sharp, V-shaped troughs which slope rapidly with elevation below 300

mb.

4. In the "neck" of cut-off lows.

- 5. To the right (looking downstream) of strong anticyclonlcally curved Jut

streams.
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6. Over mountain ranges, when the jet core crosses at right angles to tha

major axis of the range, and winds at the top of the mountain are «t

least 25 kt,

6.3 Forecasting CAT by Numerical Methods

The techniques of predicting CAT by numerical methods generally fall into

two groups. One group utilizes automated procedures to compute various quanti-

ties such as Rl, static stability, etc., from current upper-air data. Forecasts

are then based upon the currently existing situation. The CAT Forecast Section

of AWS uclli-.es Rl as an indicator of CAT, arJ areas within isopleths of Rl £ 1.0

are assumed to locate the probable area of CAT for the following 12 hours

(Kronebach, op. clt.).

The second group of forecasts is based upon the prognosticated values of

atmospheric parameters. Various parameters such as vertical shear, Rl, and

vertical wind speed are computed over a grid network. Forecasts for turbulence

are then made on the basis of statistical correlations between CAT and the

various parameters (Endlich and Mancuso, 1965b).

Numerical techniques generally are favorable from the standpoint of both

speed and accuracy. The techniques are highly dependent, however, upon the

atmospheric model that is employed (see e.g., Shuman and Hovcrmale, 1968), the

input data, and of course, upon the various statistical correlations used In

making the forecasts.

6.4 Other Methods

A method of making short-period warnings over mountainous terrain recently

has been proposed by Foltz (1967). The method is predicated on the assumption

that CAT with "wavelengths" of approximately 100 m is caused by unstable gravity

waves. Foltz further assumes that the turbulence is isotroplc and that the

energy spectral distribution follows the "-5/3 law" over wavelengths of 0.05 to

20 km. Utilizing various aspects of the theory of air flow over mountains (see

Krlshnamurti, 1964b), Foltz derives an expression for the maximum vertical

velocity to be expected in a lee wave with wavelength X (Reiter and Foltz, 1967),

viz.,

2nhb
6.4(1)

40



In thl» equation, w la the vertical

velocity (nmdaua), b the mountain

height, b the half-width of the moun-

tain, u. the wind speed at gradient-

wind level, and k the wave number

(k - ZnX"1). The parameter A la equal

to tan3 QfCTln-or-tanorJ"1, where a la an

angle between 0 and 90 deg (Corby and

Wellington, 1956), and 1) Is a positive

Integer greater than zero. Relter

and Foltz show that A Is approximately

equal to 1 (maximum value) when a a> 65

deg, and 1) = 1. Hence, all the para-

meters in Eq. 6.4(1) can be estimated

using topographic maps, synoptic

charts, and satellite photographs (to

Fig. 22. Forecast degree of CAT. When
the maximum vertical velocity

in the lee wove is determined from Eq.
25 and the lee wavelength is determined
from \=2n/k, the degree of CAT can be
determined from this graph (after Foltz,
1967).

determine X, which might also be determined visually). Figure 22 is a noraogram

used in conjunction with Eq. 6.4(1) to determine the intensity of CAT associated

with mountain wave activity. The spectra for various intensity levels of CAT,

extrapolated with "-5/3 slope" to lee-wave lengths, are shown in Fig. 23.

6.5 Evaluation of Forecast Methods

Sorenson (1964) has sucmurized the problems

affecting most techniques of forecasting CAT.

The problems are that the techniques

over-forecast to a large extent (so as to

be certain of "hitting" the areas of CAT),

mios some important areas of turbulence

and

aie based en symptoms rather than causes.

Spectra of lee wave energy. The values
entered on the spectral curves of -5/3

c Iho nnxlnixun vertical velocities cnncain-
ed in the leu waves in m aec 1 at the Loi. wave-
length necoooory to result in the level of energy
(w component) In the CAT w.ivlonRth rf^ion •!•
cause variouo degrees of CAI Baiter Foil., 1967;.
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Reitn (1964a) has suggested that forecast procedures might be Improved

significantly If we: a) first look for physical causes of CAT rather than for

multi-discriminate correlations with atmospheric parameters, and b) as a second

step, search for a combination of parameters that might bring about tho necessary

conditions to make the physical causes effective. But, as pointed out by Relter

and Foltz (1967), we will never be able to pin-point Isolated patches of tur-

bulence in space and time because of the vast difference of scales Involved In

the forecasting problem.
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7. THEORIES OF CAT

To the present day, no single theory is fully capable of explaining the

phenomenon of CAT. There are several reasons why this Is so. First, if"by'CAT

one means "burapiness in flight through clear air" (Reiter, 1962e), the physical

nature of the phenomenon is multi-faceted. Atmospheric motions which affect

aircraft are known to occur under both stable and unstable flow regimes. They

also occur under conditions of both laminar and turbulent flow. Second, truly

turbulent flow in claar air may at timed be of a scale so as to be completely

unimportant to aerospace vehicles. But, CAT of this scale can be, and is, impor-

tant to the astronomer, radio engineer, and others (see Section 1.).

Before going into the various theories which have been advanced to explain

CAT, a distinction must be mode between turbulence and undulancc. The motion of

a fluid particle in an undulating medium can be described rather specifically,

while in a turbulent medium, the motion can be described only in statistical

terms. Furthermore, the process of diffusion is not caused by undulancc

(Hildreth £t _al., 1963). Another important difference between the two is that,

under conditions of static stability, undulant flow can persist whereas turbu-

lence is greatly inhibited (Lumley and Panofsky, 1964). According to Hildreth

et al. (1963), undulance can be induced in the atmosphere by one or more of the

following:

a.) flow over mountains,

b.) convective activity in adjacent layers, and

c.) shear flow across a stable layer.

The mechanisms which produce turbulence are as follows:

a.) mechanical stirring caused by the flow of air over terrain .
or other "rough" surfaces,

b.) convection caused by differential heating or cooling, and

c.) instability in shear flow.

From the foregoing, then, it appears that the applicability of any one CAT theory

is dependent upon several factors. These factors seem to be one's definition of

CAT and the specific area of application.

The theories which have been advanced to explain the occurrence of upper-

level turbulence con be put in one of three broad classes:

a.) theories of turbulent fluid flow,

b.) theories of dynamic or inertlal instability, and

c.) theories of wave instability.

Airflow of an undulant nature.is treated by means of wave theory. ,.

7.1 Turbulent Flow of Fluids

The study of turbulence in fluids io due in large part to Osborne Reynolds

(Brunt, 1952). Assuming an Incompressible fluid, Reynolds concluded that the

kinetic energy of the turbulent motion would Increase, be stationary, or diminish

depending on whether the rate at which work la done by the eddy stresses is great-

er than, equal to, or less than the rate at which work has to be done to maintain

the turbulence against the stabilizing forces (Lamb, 1945). Reynold's theory of

-the criterion of turbulence was extended _o the atmosphere by Richardson (1920).

The Richardson number and many of its limitations were discussed earlier in

Section 5.4.

The Richardson number has been modified by several workers to account for

factors which were omitted in its original derivation. Dugstad (1958a) investi-

gated the effects of horizontal wind shear and the dynamic stability of the mean

flow on Richardson's criterion. With the Inclusion of these two aspects of fluid

flow, Dugstad shows that the general criterion for increasing turbulence is

given by

(G-A)tan3a - 2(B+C-F)tanor + H-D> 0, 7.1(1)

where:

A

B

C

0

F

G

H

f

1

r

'a

+ rd)
OT/dx)

fcu- (f + Wr"1) oV/Sz

u (f + 2Vr"1)(f + ov/ox + Vr"1)

îe(f + 2dVe/dr) aVg/Sz

He(oVe/Sz)
3

Uc(f + ave/Sr + Vgr'
1 ) OVg/ar - Vgr"1 )

Coriolis parameter = 2 0 sin 4," where fi is Er.rth's angular velocity

characteristic mixing length

radius of curvature of mean flow

angle between the x-nxls Jiid I (s^-plane)

azimuth angle of cycllndric.il coordinate system

tangential and radial velocition. respectively

eddy conductivity in direction of I
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l»e • eddy viscosity along ,1 ' •

g • acceleration of gravity

Tj « dry-adiabatlc lapse rate of temperature.

.Special cases also are given by Dugs tad. Specifically, he. shows that-, the crite-

rion if or Isotropic turbulence is'given by . •-

7.1(2)

This equation is quite similar to the Richardson number with the-exception of the

second'term on the left-hand side. For vertical turbulence, Dugstad's criterion

is identical to that of Richardson's (see Eq. 5.4(1)).

As mentioned In Section 4.41, observations have shown that there may be an

increase in the frequency of CAT within stable and baroclinic layers. This is

clearly contradictory to the Implications of Richardson's criterion. Finus

(1957), Reed (1960), Reiter (1963), and others have shown that, by combining

the thermal wind equation with Ri, one arrives at

f*9(g ae/oz)"1 [Oz/on). - (Sz/an),, - (e/g)(ov/ae)!"
O f

7.1(3)

where 6 is potential temperature, n is the coordinate measured normal to the wind

current, the subscripts 8 and P indicate differentiation on Isentropic or Isobar-

ic surfaces, respectively, and V is the acceleration of the vector wind, and Ri*

Is a modified Richardson number. Other symbols used in the equation follow

standard notation. The term dV/dS is extremely difficult to measure and

(3z/3̂  is usually small in comparison to (dz/BnK. Hence, if we neglect these

terms, we get a simplified form for Ri* fahich states that perturbations are

likely to amplify In stable and baroclinic layers, viz.,

Ri* •=<
f3 0 7.1(4)

It should be noted that this equation goes far beyond the original assumptions

made by Richardson, In that broad-scale flow has boon introduced, i.e., inertia

effects are now important.
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Scorer (1969) and Badgley.(1969) have discussed the changes In RI associated

with broad-scale flow. The conclusion reached by Scorer is that the greatest

decreases.In RI occur where air with positive shear (3V/dz > o) is .decelerated

and flows upslope, or'where air with.negative shear is decelerated while flow-

ing downslope. Badgley reaches the'same conclusion whereby he suggests that

breeding places for CAT might well' be regions where the air is descending and

spreading out normal to the positive shear vector and simultaneously slowing

up in the direction of the negative•shear vector.

Another stability criterion which is Applicable in thf> vicinity of the Jet-

stream has been derived by Sasaki (1958); this incorporates the curvature of the

vertical profiles of wind and.temperature. The criterion can be written as

SiS T + T - mjl AVS >
unstable
stable 7.1(5)

where n^ is a statistical factor O/gAT)Ô /Kj) equal to 0.0198 °C/kt? (empiri-

cally determined). After the manner of Reiter (1963), S can be used to investi-

gate the conditions of critical flow at the tropopauae and at the level of the

jet stream. Use is made of the following definitions:

MT + 2m± AV (AAV)

and

- AV -1
J = AAV =

where the subscripts -1-1, 0, and -1 refer to the upper, middle, and lower lavers

of a three-layer model of the atmosphere. Furthermore, AV . B V - VQ and

AV , B V - V , . With this notation, the results of Sasaki may 'oe summarized- 1 o -1
as follows:

1.) At the tropopause, fr | > m1 f , for which 0 < S^ < mtJ
r implies stabild

and 8^ < 0 implies Instability. - •

2.) At jet-stream level (r , < m ja so that stable conditions exist for

m.j3 - |T | < R<m j3 and unstable conditions for R<inlJ" - n tl
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7.2 Dynamic (Inertial) Ingtability

Dynamic' instability has been used to explain the occurrence of CAT In re- .

glons of strong horizontal and vertical wind shears (Arakawa 1951, 1953, 1958; .

Kao, 1964). If a fluid particle, embedded In a broad geostrophlc current, Is

originally In a stable state. It will describe oscillations about its equilibrium

state if removed from its equilibrium position. The period of the oscillations

described by the particle In this stable state will be T = 2n/f = % pendulum

day (Hess, 19591. Conditions may exist, however, in which a fluid particle

moving into certain flow configurations will experience unstable accelerations.

Under these conditions, any small perturbation may amplify rapidly and finally

break down Into turbulence.

Solberg (1939) has discussed the vanishing of absolute vorticity in the case,

of transition to instability (also see Kleinsctmddt, 1941, Van Mieghem, I944a,b,

1945, 1946, 1948, 1950). The vertical component of the absolute vorticity 11 in

a zonal current is given by

Sy
tan

R 7.2(1)

where y is the meridional coordinate pointing northward, f the Coriolls parameter,

u the speed of the west wind, R the radius of Earth, and 4 the latitude. With

neglect of the last term in 7.2(1), the stability criterion becomes

stable
0 neutral

unstable,
7.2(2)

for the anticycIonic side of strong Jet streams. Dynamic instability also,Is

possible on the cyclonic side of the jet-stream according to the criterion

developed by Arakawa (1351). According to his theory, the cr'̂ î al cyclonic

shear is given by

3y
H- tan *. 7.2(3)

in which 01 is the angular velocity of Earth. Arakawa (1958) has also shown

that dynamic turbulence Is related to a critical value of the vertical gradient
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of wind speed. He gives as the critical negative wind shear (wind speed decreas-

ing with height) the following approximate relationship

7.2(4)

where T, f, and g are the temperature, dry-adiabatlc lapse rate, and acceleration

of gravity, respectively. •
The-instability ciiterion of Arakawa expressed by Eq. 7.2(3) has been disput-

ed by Kao (1964). Using energy considerations and the assumption that the motion

of a fluid will be stable or unstable If the change of the eddy kinetic energy

is Increasing or decreasing with time, Kao found that the stability criterion can

be given by

- < uV >(-- 31 +-
7.2(5)

The various quantities in 7.2(5) are defined as follows:

u'.v'.w1: perturbation wind speeds positive to the west, north,

and vertically upward, respectively; and

r, f: radial and latitudinal coordinates of a-spherical

coordinate system.

Quantities within < > are time integral values and barred quantities are average

values. If the perturbation value of the vertical velocity is oqual to zero,

i.e., w1 = 0, Kao shows that the stability criterion Is given by

(I || + » tan SV1 M
Vr S* r Ar 3$

»„„»)>
' <

o unstable
7.2(6)

For a positive vortex (westward-flowing zonal current) with positive lateral

velocity shear toward the pole, Eq. 7.2(6) bccomos

1 ou > £ u . unstable
7 S» < £ + r tan * stable

48

7.2(7)



and vith negative lateral velocity shear toward the pole, the criterion la

I a_u < u unstable
r 9$ > " r tan • stable 7.2(8)

Equation 7.2(7) Is equivalent to the criterion of Solberg and KUenscttmidt

(7.2(2)), but Eq. 7.2(8) differs considerably from that of Arakaua, 7.2(3).

Dugstad (1958a) has shown also that Arakawa's criterion, expressed by 7.2(3), Is

In error. For geostr-rohic flow ceadltiono, the critical wind shears of Arakawa

would be 3v9/or = - f and ove/3r = % f, which quite clearly are physically

Impossible.

7.3 Atmospheric Wave Motions

The hydrodynamlc equations of motion hold a wealth of information from which

an explanation for a wide range of physical phenomena may be derived. Mathemati-

cal solutions for most problems of dynamic meteorology are exceedingly difficult

to obtain for a variety of reasons, viz., non-linearity of the differential

equations, correctly specified boundary conditions, incomplete specification of

the problem, etc. The difficulty arising from nonlinear equations can be over-

come for a wide range of problems by applying the method of perturbations (see,

e.g., Bjerknes et al., 1933; Haurwitz, 1941, 1951). The method of perturbations

"linearizes" the nonlinear equations through the assumption that atmospheric

motions consist of small perturbations superimposed on a steady, mean field of

flow. Several simplifying assumptions (see Appendix II) about the mean flow field

permit the resulting perturbation equations to have solutions chat have Che form

of waves. Problems involving sound waves, gravity waves, waves in the upper

westerlies, shearing waves, and flow over hills and mountains have been solved

successfully using perturbation techniques.

A wave traveling in the x-direction with phase velocity c and no: under-

going a change in shape cm be represented mathematically by A cos k(x-ct) or

A sin k(x-ct), where A is the amplitude of the wave, k the wave number (equal to

2TTX"1), \ the wave length, and t the time. Simple harmonic waveforms like the

above can be generalized to allow A, c, and k to be functions of time as well as

of other coordinate directions (Kas.ihira, 1967). Another, <md in many ways more

useful, wave function has the form

A exp ik(x-ct),
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7.3(1)

In which exp • e, the base of the natural logarithms, 1 • / - 1, and A, x, c,

and t are the same as defined above. The phase velocity, c, In 7.3(1) may be

complex. I.e.,

lc

in which case, the wave function takes the form

A oxp {kcttj exp (lk(x-crt)J.

7.3(2)

7.3(3)

The factor, exp (kc t}, determines whether the wave form is stable, neutral,

unstable according to the following:

c > 0 amplified waves, unstable,

c. = 0 neutral waves, and

c. < 0 damped waves, stable.

The rate of amplification for those cases where c > 0 is Important since very

small amplification would represent little development (Haltiner and Martin,

1957). A convenient measure of wave instability Is the doubling time, which Is

the time required for the amplitude of a wave disturbance to double its magnitude.

7.31 Gravity Waves

Gravity waves are an example of wave motion in a single layer. The assump-

tions used to obtain a mathematical description of these waves include: (1)

fluid is incompressible, (2) coriolis force and friction are neglected, (3) wave

motion is two-dimensional, and (4) only th° undlstrubed fluid is in hydrostatic

equilibrium. Under these conditions, gravity is the prime restoring force. It

should be noted that in this system, no vorficicy can be created and, since the

undisturbed motion has no vorticity, the wave motion is irrotatlonal.

Pure gravity waves ore stable as long as the wave height is small, but they

may be unstable if the undisturbed fluid velocity is a nonlinear function of

height. The speed of gravity waves depends on the wavelength, X, and on the

thickness, h, of the fluid in which they occur. Wave opeed may be calculated

from the solution of the perturbation equations, which is given by
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u± tan h 2nh>
7.31(1)

In this equation, c ta the wave speed and U is the velocity of the undisturbed

fluid. If the fluid depth exceeds the wave length by about 60 per cent, then,

the wave speed la very closely approximated by

c <a U ± (^j . 7.31(2)

Another special case exists for the case In which X is much larger than h, i.e.,

h < X/25. These are the conditions for long waves in a shallow ocean ior atmos-

phere and the wave speed can be calculated from

c ̂  U ± (gh)1 7.31(3)

Pure gravity waves are of little interest in the formation of CAT because

of their relatively long wave length and the fact that they are stable. However,

it must be realized that a complete spectrum of waves is possible through super-

position and interference patterns by a number of gravity waves and by gravity

waves interacting with other small-scale waves.

7.32 Waves on a Surface of Discontinuity

A great deal of evidence has been collected which tends to show that CAT is

associated with waves forming on stably stratified interfaces. Observations by

Reiter (1962a,b), Endlich (1964), Reiter and Natila (1964), Reiter and Burns

,(1966), and many others support this contention.

The waves forming on the boundary separating two layers having different

wind speeds are called shear waves. These waves are always unstable, as can bu

seen from Eq. 7.32(1). If the densities in the two layers also are different,

the resulting waves are called shear-gravity waves. The phase velocity of shear-

gravity waves In an Incompressible fluid is given by

.J^£1B_ DP'(U-U )•!•
p + p' l2rt p+p' (p+p')a J •

The primed symbols in this equation refer to the upper fluid.
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7.32(1)

Shear-gravity waves are automatically unstable If the uppermost .fluid It

more dense than the lower. These wnvoe also may be unstable if the wind ghoar,

U-U', is sufficiently large BO as to make the radical in Eq. 7.32(1) Imaginary.

The critical wave length for which tho latter condition may arise is found by

equating the last term In Eq. 7.32(1) to zero. Hence, X crit Is given by

X 2n (U-U')3op'
crit • ~ •̂ "S—̂ T̂ — •g -D13

7.32(2)

Relter (1962e) uses tempetature, V, instead of density to obtain values of

Xcrlf *«••

X 2n (U-U')aTT- .
crit g (T.+ T)(T'-T) 7.32(3)

If we let T = (T + T')/2, A T - T' - T, ACT = V - U', and note that i(4T)2< < T3,

then, Eq. 7.32(3) can be written as

crit 8 I
7.32(4)

Table 9 shows the sensitivity of \ on vertical wind shear for different

discontinuities of temperature (after Reiter, 1962c). The dependence of Eq.

7.32(4) on the meso-structure o£ the atmosphere clearly shows that the patchy

nature of CAT can hp exolaincd bv shcar-cr-ivitv waves.

Table 9. Vertical wind shear AU (m/scc) for different temperature
discontinuities and critical wave lengths at on interface
(after Reiter, 1962c).

AT

2°
4°

6°

8°

10°

LC - 200 m

- 2.3 m/sec

3.3

. 4.0

4.7

5.2

L = 100 m

1.6 m/scc

2.3

2.9

3.3

J.7

L = 50 m

L.2 m/scc

1.6

2.0

2.3

2.6



Stable wove* of the shear-gravity type also nay be responsible for air-

craft-observed CAT. Because of their abort wave length, an aircraft "plowing"

through these waves could well experience vertical accelerations of the order

produced by true turbulence or gusts (Reiter, 1962e).

It should be noted that shear-gravity waves are not dependent on terrain

features for their initiation. That this is true has been shown by the obser-

vation of billow clouds over relatively level terrain (Haurwitz, 1941; Ludlam,

£.33 Mountain Waves ,, _ *

As observed by Harrison (1959), at. least one case in 20 of severe CAT is

associated with wave formations in the lee of mountains. All mountain waves

are not turbulent as evidenced by numerous pilot reporto (Alaka,, 1958); however,

extremely strong vertical and horizontal gusts have been observed (Colson, 1954;

Dutton, 1967). Typically, the mountain wave is evidenced by the occurrence of

several types of clouds, particularly the cap cloud, the rotor cloud, and the

lenticular (Moatzagotl) cloud. Occasionally, If the air Is very dry, waves may

exist without the presence of any clouds. Figure 24 is a schematic presentation

showing typical flow and cloud patterns associated with mountain waves. An

example of the atmospheric structure observed during the "Sierra Wave Project"

is shown in Fig. 25. (Holmboe and Klieforth, 1957).

The effect of mountains on the

air flow at great heights, as evi-

denced by wave patterns in nacreous

clouds, has been reported by Dieterichs

(1950), Palm and Foldvik (1960), and

others. As previously Indicated, the

mountain effect has even been detect-

ed in the ozonospbsre (Paetzoid and

Zschorner, 1955).

The framework for the theoret-

ical treatment of airflow over moun-

tains was begun in the 1880'o by

Raylcigh (1883) and Kelvin (1886).

It was not applied to the atmosphere,

however, until the 1940's when theo-

ries were offered by Lyra (1940) and

Fig. 24. Cross oection of condition?
associated with a typical mountain uave
(after Jenkins, 1958).
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Fig. 25. Vertical cross-section at 1000P December 18, 1951
from Sequoia to the western slope of the Inyo

Mountains. Isentropes are drawn for every 5°C. Both T and
TL are plotted for the Lodgepole (Sequoia) sounding. Loca-
tions of barograph stations are shown by small circles.
Dashed lines Indicate the paths of the Radiosonde balloon
and of flight 2006. The ratio of the vertical scale to the
horizontal Is 2.5 to 1 (after Holmboe and Klieforth, 1957).

Queney (1947). In 1949, Scorer (1949) Investigated a two-layer model of the

atmosphere in which he permitted a vertical variation of wind and temperature.

Other theoretical work on the mountain-wave problem has been done by Holland

(1951), Wurtele (1953), Long (1953a,b, 1958), Palm (1958), KrlBhnamurtl (1964a),

Das (1964), and many others. A detailed summary of this work, plus many other

aspects of the problem, may be found in reviews by Corby (1954), Queney et al.

(1960), Krishnamurtl (1964b). and Alaka (1958).

The works of Scorer (1949, 1951a,b,c, 1953a,b, 1954a,b, 1955, 1957, 1958a,

b, 1959), Corby (1954), Corby and Wellington (1956), Corby and Sawyer (1958),

and Scorer and Klieforth (1959), to noiuo a few, reveal some of the properties of

the mean flow over mountains that are necessary (but not sufficient) fo1" tho

perturbation wave solutions to contain l<je waves. These properties can be

determined relatively easily from radiosonde data and, hence, are Important In

a practical as well as theoretical sense.

Disturbances of the size applicable to the nountain-wave problem are

described by the wave equation,

o. 7.33(1)



where A - gC~3 + P. C 1* the speed of sound, 0 the vertical stability, and ¥ is

a streu function. I3 Is known as the "Scorer parameter" and is equal to

£fi i afj
U8~ U 9i? • 7.33(2)

The "Scorer parameter" characterizes the dynamic properties of the atmosphere

at «ach "level.

Scorer found that standing lee uuves are possible only if I3 is less _n

some fairly-deep upper layer than in a layer below. For wave formation, the

two-layer Model requires that the decrease in I? from the lower layer to the

upper layer should attain a certain minimum magnitude. This magnitude is

dependent on the depth of the lower layer, h, with the limiting condition

given by

streamline pattern computed by Scorer, utlng the wind and temperature profile*

shown on the left of the figure. Corby and Wellington (1956) have shown that

for identical I? profile*, the largest amplitude waves are produced by strong

winds at the surface (mountain top). Large amplitude waves are associated with

narrow but steep obstacles and also with long waves which fulfill the require-

ment specified by Eq. 7.33(3).
Turbulence associated with lee waves has been discussed theoretically by

Scorer (1954b, 1955, 1959, 1969), Scorer and Wilson (1963), Relter (1963), and

Fao (1969). General discussions of mountain wave turbulence with emphasis on

aviation aspects can be found in Jenkins (1952), Corby (195ft), Malta (1958) and

Queney et al. (1960).

1 -*«>S" 7'33(3)

The condition that tP decrease with height may be met by a wide range of

vertical profiles of wind and temperature. Figure 26 gives an example of the

Fig. 26. An example of a train of lee waves. I In grxnter
In tho lower layers than higher up. F.arh HI i t'.im-
lino m«y contain many wave crests. (Aitur Siuii-r,
194°). 56
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8. THE ROUTE DETECTION OF CAT

Aviation Interests have long sought means whereby advanced warning of the

location and/or probable occurrence of CAT may be obtained. Since all present-

day forecasting techniques essentially are probabilistic in nature, numerous

airborne and land-based, passive and active system* have been devised to obtain

the desired forewarning. Paulsen (1966) has listed the techniques which have

been Investigated or which offer practical utility in the near future:

a. sonic techniques,

b. stellar scintillation or microwave scintillation techniques,

c. infrared and microwave radiometry,

d. low-frequency radar,

e. microwave radar,

f. optical-laser radar, and

g. electric-field and corona-discharge techniques.

8.1 Passive Techniques

Kadlec (1964, 1966) has discussed the possibility of using Inflight sensors

to detect horizontal changes In the ambient temperature. This technique is based

on thermal gradients supposedly associated with the atmospheric structure in the

neighborhood of CAT. Reiter (1963), McLean (1965), and Atlas (1969) have shown

that this method is highly unreliable. Techniques using infrared and microwave

radiometers have been proposed by Astheimer (1965), Normsn and Hacoy (1966), and

others. These methods obtain integrated path temperatures over paths whose

lengths vary as a function of the proximity of the instrument's center frequency

to the peak of an appropriate absorption band (Paulsen, 1966). From these

measurements a discontinuity of temperature in the flight path of the aircraft

can be computed. CAT warnings then are based on the assumption chat CAT is

associated with these discontinuities. This technique has been evaluated by

Mather (19671*, Flint flfiS, 1969), and Weiss (1968). The results are similar

to those obtained by direct temperature sensing, i.e., highly unreliable.

Other passive system:) are based on the method of measuring optical and

nicrowave scintillations of otaro (Greene et ol., 1966; Fried, 1968). These

rietl-ads suffer from the limitation of being useful only during the night or at

least during the timo that star fields con be observed (Atloo, 1969K

Observations of coronal discharge hove been correlated with CAT bv Nanevlcz

at al., (1966). A significant correlation was found to exist between CAT

encounters and periods of oloctrical discharge. A somewhat similar technique
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een Investigated by Tea Brock and Seafhora (1966). They, however, hove

Jered the posiible relationship betw««n CAI and atmospheric quasi-electro-

c fields. Initial results for both of tha*e techniques seem promising.

\ctlve Techniques

rhe use of radar to detect CAT show* the moat promise of any method tested

3 past few years. Echoes from CAT arise because of scattering caused by

:lons in the refractive Index. The Intensity of the echo depends on the

:ude of the mean gradient of refractive Index and. In a complex manner, the

-ty of the turbulence (Hicks et al., 1967). The theoretical basis for CAT

:lon by radar has been discussed by numerous workers (Stewart, 1961; Bates

Zlrkle, 1966; Atlas et al., 1966; Atlas and Nalto, 1966; Hardy et al.,

Hicks et al., 1967; Stevens and Reiter, 1967; Buehler et al., 1968;

1968; Hardy and Ottersten, 1968). Simultaneous observations of CAT by

and aircraft (Hicks et al.. 1967) have confirmed the possibility of using

idar as a forewarning tool.

iptical radars and laser measurements also have been proposed for uac in

•tection (Collis, 1964; Gibson, 1966; Breece et al., 1966; Zlrkle, 1966).

and optical radar methods involve spectral analysis of the doppler shift

ht back-scattered by moving particles in the atmosphere. From these

ements, the average magnitude of gusts and the gust spectrum of the

ty components can be obtained. Another approach involves the mapping of

le formations and relating these patterns to rough flying condition!)

e, 1966).

easurements of atmospheric winds, and hence various gust components, also

accomplished by tropospherlc radio scatter (Atlas, 1969). As indicated

as (J969), tropo-scatter systems provide enhanced signal levels over

ponding radar systems. This advantage means that a CAT warning system

on this technique would be hlghlv reliable.

lose ot tno systems covered in this section can be used In either a ground-

or airborne operation. The state-of-the-art ultra-sensitive radar can be

nly from the ground, however. Atlas et al., (1966) have shown that a

improvement in the best airborne radar le needed to detect moot CAT. This

snout In sensitivity would permit CAT detection at a range of approximately

i, although not with 100 per cent confidence (Atlao, 1969).

n excellent collection of papers on the Individual methods diocuoocd in

ection may be found in two bound worko:
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"•> ION/SAE Conference Proceeding. 1966; Society of Automotive Engineers,

Inc.' 485 Lexington Ave., New York, New York 10017.

b-> Clear Air Turbulence and Its Detection. pao and Goldburg, Editors,
Plenum Press: New York, 1969. '

I
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APPENDIX I

SYMBOLS AND USEFUL EQUATIONS

A.1 List of Symboli

A, B.D.'n.T) - amplitudes of'wave forms

c - wave 'speed, c = c + ic where 1 • V-l,' c is real part of c and

e^ the'Imaginary part

g - acceleration of gravity

k - vave number, k = 2nX"x

F - pressure

R - radius of Earth

t - time

u,v,w - components of motion In the x, y, and z directions, respectively

x,y,z - coordinates of a right-hand Cartesian coordinate system with x

positive to the east, y to the north, and z vertically upward

p,or - density and specific volume, respectively, par = 1

\ - wave length

n ,0 - components of Earth's angular velocity In y and z directions,

respectively

B. System of Equations

The three hydrodynanrLc equations of motion (scalar) are given by

H +H + "+ H +3t <ix 3y Sz
I 8P
P OK

Bt
Sw 3w _
By dz

I dP
p oy

" P ay " 8

(AI-l)

(AI-2)

(AI-3)

Terms containing factors R * and those representing friction have been omitted

from Eqs. (AI-l) to (AI-3). The equation of continuity for an incompressible

fluid n-.ay lie written as

-f= = o
3z (AI-4)



PERTURBATION THEORY

A. The Perturbation Equations

Derivation of the perturbation equations Is dependent on the following

asgumptions:

(1) the mean or steady-state motion must satisfy the basic equations,

i.e., Eqs. (AI-1) to (AI-4);

(2) the total motion must satisfy the basic equations; and

(3) second-order perturbations appearing In the equations may be neglected

in comparison with first order terms.

We'def'ne the total action quantities as follows:

u = U + u',

P=.P + P',

v = V + v1,

P = P + P1, or",
(An-i)

APPENDIX II

where U, V, W, P, p, and a refer to the undisturbed current; and u', v', w', P',

p', and of1 refer to the perturbation quantities.

Substituting the quantities in (AII-1) Into Eq. (AI-1) gives the equation

for total motion in the x direction, viz.,

zn
(AII-2)

The corresponding equation for the basic motion is

20 v -y
ap
ox

(AII-3)

Subtracting Eq. (AI>3) from (AII-2) and neglecting second-order perturbations

yields the perturbation equations in the x direction. Results for the other two

coordinate directions, as well as for the continuity equation, are obtained in

the same manner. The set of perturbation equations is thus given by

^~ T U T V 4* tf 4. y —
at ox oy oz a

2n wf - 20 v1 = - £ |£' - or*

. ,bU .+ " *
(AII-4)

ai
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20

8u' 3y' 8w'
3x 3y dz

(AII-S)

(AII-6)

(All-7)

For nose problems, the cerms 2fl w' and 20 u' may be omitted.

B. Boundary Conditions

Wave solutions of Eqs. (AII-4) to (AII-6) are correct only if they satisfy

certain boundary conditions. Boundaries may be free, rigid, or Internal, or there

may be no boundaries at all. Irrespective of the type of boundary, the perturba-

tions oust remain small throughout the fluid. A free boundary is exemplified by

the top of the homogeneous atmosphere or surface of the ocean (in the case of

water waves), a rigid boundary by the ground, and an internal boundary by a den-

sity discontinuity. A parcel of fluid at a boundary must remain there since,

otherwise, the boundary would dissolve. At a boundary, two conditions apply,

nturely, the kinematic and dynamic boundary conditions.

The inematlc condition requires that (1) the velocity normal to the rigid

boundary be zero; and (2) the component velocities be the same on ooth sides of

an internal boundary. The dynamic condition requires that the pressure be the

same on both sides of a boundary. At the top of a free surface such as the

homogeneous atmosphere, the pressure and its changes with time are equal to zero.

C. Solution of the Perturbation Equations

1. Gravity waves

Consider a fluid with a free surface in the absence of friction and rota-

tion. In this case, gravity is the primary restoring force. Let the depth of

the fluid be h, U the undisturbed horizontal velocity between z = 0 and z = h,

let the uaves have an Infinite Intern I extent in the y direction. Only the undis-

turbed fluid is in hydrostatic equilibrium, i.e., 0 = r- - g, ftsz£h. For a

homogeneous incompressible fluid, Iqs. (AII-4), (AII-6), and (AII-7) become
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is1
iff1 (AII-8)

-
Suitable conditions are w - 0 at z - 0, and P + f = 0 at the free surface.

Assume a wave solution of the form

u1 - A(z> exp (Ik(x-ct)]

„' . B(/) exp {ik(x-ct)} (AII-9)

p' « D(z) exp (UCc-ct)].

Substituting (AII-9) into (AII-8) gives the system

(U-c) A(z) - - D(z)or

ik(U-c) B(z) •= - A'(z)a

ik A(z) + B'(z) = 0.

(All-10)

(All-11)

(AII-12)

Now, differentiating (All-10) with respect to z and equating like members of the

result with (All-11) gives

(U-c) A'(z) = ik(U-c) B(z).

From (AII-12), we obtain the result

ik A'(z) + B"(z> = 0,

(All-13)

so that (All- 13) becomes

(U-c) B(r)} (AH-14)

Equation (All-14) is satisfied by the case c = U, i.e., the phase velocity is the

same as the undisturbed current, but tho general solution is

B(z) = Uj exp (kz) + u., exp (-kz).



where u and n2 are constants. Since w' = 0 at z • 0, it follows that

lij - - H2 - 11 and

B(z) = »{exp(kz) - exp(-kz)].

Hence, from Eqs. (All-9) and (All-10) to (All-12), we get

u1 " i^fexpfkz) 4- exp(-kz)} exp{ik(x-ct))

w' = n{exp(ks) - exp(-kz)) expfik(x-ct)) (Alii

P' = -lup(U-c)Oxp(kz) + exp(-kz)] exp{ik(x-ct)J. j

i
Since the pressure at the top of the fluid, i.e., where z = h, must be zero, :

we get '

d ,s
(̂P+P1) = 0 or (neglecting second-order terms)

r (Alt

Recall that r— = -gp. Since the perturbations are assumed to be small,

Eq. (AH-16) is a very close approximation to the conditions at z = h. Equatj

(All-15) may be rewritten as follows:

u' = iu(cosh kz) exp{ik(x-ct)}

w' - M,(sinh kz) expfik(x-ct)]

P1 = ip(c-U) n(cosh kz) exp{ik(x-ct)).

(All-

Differentiating the last of Eqs. (All-17) and substituting into Eq. (All-16)
yields

p(o-U)ck cosh kz - Ukp(c-U) cosh kz - gt- sinh kz = 0.

Evaluating this last equation at z = h yields the result

(c-U)3 = |̂  tonh kh

or finally c = U ± & tanh 3£>
(AII-
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Equation (All- 18) is the "wave equation" satisfying the assumptions which were

stipulated for this problem.

2. Shearing-gravitational waves on an internal surface of discontinuity

An internal surface of discontinuity refers to marked changes in T, p,

and V, or a combination of these. Consider a fluid, with an internal boundary

at z = 0, that is homogeneous and Infinitely deep on either side of the boundary.

Let the undisturbed flow In the x direction be given by U- and U., where sub-

script 1 refers to the upper layer. If the trajectories of the fluid particles

do not range over "too great an area, then the effect of Earth's rotation can be

neglected. For the upper layer, VP assume^-1 = - p4g and for the lower layer,

7-° = - peg. Of course, at z = 0, the dynamic boundar> condition requires that

pi • V
The perturbation Eqs. (All- 8) and their solutions (AII-9) apply to the fluids

in each layer. The general solution to the perturbation equations is

u1 = if^i exp(kz) - I] exp(-kz)} exp{lk(x-ct)}

w' = [u exp(kz) + T) exp(-kz)) cxp(ik(x-ct)) (AII-19)

P' = ip(c-U)U exp(kz) - t\ exp(-kz)] exp{ik(x-ct)}.

Boundary conditions require that w' = 0 at z = - «° and v! = 0 at z = ». Hence,

for WQ = 0, 11 = 0, and for wj = 0, u = 0. The following solutions hold for the

indicated layers:

= i(i exp(kz) exp{lk(x-ct)J

= u exp(kz) exp{ik(x-ct)}

= i(c-U)p0M. exp(kz) exp{ik(x-ct)}

(All-20)

- ill exp(-kz) exptik(x-ct)}

11 exp(-kz) exp(ik(x-ct))

- Kc-U)? exp(-kz) exp{ik(x-ct)).

(All-21)

TIic dynamic boundary condition is given by
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Differentiating Eqa. (AII-20) and (AII-21), and "then invoking the'dynamic boundary

•/ condition, yields •-• -

{p0(c-U0)"k (All-22)

.'and

0. (AII-23)

•Equations (A1I-22) and (AII-23) are sat*«flul If the determinant of the system 16

zero, I.e., " '

+ 8(prpo)

(c-U1)
ap1k + 8(Pj-P0)

0.

Solving thla determinant, we get

_

which yields for c:

pouo
(All-24)

Equation (All-24) gives the phase velocity of a shear-gravity wave. The dynamic

term may be Imaginary if the second term in the bracket exceeds the first. Under

these conditions, the wave w<ll be unstable.

References: Haltiner and Martin (1957), Haurwitz (1941), and Panofsky (1958)*.

* See Additional References.
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