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Current consumption measurements are useful in a wide variety of applications, 

including power monitoring and fault detection within a lithium battery management 

system (BMS). This measurement is typically taken using either a shunt resistor or a 

Hall-effect current transducer. Although both methods have achieved accurate current 

measurements, shunt resistors have inherent power loss and often require isolation 

circuitry, and Hall-effect sensors are generally expensive. This work explores a novel 

alternative to sensing battery current by measuring terminal voltages and cell 

temperatures and using an unknown input observer (UIO) to estimate the battery current. 

An accurate model of a LiFePO4 cell is created and is then used to characterize a model 

of the proposed current estimation technique. Finally, the current estimation technique is 

implemented in hardware and tested in an online BMS environment. Results show that 

the current estimation technique is sufficiently accurate for a variety of applications 

including fault detection and power profiling. 
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CHAPTER ONE:  INTRODUCTION 

Lithium batteries continue to gain popularity for use in a wide range of markets, 

from small consumer electronics to full-sized electric vehicles. In every case, a battery 

management system (BMS) must be employed to protect lithium cells from abuse such as 

over-charge because an abused cell can exhibit dangerous conditions such as fire, 

excessive heating, or gaseous discharge. BMSs protect lithium battery packs by taking, at 

a minimum, terminal voltage and temperature measurements on the cells within a battery 

pack and limiting the charge and discharge current accordingly in order to prevent 

dangerous conditions from developing [1]. Increasingly, BMSs also take current 

measurements that can be used for state of charge calculations, power profiling, as well 

as fault detection. Current measurements are typically taken using a shunt resistor or a 

Hall-effect sensor, both of which has their advantages. A shunt resistor is generally 

inexpensive and can be extremely accurate, but it generally requires additional isolated 

measurement circuitry for some practical implementations and inherently consumes 

power due to the series resistance added to the battery system. Hall-effect sensors provide 

isolated current measurements but are typically less accurate and more expensive [2]. 

Thus, there remains an opportunity for an effective, yet inexpensive, solution for 

determining the current consumption of a lithium battery pack. 

In this work, a novel technique for determining current consumption is proposed. 

In essence, the equivalent series resistance (ESR) of a battery cell could be used in place 

of a dedicated shunt resistor if the ESR, the open-circuit voltage, and the terminal voltage 

of the cell were known. If these quantities were known, the current consumption could be 
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directly determined. This problem merits study because the open-circuit voltage of an 

active cell cannot be measured directly. In addition, the ESR of a cell is dependent on the 

state of charge, the state of health, and the temperature of the cell [3]. Thus, these 

quantities must be estimated before a current estimate can be achieved. 

Although current estimation techniques for this application do not appear in the 

literature, there have been significant contributions in the parameter estimation and 

mathematical modeling of a lithium battery, as well as detailed work in observer theory 

which can be utilized to develop a current estimator. Beginning with battery modeling, 

most models can be classified as electrochemical, thermal, adaptive, or circuit models. 

Electrochemical models consider the chemical processes occurring inside a cell [4], [5]. 

These models are accurate, but require detailed parameterization that is often difficult to 

obtain in practice. Thermal models of the form in [6] can be employed, but more 

information is required to completely characterize the cell’s behavior. Adaptive models 

can be used to model the cell itself, but, adaptive models are more often used for 

parameter estimation in the context of a circuit model. Various forms of the Kalman filter 

are used to this effect in [1], [7]–[10], whereas a proportional-integral observer is used in 

[11]. Further adaptive techniques such as a Lyapunov-based approach [12], or a recursive 

least-squares approach [13] are used. Other methods of battery modeling or state of 

charge estimation range from purely mathematical and established methods, such as that 

in [14], which uses a modified form of the Peukert equation, to novel and undeveloped 

methods such as that in [15], which attempts to determine state of charge by applying an 

external magnetic field.  

Circuit models generally lend themselves well to developing control systems for 
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practical uses of lithium batteries due to their simple parameterization. Most lithium 

battery circuit models include a state of charge dependent open-circuit voltage term and a 

series resistance, which can be followed by two parallel RC elements that represent the 

dynamic behavior of the cell [3], [16]–[20]. Alternatively, three parallel RC elements 

have been used in an attempt to achieve greater model convergence [21]. These models 

can be further augmented by considering additional effects such as temperature-

dependent self-discharge [22], parameter dependence on state of health [23], or open-

circuit voltage hysteresis terms [24]–[29].  

Each of these battery models uses cell current as an input in order to estimate the 

other cell parameters such as state of charge. In this work, it is not presumed that a 

current measurement is available; thus, none of the models can be applied directly. To 

remedy this problem, significant work in observer theory is applied which attempts to 

estimate an output signal when one or more of the input signals are unavailable. These 

unknown input observers (UIO) have been developed for a broad range of systems. 

Linear, continuous systems are considered in [30]–[38]. Each of those works only 

consider systems without a direct feed-through term, but this term is required in all cell 

models that include a series resistance. Fortunately, this term is included in [39]; 

however, it is presented in discrete time. Further works consider non-linear systems in 

order to develop more robust structures at the expense of computational complexity [40]–

[44]. 

This work contributes a practical battery model developed from a survey of the 

literature, as well as a novel technique by which the current consumption in a battery 

pack can be determined without the need of any additional current-measuring hardware. 
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Additionally, the battery model and the current estimation technique are compared with 

experimental data that demonstrate the accuracy of the model and the estimator. Finally, 

this work contributes a demonstration of the current estimation technique as employed in 

a BMS. 

The work is organized as follows. In Chapter Two, a model for a lithium battery 

cell is developed. In Chapter Three, the mathematical model for a UIO is derived and 

applied to the current estimation problem. Chapter Four details the determination of 

model parameters. Model validation and experimental results are given in Chapter Five. 

Chapter Six concludes the work.  
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CHAPTER TWO:  LITHIUM BATTERY MODEL 

 The problem of developing a practical circuit model for a lithium battery is non-

trivial because a battery is an inherently electro-chemical device and exhibits non-linear 

behaviors that are difficult to capture in a circuit model. Nevertheless, circuit models 

have been able to achieve sufficient approximations for the dynamics of the lithium 

battery.  

Almost all of the proposed circuit models include an open-circuit voltage that is 

dependent on the state of charge of the battery and a dynamic system that relates the 

open-circuit voltage to the measured terminal voltage of the battery. For the purpose of 

creating a current estimator, an accurate circuit model of a lithium battery cell can be 

achieved using a second-order RC circuit with a series resistance and two dependent 

sources describing the open-circuit voltage and the hysteresis voltage. This construction 

is shown in Figure 2.1. The open-circuit voltage     is a non-linear, but monotonically 

increasing, function of the state of charge     of the cell. Moreover, the hysteresis 

voltage    is a non-linear function of     and is dynamically dependent on load 

current   . This circuit model along with relations governing the open-circuit voltage and 

hysteresis voltage are used to develop a complete set of equations to represent a lithium 

battery, accounting for various physical phenomena. 
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A. State of charge 

State of charge can be represented as the voltage across a capacitor that represents 

the battery capacity    along with a parallel resistance    which represents the self-

discharge effect of the battery. The     represents the ratio of remaining charge in the 

cell and the total charge capacity of the cell and, thus, must be bounded between zero and 

unity. Further, the sign convention is defined such that a positive    term represents a cell 

that is charging. These constraints result in the dynamic equation presented below. 

                                           (1) 

For many high-power applications including electric vehicle batteries, the self-discharge 

is insignificant and can be neglected by setting    to an infinite resistance [20]. However, 

 

 

Figure 2.1: Circuit model of a lithium battery cell based on a 2
nd

 order RC design. 
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this will prove to be problematic for the stability of the proposed observer; thus, a large 

but finite self-discharge resistance term will be used. 

A nonlinear relationship exists between     and open-circuit voltage. It can be 

approximated as a linear relationship with a constant scale factor   such that 

                       ,  (2) 

where      represents the open-circuit voltage that appears on the cell when the cell is 

discharged to 0% state of charge. In reality,   is moderately state of charge dependent 

and will be adjusted periodically so that the approximation can remain effective. 

B. Hysteresis 

Hysteresis refers to the difference in open-circuit voltage in the charging and 

discharging conditions. Multiple mathematical models have been proposed to capture this 

effect [24]–[29], but the model from [29] is used in this study due to the computational 

simplicity and ease of integration into a linear state model. It can be represented by taking 

the discharge open-circuit voltage and adding a hysteresis term to that voltage to make up 

the total open-circuit voltage. The total deviation from the discharge     curve can be 

represented as a percent of the maximum voltage deviation for a given    , where the 

percent deviation changes with load current. Like the     term,    represents a ratio of 

present deviation to maximum deviation, and thus it must be bounded between saturation 

points zero and unity. Further, the hysteresis voltage changes with current; thus, a self-

discharge term,     also appears in this equation. 
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                                        (3) 

Conveniently, the hysteresis equation takes the same form as the state of charge equation, 

with    representing a capacitor which provides inertia between the charge and discharge 

hysteresis states. Similar to the state of charge relationship, a state of charge dependent 

scale factor       can be used to convert the hysteresis term to a voltage contribution. 

                          (4) 

C. Voltage Relaxation 

The terminal voltage of a battery cell which has been under discharge load but is 

then allowed to rest will increase asymptotically towards the open circuit voltage. This 

phenomenon has been termed the relaxation effect. It is due, in part, to the surface 

capacitance of the battery cell, but transient behavior is exhibited at multiple frequencies. 

It will be represented with two RC circuits placed in series. The RC circuits can be 

represented using capacitor voltages as state variables. 

                      (5) 

                      (6) 

where the resistance                      represent the fast dynamics of the relaxation 

effect, and           represent the slower dynamics of the relaxation effect. The value of 

these parameters must be empirically fit to match the response of a particular lithium 

battery cell. 
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D. Series Resistance 

In addition to transient effects that relate the open-circuit voltage to the terminal 

voltage, the charge path to the terminals creates a Thévenin resistance between the open-

circuit voltage and the terminal voltage.  

         (7) 

where    is the internal Thévenin resistance of the cell and     is the voltage drop across 

that resistance. 

E. Terminal Voltage 

The terminal voltage can be computed by summing the individual contributions of 

all of the cell’s internal effects. 

                      (8) 

F. Nonlinear Effects 

The model presented in this work is an approximation of the battery dynamics 

about a particular state of charge. The battery parameters have each been presented as 

constants in the battery dynamics. However, in reality, all of these parameters are 

dependent on one or more other factors. Fortunately, each of these parameters change 

very slowly with respect to the battery dynamics, and a suitable approximation can be 

made by considering these parameters as constants in a saturated, but otherwise linear, 

system and then periodically updating the value of these parameters as they change with 

state of charge. 
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The energy capacity of the cell will be represented by the charge stored in the 

capacitor   . This value is dependent on capacity fade [3] and the rate-capacity effect 

[18], which are two phenomena that reduce the usable current capacity of a cell. The rate-

capacity effect does not result in permanent loss of capacity and refers to the fact that a 

battery will exhibit a smaller effective capacity when discharged or charged at a higher 

rate of current; thus, it is dependent on the load current of the cell. Moreover, the capacity 

fade effect is an irreversible effect that refers to the diminishing effective capacity over 

the lifetime of the cell, which is caused by degradation of the active cell material and is 

affected by temperature and load current. This variable capacitance can be expressed as 

               (9) 

where       is a non-linear function of load current that represents the rate-capacity 

effect, and     is a scale factor that represents the ratio of the actual charge capacity of 

the cell to the nameplate charge capacity, also known as the state of health of the cell. 

The state of heath decreases over the lifetime of a cell, and the rate at which this occurs is 

related to the load current and temperature the cell has experienced, but under normal 

operating conditions, the state of health decreases very slowly compared to each of the 

other effects and is considered a constant in this work. 

The capacitance    represents a capacitor which stores amount of charge required 

to bring a cell from zero hysteresis voltage to maximum hysteresis voltage. This charge is 

a fraction of the cell capacity and is experimentally determined. 
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The      parameter represents the difference between the open-circuit voltage 

during a charge cycle and the open-circuit voltage during a discharge cycle. It is 

experimentally determined as a function of    . 

A relationship between the open-circuit voltage and the state of charge is found 

by discharging the cell at a sufficiently small current and approximating the open-circuit 

voltage with the terminal voltage. The value of   is directly determined from (2) by 

solving for   and expressing both the open-circuit voltage and   itself as a function of 

state of charge and temperature. 

Moreover, the relaxation effect has been experimentally determined to depend on 

the state of charge of the cell [18], [20], and, as a result, the values of         , and    

are experimentally determined as functions of      The internal resistance term,   , 

exhibits strong temperature dependence, moderate state of heath dependence, and weak 

state of charge dependence [16]. It is represented in this model as a function of both 

temperature and state of charge, with state of health appearing as a supplied constant. 

Several of the cell parameters are functions of temperature; however, temperature 

is not included as an input to a state model of this system due to its highly nonlinear 

relationship with each of the parameters. It will be treated as an input to the functions 

which update the cell parameters. 

G. Linear State Model 

The circuit model, less the limiting diodes, can be represented as a linear state-

variable model with four state variables:    ,   ,   , and   . The state model shown 

below will act as the basis for the development of a current estimator. 
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       (10) 

The output equation is given by 

                              (11) 

where             , and           . The limiting diodes do not appear in this 

expression but are implemented as saturated integrators. 
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CHAPTER THREE:  UNKNOWN INPUT OBSERVER 

A. Derivation of the Unknown Input Observer 

The derivation of the unknown input observer presented here closely follows the 

derivation as presented in [39], with the exception that this derivation considers a 

continuous-time system. A continuous, linear, time-invariant system can be expressed as 

shown. 

                           (12) 

                  , 

where        is the state of the system,         is the unknown input to the system, and        is the measured output of the system. The matrices  ,  ,  , and   are real, 

constant, matrices of appropriate dimensions.  

A full-order unknown-input state observer for this system can be described by 

                           (13) 

                      
where         is the estimated state of the system, and  ,  , and   are constant, real 

matrices of appropriate dimensions. Necessarily, this state observer must estimate the 

state of the system with no knowledge of the input since it is unknown or otherwise 

unmeasureable. This observer is required to suitably estimate the state of the system such 



 

14 

 

that the estimate of the state asymptotically converges to the true state. This requirement 

can be described with an error vector 

                   (14) 

where the observer exists if and only if the matrices  ,  , and   can be found such that  

              (15) 

Theorem 1: The unknown input observer (13) for the system (12) exists if and only if the 

following conditions are satisfied: 

1)   is Hurwitz stable. 

2)                      
3)                
4)       
Proof: By substituting the system and the observer model into the error vector 

equation, it can be shown that 
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         . 
By inspection, (15) holds if and only if the error equation updates such that            , with   Hurwitz. Therefore, from this equation, one can conclude that the observer 

exists if and only if each of state and input coefficients are zero and the error vector 
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coefficient   is Hurwitz. Hence, the four presented conditions are necessary and 

sufficient. 

Remark 1: For a single-input, single-output (SISO) system, as is the case for the battery 

model, the   matrix is a non-zero scalar and, thus, has full rank. The conditions of 

Theorem 1 can be simplified if   has full rank because the only   that fulfils condition 4) 

is the zero matrix. This leads to the following corollary to Theorem 1. 

Corollary 1: If the   matrix has full rank, the unknown input observer (13) for the 

system (12), exists if and only if the following conditions are satisfied: 

1)   is Hurwitz stable. 

2)           
3)         

From these three conditions, the unknown matrices can be determined. Condition 2) can 

be solved directly. 

         (16) 

where       must be asymptotically stable. Similarly, condition 3) implies 

      (17) 

For the battery model (a SISO system), the   matrix is invertible. This allows a solution 

for   to follow directly from (17) where 

         (18) 
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It is also of interest to find an estimation of the unknown input vector,      . An 

expression for       follows directly from the system output equation, where the 

estimated input and state is used in place of the true input and state. If   is invertible and    , then       can be expressed directly as shown. 

                             (19)  

                             
                     

B. Presentation of the Current Estimator 

A full-order unknown input observer of the form presented in (13) exists for this 

system if the unknown matrices can be found and the conditions from Corollary 1 are 

satisfied. For the battery system, 

                          . (20) 

  
   
   
                                        

   
  

   
   
                        

   
           . (21) 

      (22) 

The current estimator itself would take the form presented in (19). Substituting 

the battery parameters, the expression for current estimation becomes 
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                                  (23) 

C. Existence of the Current Estimator 

It has been shown that if an unknown input observer of the form described in (13) 

exists for the lithium battery system, then the observer is uniquely determined. What 

remains is to show that the observer exists for the dynamics of the battery model. This 

amounts to satisfying the first condition of Corollary 1, which states that   must be 

Hurwitz stable. In reality, however, this observer is an approximation of a nonlinear 

system, and the system parameters which make up the   matrix change their values 

nonlinearly with    ,  , and   . Thus, it must be shown that the system will remain stable 

in the context of the nonlinear behavior. 

One possible method for reconciling this nonlinear behavior is to consider the 

system as a piecewise-linear model as in [45], where there exist a discrete set of regions 

in state space for which particular   matrices apply. This lends itself well to a non-

interpolative lookup table implementation in a microcontroller. However, empirical 

analysis has shown that the number of discrete regions required in this scheme is not 

feasible for a microcontroller implementation. As such, an interpolative lookup table 

scheme will be used, and the piecewise-linear model is insufficient. 

It is also possible to delay the re-computation of the    matrix such that it only 

updates its particular value at a frequency much slower than the sampling frequency. This 

will allow the system to be approximated as a linear system such that stability can be 

shown if all possible   matrices are Hurwitz, or equivalently if all of the Eigenvalues of   are negative for each possible  . The parameters making up the   matrix are most 
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strongly dependent on state of charge, then temperature, and lastly, load current. The 

Eigenvalue analysis of Figure 3.1 shows that the largest Eigenvalue is very weakly 

dependent on temperature, and more strongly dependent on state of charge and load 

current. In all cases, the largest Eigenvalue of   is negative, which implies that the 

system will be stable. 
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Figure 3.1: Eigenvalue Analysis. Across the full range of states of charge, cell 

temperatures, and load currents, all of the unknown input observer’s Eigenvalues are 
negative. 
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D. Discretization of the Current Estimator  

Any microcontroller implementation of an unknown input observer will 

necessarily exist in discrete time, thus it is necessary to transform the continuous time 

model into an equivalent discrete time model so that the system can be implemented on a 

microcontroller. The results from [46] can be used to complete this equivalence 

transformation. 

          (24) 

                (25) 

 

 

Figure 3.1, Cont’d: Eigenvalue Analysis. Across the full range of states of charge, cell 

temperatures, and load currents, all of the unknown input observer’s Eigenvalues are 
negative. 



 

22 

 

      (26) 

    , (27) 

where    is the sampling period. The transformation yields the cell model matrices 

   
   
                                                  

     and (28) 

     
   
   
                                                         

   
   (29) 

 

The observer matrices can be transformed in a similar manner into their discrete-time 

counterparts. The results of the transformation are shown below. 

     
   
   
                                                                     

   
    (30) 
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              (31) 

       (32) 

The equation for the unknown input observer itself is a discrete analog to the continuous 

version derived in this work. The discrete version is derived in [39] and is presented here 

for convenience. 

                         (33) 

                     for       
The output equation also takes an analogous form. 

                            (34) 
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CHAPTER FOUR:  DETERMINATION OF MODEL PARAMETERS 

The model parameters are experimentally determined by conducting a series of 

tests on a sample 20-Ah prismatic LiFePO4 cell. A pulsed discharge test is conducted on 

the cell starting from a maximum open circuit voltage, defined in the cell datasheet as the 

100% state of charge point. A 50% duty cycle, 30 minute period square-wave current is 

drawn from the cell until 0% state of charge is reached. A current magnitude of 4 A is 

used, and 0% state of charge is defined for a particular open-circuit voltage specified in 

the cell datasheet. This test is followed by a pulsed charge test with the same charging 

schedule, and the cell parameters are determined by appropriately fitting the collected test 

data. The cell parameters are provided in Table 4.1, and the test data appears in Figure 

4.1. This test is followed by a pulsed charge test with the same charging schedule. From 

the results of these tests, several of the parameters are determined using the following 

procedures. 
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TABLE 4.1 

Cell Parameters 

Symbol Parameter Value      Voltage at 0% soc 2.7500 V        Voltage at 100% soc 3.6000 V    Nominal Capacity  72000 F    Hysteresis Capacity 15120 F 

soh State of Health 94.9%      Ambient Temperature 23        Temperature Gain 0.05    Self-discharge Resistance 10000 Ω    Self-discharge Resistance 10000 Ω    Fast Capacitance at 50% soc 28000 F    Slow Capacitance at 50% soc 300000 F    Fast Resistance at 50% soc 2.132 m Ω    Slow Resistance at 50% soc 2.440 m Ω 
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Figure 4.1:  Open circuit voltage characteristics of the LiFePO4 cell. The open circuit 

voltage is measured by completing a full charge and discharge cycle with intermittent rest 

periods during which the open circuit voltage can be approximated as the terminal 

voltage. 
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A. Determination of nominal capacity  

 The parameter ‘  ’ represents a capacitor that holds the nominal energy 

capacity,   , of the cell. If the cell is at a 100% state of health,    is the integral of 

current from 100% state of charge to 0% state of charge, and        because state of 

charge is defined as a voltage ranging from 0 V to 1 V. The specific value for    is given 

in Table 4.1. It should be noted that the effects of the rate-capacity effect are also 

included. This effect is found by repeatedly completing a full discharge test for several 

rates of discharge current and obtaining a ratio of achieved capacity to nominal capacity 

 

 

Figure 4.1, Cont’d:  Open circuit voltage characteristics of the LiFePO4 cell. The open 

circuit voltage is measured by completing a full charge and discharge cycle with 

intermittent rest periods during which the open circuit voltage can be approximated as the 

terminal voltage. 
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for each current. The data is then fit using a polynomial model, and the resultant plot is 

given in Figure 4.2. 

 

B. Determination of Hysteresis Voltage  

 The parameter ‘    ’ represents the deviation between the open-circuit voltage 

found in the charge test, and the open-circuit voltage found in the discharge test. Figure 

4.1 demonstrates that the open-circuit voltage can be found by taking the peak values of 

the collected voltage data, which represents times at which the cell is at rest and the 

terminal voltage can be approximated as equal to the open-circuit voltage. The 

relationship between      and the state of charge is found by taking the difference of the 

open-circuit voltage measurements for a charge and discharge cycle, and plotting the 

 

Figure 4.2: The rate-capacity effect is a reversible effect wherein cells cycled at higher 

rates exhibit a lower energy storage capacity.  
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result as a function of the state of charge. The results of this procedure are shown in 

Figure 4.3. 

 

C. Determination of the State of Charge Scale Factor 

 The parameter ‘ ’ is found from the open-circuit voltage curve during the 

discharge test, and is shown in Figure 4.4. The effects of temperature are also taken into 

consideration in the open-circuit voltage curve. This is achieved by using a second table 

which gives a voltage correction per deviation in temperature from an ambient 

temperature,     , across all states of charge. This effect is small, and requires 

performing a series of discharge tests in a temperature-controlled environment. As a 

 

 

Figure 4.3: Maximum hysteresis voltage as a function of state of charge.  
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result, data from the application guide for the cell [47] is used to characterize this effect. 

The data is shown in Figure 4.5. 

 

 

 

Figure 4.4: The open circuit voltage coefficient,  , appropriately scales the state of charge 

to the open-circuit voltage. 
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D. Determination of Internal Resistance 

 The parameter ‘  ’ is also found directly from the pulsed-discharge test. On the 

rising and falling edge of the current waveform, the measured terminal voltage 

instantaneously jumps. This voltage jump divided by the current jump yields the DC 

resistance, which can be computed over the range of states of charge and is shown in 

Figure 4.6. DC resistance is calculated in this manner in the literature, namely in [16]. 

However, this method is inaccurate because the DC resistance term is also heavily 

dependent on temperature. Using the cell    data collected in [47], it was discovered that 

the DC resistance could be well-approximated by an exponential normalized about a 

reference ambient temperature such that 

 

 

 

Figure 4.5: Temperature correction for the open circuit voltage. 
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                             (35) 

where the determined values of       and      are shown in Table 4.1.      was simply 

defined by convention and       was determined by using a least-squares parameter fit 

with the proposed exponential curve. 

 

E. Determination of Relaxation Parameters 

 The resistances   and   , and the capacitances    and   , are the parameters that 

characterize the relaxation effect. During the full discharge tests, there were several 

periods where the cell was allowed to rest. The time from the beginning of the resting 

period until the end of the resting period formed a terminal voltage relaxation curve, and 

the negative of this curve lends itself to a double exponential fit of the form 

 

Figure 4.6: Internal Resistance,   . 
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                     (36) 

where, in this case, this voltage relaxation curve lends itself to matching the transience of 

a 2
nd

 order RC circuit where 

                                (37) 

The relaxation curves, with the    contribution removed, were fit to a double exponential  

over the entire range of state of charge using the curve fitting function ‘fit’ within 

MATLAB. The resulting coefficients were used to solve for the individual                 values. These parameters were fit to a polynomial over the range of 

states of charge. The results are presented in Figure 4.7. 

. 
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Figure 4.7: Relaxation parameters:   ,   ,   , and   . 
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F. Determination of the Hysteresis Constant 

An additional test was required in order to determine the parameter   . This 

parameter denotes a capacitor that stores the amount of charge required to move the cell 

from the discharge     curve to the charge     curve. It represents the inertia of hysteresis 

term, where a large    corresponds to slow and sluggish changes in the hysteresis voltage 

level. To determine this parameter, a partial discharge-charge cycle was recorded, and the 

change in state of charge required to transition from the discharge     curve to the charge     curve was recorded. The result of the test is shown in Figure 4.8 with the computed    appearing in Table 4.1. Although the test agreed with the hysteresis model in a 

practical sense, the test indicated that the hysteresis model adopted in this work bears 

some differences to the physical hysteresis curve. In particular, the hysteresis model 

assumes a constant rate of change of the hysteresis voltage, when in reality, the hysteresis 

voltage changes more slowly as it approaches its maximum or minimum limit. However, 

due to the relatively small impact of the hysteresis term on the model, noting that several 

models in the literature ignore the hysteresis effect altogether [3], [16]–[20], and noting 

the fact that a more accurate model would be inherently non-linear and thus difficult to 

model in this context, the inaccuracy will be ignored. Finally, an assumption was made 

that    can be modeled as a fixed fraction of   . However, this assumption implies that 

there is no relationship between    and the state of charge of the cell. This effect is not 

well-explored, but the results of [27] imply this assumption is, at least, a reasonable 

approximation. 
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G. Determination of the Self-Discharge Constant 

The value of the constant    represents the self-discharge resistance of the cell. It 

can be found by measuring the state of charge of a cell at rest over a period of several 

days or months. The difference in stored energy over the difference in time is the average 

leakage power such that 

                           (38) 

The value of    was calculated using data collected in [46], and the result appears in 

Table 4.1. Note, however, that in a practical implementation, the value of    can be 

 

 

Figure 4.8: Comparison of a full cell cycle and a minor cell cycle shows that 

approximately 20% of the capacity of the cell is required in order to transition from the 

discharge open circuit voltage to the charge open circuit voltage. 
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approximated as an arbitrarily large resistance because it has relatively little impact on 

the cell model when studying the cell over short periods of time.  

 The model also includes a self-discharge resistance,   , for the hysteresis model. 

This resistance appears under the assumption that the hysteresis voltage will naturally 

revert back to the discharge curve after a sufficiently long period of time. This 

assumption is made in order to simplify the model and aid in stability analysis, but it is 

unclear whether this assumption is valid in reality. Like the self-discharge resistance,   , 

this resistance can be modeled as arbitrarily large without greatly affecting the 

performance of the model. For the sake of practicality, it is assumed that      . 
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CHAPTER FIVE:  RESULTS 

A. Validation of the Cell Model 

To evaluate the accuracy of the lithium battery model, the model is implemented 

in Simulink. Cell current data collected from battery performance tests serves as the input 

to the model, and the output terminal voltage of this model is compared with the terminal 

voltage measured during the cell performance tests.  
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A block diagram of the cell model is presented in Figure 5.1. First, the cell current 

and estimated states are used in conjunction with interpolative look-up tables to calculate 

the cell parameters in this model. Next, the parameters are used to construct the four 

 

 

Figure 5.1:  Cell model. Load current appears as the input to the model, whereas terminal 

voltage, state, and temperature are computed as output parameters. 
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matrices,  ,  ,  , and  , which feed a linear state-variable model, with terminal voltage 

acting as the model output.  

The simulation is conducted on a complete pulsed discharge test at a rate of C/2. 

The ODE45 Dormand-Prince variable-step differential equation solver was used with a 

relative step tolerance 10e-3, and the simulation ran for 25e3 seconds of simulated time, 

taking a total of 256e3 algebraic steps. The results are presented in Figure 5.2. As a 

benchmark, a recent comprehensive battery model achieved an open-circuit voltage error 

of under      , and a state of charge error of less than 1.2% [16]. Similarly, an 

electrochemical model published in the same year achieved a maximum voltage error of 

under       and a state of charge error of under 5% [4], whereas a maximum modeling 

error of         was achieved in this test. In all three cases, the error took its maximum 

value during periods of transient current, but quickly settled towards a 0-mV modeling 

error in steady current conditions. These results indicate that the model is sufficient when 

compared to similar models in the literature, with the added advantage that this model 

lends itself well to implementation in hardware due to its simplicity and use of lookup 

tables. 
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Figure 5.2: Cell model validation test results for the       pulsed discharge test. The 

results show a maximum modeling error of under        . 
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Figure 5.2 Cont’d: Cell model validation test results for the       pulsed discharge test. 

The results show a maximum modeling error of under        . 
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B. Simulation of the Observer 

In a similar manner as the cell model, the observer model has been implemented 

in Simulink. A block diagram of the observer appears in Figure 5.3. First, the 

temperature, state, and current estimate were used in conjunction with interpolative look-

up tables to calculate the cell parameters used in this model. Next, the parameters were 

used to synthesize the matrices required for the observer. The N matrix was then pre-

multiplied with the state, the L matrix was multiplied with the input, and the sum of the 

results fed a saturated integrator block, which insured the four states stay within their 

bounds. Lastly, the output equation was computed and the current and state estimates 

were sent to the MATLAB workspace for analysis. 
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The cell model was used to validate the observer. A specified current waveform 

was input to the cell model, which in turn produced an accurate terminal voltage to 

supply as an input to the observer. The current estimator output was compared to the 

initial current input. To provide additional insight, the estimated state variables were 

compared to the modeled state variables. 

 

 

 

Figure 5.3: Block diagram of the unknown input observer. 
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The Federal Urban Driving Schedule (FUDS) [48] was used as an input current 

waveform, and was chosen because it provides an accurate characteristic of the load 

current an electric vehicle battery pack might expect. This waveform is appropriate 

because the LiFePO4 cells used in the test are marketed for use in electric vehicles, where 

current and power monitoring functions are essential to the diagnostics of the vehicle. 

FUDS is primarily a discharge test, but incorporates periods of transient charging to 

simulate regenerative braking in an electric vehicle. The results of the first test appear in 

Figure 5.4, where the initial conditions of the test were set such that the observer and the 

cell model began the simulation in agreement at 96% state of charge. A maximum 

instantaneous current estimation error of under     was achieved, however it is important 

to notice that for many applications, it will be sufficient to analyze the moving average of 

the current. When considering the steady-state error of current, in this case approximated 

by a low-pass filtered version of the current with a break frequency of       , it was 

apparent that the error tended to    . 
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Figure 5.4: Unknown input observer model validation using FUDS current waveform. 

Initial conditions were set such that both the cell model and the observer model agreed at 

96% state of charge. Results show that instantaneous current estimation error remained 

below    . Additionally, a low-pass filter of      was applied to the error waveform, 

which showed that the current error was under      when viewed in an averaged sense. 
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Figure 5.4 Cont’d: Unknown input observer model validation using FUDS current 
waveform. Initial conditions were set such that both the cell model and the observer model 

agreed at 96% state of charge. Results show that instantaneous current estimation error 

remained below    . Additionally, a low-pass filter of      was applied to the error 

waveform, which showed that the maximu current error was under      when viewed in 

an averaged sense. 
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However, one of the purposes of using an observer is to provide the ability to 

recover from starting with incorrect initial conditions. Thus, a second test was conducted 

with a 20% discrepancy in initial state of charge between the cell model and the observer. 

The results of this test appear in Figure 5.5. The current estimation error was greatest 

during periods where the state of charge estimation error was high, with filtered current 

estimation errors reaching as high as    . However, the current error was significantly 

diminished as the state of charge estimate converged with the true value, as is expected 

for the observer. A 5% settling time of under 3200 s was shown for the state of charge 

estimate. This is indeed slower than desired in a practical application, but the settling 

time of the observer is uniquely determined and unable to be set for this design, which is 

in contrast to a standard Luenburger observer where the observer dynamics can be 

arbitrarily specified. Mathematically, the   and   matrices of this unknown input 

observer had only one solution. The unknown input observer operates with no knowledge 

of the input, and as a result, the degree of freedom that typically allows for pole 

placement has been removed. 
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Figure 5.5: Unknown input observer model validation using FUDS current waveform 

with a 20% initial error in state of charge estimation. Results show a filtered current 

estimation error initially near 9 A but settling towards zero as the observer converged on 

the true states. A 5% settling time of 3200 s was observed. 
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Figure 5.5 Cont’d: Unknown input observer model validation using FUDS current 
waveform with a 20% initial error in state of charge estimation. Results show a filtered 

current estimation error initially near 9 A but settling towards zero as the observer 

converged on the true states. A 5% settling time of 3200 s was observed. 
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It is important to recognize that in a practical hardware implementation of the 

observer, the slow settling time is not cause for concern. In a microcontroller 

implementation, the observer states can be periodically stored in non-volatile memory 

such that the BMS will always load the correct states upon initialization, provided the 

initial settling period has been completed. Thus, the results from Figure 5.4 are the most 

meaningful. 

C. Experimental Validation of Hardware Implementation 

The observer was implemented in a custom designed BMS containing an 8-bit, 

22.1 MHz, PIC18F4580 processor. One of the objectives of this work was to develop a 

computationally simple method to estimate the current of a battery cell such that this 

method could be implemented on existing low-power, 8-bit battery management systems. 

As such, the processor and hardware were chosen before designing the observer, and an 

effort was made to develop an observer that could be realizable on the processor. The 

process began by transforming the observer equations into discrete time and translating 

the look-up tables into fixed-point look-up tables to conserve program space. There is no 

inherent floating-point computation unit within this processor, but floating point was 

desired for code-readability and precision, so the single-precision floating point library 

distributed with the C18 C compiler was used. The code follows the basic structure of the 

Simulink model. First, the state variables are initialized to estimates for their initial states. 

The EEPROM is used to periodically store state estimates so that on power-up, the initial 

conditions are set to the last known conditions of the battery cell. The voltage and 

temperature measurements are then taken using a 10-bit ADC. As in the Simulink model, 

interpolative look-up tables are used to determine the instantaneous values for the cell 
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parameters. These values are used to construct the observer matrices. The output is then 

computed and printed to a terminal over a USB connection. Lastly, the next state is 

computed and stored, and the process repeats for the next sample. An image of the 

hardware implementation and testing apparatus is provided in Figure 5.6. 

 

For this implementation, a sampling period of 0.2323 s was used, and 90% of the 

16 kB in program memory was utilized, including both the observer functions and the 

other battery management system functions.  

The testing apparatus consisted of the BMS serving as a current estimator in 

communication over USB to a data-logging PC. The LiFePO4 cell itself was connected, 

through a relay controlled by the BMS, to a bidirectional power supply capable of 

 

 

 

Figure 5.6: Hardware implementation of the current estimator in a custom BPS.  
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producing constant current sources from       to     . A Hall-effect current sensor 

with an error of         was used to compare the results of the current estimator. 

Two experiments were then conducted with the apparatus. First, a pulsed 

discharge cycle was carried out on the cell at a rate of    . The results of the test are 

shown in Figure 5.7. From the results, it is evident the current estimator is correctly 

predicting that the cell is exhibiting a pulsed-discharge load pattern. The instantaneous 

error in current estimation peaks very high, nearly at the magnitude of the measured 

current; however, this is inconsequential because the peaks are caused by a slight delay 

between the current sensor and the current estimator. On the other hand, the filtered 

current error limits itself to     , with the error tending towards zero while the cell is in 

a rest period.  

The second experiment conducted on the cell to further characterize the dynamic 

estimation of current about a single state of charge. The cell current was continuously 

varied between        and      over the course of a 5 minute period. The results appear 

in Figure 5.8, and show that in an average sense, the hardware implementation was able 

to estimate cell current with an accuracy of       whereas the instantaneous error in 

current estimation peaked at      .  



 

54 

 

 

 

 

Figure 5.7: Hardware implementation results for the C/2 pulsed discharge test. The test 

begins with a cell at 95% state of charge and concludes with the cell discharged to 45% 

state of charge. 
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Figure 5.8: Hardware implementation results for the continuously-varying current test at 

95% state of charge. 
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Multiple sources of error are inherently present in this problem, and they prevent 

the perfect reconstruction of the cell current waveform. Namely, all measured voltages 

used in this work had an error of           from the sensor and the analog-to-digital 

conversion. Due to this fact alone, and noting that a direct feed-through term,   , exists 

between terminal voltage and load current, the load current will exhibit a minimum error 

of  

                     (39) 

This highlights the fact that extremely precise voltage measurements are required in order 

for this method of current estimation to be feasible; however, it also suggests that the 

observer current errors seen in this work are within reason when put in the context of the 

hardware limitations.  
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CHAPTER SIX:  CONCLUSIONS 

A practical model of a LiFePO4 cell was developed which performed similarly to 

other models in the literature. Using this model, an unknown input observer was 

developed which attempted to estimate the current in the cell. The model of the current 

estimator was used in conjunction with the model of cell, and simulations were conducted 

which showed that the current estimator converged toward the true measured current. A 

hardware implementation was then tested, with results validating the operation of the 

current estimator. Although no measure of acceptability for the accuracy of the current 

estimation error was provided, it was shown that the current error was at least within the 

same order of magnitude as the Hall-effect sensor error used as a benchmark. 

Future work is required to further improve the accuracy of the current estimation 

technique. Namely, a lithium battery pack is often comprised of multiple cells placed in 

series. BMSs are designed to monitor the voltage and temperature of each individual cell, 

thus a current estimator could be implemented for each cell comprising the battery pack. 

Since each estimator will produce a current estimate at a specified sampling rate, an 

argument can be made that the   current estimates, where   is the number of series cells 

in the battery pack, could combine to generate a current estimate with a greater precision 

and accuracy than one current estimate alone. That is, the current estimators themselves 

may be able to work together in dynamic consensus to produce an extremely accurate 

current measurement. However, there are additional problems to consider when 

combining cells together to form a battery pack. Often, cells are combined in series-

parallel combinations such that the voltage can only be measured down to the level of a 
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‘module’ comprised of parallel connected cells. The observer model considered in this 

work only considers the dynamics of a single cell. Thus, further research in the effects of 

modeling parallel connected cells is required for future development. Finally, the results 

of this work indicate that further experimentation on the practical applications of this 

current estimation technique is merited. This technique could potentially be used in fault 

detection scenarios alongside a conventional current transducer, or as a complete 

replacement of a current transducer in applications where the current estimator is 

adequate for the required accuracy. 
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