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1. I n t r o d u c t i o n  

Let X =  Gr(d, C n) be the Grassmann variety of d-dimensional subspaces of C n. The goal 

of this paper is to give an explicit combinatorial description of the Grothendieck ring 

K~ of algebraic vector bundles on X. 

K-theory  of Grassmannians is a special case of K- theory  of flag varieties, which was 

studied by Kostant and Kumar [13] and by Demazure [5]. Lascoux and Schiitzenberger 

defined Grothendieck polynomials which give formulas for the structure sheaves of the 

Schubert varieties in a flag variety [16], [14]. The combinatorial understanding of these 

polynomials was further developed by Fomin and Kirillov [9], [8]. 

Recall that  if ,~=(AI>~A2~>...>~,~d) is a partit ion with d parts and )h<<.n-d, then 

the Schubert variety in X associated to A is the subset 

~={VCGr(d, Cn) ldim(YACn-d+i-~)>~i for all l<i<~d}. (1.1) 

Here C k c C  n denotes the subset of vectors whose last n - k  components are zero. The 

codimension of ~t~ is equal to the weight IAI =~-~. Ai of A. If we identify partitions with 

their Young diagrams, then a Schubert variety ~ ,  is contained in ~ if and only if # 

contains A. From the fact that  the open Schubert cells ~ t ~ = ~ \ U ~  ~ u form a cell 

decomposition of X, one can deduce that the classes of the structure sheaves (_9a~ form 

a basis for the Grothendieck ring of X. 

We will study the structure constants for K~ with respect to this basis. These are 

the unique integers c~,, such that  

= Z (1.2) 
12 
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These constants depend only on the partitions A, # and u, not on the Grassmannian 

where the Schubert varieties for these partitions are realized. Furthermore c~,, is non-zero 

only if lul~>l~l+l~b. The constants c~,, for which lul=l,xl+lt*l are the usual Lit t lewood- 

Richardson coefficients, i.e. the structure constants for the cohomology ring H* (X) with 

respect to the basis of cohomology classes of Schubert varieties. Another known case is 

a Pieri formula of Lenart which expresses the coefficients c~,(k ) for multiplying with the 

structure sheaf of a special Schubert variety f~(k) as binomial coefficients [18]. Notice 

that since the duality isomorphism Gr(d, C n ) ~ G r ( n - d ,  C ~) takes ft~ to the Schubert 

variety ftx, for the conjugate parti t ion [10, Example 9.20], the structure constants must 
/ 2  t 

satisfy c), =c~, , ,u i t "  

Our main result is an explicit combinatorial formula stating that  the coefficient c~,, is 

(-1)1~1-Ix I-I,I times the number of objects called set-valued tableaux which satisfy certain 

properties. Set-valued tableaux are similar to semistandard Young tableaux, but allow a 

non-empty set of integers in each box of a Young diagram rather than a single integer. 

When It, I =1~1 + It*l our formula specializes to the classical Littlewood Richardson rule. 

Our formula implies that  if c~, is not zero, then u is contained in the union of all 

partitions 0 of weight 101 = I~1 + It*l such that  the Littlewood-Richardson coefficient c~,~ 

is non-zero. Geometrically this says that  if a structure sheaf [One] occurs in the product 

[Oa~].[Oa,], then Ft~ must contain the intersection of all Schubert varieties f~o which 

appear in the product of the cohomology classes of fta and f t , .  Our formula furthermore 

implies that  there exists a flag of Schubert varieties ft~ = ft~(0) C ~2~(1) C... C ~2,(k) = fto 

such that  the dimension jumps by one at each step, each structure sheaf [On~(~)] occurs 

in the K-theory product [Oaa]. [COw,], and fte occurs in the cohomolog3~ product of Fta 

and f~u. We do not know any geometric reasons for these facts or for the alternating 

signs of the structure constants.(1) 

As a particular consequence of the above, note that  for fixed ,t and p there are 

finitely many partitions u which give a non-zero coefficient c~,#. This is already surprising 

since one might conceivably get arbitrarily many such constants by realizing the product 

[O~x]' [On,] in larger and larger Grassmannians. This observation allows us to define a 

commutative ring F=(~D Z.G~ with a formal basis {Ga} indexed by partitions and mul- 

tiplication defined by G),.Gt,=y'~,~, c~t,G~,. The Grothendieck ring K~ C n) is then 

the quotient of this ring by the ideal spanned by the basis elements Gx for partitions that  

do not fit in a rectangle with d rows and n - d  columns. The pullbacks of Grothendieck 

rings defined by the natural embeddings Gr(dl,  C ~*) x Gr(d2, C n2) C Gr(dl  +d2, C ~*+~) 

furthermore define a coproduct on F which makes it a bialgebra. 

(1) After  th is  pape r  was s u b m i t t e d ,  M. Brion gave a geometr ic  proof  t h a t  t he  K- theo re t i c  s t r u c t u r e  

cons t an t s  of any  flag variety G/P have a l t e rna t ing  s igns [27]. 
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This bialgebra F can be seen as a K-theory  parallel of the ring of symmetric functions 

[20], [10], which in a similar way describes the cohomology of Grassmannians, in addition 

to representation theory of symmetric and general linear groups and numerous other 

areas. Furthermore, if we define a filtration of F by ideals Fp=(~lN>~p Z.G)~, then the 

associated graded bialgebra is naturally the ring of symmetric functions. This filtration 

corresponds to Grothendieck's "),-filtration of the K-ring of any non-singular algebraic 

variety. In general the associated graded ring is isomorphic to the Chow ring of the 

variety after tensoring with Q. 

We will realize the algebra F as the linear span of all stable Grothendieck poly- 

nomials, which we show has a basis indexed by Grassmannian permutations. The 

Littlewood-Richardson rule is proved by defining stable Grothendieck polynomials in 

non-commutative variables, and showing that  these polynomials multiply exactly like 

those in commutative variables. In order to carry out this construction we will define a 

jeu de taquin algorithm for set-valued tableaux. 

In w we fix the notation concerning Grothendieck polynomials. In w we then 

prove a formula for stable Grothendieck polynomials of 321-avoiding permutations in 

terms of set-valued tableaux. This formula uses the skew diagram associated to a 321- 

avoiding permutation [1] and is derived from a more general formula for Grothendieck 

polynomials of Fomin and Kirillov [9]. w develops a column-bumping algorithm for set- 

valued tableaux, which in w is used to prove the Litt lewood-Richardson rule for the 

structure constants c~,t, in F. In w we derive similar Litt lewood-Richardson rules for the 

coproduct in F and for writing the stable Clrothendieck polynomial of any 321-avoiding 

permutation as a linear combination of the basis elements of F. In w we deduce a number 

of consequences of these rules, including a Pieri formula for the coproduct in F, a result 

about multiplicity-free products, and the above described bound on partitions ~ for 

which c~, is not zero. In w the relationship between F and K-theory  of Grassmannians 

is established. In addition we use the methods developed in this paper to give simple 

proofs of some unpublished results of A. Knutson regarding triple intersections in K-  

theory. w finally contains a discussion of the overall structure of the bialgebra F. We 

show that  if the inverse of the element t=l-G1 is joined to F then the result Ft is a 

Hopf algebra. We furthermore pose a conjecture which implies that  the Abelian group 

scheme Spec rt looks like an infinite affine space minus a hyperplane. We conclude by 

raising some additional questions. We hope that  the statements in the last two sections 

will be comprehensible after reading w and the first seven lines of w 

This paper came out of a project aimed at finding a formula for the structure sheaf 

of a quiver variety. We will present such a formula in [2], thus generalizing our earlier 

results with W. Fulton regarding the cohomology class of a quiver variety [3]. The proof 
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of the cohomology formula was relatively simple, because some powerful cohomological 

tools related to the ring of symmetric functions were already available. In order to 

obtain the K-theory  formula, we have found replacements for these tools which work in 

K-theory. The first part of this is the construction of the bialgebra F which is carried out 

in the present paper. Especially the coproduct on F is important for the applications to 

quiver varieties. The remaining tools consist of a K- theory  parallel of a Gysin formula of 

Pragacz [21], in addition to some extra combinatorics used to put everything together. 

This will be described in [2]. 

We thank Fulton for numerous helpful discussions and suggestions during the project. 

For carrying out the work in this paper, it has been invaluable to speak to S. Fomin, from 

whom we have learned very much about Grothendieck polynomials during several fruitful 

discussions. In particular we thank Fomin for supplying the proof of Lemma 3.4 and for 

suggestions that led to simplifications of many proofs. We also thank F. Sottile for useful 

discussions about stable Grothendieck polynomials. We are grateful to A. Knutson for 

sharing his ideas about K-theoretic triple intersections and for allowing us to report about 

them here. Finally, we thank A. Lascoux for informing us about a remarkable recursive 

formula for stable Grothendieck polynomials [15], which has turned a conjecture from 

the first preprint of this paper into Theorem 6.14. 

2. G r o t h e n d i e c k  p o l y n o m i a l s  

In this section we fix the notation regarding Grothendieck polynomials and stable Groth- 

endieck polynomials. Grothendieck polynomials were introduced by Lascoux and 

Schiitzenberger as representatives for the structure sheaves of the Schubert varieties in 

a flag variety [16], [14]. For any permutation wESn we define the double Grothendieck 

polynomial ~ = q h w ( x ;  y) as follows. If w is the longest permutation wo=n (n-1) ... 2 1 

we set 

q3wo-~ H (xi~-yj--xiYj). 
iWj~n  

Otherwise we can find a simple reflection si=(i,i+l)ES,~ such that  l(wsi)=l(w)+l. 

Here l(w) denotes the length of w, which is the smallest number 1 for which w can be 

written as a product of I simple reflections. We then define 

~w = r ~ ( ~ s , ) ,  

where ~i is the isobaric divided difference operator given by 

7ri(f) =- ( 1 - X i + l ) f ( x l ,  x2, ...)- (1--xi)f( . . . ,  xi+l, xi, ...) 
Xi - -X i+ l  
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This definition is independent of our choice of the simple reflection si since the operators 

lri satisfy the Coxeter relations. 
(n+l) 

Notice that  the longest element in Sn+l is w o =Wo'Sn'S,~-l'...'sl. Since 
( n + l )  

7rn-lrn_l.....Trl applied to the Grothendieck polynomial for w 0 is equal to ~wo, it 

follows that  r does not depend on which symmetric group w is considered an ele- 

ment of. 

Let lm• w E S,~+n denote the permutation which is the identity on {1, 2, ..., m} and 

which maps j to w ( j - m ) + m  for j > m .  Fomin and Kirillov have shown that  when m 

grows to infinity, the coefficient of each fixed monomial in q51-~• eventually becomes 

stable [9]. The stable Grothendieck polynomial Gw E Z ~xi, Yi]i>~ 1 is defined as the resulting 

power series: 

Gw=G~(x ;y )=  lim r215 
m--~cx> 

Fomin and Kirillov also proved that  this power series is symmetric in the variables {xi} 

and {yi} separately, and that  

Gw ( 1 -  e-x;  1 - e  y) = G~(1 -e  -xl, 1 - e  -~2, ... ; 1 - e  yl, 1 - e  y2, ...) 

is supersymmetric, i.e. if one sets x l=yl  in this expression then the result is independent 

of Xl and Yl. 

If we put all the variables Yi equal to zero in qS~(x; y), we obtain the single Groth- 

endieck polynomial r Similarly the single stable Grothendieck poly- 

nomial for w is defined as G~(x)=G,,(x;O). Notice that  the supersymmetry of 

G ~ ( 1 - e - X ;  1 - e  y) implies that  the double stable Grothendieck polynomial G,~(x; y) is 

uniquely determined by the single polynomial G~ (x) [24], [20]. We will use the notation 

G~(Xl,X2, ...,xp;yl,y2, ...,yq) for the polynomial obtained by setting xi=O for i>p and 

yj=O for j >q in the stable polynomial G~(x; y). 

If A c u  are two partitions, let u/A denote the skew diagram of boxes in v which are 

not in A, and let Iv~A] be the number of boxes in this diagram. Now choose a numbering 

of the north-west to south-east diagonals in the diagram with positive integers, which 

increase consecutively from south-west to north-east. For example, if u=(4, 3, 2) and 

A=(1), and if the bottom-left box in u/A is in diagonal number 3, then the numbering 

is given by the picture 

6 718 I 
4 5 6 

3 4 

Let (il, i2, . . . , i~)  be the sequence of diagonal numbers of the boxes in u/A when these 

boxes are read from right to left and then from bot tom to top. We then let w~,/)~ = 
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s~l si2 ... sire be the product of the corresponding simple reflections. For the skew shape 

above this gives w,/:~ = s4 s3 s6 s5 s4 s8 s7 s6 = 1 2 5 7 3 9 4 6 8. Notice that  w,/:~ depends on 

the numbering of the diagonals as well as the diagram v/A. A theorem of Billey, Jockusch 

and Stanley [1] says that  a permutat ion w can be obtained from a skew diagram in 

this way, if and only if it is 321-avoiding, i.e. there are no integers i < j < k  for which 

w(i)>w(j)>w(k). 
Permutat ions obtained from different numberings of the diagonals in the same dia- 

gram v/A differ only by a shift. In other words, if w~,/~, is the permutat ion corresponding 

to the numbering which puts the bottom-left  box in diagonal number  one, then any other 

numbering will give a permutat ion of the form lm• We can therefore define the 

stable Grothendieck polynomial for any skew diagram by G~/~(x; y)=Gw~/~(x; y). 

If  the skew diagram is a part i t ion A, and if p is the number of the diagonal containing 

the box in its upper-left corner, then w~ is called the Grassrnannian permutation for )~ 

with descent in position p. This permutat ion is given by w~(i)=i+)~p+l-i for l ~ i ~ p  

and w:~(i)<w:~(i+l) for i~p. Notice that  p must be greater than or equal to the length 

of A, which is the largest number I=I(A) for which Al is non-zero. 

I t  follows from the definitions that  the term of lowest total  degree in a Grothendieck 

polynomial r (x; y) is the Schubert polynomial G~v (x; - y )  for the same permutat ion [16]. 

This implies that  the lowest te rm of G~ (x) is the Schur function s~ (x) [20], [19]. In partic- 

ular, the polynomials G~ for all parti t ions A are linearly independent. We define F to be 

the linear span of all stable Grothendieck polynomials for Grassmannian permutations: 

F = ~ Z-G~ C Z~Xl, x2, ...,Yl,Y2, ...]]. 

This group is the main object of s tudy in this paper. For example, Corollary 5.5 and 

Theorem 6.13 below will show that  F is closed under multiplication and tha t  it contains 

all stable Grothendieck polynomials. 

3. S e t - v a l u e d  t a b l e a u x  

In this section we will introduce set-valued tableaux and use them to give a formula for 

stable Grothendieck polynomials indexed by 321-avoiding permutations.  

If  a and b are two non-empty subsets of the positive integers N,  we will write a<b 

if max(a )<min(b) ,  and a<~b if max(a )~min(b) .  We define a set-valued tableau to be a 

labeling of the boxes in a Young diagram or skew diagram with finite non-empty subsets 

of N, such that  the rows are weakly increasing from left to right and the columns strictly 

increasing from top to bot tom.  W h e n  we speak about  a tableau we shall always mean a 
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set-valued tableau unless explicitly stated otherwise. The shape sh(T) of a tableau T is 

the partition or skew diagram it is a labeling of. For example, 

1 2--~ 

1 2 234 

2 3 5 7  

THEOREM 3.1. 

formula 

is a tableau of shape (4, 3, 3)/(2, 1) containing the sets {2}, {3, 5}, {1, 2}, {7}, {2, 3, 4}, 

{1} and {2, 3} when the boxes are read bottom to top and then left to right. A semi- 

standard tableau is a set-valued tableau in which each box contains a single integer. 

Given a tableau T, let x T be the monomial in which the exponent of xi is the number 

of boxes in T which contain the integer i. If T is the tableau displayed above we get 
T 2 4 3 x = x  1 x 2 x 3 x4x5 x7. We let ITI denote the total degree of this monomial, i.e. the sum 

of the cardinalities of the sets in the boxes of T. 

The single stable Grothendieck polynomial G,/A (x) is given by the 

Gv/ (x) = E (-1) S ,  
T 

where the sum is over all set-valued tableaux T of shape ~/~. 

To prove this proposition we need a result of Fomin and Kirillov. Let H~(0) be 

the degenerate Hecke algebra over the polynomial ring R=Z[xl , . . . ,  xm]. This is the free 

associative R-algebra generated by symbols Ul,..., u~, modulo relations 

U i U j - ~ - U j U i  i f  l i - j l>~2,  

Ui Ui+l Ui ~ Ui+ 1 ~ti Ui+l ,  

2 
U i ~ - - U  i. 

If w C S n +  l is a permutation with reduced expression w=sil ' . . ." s~ we set Uw =uil"..." ui~ c 

Hn(0). This is independent of the choice of a reduced expression. Furthermore these 

elements u~ for WESn+I form a basis for Hn(O). Now set 

A(x)  = ( l + x u n ) . . . . . ( l + x u 2 ) . ( l + X U l )  and B(x)  = ( l + x u l ) . ( l + x u 2 ) . . . . . ( l + x u n ) .  

Then a special case of the theory developed by Fomin and Kirillov [9], [8] is the following. 

THEOREM 3.2. The coefficient of u~ in A(Xm). . . . .A(x2) .A(Xl)  is the stable Groth- 

endieck polynomial Gw(xl , . . . ,Xm).  The coefficient of uw in B(Xm) ' . . . 'B (x2) 'B(X l )  is 

O~ (0; xl,..., xm). 
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Define an inner corner of a partition A to be any box of A such that  the two boxes 

under and to the right of it are not in A. By an outer corner we will mean a box outside 

such that  the two boxes above and to the left of it are in A. 

Proof of Theorem 3.1. It is enough to show that G~/~(Xl,...,Xm) is the sum of the 

signed monomials ( -1 )  ITl-lv/;q x T for tableaux T with no integers larger than m. 

Now number the diagonals of L,/A from south-west to north-east as described in 

the previous section, and let V = ~ o ~  Z. [#] be the free Abelian group with one basis 

element for each partition containing ,~. Imitating the methods of Fomin and Greene [7], 

we define a linear action of Hn(O) on V as follows. If a partition # has an outer corner 

in the i th  diagonal, then we set u~. [#] = [/5] where/5 is obtained by adding a box to # in 

this corner. If # has an inner corner in the i th  diagonal, and if the box in this corner is 

not contained in )~, then we set u~ - [#] = -  [#]. In all other cases we set u~.[#]=0. 

We claim that  if wESn+l is any permutation such that uw-[,~]~0 then u~-[~]=[#] 

for some partition #D,k, and w=wu/~. This claim is clear if /(w)~<l. If /(w)~>2, 

write w=siw' where l(w')=l(w)-l .  Since u~,-[A]r we can assume by induction that 

u~,'[,~]=[#0] for some partition #o, and w'=Wuo/~. It is enough to show that #0 has no 

inner corner in the i th  diagonal. If it had, then the box in this corner would be outside 

since u~'[#o]r But then we could write w'=w~siw~ such that l(w')=l(w~)+l(w~)+l 

and no reduced expression for w~ contains si-1, si or si+]. This would mean that  

w = s~ w ' =  w~ w~, contradicting that l(w) > l(w'). 

Using Theorem 3.2 it follows from the claim that the coefficient of the basis element 

[~,] in A(xm).....A(Xl).[)~] is G,/:~(xl,...,xm). Finally, it is easy to identify the terms 

of A(xm).....A(Xl) which take [~] to [~] with set-valued tableaux on u/&. In fact, this 

product expands as a sum of terms of the form 

From any such term which contributes to the coefficient of [~] we obtain a tableau on 

~/A by joining the integer ir to the set in the inner corner in diagonal number j r  of the 

partition uj...., ujk. [,~] for each 1 ~<r ~ k. [] 

Remark 3.3. It is easy to extend the notion of set-valued tableau to obtain formulas 

for double stable Grothendieck polynomials G~/~(x; y). The main point is that  integers 

corresponding to the x-variables should occupy horizontal strips in a set-valued tableau 

while integers corresponding to y-variables should appear in vertical strips. 

While we have the notation of Theorem 3.2 fresh in mind, we shall also establish the 

following lemma for use later. At an early point in this project we asked Sergey Fomin if 

the statement of this lemma could possibly be true, after which he proved it immediately. 
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LEMMA 3.4 (Fomin). Let WCSn+l be a permutation and let WoESn+I be the longest 

permutation. Then G~oww o (x; y)=Gw(y; x). 

Proof. Since Gw(1-e-X;1-e y) is supersymmetric,  it is enough to prove that  

G w o ~ o  (x l, ..., Xm)= G~ (0; x 1,..., X m) for any number of variables m. 

Now Ha(O) has an R-linear automorphism which sends us to un+ l - i  for each 1 <<.i<<.n. 

Since this automorphism takes A(xj) to B(xj) and u~ to U~,ow~o, the lemma follows from 

Theorem 3.2. [] 

As a special case we obtain G~,/,,(x; y)=G~o~/~o(X; y)=G~/,(y; x). 

4. A column-bumping algorithm 

In this section we will present a column-bumping algorithm for set-valued tableaux and 

derive an important  bijective correspondence from it. This correspondence will be the 

main ingredient in the proof of the Lit t lewood-Richardson rule for stable Grothendieck 

polynomials. 

We will use the following notation. If a and b are disjoint sets of integers we will let 

-~ denote box the union of and b. If  T is tableau with 1 columns, single a containing a a 

and Ci denotes its i th  column for each l<~i<<.l, then we will write 

T= 
C1 C2 I c t  

-- (C1, C2, . . . ,  C,) .  

We start  with the following definition. 

Definition 4.1. Let x E N ,  x0ENU{oe},  and let C be a tableau with only one column. 

We then define a new tableau x----~C by the following rules: 
s o  

D X0 
if a < x, (B1) 

x o  
if a < x ~< b, (B2) 
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Xo 

X0 

XO 

Xo 

Xo 

if a < x <~ b, (B3) 

if a < x <~ b and xo ~ b, (B4) 

if x ~ b and xo~b, (B5) 

if a<x<~ b and xoCb, (B6) 

if x<~b and xoEb. (BT) 

The white areas in these tableaux indicate boxes which are left unchanged by the 

operation. I t  is easy to see that  exactly one of the cases (B1)-(B7) will apply to define 

x----+C. In the rules (B2) to (B5) we say tha t  the set b is "bumped out". 
xo 

If  x C N  is any non-empty set, we extend this definition as follows. Let xl<. . .<xk 

be the elements of x in increasing order, and let (Ck, Yk) be the tableau xk-~oC: 

xk ~C= [ ~ .  

Here Yk is the set in the single box in the second column. If  xk ~ C has only one column, 

we let Yk be the empty  set. Continue by setting 

(ci, yi) = (x~ ~ C~+1) 
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for each i=k-1,...,1. 

ylU...Uyk: 

If xoCN is a set, we will write 

We finally define x--~C to be the tableau (CI,y)  where y =  
Xo 

x --+ C = F 

x - -~C=x  )C. 
x0 min (x0 )  

We furthermore set x.C=x---+C. This defines the product of a one-box tableau with a 

one-column tableau. Notice that  if C has l boxes, then the shape of x.C is one of (1l+1), 

(2, lZ- 1) or (2, lt), where 1 t means a sequence of l ones. Notice also that  x.C=x--+C 
x o  

unless one of the rules (B6) or (B7) are used to define max(x)-~o C. For example, 

F 
We will continue by defining the product of a non-empty set x with any tableau 

T=(C1,C2,...,Ct). Namely, set (C~,yl)=x.C1 and (C~,yi)=yi-l'Ci for 2<.i<~l. If a 

product Yi-l'Ci has only one column for some i, we let C~ be this product and set 

Cj=Cj for j>i and y l = ~ .  We then define x.T to be the tableau whose j t h  column is 

Cj for l<~j<~l. If Yl r  we furthermore add an ( /+1)st  column with one box containing 

this set: 

x .  C1 ... = C~ C~ ... 

To see that  this is in fact a tableau, we need the following lemma. 

LEMMA 4.2. Let xEN, yoENU{oo}, and let C1 and C2 be one-column tableaux 

which fit together to form a tableau (C1, C2). Let (C~,y)=x.C1 and (C~, z)=y y-~o C2. 

Then (C'1, is a tableau. 

Proof. Suppose that  y was bumped out of box number i in C1, counted from the 

top. Then since (C1, C2) is a tableau, y is less than or equal to the set in box number i 

in C2. This implies that  the j t h  box  of C~ is equal to the j t h  box of C2 for all j>i. 

For j~i ,  the j t h  box of C~ can contain elements from the j t h  box of C2 and from y. 
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Since both of these sets are larger than  or equal to the j t h  box in C~, this shows tha t  

(C~, C~) is a tableau. [] 

To check that  the product x . T  defined above is a tableau, it is enough to assume that  

T=(C1, C2) has only two columns. Let x ' = m i n ( x )  and x"=x \ {x ' } ,  and set (C~', y " ) =  

x".C1 and (C~ ~, z")=y".C2. Then set 

" and ( C ~ , z l ) = y l ~ 6 1 1  , c , , y l , = x l x , , , c l  ,, 2 .  
Y 

Then x.Cl=(C[,  y) where y=y"Uy',  and y.C2=(C~, z"Uz'). We must  show that  ( e l ,  C~) 

is a tableau. 
If 11 By induction we can assume that  (C~, C~ ) is a tableau. If x l - -~C"  is defined by 

x H 1 

(B6) or (B7) then the maximal elements in the boxes of C~ and C~ I are equal, and since 

yl is empty  we have C~=C~ I. This makes it clear that  (C~, C~) is a tableau. Otherwise 
11 l 11 1 1 we have Xlx~t~C 1 = X  . C 1 ,  in which case (C1, C~) is a tableau by Lemma 4.2. 

Define a rook strip to be a skew shape (between two partitions) which has at most 

one box in any row or column. It  then follows from our earlier observations regarding 

the shape of a product  of a set with a one-column tableau, tha t  the shape of x .T  differs 

from tha t  of T by a rook strip. 

Now let C be a tableau with one column and let T be any tableau. Suppose tha t  

the boxes of C contain the sets xl,x2,  ..., xl, read from top to bot tom.  We then define 

the product  of C and T to be the tableau C.T=xz.(xl_l .( . . . .x2.(Xl.T). . . . )) .  

Example 4.3. It  is not possible to extend this product  to an associative product  on 

all set-valued tableau. In fact, if this was possible we would have 

_ -  . . _ _ =  . _ 

which is of course wrong. 

In the following lemmas we shall s tudy the shape of a product C.T. 

LEMMA 4.4. Let Xl<X2 be non-empty sets of integers, and let C be a one-column 

tableau. Let Xl'C=(CI,Yl) and x2"Cl=(C2,Y2). Then Yl<Y2. 

Proof. Notice at first that  min(x2)~<y2, which follows directly from Definition 4.1. 

Since all of the integers in Y2 come from C1, it suffices to show that  all integers from C1 

which are greater than  or equal to min(x2) are also strictly greater than  Yl. 
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Let k be the number of the box in C1 (counted from the top) which contains max(x1). 

There are then two possibilities. Either max(x1) is the largest element in this box of C1, 

in which case all integers in Yl must come from the boxes 1 through k of C. Furthermore,  

the boxes in C1 strictly below the kth  box contain the same sets as the corresponding 

boxes of C, so they are strictly greater than Yl. Since these are also the only boxes tha t  

can be greater than  or equal to min(x2), the s ta tement  follows in this case. 

Otherwise max(x1) is not the largest element in the k th  box of C1, which implies 

that  all integers in Yl come from the boxes 1 through k - 1  in C. Since the integers in C1 

which are strictly greater than  max(x1) all come from the kth  box in C or from boxes 

below this box, the s ta tement  is also true in this case. [] 

LEMMA 4.5. Let T be a tableau and let Xl<X2 be non-empty sets of integers. Set 

T]=xl .T and T2=x2.T1, and let 81=sh(T1)/sh(T) and 82=sh(T2)/sh(T1) be the rook 

strips giving the differences between the shapes of these tableaux. Then all boxes of 82 

are strictly south of the boxes in 81. 

Proof. Suppose that  the southernmost box of 81 occurs in column j .  Then let U be 

the tableau consisting of the leftmost j -  1 columns of T, and let V be the rest of T. We 

will write T = ( U ,  V) to indicate this. Similarly we let (U1, y l )=Xl .  U and (U2, y2)--x2" U1, 

i.e. U1 and U2 are the leftmost j - 1  columns of these products. Finally set 1/1 = Yr V and 

V2=y2"V1. We then have TI=(U1,V1) and T2=(U2,V2). 

Since 1/1 has one more box in the first column than V, this box of V1 must contain a 

subset of Yl. Since Y2>Yl by Lemma 4.4, this means that  V2=y2"V1 consists of V1 with 

Y2 at tached below the first column (or 1/2 = !/1 if Y2 is empty) .  The  lemma follows from 

this. [] 

It  follows immediately from this lemma that  the shape of a product  C.T adds a 

vertical strip to the shape of T, but more detailed information can be obtained. As 

above, let Xl,X2, ..., xl be the sets contained in the boxes of C from top to bot tom.  Set 

To=T and T~=xi.T~-i for l<~i<~l. Let O~=sh(Ti)/sh(T~_l) be the rook strip between 

the shapes of T~ and T~-I, and let 8=sh(C.T)/sh(T) be the union of these rook strips. 

Then Lemma 4.5 says that  the 8i split 8 up into disjoint segments running from north 

to south: 

..... 81 

O= Oa. 

84 
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Define the extra boxes of 0 to be the boxes that  are not the upper-right box of any 

rook strip 0i. These boxes are marked with a cross in the above picture. There are 

exactly 101-I extra  boxes in 0, and at most one in each column of 0. Furthermore, if 

a column of 0 has an extra box then it is the northernmost  one. Define col(C, T)  to 

be the set of columns of 0 which contain an extra  box. The rook strips 0i are then 

uniquely determined by 0 and this set. In what follows we shall see that  if x is a set and 

T is a tableau, then x and T can be recovered from their product x . T  if one knows the 

shape of T. As a consequence we see that  C and T are uniquely determined by their 

product  C.T,  the shape of T, and the set col(C, T).  

We will s tate this a bit sharper. Given a vertical strip 0 and a non-negative integer 

d~>0, let Cd(0 ) be the set of all sets of the non-empty columns of 0 which have cardinality 

d and avoids the last column of 0. If c(0) is the number of non-empty columns of 0 then 

Cd(O) has cardinality 
( c ( 0 ~ - 1 ) .  

Let 7~ be the set of all set-vMued tableaux of shape ,~. We then have a map 

T(lz) • 7-~ > H "T~ • Cl~/;~l_l(~/A ) (4.1) 
12 

which takes (C,T)  to the pair (C.T, col(C,T))  in the set "T~ • ) where ~,= 

sh(C.T) .  The disjoint union is over all partitions ~, containing A such that  v/A is a 

vertical strip. In the remaining part  of this section we will construct an inverse to this 

map, thus proving the following. 

THEOREM 4.6. The map of (4.1) is bijective. 

As a first consequence, we obtain a bijective proof of Lenart ' s  Pieri formula [18]. 

COROLLARY 4.7 (Lenart).  For any partition A and l>~l we have 

G('~)G;~=E(-1)I'/:~I-t\ Iv/,~l-I ] a~' 

where the sum is over all partitions , D A  such that y/A is a vertical strip, and c(~/)~) is 

the number of non-empty columns in this diagram. 

In order to construct the inverse map  of (4.1) we will define a reverse column- 

bumping algorithm for set-valued tableaux. We star t  with the following definition. 

Definition 4.8. Let T = ( C ,  y) be a tableau whose second column has one box con- 

taining a single integer y E N .  For any y0ENU{0)  we define the pair T~yo(C,y ) by the 
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following rules: 

nyo 

nyo 

nyo 

if b ~< y < c, (R1) 

if a ~ y < b  and yoga, (R2) 

if a ~< y and Yo ~ a, (R3) 

if a ~ y < b  and yoEa, (R4) 

if a ~< y and Yo E a. (Rb) 

We extend this definition to tableaux (C,y) where y E N  is any non-empty set of 

integers as follows: Let Yl<...<Yk be the elements of y in increasing order. Let (xl, C1)= 

nyo(C, yl) and (xi, Ci)=nm_l(Ci_l,yi) for 2<i<k. Then we set nyo(C,y)=(x, Ck) 

where x=xlU...Uxk. If y0CN is a set, we will write nyo(C, y)=nma• y). Finally 

we set n ( C ,  y ) = n o ( C ,  y). 

LEMMA 4.9. Let C be a one-column tableau with l boxes, and let x C N  be a set 

such that x .C has shape (2, 11-1). Then n ( x . C ) = ( x , C ) .  Similarly, if T is a tableau of 

shape (2,11-1) and n ( T ) = ( x , C ) ,  then C has l boxes and x .C=T.  

Proof. Suppose at first that  x E N  is a single integer, and let x.C=(C',  y). Then by 

the definition of n ( C  ~, y), the minimal element of y will bump out x from C', after which 

the remaining elements of y will be added to the same box as the minimal element went 

into. This recovers the tableau C. 
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If x has more than one element, let xl=min(x) and x2=x\{xl}, and write x2.C= 
(C2,y2) and xl~--+C2=(CI,yl). Then x.C=(Cl,y) where y=ylUy2. By induction we 

can assume T~(C2, y2)-=(x2, C). There are two cases to consider. 

Either y1=0. In this case C1 is obtained from C2 by joining xl  to the box containing 

min(x2). This means that  if n (C2 ,min (y2 ) ) - - (x ' ,C ' )  then we have n (C l ,min (y2) ) - -  

({Xl}UX', C') .  This proves that  T~(Cl, y)=(x, C) in this case. 

Otherwise we have y1~O, in which case (CI,yl):xl'C2. We then know that  

Ti(CI,yl)=(xl,C2). Since Tg(C2,y2)--(x2, C), it is enough to show that  T~(C2,Y2)= 
T~I(C2,y2 ). Here it is enough to check that  none of the rules (R4) or (Rh) are used to 

define T~m~x(yl)(C2, min(y2)). But since min(x2) is bumped out when T~(C2, min(y2)) is 

formed, this would imply that  min(x2) and max(y1) are in the same box of C2. This 

contradicts the fact that  xl is bumping Yl but not min(x2) out when multiplied to C2. 

The proof of the second statement is similar and left to the reader. [] 

To recover the factors of a product x. C which adds two boxes to the shape of C, we 

continue with the following definition. 

Definition 4.10. Let T=(C,y) be a tableau with at least two boxes in the first 

column and one box in second column. Suppose that  T~(C, y) has the form 

Then we define 7~* (C, y) as follows: 

T~*(C ,y )=(xUb ,~  I ifbfLy, (De) 

] 

n*(C, y) = (x, if b c (D2) y. 

\ 

LEMMA 4.11. Let C be a one-column tableau with l boxes, and let x c N  be a set 
such that x.C has shape (2,11). Then T~*(x.C)=(x,C). Similarly, if T is a tableau of 
shape (2, 1 z) and T~*(T)-=(x, C), then C has l boxes and x-C=T. 

Proof. Notice at first that  if x.C has shape (2, 1 z) then max(x)-C must be defined by 

one of the rules (B1) or (B2). Let x2Cx be the largest subset ~ of the form xN [k, oc[ such 
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tha t  none of the rules (B3)-(Bh) are used in the definition of x2- C, and let Xl ~--- X\ X2. The 

lemma is easy to prove if xl  is empty, so we will assume x 1 ~ o .  Let x2.C=(C2, Y2) and 

Xr C2 = (C1, Yl)- Then x. C =  (Cl, y) where y=ylUy2. Furthermore we have T~(Ci, Yl)= 

(xl,  C2) by Lemma 4.9. There are two cases to consider. 

First suppose that  max(x2) .C is defined by (B1). Then C2 is equal to C with x2 

attached in a new box at the bottom, and Y2 is empty. This means that  x.C=(CI,yl), 

so 7~(x.C)=(xl, C2). By rule (D1) we therefore have T~*(x.C)=(xlUx2, C) as claimed. 

Otherwise max(x2) .C is defined by (B2). If the bot tom box of C contains hub with 

a<max(x2)<~b, then y2=b and C2 is obtained by removing b from the bot tom box of C 

and attaching x2 in a new box below it. It follows that  ~y1(C2, y2)=(x2,  C') where C' is 

obtained from C by moving the elements of b from the bot tom box to a new box below it. 

We conclude that  74(x.C)=(x, C'), so n*(x.C)=(x, C) by (D2). 

The proof of the second statement is similar and left to the reader. [] 

Now let T be a tableau of shape u and let A~v  be a proper subpartition such that  

u/A is a rook strip. We will then produce a tableau T ~ of shape ;~ and a set xCN such 

that  x.T~=T. 

Write T=(C1,  C2, ..., Ck) where Ci is the i th  column, and suppose that  the upper- 

right box of u/A is in column j .  Let Cj be the result of removing the bot tom box from Cj, 

and let xj be the set from this removed box. Now for each i= j -1 ,  ..., 1, we define 

{ 7~(Ci, xi+l) if , /A  does not have a box in column i, 

(xi, C~) = T~*(Ci,xi+l) if , / ~  has a box in column i. 

We then set X=Xl and T ' = ( C [ ,  ..., Cj, Cj+I, ..., Ck). An argument similar to the proof of 

Lemma 4.2 shows that  T ~ is a tableau, and by definition the shape of T I is A. Furthermore, 

it follows from Lemma 4.9 and Lemma 4.11 that  x.TI=T. We let 7~ , /x :~ -+T1  xT~ be 

the map defined by T~,/~ (T) = (x, T ' ) .  

Proof of Theorem 4.6. It follows from Lemma 4.9 and Lemma 4.11 that  the maps 

7~/;~ define an inverse to the map of (4.1) when /=1 .  If l ) 2  and (T, S)eT~ xCl~/~l_z(,/)~ ) 

is any element, there are unique rook strips 01,..., 0z which split the vertical strip 0=u /A  

up into disjoint intervals from north to south, such that  S contains the columns of the 

extra boxes in 0. Then set (xz,Tl)=T~oz(T) and (xi,Ti)=T4o~(Ti+l) for i = / - 1 ,  ..., 1, and 

let C E T(lz) be the column whose i th  box contains xi. An argument similar to the proof of 

Lemma 4.4 shows that  xl <... < xt, which implies that  C is a tableau. Finally Lemma 4.9 

and Lemma 4.11 show that  the map (T, S)~-+ (C, T1) gives an inverse to (4.1). [] 

Remark 4.12. Although we have skipped some details of the proof of Theorem 4.6, 

the arguments given here do suffice to establish that  the map of (4.1) is injective. Instead 
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of writing down proofs of the remaining statements,  one can also use Lenart ' s  proof of 

Corollary 4.7 [18] to deduce that  the two sets in (4.1) have the same number of elements 

(which is finite if we only consider tableaux containing integers between 1 and m for any 

m>~l). 

5. S t a b l e  G r o t h e n d i e c k  p o l y n o m i a l s  in n o n - c o m m u t a t i v e  v a r i a b l e s  

In this section we define stable Grothendieck polynomials in non-commutat ive variables 

and show that  they span a commutat ive ring. As a consequence we obtain an explicit 

Lit t lewood-Richardson rule for multiplying Grothendieck polynomials of Grassmannian 

permutations.  

Following [6], [7] we define the local plactic algebra to be the free associative Z- 

a lgeb ra / :  in variables ul ,  u2, ..., modulo the relations 

u iu j=u ju i  i f l i - j l > ~ 2 ,  

Ui Ui-b l ~ti ~ ~ti+ 1 Ui Ui~ 

U i T l U i U i + l  z U i + l U i + l U i "  

We shall work in the completion s o f /3  which consists of formal power series in these 

variables. 

Let T be a set-valued tableau. We define the (column) word of T to be the sequence 

w(T) of the integers contained in its boxes when these are read from bot tom to top and 

then from left to right. The integers within a single box are arranged in increasing order. 

The word of the tableau displayed in the start of w is (2, 3, 5, i, 2, 7, 2, 3, 4, i, 2, 3). 

If  T has word w(T) = (il, i2,..., iz), then we let u T be the non-commutat ive monomial 

uT=u~lui2 ... ui~Es It  is not hard to see that  one gets the same monomial  if the boxes 

of T are read from left to right first and then from bot tom to top, but we shall not need 

this fact. If  ~/A is any skew diagram we then define a stable Grothendieck polynomial 

in the variables ui by 

G,/~(u) = E (--1)ITI-I ' /~I uT C ~' 

T 

where this sum is over all tableaux T of shape u/A. 

If  C is a one-column tableau and T is any tableau, one may easily verify from 

Definition 4.1 tha t  uC.uT=uC'T in s  From Theorem 4.6 we therefore obtain a non- 

commutat ive version of Lenart ' s  Pieri rule. 
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LEMMA 5.1. If A is any partition and l>~ 1 an integer, then 

G(l~)(u). G;  (u) = E ( -  1)I~/AI-t ~c(v/A) - 1"~ G,  (u) 
. \ I~,/~l-I / 

holds in s the sum being over all partitions vDA such that ~/A is a vertical strip. 

A first consequence of this is that  the elements G(I~)(u) for l/> 1 commute in s Now 

let G = ( ~ ; Z . G ; ( u )  be the span of the polynomials G~(u) for all partitions A, and let 

~C s be its completion, consisting of all infinite linear combinations of the G;(u). 

LEMMA 5.2. The group ~ consists of all formal power series in the polynomials 

G(lo(u) for l>~1. In particular, ~ is a commutative subring of s 

Proof. Let h E N  be any positive integer. It is enough to show that  for any parti- 

tion A there exists a polynomial P;(u)E Z[G(10 (u)]z~>l such that  G;(u)-P;(u) is a linear 

combination of Grothendieck polynomials G~(u) for partitions # of length l(#)~>n. 

Define a partial order on partitions by writing #<A if #1<A1, or #1=A1 and 

I(#)>I(A). Notice that  given a partition A there are only finitely many partitions # 

such that  #<A and l (#)<n.  

We shall prove that  the polynomials P;(u) exist by induction on this order. Since 

the smallest partitions A have only one column, the existence of P;(u) is clear for these 

partitions. Let A=(A1, ..., At) be a partition of length l<n, and assume that  P~(u) exists 

for all # <  A. Let a =  (A1-1, ..., A t -  1) be the partition obtained by removing the first 

column of A. Then a < A. By Lemma 5.1 we furthermore have 

G A ('~t) ---- G( l t  )(~t). Go- (~t) -- E ( -  1) I vIA I-I  ~C(I]/A) -- 1~ G~, (u), 
.~:, \ I~,/Al-I ) 

where the sum is over all partitions v properly containing A such that  v/A is a vertical 

strip. Notice that  any such partition u for which I~lAl>~l must satisfy y<A. We can 

therefore define 

( c ( , I A ) - l \  
gA(~t)----G(l/)(u).ga(u)- ~ ( -1 ) l ' / ~ l - l~  i v lA l_  1 )P,(u) .  

This finishes the proof. [] 

The lemma shows that  any product G~(u).G~(u) is an element of ~, so we may 

write 

G~(u). G,(u) = E c~,G,(u), (5.1) 
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where the coefficients c~,t, are integers. Notice tha t  this linear combinat ion  could be 

infinite. 

We say tha t  a sequence of  positive integers w = (il,  i2, ..., il) has content (cl, c2,..., cr) 

if w consists of cl l 's ,  c2 2's, and so on up to cr r 's .  If  the content  of each subsequence 

( i k ,  ..., i l )  of w is a part i t ion,  then w is called a reverse lattice word. Now if v = ( ~ l ,  ..., ~p) 

is a part i t ion,  we define ~ ~P ~2 ~1 u ~-Up . . .u 2 u 1 Eft .  

LEMMA 5.3. A sequence w = ( i l , i 2 ,  . . . ,il) is a reverse lattice word with content v i f  

and only i f  uil ui2 ... u i z=u v in [:. 

Proof. If  w is a reverse lattice word, then the rectification of w in the plactic monoid 

is the semis tandard  Young tableau U(~) of  shape v in which all boxes in row i contain 

the integer i [10, L e m m a  5.1]. This implies tha t  the identi ty uilui~ ... ui~=u ~ holds even 

with the weaker relations of the plactic algebra. 

On  the other  hand, if UilUi2 ... ui~=u ~ then one can obta in  the sequence 

(p~P, ..., 2 ~2, 1 ~1 ) 

from w by replacing subsequences in the following ways: 

( i , j )~ -~ ( j , i )  if I i - j l  ~> 2, 

( i , i +  l , i )  ++ ( i+ l , i , i ) ,  

( i+1 ,  i, i + 1 )  +-~ ( i+1 ,  i + 1 ,  i). 

Since all of  these moves preserve reverse lattice words, w must  be a reverse lattice word 

with content  ~. [] 

If  ~ and # are parti t ions,  we let A*# be the skew diagram obtained by pu t t ing  )~ 

and # corner to corner as shown. 

a*" = II x 
r 

i i 

THEOREM 5.4. The coefficient c~. is equal to (_l)lVl-I~l-I~l t imes the number  of  

set-valued tableaux T of  shape .~*# such that w ( T )  is a reverse lattice word with con- 

tent ~. [] 

Proof. Star t  by noticing tha t  the only tableau of shape ~ whose word is a reverse 

lattice word is the tableau U(~). I t  follows from this t ha t  the coefficient of u" on the  

r ight -hand side of (5.1) is c ~ .  
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On the other hand, the left-hand side is equal to Gx,,(u). If T is a tableau on A,#,  

then u T is equal to u" exactly when w(T) is a reverse lattice word with content u by the 

lemma. The theorem follows from this. [] 

Since there are only finitely many tableaux T of a given shape such that  the word 

of T is a reverse lattice word, Theorem 5.4 implies that  the linear combination in (5.1) 

is finite. In other words, G is a commutat ive subring of s  

COROLLARY 5.5. F = ( ~ Z . G a  is closed under multiplication. The structure con- 
V _ _  V stants c ~  such that G ~ . G ~ - ~  c ~  Gv are given by Theorem 5.4. 

Proof. By replacing each non-commutat ive variable ui with x~ in (5.1), we obtain the 

identity G~ (x). G~ (x) = ~ ,  c~,t, G~ (x) for single stable Grothendieck polynomials. Since 

G ~ ( 1 - e - X ;  1 - e  y) is supersymmetric,  the same equation must hold for the double poly- 

nomials as well. 

Example 5.6. For the shape (1)*(1) we can 

tableaux whose contents are reverse lattice words: 

It  follows that  G r  G1 = G2 + G(1,1) - G(2,1). 

[] 

find the following three set-valued 

Our methods seem insufficient to prove that  a stable Grothendieck polynomial 

G,/~(u) in non-commutat ive variables is in ~, except when the skew shape p/A is a 

product  of partit ions like in Theorem 5.4. If  this could be established, then the proof 

of Theorem 5.4 would also prove a rule for writing G,/~ as a linear combination of the 

stable polynomials G~ for Grassmannian permutations.  We shall instead derive such a 

formula from the s ta tement  of Theorem 5.4 in the next section. 

6. A c o p r o d u c t  o n  s t a b l e  G r o t h e n d i e c k  p o l y n o m i a l s  

Our main task in this section is to show tha t  the ring F has a natural  coproduct A: F--+ 

F |  which makes it a bialgebra. We will show that  for certain integers d~,t, given by an 

explicit Lit t lewood-Richardson rule similar to that  of Theorem 5.4, we have 

Gv(x, z; w, y) = Z dL C (x; w) C.(z; y), 
A,tt 

(6.1) 

whenever x, y, z and w are different sets of variables. The coproduct can then be defined 

by AGv=~-~ d~t G~| ~. 
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LEMMA 6.1. Let ACt, be partitions and let p,q>~l be integers. Then 

G~/~(xl, ...,Xp+q)= E (-1)'~/~]G~/~(xl, ...,Xp).Gv/a(Xp+i, ...,Xp+q), 
T/a rook strip 

where the sum is over all partitions a and T such that )~CaCTC~, and 7 /a  is a rook 

strip. 

Proof. By Theorem 3.1 the left-hand side is the signed sum of monomials x T for all 

tableaux T of shape v/A such that  all contained integers are between 1 and p+q. If T is 

such a tableaux, let T1 be the subtableau obtained by removing all integers strictly larger 

than p (as well as all boxes that  become empty), and let T2 be obtained by removing 

integers less than or equal to p. Then the shape of T1 is T/)~ for some partit ion ~-, while 

the shape of T2 is of the form P/a, and we have A C a C r C ~ .  Since r /a  is the shape where 

T1 and T2 overlap, this skew shape must be a rook strip. Finally, since xT=xTl 'x  T2 this 

gives a bijection between the terms of the two sides of the claimed identity. [] 

Notice that  since the polynomials G,/~(1-e-X;  1 - e  u) are supersymmetric, this 

lemma implies that  if x, y, z and w are different set of variables, then we have 

Gv/;~(x, z; w, y) = E ( -  1)]~/a] G~/;~ (x; w). Gv/a (z; y). (6.2) 

~-/a rook strip 

This can be deduced by writing each polynomial Gw(1-e -X;  1 - e  y) as a linear combina- 

tion of double Schur functions [20]. 

LEMMA 6.2. Let 0 be a skew shape which is broken up into two smaller skew shapes 

01 and 02 by a vertical line as shown. 

Let p be the number of boxes between the top edge of the leftmost column of 02 and the 

bottom edge of the rightmost column of 01. Then we have 

Ge (xl,  ..., xp) = Gel(X1, ..., Xp). Ge~ (xl,  ..., xp). 

Proof. Number the rows of 0 such that  the top box in the leftmost column of 02 is 

in row number one, and so that  the numbers increase from top to bottom. Then suppose 
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that  T1 and T2 are tableaux of shapes 01 and 02 for which all contained integers are less 

than or equal to p. Then all integers in row i of T2 will be greater than or equal to i 

because they have at least i - 1  boxes above them. Similarly the integers in row i of T1 

will be smaller than  or equal to i because they have p - i  boxes below them. Therefore 

T1 and T2 fit together to form a tableau T of shape 0. This shows that  the terms of Go 

and Go~. Go~ are in bijective correspondence. [] 

PROPOSITION 6.3. Let u be a Young diagram which is broken up into two smaller 

Young diagrams )~ and p by a vertical line after column q. 

1 
m r  

J 
V 

F- 

Then if p is the length of the last column of )~ we have 

a .  (x 1, ..., x , ;  y l ,  ..., ~q) = c a  (x 1, ..., x , ;  y l ,  ..., ~q). a ,  ( z  l ,  ..., x p ) .  

Proof. In this proof we will write x for the variables xl ,  ...,xp and y for Yl, ...,Yq. 

Then by Lemma 6.1 we have 

a~(x; y) = ~ a~(0; y) c~/~(x), 

where the sum is over all partit ions OCTCP such tha t  ~-/a is a rook strip. Notice 

that  when T has more than q columns, then G,(O;y)=G,,(y)=O by Lemma 3.4 and 

Theorem 3.1. Therefore we only need to include terms for which TC;~ in the sum. For 

such terms Lemma 6.2 implies that  G, /~ (x )=Ga/o (x ) .G , ( z ) .  The lemma follows from 

this by applying Lemma 6.1 to G~(x; y). [] 

COROLLARY 6.4. If U p + l ) q + l  then G,(Xl , . . . ,xp;yl , . . . ,yq)=O. 

Proof. Let A be the first q columns of u, and let # be the rest like in Proposition 6.3. 

Then since l ( # ) > p  we get G,(xl , . . . ,Xp)=O. The s ta tement  therefore follows from the 

proposition. [] 

COROLLARY 6.5 (factorization formula). Let R=(q) p be a rectangle with p rows 

and q columns, and let a and 7 be partitions such that l ( a ) ~ p  and 71~q. Let (R+a, 7) 

denote the partition (q+al, . . . ,  q+ap, T1, T2,...) obtained by attaching a and ~- to the right 

and bottom sides of R. Then 

G R + c r , r  ( X l ,  ... , Xp; Yl, ..., Yq) = G~-(0; Yl,..., Yq)" G R(Xl, ..., Xp; Yl, ..., Yq)" Go (xl, . . . ,  Xp). 
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Proof. Let x denote xl, ..., Xp and let y denote Yl, .--, Yq. Then Proposition 6.3 implies 

that  GR+a,~(x;y)=GR,~(x;y).Ga(x). Now using Lemma 3.4 we obtain Gn,~(x;y)-- 

y). D 

We are now ready to define the structure constants for the coproduct in F. We will 

say that  a sequence of integers w=(i l ,  ..., iz) is a partial reverse lattice word with respect 

to an integer interval [a, b], if for all l<~k<~l and pE [a, b-1] ,  the subsequence (ik, ..., it) 

has more occurrences of p than of p + l .  

Given three partitions ,~=(A1, ..., ,~p), P=(#l , - - - ,  #q) and u, we then define d~, to be 

(-1)1~1+1,1-1-1 times the number of set-valued tableaux T of shape u such that  w(T) is 

a partial reverse lattice word with respect to both of the intervals [1,p] and [p+l,p+q], 

and with content (,~, #)=(,~1,-.., Ap, pl, ..., #q). Notice that  if R is a rectangle which is 

taller than A and wider than # then d ~ R + ~ . ,  ~ , : ~ , , n  by Theorem 5.4. 

THEOREM 6.6. For any partition u we have 

C~ (5; y) = Z d~, CA (x ) -C ,  (0; y). 
A,tt 

Proof. It is enough to show this for finitely many variables x l , . . . ,xp and Yl,..., Yq, 

as long as p and q can be arbitrarily large. Let R=(q) p be a rectangle with p rows and 

q columns. If ~ is a partit ion such that  G o occurs with non-zero coefficient in GR.G, 

then first of all RCQ. Furthermore, Corollary 6.4 shows that  GQ(x; y) is non-zero only if 

has the form p=(R+,~,  #) for partitions A and it. By these observations we get 

GR(X; y). G~ (x; y) = E d;~ GR+)~,tL (x; y) = E d ~  GR (x; y). G~ (x). G~ (0; y). 
A,tt A,;~ 

Since Theorem 3.1 shows that  GR(x; y)•O, this proves the theorem. [] 

Again using the fact that  G~(1-e -X;  1 - e  y) is supersymmetric, this theorem implies 

that  G .  (x, z; w, y ) =  ~ d ~  G~ (x, w) -G ,  (z;y) whenever x, y, z and w are different sets of 

variables. 

COROLLARY 6.7. The ring F = ( ~ ) Z . G ~  is a commutative and cocommutative bi- 

algebra with product F Q F - + F  given by 

v 

and coproduct A: F - ~ F |  given by 

AG~ = E d[ ,G~|  
A~tt 
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The linear map F - + Z  sending G(o)= l  to one and G~ to zero for A~O is a counit. 

Furthermore, conjugation of partitions defines an involution of this bialgebra: 

G~(x; y) ~ G~,,(x; y) = G;~(y; x). 

Proof. These s tatements  are clear from Theorems 5.4 and 6.6, and Lemma 3.4. 

Example 6.8. Using the definition of the coefficients d~,t, we may compute 

AG1 = G l | 1 7 4 1 7 4  

[] 

We will finish this section by showing tha t  F indeed contains all stable Grothendieck 

polynomials. We star t  by generalizing the Lit t lewood-Richardson rule of Theorem 5.4 

to a rule for the stable Grothendieck polynomial of any 321-avoiding permutat ion.  

Given parti t ions A C ~ we define G~//~ = ~ d~,, G~. It  then follows from Corollary 6.7 

that  

(6.3) 
ACu 

and G,//~ is furthermore uniquely defined by this identity. Therefore we deduce from 

Lemma 6.1 tha t  

= ( 6 . 4 )  

A/a r o o k  s t r i p  

where the sum is over all parti t ions aCA such that  A/a  is a rook strip. 

Now given a skew shape 0=u /A and a part i t ion #, let a0,~=a~/~,~ be ( - 1 )  I~1-1~ 

times the number of set-valued tableaux T of shape 0 such that  w(T) is a reverse lattice 

word with content p. 

THEOREM 6.9. For any skew shape 0=~/A we have 

G~,/~ = E ao,~G~. 
tt 

Proof. We will s tar t  by comparing the coefficients d~,~ and a0,~. Suppose that  T is 

a tableau of shape ~ such that  w(T) is a partial  reverse lattice word with respect to the 

intervals [1, I(A)] and [l(A)+l,l(A)+l(#)], and with content (A,p). Then all integers in 

T which come from the interval [1, I(A)] must be located in the upper-left corner in T 

of shape A. Furthermore, any such integer i can occur only in row i. Now let the skew 

shape ~/~ be the region in which the integers larger than l(A) are located in T. Since 

this region can only overlap A in a rook strip, A/a must  be a rook strip. If you remove 
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all integers smaller than or equal to I(A) from T and subtract I(A) from the rest, then 

the result is a tableau of shape v/(~ whose word is a reverse lattice word with content #. 

Since T is uniquely determined by A and this skew tableau, we obtain 

d~.= E (- 1)IA/"I c~/a'"' 
A/a rook strip 

where this sum is over all partitions aCA such that  A/a is a rook strip. 

To finish the proof we set G . / ~ = ~ .  a . /~ , .G. .  Then we obtain 

G~,//A = E E (-1)la/~ G" = E (-1)la/"l  G~/"" 
tt .X/or rook strip A / a  rook strip 

By comparing with (6.4) and noting that  the transition matrix between the G~/;~ and 

the G~//~ for fixed v is invertible, we conclude that G~/~ = G~/~. [] 

Let us remark that  all of the theorems 3.1, 5.4, 6.6 and 6.9 can be summarized in 

the following statement. We leave the details to the reader. 

COROLLARY 6.10. The (n-1)-fold coproduct applied to Gv/A is given by 

A,~- I G~/~ = E ~/~ dt~(1) ..... t~(n) Gt~(1) @ ""@ GtL(n) ' 
,(1) ..... ,(n) 

,r 1)Iv/AI+E I~(i)l where ~(1) ..... t,(~) is ( -  times the number of set-valued tableaux T of shape 

v/A such that w(T) is a partial reverse lattice word with respect to each of the intervals 
k - - 1  �9 k 

[1+E/=1  l(#(z)), l(tt(i))] for and has content E i = l  1 ~<k~<n, (#(1), ..., #(n)) .  

Finally, we will give an independent argument showing that the stable Grothendieck 

polynomial Gw =Gw (x; y) for any permutation w is contained in F. Recall that  the single 

Schur function s~(x) for a partition A is defined by 

sa(x)= ~_,x r, 
T 

where the sum is over all semistandard tableaux T of shape A [20], [10]. This is the term 

of lowest degree in the single stable polynomial Ga(x). 

If p is a partition containing A, let g~, be the number of row and column strict 

tableaux of shape p/A such that  all entries in the i th  row are between 1 and i - 1 .  The 

boxes of these tableaux should contain single integers. Then Lenart  has proved the 

following result [18]. 
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THEOREM 6.11 (Lenart).  Let wa be the Grassmannian permutation for A with de- 

scent in position p>~l(A). Then the single Grothendieck polynomial OS~x(x) is given by 

r  = E (-1)lu/Xlgx"s" (xl' ...,Xp), 
ttDA 

where the sum is over all partitions # containing A. 

As a consequence we obtain the formula 

Gx(x) = E (-1)lt~/Xlg;~usu(x)" (6.5) 

t tDA 

This formula can also be derived from Theorem 3.1. We will briefly sketch the argument.  

It  is sufficient to construct a bijection between set-valued tableaux T of shape A and pairs 

(U, S) where U is a semistandard tableau of some shape p containing A and S is one of 

the row and column strict tableaux contributing to gau- We shall do this by induction 

on I=I(A).  

Given a set-valued tableau T of shape A, let R be the top row of T and let T ~ be the 

rest. By induction we can assume tha t  T ~ corresponds to a pair (U', S ' ) .  Now let R be 

the unique semistandard tableau of shape (A1, 1 TM) where m =  I R I -  A1, such that  xR=x  R 

and each box in the top row of R contains the smallest integer in the corresponding box 

of R. For example: 

R=11212123141 gives 212141 

Now let U=U~.R be the product  of U ~ and R in the sense of [10, w Then U has shape 

#=(A1, a)  where the parti t ion c~ is obtained by adding a vertical strip to the shape of U ~. 

Finally, let S be the skew tableau of shape # / s  obtained by copying the i th  row of S ~ to 

the ( i + l ) s t  row of S; if S needs an additional box in this row, we put i in this box. One 

may then check that  the map  T ~  (U, S) gives the desired bijection. For example: 

1 1234  
T = gives 

2 3 4 5  

(11 
( u , s ) =  2 2 4 

3 4 ' 

Equation (6.5) shows that  a stable polynomial G~ (x) is an infinite linear combination 

of Schur functions s,(x) for partit ions pDA such that  # and A have the same number of 
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columns. Since the coefficient of s~(x) is g ~ - - 1 ,  we can also go in the opposite direction 

and write each Schur function st,(x ) as an infinite linear combination of single stable 

Grothendieck polynomials for partitions with the same number of columns as #. In fact, 

Lenart  also gives an explicit formula for doing this [18]. 

We also need the following result of Fomin and Greene [7]. If wE Sn is a permutation 

and ~ is a partition, let g ~  be the number of semistandard tableaux T of shape ~' such 

that  if the column word of T is w(T)=(i i ,  ..., it) then uii ... uir=:t:u~ in the degenerate 

Hecke algebra Hn(0). Notice that  this implies that  g~i  is zero if )~ has n or more columns. 

THEOREM 6.12 (Fomin and Greene). The single stable Grothendieek polynomial 

Gw(x) is given by 

G~(x) = E (-1)l~l-l(~) g~x sx (x)" 
A 

We can finally prove 

THEOREM 6.13. Let wE S~ be a permutation. Then the double stable Grothendieck 

polynomial G~.(x; y) can be written as a finite linear combination 

Gw(x; y) = ~ a ~  Gx(x; y) (6.6) 

of the polynomials G~(x;y) for I)~I>~l(w). In particular, G~ is an element of F. 

Proof. It follows from (6.5) and Theorem 6.12 that  the single polynomial G~(x) is 

a possibly infinite linear combination of polynomials Gx(x) for partitions ~ with at most 

n -  1 columns: 

G~(x) = E a ~ G ~ ( x ) .  
A 

Using that  G ~ ( 1 - e - X ;  1 - e  y) is supersymmetric, this implies that  (6.6) is true with the 

same coefficients. 

Let wo=n ... 2 1 be the longest permutation of Sn. Using Lemma 3.4 we then deduce 

that  (~w~=c~v0wwo,~, is zero unless l ( ~ ) = ~ < n .  We conclude that  Gw(x;y) is a finite 

linear combination of the polynomials G~(x; y). [] 

Since the term of lowest degree in Gw (x) is the stable Schubert polynomial or Stanley 

symmetric function Fw(x), it follows that  when ]Ai=l(w) the coefficient aw~ is the one 

defined by Stanley [23]. The coefficients ~w~ also generalize the structure constants 

c ~  and d ~  of F. On the other hand, the coefficients ~w~ are special cases of quiver 

coefficients c~(~) which will be introduced in [2]. We believe that  these quiver coefficients 

have alternating signs. A particular case of this has been confirmed by A. Lascoux [15]. 
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THEOREM 6.14 (Lascoux). The coefficients ( ~  have alternating signs. In other 

words, ( - 1 ) l ~ l - l ( ~ ) a ~  is non-negative. 

Lascoux's proof is based on a beautiful recursive formula for writing a stable Groth- 

endieck polynomial G~ as a linear combination of the basis elements G~. 

It  would be interesting to define a non-commutat ive polynomial G~(u) in the local 

plactic algebra for any permutat ion w. Such a definition might lead to a Li t t lewood- 

Richardson rule for the coefficients a ~ .  

7. C o n s e q u e n c e s  o f  the  L i t t l e w o o d - R i c h a r d s o n  ru l e  

In this section we will derive some consequences of the formulas proved in the past two 

sections. We will s tar t  with a Pieri rule for the coproduct in F which is analogous to 

Lenart ' s  Pieri rule of Corollary 4.7. If A= (A1, ..., tp)  is a partition, we let I =  (12, ...,/kp) 

be the parti t ion obtained by removing the top row of A. 

COROLLARY 7.1. If I / #  is a horizontal strip and k>~O an integer, then 

= (_ l )~_ l~ / ,  I ( r ( # / A )  
d.,(k) \k-I~'/~I) ' 

where r(#/ l )  is the number of rows in #/A. If  A/# is not a horizontal strip then d~,(k)=0. 

This is an immediate consequence of Theorem 6.6. Notice tha t  this implies that  

G ~ ( x l , . . . , x p ) = E ( _ l ) k _ , ~ / , , (  r(#/A) ~ k 
,,k \k- I~/ , I ]  c , ( ~ ,  ..., Xp_l)xp, 

where the sum is over all integers k/> 0 and all partit ions # C A such that  A/# is a horizontal 

strip. This gives a practical way to calculate stable Grothendieck polynomials G:~(x), 

which can easily be extended to double stable Grothendieck polynomials and 321-avoiding 

permutations.  For example, if R=(q) p is a rectangle with p rows and q columns, then 

CR(Xl'""Xp;Yl'""Yq)= ~I (Xi"~yj--xiYj)" (7 .1)  

l~i~p 
l~j~q 

To see this, use the Pieri rule and Corollary 6.5 to write 

CR(Xl'""Xp;y)~-- E (--1)J~-k--qc(qP-l'J) (xl'''''xp-1;y)'xk 
q~jWk<~q+l 

= F_, (-1)J§176 
q~j+k~q+l 

= G(q)p-, ( /1,  ..., x~_~; y). c~  (x~; y), 
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where y denotes the variables y~, ..., yq. Since GR(X; y)=GR,(y; x), equation (7.1) follows 

from this by induction on p and q. Notice that  Gl(Xi; yj)=xiWYj-xiYj  by Example 6.8, 

Theorem 3.1 and Lemma 3.4. 

As another application of Corollary 7.1, notice that  if ~/# is a horizontal strip then 

d"(k)=~--~(--1) k-lA/#l = 0 otherwise. k>~o k>~o 

This implies that  

G~ (1, xl, x2,... ) = Z d~,(k) Gu (x). i k = G X (x). 
~,k 

In particular, if we let ~bp: F-+F be the linear map which maps G~ to G~, where p--  

(Ap+l, Ap+2, ...) is obtained by removing the top p rows of A, then Cp is a ring homo- 

morphism. Being used to calculating in the ring of symmetric functions, we find this 

somewhat surprising. Similarly we have ACp=(Oi |  whenever i+j=p. This im- 

plies lots of identities among the structure constants c~p and d ~  of F. For example, 

if ~ p C A  are partitions and p~>/(A), then by comparing the coefficients of G~|  in 

ACpG),=(I|162 we obtain the identity ~ d ~ = 0 .  The map Cp is related to the 

proper pushforward map on Grothendieck groups from a Grassmann bundle to its base 

variety. See [2] for details about this. 

We will next describe some identities involving rectangles. Given a rectangle R = (q)P 

with p rows and q columns, and a Young diagram # contained in R, we let/5 denote # 

rotated 180 degrees and put in the lower-right corner of R. Then Theorem 6.6 implies 

the following multiplicity-free formula for the coefficients of AGR: 

{( - -1 )  I'xI+I~I-IRI if ~LJft=R and AN/2 is a rook strip, (7.2) 

d R  ---- 0 otherwise. 

There is a similar formula for multiplying the stable Grothendieck polynomials of 

two rectangles R1 and R2. Let R=R1NR2 be their intersection and Q=R1LJR2 their 

union. Then we have 
R GRI" GR2 = ~ d;~Ge+;~,~, (7.3) 

where (Q+s #) is the partit ion 

= J 
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Assuming that  R2 is the tallest of the two rectangles, this formula is easy to prove from 

Theorem 5.4 by counting set-valued tableaux of shape RI*R2.  

J .R .  Stembridge has recently classified all multiplicity-free products  of Schur func- 

tions [25]. We will say tha t  a product Gx. G ,  is multiplicity-free if all constants c~,u 

are +1 or zero. Stembridge's result then has the following analogue for Grothendieck 

polynomials. 

PROPOSITION 7.2. The product Ga .G,  is multiplicity-free if and only if both parti- 

tions A and # are rectangles, or one of them is a single box or empty. 

Proof. It  is enough to show that  if A is not a rectangle and l=l(p)~>2 then the 

absolute value of some coefficient c~, is at least two. The assumptions on A and l imply 

tha t  we can find a parti t ion L) containing A such that  Q/A is a vertical strip with l +  1 

boxes and at least three columns. Then it follows from Lenart ' s  Pieri formula that  

c~,(iz)~<-2 , which means that  there exist two different tableaux T1 and T2 of shape A 

such that  the concatenations w(T1)o(1,1-1,. . . ,  1) and w(T2)o(1,1-1,  ..., 1) are reverse 

lattice words with the same content L). But then w(T1)ow(V(#) )  and w(T2)ow(U(p))  

must also be reverse lattice words with the same content, so c ~ , , , ~ - 2  if u is the content 

of w(T0ow(U(i t )  ). [] 

Similarly, a coproduct AG~ is multiplicity-free if and only if A is a rectangle. 

A related consequence of Theorem 5.4, which we will need in w is that  if a basis 

element GR for a rectangular part i t ion R occurs with non-zero coefficient in a product 

G;~.G~, then R is the disjoint union of A and ft (which in particular means that  c~-21) .  

This can be proved as follows. Start  with R and the parti t ion It, and look for a set-valued 

tableau of shape A,it  for some parti t ion A, such that  this tableau has content R. The 

filling of It then has to be U(it). Now construct A and the tableau on A by first filling 

1 in some boxes, then 2, etc. I t  is then easy to see that  at each step there is only one 

choice, i.e. both  A and the tableau on A are uniquely determined by the requirement that  

the word of the tableau on A,it  is a reverse lattice word with content R. 

As noted earlier, the polynomials G~/;~ are uniquely determined by (6.4). It  is not 

hard to see that  the formula in the opposite direction is 

(7.4) 
aCA 

where this sum is over all parti t ions ~r contained in A. Prom this we obtain the following 

inverse of the relation ,~  - R + X , ~  between the structure constants of F. Namely, if R 

is a rectangle which contains A and # then 

E HR+A'tt C~AIz ---- OL~*A,~" = O ~ ( R + A , # ) / R , ~  -~ - v , a  " 

a c R  
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We will finish this section by proving some results concerning the shapes of partitions 

which give non-zero constants c~t,, d~u or a. /~,u.  We will need a few lemmas which allow 

us to make small changes to set-valued tableaux. Let the shared boxes of a tableau be 

the boxes that  contain two or more integers. 

LEMMA 7.3. Let T be a set-valued tableau of shape v/A with at least one shared 

box, and let y be the largest integer contained in a shared box of T.  Suppose that v is 

a sequence of integers such that the concatenation w(T)ov  of the word of T with v is 

a reverse lattice word. Then there exists a set-valued tableau T of shape v/A such that 

w(iF)ov is a reverse lattice word, and so that the integers contained in T are the same 

as those in T,  except that one integer x>~y is left out. (In other words, the content of 

(x)ow(iY) is equal to the content of w(T) . )  

Proof. Start by locating the leftmost shared box A of T which contains y. To 

construct :r we start  by removing y from this box. Then look for the nearest box B 

below or to the left of A which contains y + l ,  such that  the box above B does not 

contain y and the box to the left of B does not contain y + l .  If no such box exists, then 

w(T)ov  stays a reverse lattice word even if y is removed from A. If we can locate a box 

B satisfying these requirements, we replace y + l  with y in this box. Notice that  B can't  

be a shared box by the assumptions. We then continue in the same way, with B in the 

role of A and y + l  in the role of y. T is the tableau resulting when no new box B can 

be obtained. [] 

The following picture shows an example of the transformation described in the proof. 

The initial box A is the one in the upper-right corner and y=6 .  

7 12313 7 

844588  [ : ?  81 

COROLLARY 7.4 (of proof). With the assumptions of Lemma 7.3, there exists a 

partition O obtained by adding a single box to v and a tableau T1 of shape ~/A such 

that w(T1)ov is a reverse lattice word and the content of w(T1) is equal to the content 

of w(T) .  

Proof. If A is empty so the shape of T is the partit ion v, then we obtain T1 as the 

product x . T  where x is the integer which :F lacks compared to T. When this product  is 

formed, the only boxes that  can be affected are those containing integers strictly larger 
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than y or those containing y which are to the left of the original box A in the construction 

of 5~. Since this implies that  no shared boxes are modified, the shape of T1 is only one box 

larger than u. When u/A is not a partition, the same trick will work if we pretend that  

the boxes of A arc actually filled with small integers when the product x . T  is formed. [] 

Notice that  a sequence w of integers between 1 and b is a partial reverse lattice word 

with respect to two integer intervals [1, a] and [a+l ,  b] if and only if wo(a N, ..., 2 N, 1 N) 

is a reverse lattice word for large N. Therefore Lemma 7.3 and Corollary 7.4 are still 

true if one replaces "reverse lattice word" with "partial reverse lattice word" for given 

integer intervals. 

The following result says that  the non-zero structure constants of F come in paths 

which start in the usual Littlewood-Richardson coefficients. 

PROPOSITION 7.5. Let A, # and L, be partitions. 

(i) If  c~,~O and ]ul>lAl+l# I then there exists a partition ~Cu of weight I~[=lu l -1  

such that c~.r 

(ii) / f  c~,t,r and lul > IAI + I#1 then there exists a partition [ tD.  of weight Iftl = I#1 + 1 

such that c~#r 

(iii) If  d~.r and lul<lAl+l#l then there exists a partition ~D~ of weight I#1= 

lu l+ l  such that d~,#O. 

(iv) If  d~,r and Iz, l<lAl+l#l then there exists a partition f~C, of weight 1/51= 

I"1-1 such that d~#7~O. 

(v) If c~/~,.r and I.I > I~/al then there exists a partition p C ,  of weight I#1= 

1,1-1 such that c~,/~,#r 

(vi) If  ~/~ , . #o  and I , l>l~/~l  then there exists a partition ~ D ,  of weight I~1= 

lu l+ l  such that c~ /a , , r  

(vii) I f  c ~ / a , , r  and I , l>)~/a l  then there exists a partition ~CA of weight I~1 = 

IN-1 such that a /L . r  

Proof. Lemma 7.3 implies (i), (iv) and (v), while Corollary 7.4 implies (ii), (iii) 

and (vi). For example, to prove (ii) from the corollary, recall that  if c~,,r then there 

exists a tableau T of shape p such that  w(T)ow(U(A))  is a reverse lattice word with 

content u. Since I~l>lal+l.I, r must contain a shared box. We can therefore let/5 be 

the shape of the tableau 5Pl of Corollary 7.4. 

Finally, to prove (vii) we need to show that  if T is a tableau of shape u/A with at 

least one shared box such that  w(T)  is a reverse lattice word with content u, then there 

exists a tableau T of a shape u/A such that  w(:F) is a reverse lattice word with the same 

content u. Let y be the smallest integer contained in a shared box of T, and let A be the 

northernmost shared box containing y. Then start  by removing y from this box. If all 
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integers in the row above A are larger than or equal to y, then we can add a new box 

containing y at the left end of this row. Otherwise let B be the rightmost box in the 

row above A which contains an integer strictly less than  y. Now replace the integer in B 

with y and continue in the same way with this integer in the role of y and B in the role 

of A. Using the induction hypothesis that  some box strictly north of A contains y, it is 

not hard to check that this process stops before we reach the top row of T, and that the 

result is a tableau T with the desired properties. [] 

LEMMA 7.6. Let T be a set-valued tableau whose shape is a partition A, such that T 

has at least one shared box. Let y be the smallest integer contained in a shared box of T.  

Suppose that v is a sequence of integers such that w(T)ov  is a reverse lattice word. Then 

there exists a tableau T of shape A and an integer x ~ y  such that w(T)ov  is a reverse 

lattice word, and the content of (x )ow(T)  is equal to the content of w(T) .  

Proof. Let a be the set in the leftmost shared box which contains y, and let T1, C, 

D and T2 be as in the picture. 

Let (T1, y) be the tableau obtained by attaching a box containing y to the right side of T1, 

and let 0=sh(T1,  y ) / s h ( T J  be the skew diagram of this box. Then set (x, :F1)=Tgo(T1,9), 

and let :F be the tableau obtained from T by replacing T1 with T1 and a with 5 = a \ { y } .  

Notice that  x must be a single integer, since only integers less than or equal to y in T1 

are affected when forming T40 (T1, y), and none of these are in shared boxes. 

Since w(T)ov=w(T1)ow(C)ow(a)ow(D)ow(T2)ov  is a reverse lattice word, so is 

w(Tl ,y)ow(C)ow(~t)ow(D)ow(T2)ov.  But then Lemma 5.3 implies tha t  ( x )ow(TJo  

w(C)ow(~t )ow(D)ow(T2)ov=(x)ow(T)ov  is a reverse lattice word. The lemma follows 

from this. [] 

PROPOSITION 7.7. I f  C~#O then v is contained in the union of all partitions 0 of 

weight [g[=[A]+[p I such that the Littlewood-Richardson coefficient c~t , is non-zero. 

Proof. I t  is enough to show that  for each 14i~<l(v) there is a parti t ion 0 of weight 

]g]=]A]+]#[ such that  c~,~#0 and Q~=vi. We will do this by induction on ]vl, the case 

Iv] = [A] + [p[ being trivial. 

By Theorem 5.4 there exists a tableau T of shape A such that  w(T)ow(U(#) )  is a 

reverse lattice word with content ~,. Since ]~] > IA] + ]p], this tableau must have at least one 
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shared box. If  this box contains an integer which is larger than i, then Lemma 7.3 gives 

us a tableau T in which the number of i ' s  is the same as in T. Otherwise some shared 

box contains an integer smaller than  i, in which case we use Lemma 7.6 to produce T. 

Now if P is the content of w(T)ow(U(#)), then c~,7~0 and ~ = ~ .  Since I~ [= l~f -1 ,  the 

required parti t ion ~) exists by induction. [] 

Let us finally remark that  the triples of partit ions (A, #, ~) for which c~,itr do 

not form a semigroup, as is the case if one only considers Lit t lewood-Richardson coef- 

flcients [26]. For example, ~(2,1) ~ (4,2) ,, . (1),(1)=-~ but c(2),(2)=u. However, F might still have the 

property that  if CNA ,N~ Nlt is not zero for some integer N > I  then c~',itr For Li t t lewood- 

Richardson coefficients this has been proved by Knutson and Tao [12]. The same question 

applies to the coefficients d~it and a~,/:~,~ as well. 

8. K- theory  of  Grassmannians 

This section establishes the link between K- theory  of Grassmann varieties and the bi- 

algebra F. This is then used to describe some results of A. Knutson regarding K-theoret ic  

triple intersections on Grassmannians.  

If  E and F are vector bundles over a variety X, and w is a permutat ion,  we define 

an element G ~ ( F - E )  in the Grothendieck group of X as follows. Suppose first that  

E=LI|174 and F=M10. . . |  are direct sums of line bundles. Then we set 

Gw(F-E)  = G w ( 1 - M ~  -1, ..., 1 -M~- ]  ; l - L 1 ,  ..., 1 - L e ) .  

Since the stable Grothendieck polynomial G~(x; y) is symmetric  in both  the xi and the 

yi separately, this expression can be written as a polynomial in the exterior powers of F v 

and E.  For this reason the definition makes sense even when E and F do not have decom- 

positions into line bundles. The fact that  G~ ( 1 -  e-X; 1 -  e y) is supersymmetric  translates 

into the formula G),(FOH-E|  where H is an arbi trary vector bundle. 

Lemma 3.4 says that  G:~(F-E)=G;v(EV-FV). 

Now let X = G r ( d ,  C ~) be the Grassmann variety of d-dimensional subspaces of C n, 

and let SC C ~ • X be the tautological subbundle of rank d on X.  Let A be a part i t ion 

with at most d rows and at most n - d  columns. Then the class of the structure sheaf of 

the Schubert variety f~:~cX defined by (1.1) is given by 

= o (s v )  = (s.1) 

To see this, let Y = F I ( C ~ ) = { V 1 c . . . c V ~ = C  n} be the variety of full flags in C n with 

tautological flag F1C... C F ~ = C ~ •  Y. For any permutat ion wE S~ there is a Schubert 
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variety in Y defined by 

~ = {V.EY Idim(VpnC k) ) p - r w ( p , n - k )  for all p, k}, 

where rw(p, k)= #{i<plw(i  ) <.k}. It follows from [16] or [11, Theorem 3] that  [On~]= 

@~(1-L1,  ..., 1 - L n )  in K~ where @~(x) is the single Grothendieck polynomial associ- 

ated to w and Li =Fi/Fi-1. Now if 0: Y--+X is the map sending a flag V. to the subspace 

Vd of dimension d, one can check [10, Proposition 10.9] that  0 -1 (~x)=Q~x,  where w;~ESn 

is the Grassmannian permutation for A with descent in position d. Since the pullback 

map 0": K~176 is injective, it is therefore enough to show that  [On~]=G~(F~) 

in K~ This is true because r ...,Xd) by Theorem 6.11. 

Now given any partit ion v, let I~CF be the ideal spanned by the elements Ga for 

all partitions A which are not contained in v. 

THEOREM 8.1. The map G~-~G:~(S v) induces an isomorphism of rings F/IR ~- 

K~ Cn),  where R=(n-d)  ~ is a rectangle with d rows and n - d  columns. 

Proof. Since the map G~-~Ga(S v) is surjeetive by (8.1) and since F/Itr and K~ are 

free Abelian groups of the same rank, it is enough to show that  Ga(S  v) =0  when A~R. 

If l (A)>d this follows from Theorem 3.1 since S has rank d. Now if 0-+S-+C'~-+Q-+0 

denotes the universal exact sequence on X, we get Ga (S v ) = Ga (S v - C n) = Gx, (C n - S) = 

G~,(Q@S-S)=G~,(Q), which is zero if Al>n-d=rank(Q). [] 

As mentioned in the introduction, the coproduct on F is also closely related to K-  

theory of Grassmannians. Given positive integers dl < nl  and d2 < n2, set X1 = Gr (dl, C nl), 

X2=Gr(d2,C n~) and X=Gr(dl+d2,C~+n2), and let $1, $2 and S be the tautologi- 

cal subbundles on these varieties. Let P be the product P=X1 x X2 with projections 

~h: P--+X,i, and let 0: P--+X be the embedding which maps a pair (V1, V2) of subspaces 

V1C C nl and V2C C n2 to the subspace V10V2c c n ~ o c  n~. Then since r 

it follows that  the pullback on Grothendieck rings r :K~176176174176 is given 

by r  d~t,G;~(S1)| ). 

We will next report on some unpublished results of A. Knutson regarding triple inter- 

sections of Schubert structure sheaves.(2) Let Q: X=Gr(d, Cn)--+{*} be a map to a point 

and let ~.: K~ Z be the induced map on Grothendieck groups. The triple intersection 

number of the structure sheaves O ~ ,  On,  and O ~  is the integer ~. ([One]" [One]-[On.I). 

This is a natural K- theory  parallel of the symmetric Littlewood-Richardson coefficients 

studied in e.g. [12]. Let :T~=:Z~\n~ ' C ( 9 ~  denote the ideal sheaf of the complement of 

the open Schubert cell ~1~, in ~ .  To analyze triple intersections, Knutson proved that  

(2) While Knutson's results hold for arbitrary partial flag varieties, we shall only be concerned with 
Grassmannians here. 
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these ideal sheaves form a dual basis to the basis of Schubert structure sheaves with 

respect to the pairing ((~,~)=~.(c~.~) on K~ Knutson furthermore worked out the 

change of basis matrices. We will apply the methods developed in the present paper  to 

give simple proofs of these results. In addition we will prove an explicit formula for triple 

intersections and give an example showing that  these numbers can be negative, although 

the signs of triple intersections do not al ternate in a simple way. 

Let t = I - G I E F .  We will abuse notation and write t also for its image 1-[O~1] 

in K~ which by definition of the polynomial G1 is equal to the class of the line bun- 

dle AdS. Corollary 4.7 implies tha t  for any parti t ion ~ we have t.G~=y](-1)I~/~IG~, 
where the sum is over all partit ions a D ~  such tha t  cr//~ is a rook strip. Since 0.([(9a~])=1 

for each acR=(n-d)  d, it follows from this that  Q.(t. [Oa~]) is equal to one when A = R  

and zero otherwise. If A is contained in R, let ~ be the parti t ion obtained by rotat ing 

the skew diagram R/~ 180 degrees, i.e. ~ = ( n - - d - - ~ d ,  ...,rt-d-~l). As we noted in w 

the coefficient of GR in a product  G~. G~ is non-zero if and only if # = ~ ,  and in this case 

we have c ~ = l .  It  follows from this that  ~,(t.[Oa~].[Oa,]) is equal to one if # = A  and 

zero otherwise. We conclude that  the elements t-[Onx] form a dual basis to the basis 

of Schubert structure sheaves, with [Oa~] and t-[Oa~] dual to each other. Since f ~ \ f ~ ,  

is a zero section of the line bundle Ads v restricted to ftx [22], we finally deduce tha t  

[Z~ l = [ h d s |  = t .  [Vail. 

Now, calculating a triple intersection number 0, ([Onx]. [Oa,] '  [Oa~]) is equivalent to 

expanding [Oax].[Oa,] in terms of the dual basis {[Z~]} and extracting the coefficient 

of [Z~]. This is the same as the coefficient of G~ when the formal power series t -1. Ga- G ,  

is writ ten as an infinite linear combination of the basis elements for F. Notice tha t  

multiplication by t -1 takes any basis element Ga to the sum of all elements G~ for 

parti t ions cr containing ~; this is the inverse operation to multiplication by t. We therefore 

obtain the formula 

= ( 8 . 2 )  

crCP 

Alternatively we have 0, ([Oa~] O - �9 [ a , l . [ O a ~ ] ) - - ~ D a % t  ,. It  turns out tha t  many of these 

intersection numbers are non-negative. For example, when P contains the union of all 

partit ions cr with non-zero coefficient c ~ then the intersection number is equal to one, 

which follows from the fact tha t  the map 0p of w is a ring homomorphism. Similarly 

one can check tha t  all triple intersections on Grassmannians of dimension smaller than  

20 are non-negative. However, a direct calculation shows that  the coefficient of G5431 in 

t -1  (G321)2 is - 1 .  In other words, negative triple intersections can be found on Gr(4, C9). 

Let us remark here that  the signs showing up in the structure constants of F are to 

some extent a mat te r  of choice. To be precise, all s tructure constants of F with respect 
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to the basis { (-1)I~1G~ } are non-negative. This viewpoint is equivalent to working with 

Fomin and Kirillov's/3-polynomials, with/3--1 [8]. We have chosen to keep a notation 

that  leads to signs in order to comply with standard definitions and to honor the fact 

that  the Schubert structure sheaves on a Grassmann variety do multiply with alternating 

signs. 

9. T h e  s t r u c t u r e  o f  F 

In this last section we will give a discussion of the overall structure of F, including its 

relation to the ring of symmetric functions. 

Recall that the ring of symmetric functions is the span A= (~x Z-sx of all Schur 

functions s~=s~(x) [20], [10]. This is in fact a n o p f  algebra [4, Chapter 1]. Its structure 

constants are the Littlewood-Richardson coefficients, i.e. 

= E  and E S~'St t  C~ttSv ~ C)~t~S~St t  , 

where the first sum is over partitions u and the second over partitions A and #, such that  

]u]=lA]+]# ] in both cases. The antipode is given by S(s~)=(-1)l~ls~,. 

As noted in the introduction, A is the associated graded bialgebra to F with respect 

to the filtration Fp-- (~l~l~>p Z. G),. This is an immediate consequence of the fact that  c~,~ 

and d~,g are both equal to the usual Littlewood-Richardson coefficient when ]u] = [~] + ]#]. 

Furthermore, if we let F and ft. be the completions of F and A, consisting of infinite linear 

combinations of stable Grothendieck polynomials and Schur functions, respectively, then 

F~/~ as bialgebras. This is true because if we set the variables Yi to zero, then F and 

both consist of all symmetric power series in Z[[xa,x2, ...~. 

Despite these facts, F and A are not isomorphic as bialgebras themselves. In fact, 

there exists no antipode which makes F a Hopf algebra. Recall that  an antipode is 

a linear map S:F--+F such that  S(1)=1 and for each non-empty partit ion u we have 
V d~,S(G~). Gg-O, or equivalently 

E S(G~)G.//~ = 0, (9 .1 )  

ACu 

where G,//~ is given by (6.3). Taking u=(1)  we get S(G1).(1-G1)+I.GI=O, which 

implies that  S(t)=t -1 where t= l -G1.  Since t - I E F  is equal to the sum of the elements 

G~ for all partitions A, this is not an element of F. 

However, F is not far from being a Hopf algebra. In fact, if we let Ft be the 

localization generated by F and t -1, then Ft is a Hopf algebra. To see this, notice that  

(6.4) implies that  G~//,=t m where m is the number of inner corners of u, i.e. the number 
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of indices i such that  pi>12i+ 1. By (9.1) we therefore see that  an antipode S:Ft--+Ft 

must satisfy 

s(c.)  = - t  Z (9.2) 
,x~v 

This equation can be used to define S :F t -+Ft .  The obtained antipode is furthermore 

a ring homomorphism, since it must agree with the antipode on the ring of symmetric 

functions extended to A-=F. 

Regarding the structure of F as an abstract ring, we conjecture: 

CONJECTURE 9.1. (a) Any stable polynomial G:~ can be written as a polynomial in 

the elements GR for rectangular partitions R contained in A. 

(b) The elements {..., G3, G2, G1, G(1,1), G(1,1,1) ,---} corresponding to partitions with 

only one row or one column are algebraically independent. 

Part  (a) of this conjecture has been verified for all partitions A of weight at most 9. 

For (b), if we define the degree of a monomial in the Gk and GOt ) to be the total number 

of boxes in the partitions of the factors, then all such monomials of degree up to 9 are 

linearly independent. Furthermore, it is not hard to prove that  for any integer k~>2, the 

elements {Gk, G1, G(1,1), G(1,1,1), ...} are algebraically independent. Namely, if one uses 

the lexicographic order on partitions, then the monomials in these elements all have a 

different maximal partit ion A for which the coefficient of G~ is non-zero. 

The conjecture has some interesting consequences for the structure of F. If (a) is 

true, then Ft is generated by the the elements Gk, G(lb in addition to t -1. To see this, 

notice that  if R =  (q)P is a rectangular partit ion with at least two rows and two columns, 

and )~=(qP-l ,q-1)  is the partit ion obtained by removing the box in the corner of R, 

then 

t. GR = G1G~ - G~+(1) - G~,(1) -~- G),+(1),(1) �9 

Using (a) this shows that  t. GR can be written as a polynomial in Gq+l, G(lp+I) and the 

elements G~ for rectangles R which are strictly contained in R. This shows that  GR is 

in the ring generated by the elements Gk, GOb and t -1 by induction on the size of R. 

However, if (b) is true then the elements Gk and G(1,) do not generate F as a ring. 

In fact, the identity 

t ' G ( 2 , 2  ) = G I G 2 - ~ - G 1 G ( ] , I  ) - G 2 G ( 1 , 1  ) - ( G ] )  3 

implies that  G(2,2) can't  be written as a polynomial in these elements if they are alge- 

braicMly independent. 

Geometrically, the fact that  F is a commutative and cocommutative bialgebra implies 

that  Spec F is an Abelian semigroup scheme. The existence of an antipode on l~t means 
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that  the dense open subset Spec Ft is a group scheme. Furthermore, if Conjecture 9.1 is 

true then this open subset looks like an infinite-dimensional affine space with a hyperplane 

removed. 

We will finish this paper by raising some additional questions. First of all, several 

people have asked us when a symmetric power series in Z~xl, x2, ..., yl,Y2, ...~ is an el- 

ement in F. Even when the variables y/ are set to zero, we do not know the answer to 

this. 

In view of Conjecture 9.1 it would be very interesting to know the relations between 

the elements GR for rectangular partitions. We have also been wondering if P might be a 

polynomial ring, i.e. are there algebraically independent elements hi, h2, ... in F such that 

F = Z [ h l ,  h2, ...]? We think that this is not the case but have not been able to prove it. 

It is not hard to see that the single Grothendieck polynomials ~ ( x )  for all per- 

mutations w form a basis for the polynomial ring Z[xl,x2,.. .].  For example, one can 

check directly that  the Grothendieck polynomials for permutations in Sn give a basis for 

the linear span of all monomials k~ k~ kn-i x 1 x 2 ... x,~_ 1 for which kj <<.n-j for each j .  Alterna- 

tively one can use a stronger result of Lenart [17] which expresses any single Grothendieck 

polynomial O~(x) as an explicit linear combination of Schubert polynomials | with 

alternating signs, i.e. the sign of the coefficient of ~5~,(x) is ( -1 )  l ( ~ ' ) .  On the other 

hand, Laseoux has conjectured that each single Schubert polynomial is a non-negative 

linear combination of Grothendieck polynomials. 

Now define Grothendieek structure constants c~,vE Z by 

Cu vew(x). 
W 

These constants are generalizations of the structure constants for Schubert polynomials 

as well as the coefficients c~,, discussed in this paper. If wx, w,  and w,  are Grassmannian 

permutations for A, # and u with descents at the same position, then c[,=c~[,w .. Based 

on our results for Grothendieck polynomials of Grassmannian permutations given in this 

paper, as well as on some computational evidence, we pose(3) 

CONJECTURE 9.2. The structure constants for single Grothendieck polynomials have 

alternating signs, i.e. ( -  1)l(~w) CW, v >~ O. 

(3) Conjecture 9.2 has been proved by M. Brion [27}. 
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