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Abstract. We show how state-of-the-art Semantic Web technology can
be used in e-Science, in particular, to automate the classification of pro-
teins in biology. We show that the resulting classification was of compara-
ble quality to that performed by a human expert, and how investigations
using the classified data even resulted in the discovery of significant infor-
mation that had previously been overlooked, leading to the identification
of a possible drug-target.

1 Introduction

Semantic Web research has seen impressive strides in the development of lan-
guages, tools, and other infrastructure. In particular, the OWL ontology lan-
guage, the Protégé ontology editor, and OWL reasoning tools such as FaCT++
and Racer are now in widespread use.

In this paper, we report on an application of Semantic Web technology in
the domain of biology, where an OWL ontology and an OWL classification tool
called the Instance Store were used to automate the classification of protein
data. We show that the resulting classification was of comparable quality to one
performed by a human expert, and how investigations using the classified data
even resulted in either the discovery of new information or that which had been
overlooked.

While this example focuses on a particular protein family and a particular
set of model organisms, the technique should be applicable to other protein
families, and to data from any sequenced genome—in fact we believe that similar
techniques should be applicable to a wide range of investigations in biology, and
in e-Science more generally. If this proves to be the case, then Semantic Web
technology is set to have a major impact on e-Science.

Background and Motivation. The volume of genomic data is increasing at a seem-
ingly exponential rate. In particular, high throughput technology has enabled the
generation of large quantities of DNA sequence information. This sequence data,
however, needs further analysis before it is useful to most biologists. This pro-
cess, called annotation, augments the raw DNA sequence, and its derived protein
sequence, with significant quantities of additional information describing its bi-
ological context.
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One important process during annotation is the classification of proteins
into different families. This is an important step in understanding the molecular
biology of an organism. Attempts to automate this procedure have, however,
not generally matched the gold-standard set by human experts. Human expert
classification has been more accurate because their expertise allows them to
recognise the properties that are sufficient, for example, to place an individual
protein into a specific subfamily class. Automated methods have, in contrast,
often failed to achieve the same level of specificity. Our goal, therefore, was to
improve the precision of automatic protein classification, and bring it up to the
same level as that achieved by human experts.

Overview of Our Technique. Given a set of proteins, each with a (partial) de-
scription of its properties, the objective is to find, for each of these proteins, the
most specific protein family classes of which it is an instance. To describe protein
family classes, we use an OWL-DL ontology; this enables us to specify necessary
and sufficient conditions for a protein to be an instance of a given protein class.
The ontology models the biology community’s view of the current knowledge of
protein classification. We then take protein data derived using standard bioinfor-
matics analysis tools, translate these data into OWL-DL instance descriptions
that use terms from the ontology, and use the Instance Store to classify these
instances.

Empirical Evaluation. We have tested our system using data sets from both
the human and Aspergillus fumigatus (a pathogenic fungus) genomes. We found
that our automatic classification process performed at least as well as a human
expert: it allows a fast and repeatable classification process, and the explicit rep-
resentation of human expert knowledge means that there is a clear and explicit
evidence base for the classification. Moreover, the precise and methodical classi-
fication of the data led to the discovery of new information about these proteins,
including a protein subclass that seems to be specific to pathogenic fungi, and
could thus be an important drug-target for pharmaceutical investigations.

2 Science and Technology

In this section, we describe the biology problem we have tackled and the Semantic
Web technology that we used to achieve an appropriate solution.

2.1 Classifying Proteins

The process of annotation follows the “central dogma” of molecular biology.
In broad outline, this process consists of the following steps: firstly DNA is
sequenced; then genes are identified in this DNA; the DNA is then translated
into a protein sequence; the proteins are then analysed and annotated with
information useful for further biological investigation. As the majority of the
functions of a cell are carried out by proteins, it is those proteins in which most
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biologists are interested. Proteins are classified into families that both reflect the
functions they carry out in the cell, as well as often giving clear indications as to
the biological processes in which they are involved. It is this classification, along
with other and diverse kinds of information, which makes up the annotation
of a protein and makes the large data sets manageable, enabling biologists to
perform more thorough investigations.

In the last decade, various steps of this process have been automated, and
thus their speed has increased enormously. Sequencing of whole genomes1 is
now routine. Gene discovery is technically challenging, but responds well to the
increasing availability of CPU cycles. However, this still leaves a large number of
protein sequences—approximately 30 000 in the human genome, a quantity that
is more or less in other species. This quantity is far more than that with which
the individual biologist can cope.

The automation of the annotation process has, however, lagged behind ad-
vances in other parts of this process. To date, automated approaches have proven
to be quicker than human expert annotation, but the level of detail is often re-
duced [26,6]. As a consequence, many protein sequences are not annotated with
the accurate, specific information necessary for bioinformatics analyses. Thus
useful resources for further biological discovery remain untapped.

In this investigation, we have used one protein family, the protein phosphatase
family, as a case study to demonstrate a new, ontology-based method for auto-
mated annotation. This method was designed to combine the speed of automated
annotation with some of the detailed knowledge that experts use in annotation.

Protein phosphatases are a large and varied protein family. Together with
another family, the protein kinases, they are critically involve in controlling the
activity of many other proteins, thereby forming an essential part of the feedback
control mechanism within the cell.

Given this pivotal role, it is perhaps unsurprising that many protein phos-
phatases have been implicated in various diseases of great medical importance,
including diabetes, cancer, and neurodegenerative conditions. Phosphatases are
therefore a major subject of medical and pharmaceutical research.

In general, proteins are relatively modular and comprise of a number of dif-
ferent protein domains. Using a protein sequence, it is often possible to com-
putationally determine the protein domains of which it is composed. For many
protein families, including the protein phosphatases, it is possible to classify
their members based on the protein domains of which they are composed. To
avoid confusion with interpretation domains or the domain of a property, for the
remainder of this paper, we use “p-domain” for protein domain.

The different p-domain composition of proteins suggests the specific function
of a protein. , Individual p-domains, however, often have specific and separate
functions from the protein as a whole. For example, an enzyme will have a
catalytic p-domain that performs the catalysis on the substrate molecule, but it
will also contain structural p-domains and binding p-domains that ensure that
the substrate can interact with the catalytic p-domain. Therefore, a specific
1 A genome is the entirety of DNA in a cell.
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combination of p-domains is required for a protein to function correctly. In some
cases, the presence of a certain p-domain is diagnostic for membership in a
particular protein family, i.e., some p-domains only occur in a single protein
family. If a protein contains one of these diagnostic p-domains, it must belong
to that particular family. For example, the protein tyrosine kinase catalytic p-
domain is diagnostic for the tyrosine kinases.

Most protein families are, however, defined by a non-trivial combination of
p-domains. For example, as you descend the hierarchical structure, extra p-
domains (and therefore more specific functional properties) are observed in the
protein class definitions. For example, an R5 phosphatase is a type of classical
receptor tyrosine phosphatase. As a tyrosine phosphatase, it contains at least
one phosphatase catalytic p-domain and, as a receptor tyrosine phosphatase, it
contains a transmembrane region. The R5 type actually contains two catalytic
p-domains and a fibronectin p-domain, identifying it as an instance of even more
specific subclasses.

Identifying the p-domain composition of a protein is, therefore, a first step to-
wards its classification. There are databases describing functional p-domains, for
example, PROSITE [17], SMART [20] and InterPro [23], and these databases
come with specific tools, such as InterProScan, which can report the presence
of these p-domains in a novel protein sequence. Bioinformaticians are, however,
usually required to perform the analysis that places a protein (with its set of
p-domains) into a particular protein family. The whole process of classifying
proteins from a genome can be accomplished with the following steps:

1. Given a genome, we extract DNA gene sequences, which we then translate
into the set of protein sequences. If we are interested in a particular protein
family, we can sub-select sequences containing p-domains diagnostic of that
family.

2. On each of the extracted proteins, we use InterProScan to determine its
p-domain composition.

3. For each of these compositions, we identify the protein family or subfamily
to which it belongs by comparing them to the available biological knowledge.

The final step currently requires the most human analysis and expert knowl-
edge. Manual classification methods are carried out by protein family experts
to interpret these data and use their expert knowledge to classify proteins to a
fine-grained level. To the best of our knowledge, no automated method has yet
been able to replicate this expert level of detail and precision.

2.2 Ontologies and the Instance Store

Ontologies, with their intuitive taxonomic structure and class based semantics,
are widely used in domains like bio- and medical-informatics, where there is a
tradition of establishing taxonomies of terms. The recent W3C recommendation
of OWL2 as the language of choice for web ontologies also underlines the long

2 See http://www.w3.org/2004/OWL/ or [11].

http://www.w3.org/2004/OWL/
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term vision that ontologies will play a central role in the Semantic Web. Most
importantly, as shown in [4], most of the available OWL ontologies can be cap-
tured in OWL-DL—a subset of OWL for which highly optimised Description
Logic [2] reasoners can be used to support ontology design and deployment.

Unfortunately, existing reasoners (and tools), while successful in dealing with
the (relatively small and static) class level information in ontologies, fail when
presented with the large volumes of instance level data often required by realistic
applications, hampering the use of reasoning over ontologies beyond the class
level. The system we have used—the instance Store (iS) [14]—addresses this
problem using a hybrid database/reasoner architecture: a relational database is
used to make instances persistent, while a class level (“TBox” in Description
Logic terms) reasoner is used to infer ontological information about the classes
to which they belong. Moreover, part of this ontological information is also made
persistent in the database. The iS currently only supports a rather limited form
of reasoning about individuals: it takes an ontology (without instances), a set of
axioms asserting class-instance relationships, and answers queries asking for all
the instances of a class description. The classes in both axioms and queries can be
arbitrarily complex OWL-DL descriptions, and a DL reasoner is used to ensure
that all instances (explicit and implicit) of the query concept are returned. In the
remainder of this paper, we use “class-level ontology” for an ontology in which no
instances occur. From a theoretical perspective, this might seem un-interesting;
the iS is, however, able to deal with much larger numbers of individuals than
would be possible using a standard DL reasoner. More importantly, this kind of
reasoning turns out to be useful in a range of applications, in particular those
such as the one presented here where a domain model is used to structure and
classify large data sets.3

There is a long tradition of coupling databases to knowledge representation
systems in order to perform reasoning, most notably the work in [5]. However, in
the iS, we do not use the standard approach of associating a table (or view) with
each class and property. Instead, we have a fixed and relatively simple schema
that is independent of the structure of the ontology and of the instance data.
The iS is, therefore, agnostic about the provenance of data, and uses a new,
dedicated database for each ontology (although the schema is always the same).

The basic functionality of the iS system are illustrated in Figure 1. At start-
up, the initialisemethod is called with a relational database, an OWL-DL class
reasoner such as Racer [9] or Fact++ [30], and a class-levelOWL-DL ontology.The
method creates the schema for the database if needed (i.e., if the iS is new), parses
the ontology, and loads it into the reasoner. To populate the iS, the addAssertion
method is called repeatedly. Each assertion states that an instance (identified by a
URI) belongs to class (which is an arbitraryOWL-DL description). Once the iShas
beenpopulatedwith some—possiblymillions of—instances, it canbe queriedusing
the retrieve method. A query again consists of an arbitrary (possibly complex)
OWL-DL class description; the result is the set of all instances belonging to the

3 The iS was initially developed for use in a Web Service registry application, where
it was used to classify and retrieve (large numbers of) descriptions of web services.
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initialise(database: Database, reasoner: OWLReasoner, ontology: OWLOntology)

addAssertion(instance: URI, class: OWLDescription)

retrieve(query: OWLDescription): Set 〈URI〉

Fig. 1. The iS API

query class, and is returned by retrieve as a set of URIs. The iS uses database
queries to return individuals that are “obviously” instances of the query class, and
to identify those instances where the DL reasoner is needed in order to determine
if they form part of the answer set.

3 Description of the Experiments Undertaken

The method we present could be applicable in general to many protein families,
but to demonstrate the technique and the fine-grained classification possible, we
present the analysis of one family, the protein phosphatases, in the human and As-
pergillus fumigatus genomes.

We have combined automated reasoning techniques [9,14] with elements of a
service-oriented architecture [27,19] to produce a system to automatically extract

Fig. 2. The Ontology Classification System Architecture
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and classify the set of protein phosphatase from an organism.4 Figure 2 shows the
components in our protein classification experiment. An OWL class-level ontology
describes the protein phosphatase family, and this ontology is pre-loaded into the
Instance Store. Protein instance data is extracted from the protein set of a genome,
and the p-domain composition is determined using InterProScan. These
p-domain compositions are then translated into OWL descriptions and compared
to the OWL definitions for protein family classes using the Instance Store which,
in turn, uses a DL reasoner (Racer in this case), to classify each such instance. For
each protein class from our ontology, it returns those proteins that can be inferred
to be an instance of this class.

In the remainder of this section, we will describe the relevant components of
this architecture in more detail, and explain the outcomes of this experiment from
a biology perspective. In the next section, we describe the experience gained and
lessons learnt from a computer science perspective.

3.1 The Ontology

In this section, we describe how we capture the expert knowledge for phosphatase
classification in an OWL-DL ontology. All the information used for developing our
ontology comes from peer-reviewed literature from protein phosphatase experts.
The family of human protein phosphatases has been well characterised experimen-
tally, and detailed reviews of the classificationand family composition are available
[1,7,18]. These reviews represent the current community knowledge of the relevant
biology. If, in the future, new subfamilies are discovered, the ontology can easily be
changed to reflect these changes in knowledge; wewill comment on this in Section 4.

Fortunately for this application, there are precise rules,5 based on p-domain
composition, for protein family membership, and we can express these rules as class
definitions in an OWL-DL ontology. The use of an ontology to capture the under-
standing of p-domain composition enables the automation of the final analysis step
which had previously required human intervention, thus allowing for full automa-
tion of the complete process. In biology, the use of ontologies to capture human
knowledge of a particular domain and to answer complex queries is becoming well
established [8,28]. Less well established is the use of reasoning systems for data in-
terpretation. In this study, we present a method which makes use of ontology rea-
soning and illustrates the advantages of such an approach.

The ontology was developed in OWL-DL using the Protégé editor,6 and cur-
rently contains 80 classes and39properties; it is available at(http://www.bioinf.
man.ac.uk/phosphabase/download). Part of the subsumption hierarchy infer-
rred from these descriptions can be seen in the left-hand panel of Figure 3, which
shows the OWL ontology in the Protégé editor.

4 Due to the relatively small test-set used, the case study reported here could have been
carried out using Racer [9] only, i.e., without the iS. However, larger sets of protein
data will necessitate the use of iS or a similar tool.

5 We use “rules” here in a completely informal way.
6 We used Protégé 3.0 with OWL plugin 1.3, build 225.1.

http://www.bioinf.man.ac.uk/phosphabase/download
http: man.ac.uk/phosphabase/download
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Fig. 3. A screenshot of the phosphatase ontology in the OWL ontology editor Protégé

Moreprecisely, for each class ofphosphatase, this ontology containsa (necessary
and sufficient) definition. For this family of proteins, this definition is, inmost cases,
a conjunction of p-domain compositions, i.e., a typical case of a phosphatase class
definition looks as follows, where Xi are p-domains:

If a Y protein contains at least n1 p-domains of type X1 and . . . and at least nm

p-domains of type Xm, then this protein also belongs to class Z.

For example, receptor tyrosine phosphatases contain one or two phosphatase cat-
alytic p-domains, and receptor tyrosine R2B phosphatases contain exactly 2 tyro-
sine phosphatase catalytic p-domains, one transmembrane p-domain, at least one
fibronectin p-domain, and at least one immunoglobulin p-domain. In some cases,
Xi is a disjunction of p-domains. P-domains come with a rather “flat” structure,
i.e., only few p-domains are specialisations of others. Clearly, “counting” state-
ments such as the one above go beyond the expressive power of OWL since they
would require (the OWL equivalent of) qualified cardinality restrictions [10],
whereas OWL only provides unqualified cardinality restrictions through its
restriction(UminCardinality(n))andrestriction(UmaxCardinality(n))
constructs. In contrast, this kind of expressive means was provided byDAML+OIL
[15], i.e.,we couldhavedefined theabovementioned receptor tyrosinephosphatases
using the expression
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IntersectionOf(Restriction(contains minCardinality(1) PhCatalDoms)
Restriction(contains maxCardinality(2) PhCatalDoms)

To overcome this problem, we used a well-known work-around.7 For each Xi

that we would have liked to use in a qualified number restriction, we introduced a
subproperty containsX i of contains, and set the range of containsX i to the
class Xi. In addition, we added sub-property assertions so that the hierarchy of
newly introduced properties containsX i reflects the class hierarchy of the classes
Xi used. Unfortunately, this work-around is not always correct. That is, assume
there are two ontologies, one with qualified number restrictions and one that re-
sulted from the application of this work-around. Then there are cases where the
first one implies a subsumption relationship between two classes, whereas the sec-
ond one does not imply this subsumption. Similarly, a class may be unsatisfiable
w.r.t. the first one, but satisfiable w.r.t. the second. We used this work-around be-
lieving that it was correct and, when we learned that it sometimes is not, were quite
surprised—we had “cluttered” our ontology with a large number of new properties
without this guaranteeing the desired effect. However, we then checked that, in the
special case of our experiment, this work-around is indeed correct, even though
we are not going to prove this here. We will comment more on this in Section 4
and 5.

Having captured the expert knowledge in this way, we are left with the problem
of dealing with the potentially very large numbers of protein instances that need to
be classified according to the corresponding ontology. This requirement motivated
our use of the iS.

3.2 The Data Sets

This study focuses on the previously identified and described human phosphatases
[1,24], and the less well characterised A.fumigatus protein phosphatases. The hu-
man phosphatases, having been carefully hand-classified, form a control group for
our automated protein phosphatase classification. Previous classification of hu-
man phosphatases by biological experts provides a substantial test-set for our ap-
proach. If the iS can classify the characterised proteins (at least) as well as human
experts, then this would increase our confidence when using our method on un-
known genomes. The A.fumigatus genome falls between these extremes, and thus
offers a unique insight into the comparison between the automated method and
the manual. The A.fumigatus genome has been sequenced, and annotation is cur-
rently underway by a team of human experts [22]. We have considered 118 human
phosphatases and 45 from A.fumigatus .

Pre-Screening. Isolation of the protein phosphatase sequences from the protein set
of the genome was achieved by screening for diagnostic phosphatase motifs, i.e. for
specific patterns. These are

1. the protein tyrosine phosphatase active site motif H-C-X(5)-R
2. the protein serine/threonine phosphatase motif [LIVMN]-[KR]-G-N-H-E
7 See, e.g., http://www.cs.vu.nl/~guus/public/qcr.html

http://www.cs.vu.nl/~guus/public/qcr.html
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3. the protein phosphatase C signature motif [LIVMFY]-[LIVMFYA]-[GSAC]-
[LIVM]-[FYC]-D-G-H-[GAV].

TheEMBOSSprogram,PatMatDB [25]wasused toperformthepre-screening
process.Performing an InterProScanoneveryprotein sequence fromthegenome
would also have isolated the protein phosphatase sequences, but each
InterProScan can take several minutes. PatMatDB can screen the whole
genome in the time taken to run one InterProScan, so we decided to use In-
terProScan only for the detailed analysis of each sequence identified as being a
protein phosphatase.

3.3 Queries Asked and Results

The purposes of the human and A.fumigatus studies were different. The human
study was a proof of concept to demonstrate the effectiveness of the automated
method. The A.fumigatus study was more focused towards biological discovery.

For the human phosphatases, we were interested in comparing the automated
classification with the thorough, human expert classification. Therefore, we
browsed the class hierarchy of our phosphatase ontology and, for each class, we
retrieved those proteins for which the iS inferred that this class was the most spe-
cific one. We were also interested in identifying instances that did not fit any of the
ontology class definitions (i.e., whose most specific class was the top class).

For the A.fumigatus phosphatases, we browsed the class hierarchy in a similar
way but, as the phosphatases from this organism were less well characterised, we
were particularly interested in the differences between the human and A.fumigatus
set, i.e., we were interested in finding classes that had instances of the human pro-
teins, but not of the A.fumigatus proteins, and vice versa. All these queries could
be answered easily and quickly using the iS.

The results of this experiment were three-fold. Firstly, we found that the au-
tomated classification of the human protein phosphatases performed as well as
the manual classification by phosphatase experts. Since the same protein instances
were used in the automated and manual studies, we could compare these two clas-
sifications, and it turned out that both classifications put almost all phosphatases
into the same place in the class hierarchy.This evidence shows proof of concept, and
suggests that the automated approach could be used to solve the current annota-
tion bottleneck. Secondly, in the few cases where the automatic and the manual
classification differed, detailed investigations by a domain expert revealed that the
automatic one was actually “more correct”: we discovered two proteins for which
no appropriate class was available, i.e. they were classified by the automatic clas-
sification as instances of the top phosphatases class.

This discovery lead to a modification of the ontology, and thus of the expert
knowledge on proteins. One of these phosphatases was DUSP10 (Dual specificity
phosphatase 10). It was found to contain an extra p-domain, a disintegrin. This
particular p-domain is not found in any other protein phosphatase and poses inter-
esting questions about possible protein functions to the biologists. Our automated
classification method was able to find these mis-classifications because the iS ap-
plied the expert knowledge systematically and consistently.
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The automated classification of the A.fumigatus phosphatases revealed large
differences from the human phosphatases. Not only were there fewer individual
proteins, but whole subfamilies were missing. Some of these differences can be at-
tributed to the differences in the two organisms. Many phosphatases in the hu-
man classification were tissue-specific variations of tissue-types that do not occur
in A.fumigatus . Since A.fumigatus is pathogenic to humans, these differences are
important avenues of investigation for potential drug targets. The most interesting
discovery in the A.fumigatus data set was the identification of a novel type of cal-
cineurin phosphatase, i.e., again, a phosphatase that was classified automatically
only as an instance of the top class. Calcineurin is well conserved throughout evo-
lution and performs the same function in all organisms. However, in A.fumigatus ,
it contains an extra functional p-domain. Further bioinformatics analyses revealed
that this extra p-domain also occurs in other pathogenic fungus species, but in no
other organisms, suggesting a specific functional role for this extra p-domain. Pre-
vious studies have identified divergences in the mechanism of action of calcineurin
in pathogenic fungi as being linked to virulence, so this protein is an interesting
drug-target for future study.

4 Lessons Learnt

As we have seen, we have successfully used Semantic Web technology in a bioinfor-
matics application.Besides finding newprotein families that are of interest to biolo-
gists,wehave shownthatautomated classification can indeed competewithmanual
classification, and is sometimes even superior. Our approach to automated classifi-
cation combines the advantages of speed of the automated methods and accuracy
of human expert classification, the latter being due to the fact that we captured the
expert knowledge in an OWL ontology. The combination of the two, namely speed
and expert knowledge, provides a quick and efficientmethod for classifyingproteins
on a genomic scale, and offers a solution to the current annotation bottleneck.

Our approach was made possible by the development of state-of-the-art Seman-
tic Web technology, such as the OWL ontology language, the Protégé OWL ontol-
ogy editor, the OWL Instance Store, and the Racer OWL reasoner; this technology
did not emerge overnight, but is based on decades of research in logic-based knowl-
edge representation and reasoning. Although neither Racer nor the iS support all
of OWL-DL,8 these tools proved more than adequate for our experiment.

In contrast, a limitation in the expressive power of OWL-DL did cause con-
siderable problems: the lack of qualified number restrictions (also called qualified
cardinality restrictions). In order to overcome this limitation, we had to employ a
work around and verify that this work around, even though not correct in general,
was correct for our ontology and instance data. This work around introduced a sig-
nificant overhead, and was only possible through a close co-operation between the

8 Racer does not support individual names in complex class descriptions (so-called
nominals—see [16]), and the current version of iS does not support role assertions be-
tween individuals.
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biologists and computer scientists. We, therefor, cannot recommend such an ap-
proach in general. Additionally, we observe that, from a theoretical and practical
perspective, this work around should not be necessary since (a) reasoners such as
Racer and Fact [9,13] support qualified number restrictions, (b) for all Description
Logics we are aware of that support (unqualified) number restrictions, the worst-
case complexity of reasoning remains the same when they are extended with quali-
fied number restrictions (see, e.g., [29]), and (c) the latest version of Protégé-OWL
now supports qualified number restrictions. Hence we can, in the future, run simi-
lar experiments without having to resort to this work around, provided that we are
willing to diverge from the current OWL standard.

The ability to run such experiments is of considerable importance since there
is a wealth of unannotated and partially annotated data in the public domain, to
which we plan to apply our approach. New genomes are being sequenced continu-
ally, and some existing genomes have not been annotated to any degree of detail.
Now that the ontology system architecture is in place, new proteins can be quickly
and successfully classified as members of protein phosphatase subfamilies. Devel-
opment of other ontologies, would enable the application of this technique to some
of the 1,000’s of other protein families.

This paper demonstrates a proof of concept for the automated classification of
proteins using automated reasoning technologies. From a study involving a single
protein family and two species, we were able to identify a new protein subclass. As
this class ofproteinappears tobe specific topathogenic fungi, it is potentially useful
for further pharmaceutical investigations.Automated reasoning over instance data
has therefore enabled us to generate new hypotheses which will require significiant
further laboratory experimentation, which, in turn, will potentially improve our
understanding of protein phosphorylation.

Finally, we would like to point out that the ontology definitions are produced
from expert protein family knowledge. Therefore, they reflect what is currently
known in the research community, and are made explicit in a machine-
understandable format, namely OWL-DL. This has several important
consequences. Firstly, the construction of such an ontology can help in the develop-
ment of a consensus from within the community [3], and even if the community fails
to agree on a single ontology, automated classification could be used to enable “par-
allel” alternative annotations. Secondly, if the community knowledgeof the protein
family changes, the ontology can easily be altered, and the protein instances can
be re-classified accordingly. Lastly, if the definitions are based on what is known,
proteins that do not fit into any of the defined classes are easily identified, making
the discovery of new protein subfamilies possible.

5 Outlook and Future Work

Ourplans for future workaremanifold. Basically,wewant to do more “automated”
biology, but we are thereby pushing the current state-of-art in logic-based knowl-
edge representation, automated reasoning, and Semantic Web technology. Within
this section, we only discuss three of the related issues.
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Firstly, we observe that a protein is a sequence of amino acids, and thus se-
quences can be seen as strings over a twenty letter alphabet since there are only
twenty amino acids. In our current ontology, we do not capture this sequence infor-
mation, and thus cannot answer queries related to these sequences. From a biology
perspective, however, queries such as “give me all proteins whose amino acid se-
quence contains an M followed by some arbitrary sub string, which is then followd
by a NEN” would be really valuable. From a computer science perspective, we
could easily express (and query over) these strings using a simple form of concrete
domains, so-called datatypes [21,12]. However, the datatypes currently available
in OWL do not provide predicates that compare a given string with a regular ex-
pression, a comparison that would reflect the above example query.

Secondly, we are currently concerned with a single class of components of an
organism, namely the proteins. In the future, we want to use the available tech-
nology to automate investigations into their interaction, and also represent and
reason about larger structures such as genomes and cells. We could easily model
interactions between proteins using a property interact to make statements such
as “proteins of class X only interact with proteins of class Y”. However, we would
also need to make statements on an instance level such as “this protein instance
interacts with that protein instance”, which is possible in OWL-DL, but goes be-
yond the capabilities of the current iS. We are currently extending the iS to handle
statements of this kind, and we will see if this extension is able to cope with the
large volumes of data that will be needed in biology applications.9

Thirdly,wewill “roll back” thework-aroundweused to copewith the absence of
qualifiednumber restrictions, both in our ontology and in the instance data, instead
using the form of qualified number restrictions provided by Protégé,Racer, and the
iS. This will greatly enhance the interpretability of the current ontology and also
make its extension to other families of proteins more straight-forward.
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