

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of the 35th Annua
0-7695-1435-9/02 $17.00 © 200
 A Load Balancing Tool Based on Mining Access Patterns
for Distributed File System Servers

 Alexandra Glagoleva Archana Sathaye
 IBM Almaden Research Center Department of Mathematics and Computer Science
 650 Harry Road San Jose State University

San Jose, CA 95120 San Jose CA 95192
aglagol@almaden.ibm.com sathaye@mathcs.sjsu.edu

Abstract

In this paper we present a new web based Distributed
File System server management tool to perform load
balancing across multiple servers. The Distributed File
System from Distributed Computing Environment (DCE
DFS) is a collection of many file systems mounted onto a
single virtual file system space with a single namespace.
The tool is based on rule-based data mining techniques
and graph analysis algorithms. The data mining
procedures identify DFS file access patterns and the
graph analysis and statistical information relocates the
filesets between different file servers. We demonstrate
our tool on data collected for five months on DFS
servers in a production environment. Experiments with
this data show that our load balancing tool is useful to
file system administrators to monitor, evaluate DFS state
and to make intelligent decisions about file system
transfers in order to balance the access request load on
“read-write” filesets across DFS servers.

1. Introduction

Load balancing for distributed systems represents
mapping or remapping of work to different processors
with the intent of assigning each processor an equal
amount of work. The heaviest use of load balancing
techniques is found in the domain of distributed systems.
However, most of the work is done on computational
tasks and not in the storage systems area [4]. Distributed
File System technology from Distributed Computing
Environment (DCE DFS) [15] developed at IBM
Transarc Lab provides a user with the ability to store and
access data at remote sites, similar to the techniques used
with Network File System (NFS) [16]. DCE DFS
extends the view of a local, and therefore limited in size,
file system to a distributed file system of almost
unlimited size. DCE DFS is a collection of several file
0-7695-1435-9/02 $17.
l Hawaii International Conference on System Sciences (HICSS-35�02)
2 IEEE
systems mounted onto a single virtual file system space
with a single namespace. The end user has direct access
to all files in this distributed file system without knowing
where the physical files reside. Placing file systems onto
different servers in order to provide the optimal service
for the end users, as well as optimize the use of available
resources, is load balancing of DFS file servers.

Load balancing of data is already more efficient in DFS
than in standard nondistributed file systems. One reason
is the use of replication, which allows for “read-only”
filesets to be replicated on multiple machines. Requests
for files from frequently used “read-only” filesets are
then spread across different machines, preventing any
one of them from becoming overburdened with data
requests. Fileset characteristics in DCE DFS are also
beneficial for handling load balancing tasks. DCE DFS
filesets are typically smaller than standard UNIX filesets.
DCE aggregates can accommodate multiple filesets for
flexible disk usage, and filesets can be moved between
aggregates on different file server machines completely
under cover without a user ever knowing about such
moves.

The goal of this paper is to present a new system
administrator’s tool for managing “read-write” filesets
across DFS file servers, therefore balancing access
requests load on them. Our tool employs data mining
techniques and graph theory algorithms to accomplish
the desired results of improved work load distribution on
DFS files servers. The data mining procedures generate
association rules identifying inherent file access patterns,
while graph analysis help relocation decisions and
recommend fileset transfers.

The Mined Access Patterns DFS (MAPDFS) tool
extends and improves load balancing techniques
currently present in DFS by augmenting them with an
improved management of “read-write” filesets (in
addition to “read-only” filesets). MAP DFS tool is
designed to make intelligent decisions on mapping “read-
00 (c) 2002 IEEE 1

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of th
0-7695-1435-9/02
write” filesets to multiple DFS file servers. The tool was
tested on real access request trace data collected at IBM
Almaden Research
Center site in San Jose over a period of five months
beginning December, 1999 until May, 2000.

2. Related Work and Background

In this Section, we give a brief overview of DCE DFS
organization and architecture, some existing load
balancing techniques, data mining approaches and, graph
analysis.

2.1. Distributed File Service

DCE DFS is a distributed client-server application, built
on the underlying DCE services. It takes full advantage
of both the DCE services (remote procedure calls,
security and directory services) and the distributed
computing model itself. DFS manages information in
the form of file systems. DFS data units are organized as
follows (shown progressively from smallest to largest):

• Files and Directories: A file is a unit of user data.

Files can be organized into directories. Directories
include files and other directories as part of a
hierarchical tree structure.

• Filesets: A fileset is the smallest unit of DFS
administration. A fileset is a subtree of files and
directories, no larger than a disk or partition. A
fileset is a convenient grouping of files for
administrative purposes, e.g. files pertaining to a
particular project can be grouped on the same fileset.

• Aggregates: An aggregate is a unit of disk storage,
similar to a disk partition. It is also a unit of fileset
exporting. Aggregates can contain one or more
filesets.

• Servers: A collection of aggregates resides on a DFS
server.

• Cell: All DFS servers together constitute a DFS cell.

We ignore the DFS aggregate abstraction because it adds
no value to the file access pattern analysis and final
decision making process on fileset transfers between
DFS file servers.

2.2. Load Balancing

Load balancing techniques are generally widely
employed in the domain of distributed systems.
However, most of their applications work on
0-7695-1435-9/02 $17.
e 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
 $17.00 © 2002 IEEE
redistributing the work load between multiple processors
to speed up computational tasks and not in the storage
systems area.

Among different existing load balancing strategies are
bidding [13], drafting [9], random [5] and gradient [8]
load balancing algorithms. Bidding and drafting
techniques are based on two main approaches to load
balancing: sender initiated and receiver initiated. In
sender initiated strategies an overloaded processor
initiates the balancing process [13]. In receiver initiated
algorithms the lightly loaded processors attempt
to “draft” more work from those heavily loaded [9].
Gopinath et. al. [6], presents a hybrid approach that
combines both bidding and drafting algorithms to
improve general response time and communication
overhead. Applying either bidding or drafting techniques
to distributed file systems in a straight forward has
several drawbacks. First, overloaded servers may select
the same lightly loaded server, thus creating an
overloaded situation on it with subsequent over
migration of filesets and thrashing. If different file
servers send out bid or draft requests without evaluating
access patterns of a potential receiving server first, than
the successful results of balancing the workload are
temporary, leading to possible constant moving of
filesets back and forth between the same servers. In the
random strategy [5], the sender randomly selects the
destination among under loaded targets, and in the
gradient [8] approach the balancing is performed
between the immediate neighbors to maintain an even
work distribution. Both these approaches share the same
major drawback –thrashing – due to lack of informed and
efficient strategy for choosing the target nodes in the
distributed system. Identifying intelligent patterns of
mapping workload to process/store units, is an
improvement to the above mentioned drawbacks of load
balancing in design of the MAPDFS tool.

2.3 Data Mining Technique

Data mining problems are usually divided into three
main categories [12]: classification, sequence and
association. The first one - classification - partitions data
into disjoint groups. Second type - sequence - delivers
the expected sequence of the studied items. Association
rules techniques determine correlations within a set of
items. Practical solutions to all three categories are
mapped onto a unified framework in Agrawal et al [1].
The problem of finding association rules among items
was first formally presented by Agrawal et. al., [2].
Later, various algorithms were proposed as solutions to
this problem including [3],[7]. These algorithms follow
00 (c) 2002 IEEE 2

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of th
0-7695-1435-9/0
a similar approach to finding association rules by first
identifying “large” itemsets, and further generating
association rules only from “large” itemsets. The
number of transactions that contain a specific itemset
determines “support” of that itemset among the overall
data. A user inputs a minimum threshold number for the
confidence and support levels respectively, which are
used later to produce association rules of specific
granularity. An itemset is labeled “large” if its support
is greater or equal to the user defined threshold.
Otherwise, an itemset is put into a “small” itemset
category and ignored

MAPDFS implements the Effective Hash-Based
Algorithm proposed by Park et.al., for mining association
rules to produce access pattern rules, [10]. The task of
determining “large” itemsets from a huge number of
“candidate” itemsets in early iterations is the crucial
factor for the overall data mining performance. The
Effective Hash-Based Algorithm addresses this
performance bottleneck by trimming the transaction
database size of “candidate” itemsets early and, therefore
significantly reducing computational time at all later
stages of iterations.

2.4. Graph Analysis

Many real world problems of practical interest can be
modeled as graph based component finding and coloring
problems. To find connected components of a graph we
need to traverse it. Traversing a graph means visiting all
of its vertices in some systematic order. Depth First
Search (DFS) and Breadth First Search (BFS) are two
well known traversal techniques. We chose to implement
Depth First Search (DFS) as a way of traversing graphs
to identify connected components in our application.

The general graph coloring problem involves forming a
graph with nodes representing items of special interest to
the application. In our case, it is the filesets on the DFS
server that are connected through non transient patterns
of mined association rules. An edge on the graph,
represents each file server and connects two
incompatible” items. The coloring problem lies in
assigning a color to each item so that every vertex in the
incompatible pair is assigned a different color. Graph
coloring problem is formally NP-hard for general graphs
and is therefore intractable in the worst case, a number of
heuristic techniques have been developed in order to
solve it for most practical purposes. Our tool implements
a heuristic algorithm proposed in Rosen [11].

0-7695-1435-9/02 $17
e 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)

2 $17.00 © 2002 IEEE
3. MAPDFS – Load Balancing Tool

MAPDFS is tool designed for DFS system administrators
to monitor the work load on DFS file servers with
respect to the access request work distribution of read-
write filesets across the DCE cell. The MAP DFS load
balancing process goes through four main steps:

• DFS cell monitoring that reads and statistically
analyzes the load on each server;

• Mining association rules from previously
collected data;

• Combining and analyzing the first two steps to
make recommendations on fileset transfers
between servers ;

• Displaying / logging final recommendations for
fileset transfers.

The next four subsections go describe the load balancing
process step by step.

3.1. Cell State Monitor

The first step in balancing the load on DFS file servers is
to take a snapshot of the current state of the DFS cell.
Each “read-write” fileset access request number is pulled
from raw DFS screen dumps along with the server name
and the fileset name, and stored in a file with a
timestamp to record the time of the cell’s snapshot.
After this operation is completed, we can apply statistical
analysis to determine which servers are overloaded
and which ones are underutilized. A user inputted
threshold parameter is used to provide flexibility to the
system. We will separate all DFS servers into the
following three groups and label them according to their
load level: underutilized servers will be called TO
servers, overloaded servers FROM servers, and servers
remaining within the user specified threshold STAY
servers. The total load of access request hits of a file
server is the sum of access request numbers of all its
filesets within a certain time frame.

One of the MAP DFS input parameters is a Threshold
value. This parameter is used in the process of separating
TO servers from FROM servers from the “normal” state
STAY servers. The Threshold parameter identifies
percentage of the margin of freedom that is given to file
servers to deviate from the statistically determined
“normal” work load level for the current snapshot of the
DFS cell. For each DFS cell snapshot we calculate
Lowerbound and Upperbound values of the file server hit
.00 (c) 2002 IEEE 3

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of th
0-7695-1435-9/02
rates which are used to partition servers into three
groups.

UpperBound = “Normal” State + Threshold
LowerBound = “Normal” State – Threshold

TO servers fall below the calculated LowerBound value.
FROM servers have the number of hits above the
UpperBound value. Under ideal conditions all file
servers would be marked as STAY servers, and therefore
require no load balancing.

3.2. Mining Association Rules

In this section we describe the process of identifying a
candidate fileset, or a group of filesets to be moved from
each of the overloaded FROM servers. One logical
choice in this case would be to take the heaviest fileset
from the FROM server and move it away.

This move accomplishes the immediate goal at hand of
alleviating the load on this FROM server. However, this
approach does not produce any long term strategy in
managing DFS filesets across the cell, specifically in the
way that would minimize the need for frequent fileset
transfers back and forth between the same servers in the
future.

Our solution to this problem lies in using the knowledge
of the past access requests activity to uncover underlying
file access patterns and sequences that dominate within
each server as well as across the DFS cell. Our data
mining procedure in MAPDFS identifies file access
patterns and sequences, separates and breaks them apart
to produce a schema for mapping filesets to servers in a
way that avoids creating interdependencies in access
requests between filesets on any one single file server. In
other words, our algorithm avoids directing all file access
hits of some running process to the same file server
instead of spreading the load between multiple peer
servers and is thus independent of temporary sporadic
bursts of file access activity. Our tool also compensates
for inevitable border line and out of bound cases in daily
file access request patterns, therefore extracting isolated
and short lived spikes of requests for some filesets from
the list of final fileset transfer recommendations. For
example, the rules for a system with two servers and
seven file sets are as follows:

• single server rules forfilesets of the same server:

Server 1: Fileset_1 Fileset_2
 Fileset_3 Fileset_4
0-7695-1435-9/02 $17
e 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
 $17.00 © 2002 IEEE
Server 2: Fileset_6 Fileset_7
• cross server rules for filesets from different

servers:
Fileset_1; Server_1 Fileset_6; Server_2
Fileset_2; Server_1 Fileset_7; Server_2

3.2. Final Recommendations on Fileset Transfers

This is the final stage in the load balancing process. At
this stage we need to combine knowledge gained from
the first two steps – statistical analysis of the DFS cell
and conclusions drawn from studying mined association
rules, and come up with a final decision on what group
of filesets are recommended for a transfer from FROM
servers, and which TO or STAY servers are currently the
best target places.

We combine depth first search, graph coloring and
statistical analysis to determine, evaluate and, finally,
make a decision on fileset relocation recommendations
that would consider as part of the goal minimizing the
amount of file transfers within the cell to reduce the
administrative time and system overhead.

After we determine which file servers are currently
overloaded with work, how do we decide intelligently on
fileset relocations? First we check, which related filesets
of the overloaded server, are also participants in the
access pattern association rules. To better model these
fileset interdependencies within each file server, we
construct a graph object where filesets
identified by data mining association rules become
vertices of the graph, and the association rules represent
the edges. Next we employ the depth first search graph
traversing technique to examine our graph object in order
to reveal all its connected components. Each connected
component represents a group of transitive relations
between rule-present filesets of that server.The final step
in making a decision on which fileset or a group of
filesets are to be moved from this server to alleviate its
access request load. Vertex coloring approach was
chosen to determine this step of the load balancing
process. Vertex coloring is an assignment of labels of
colors to each vertex of a graph such that no edge
connects two identically colored vertices [14].

MAPDFS implements vertex coloring with coloring
schemas containing between 2 and 5 colors to simulate
the average number of simultaneous active file servers in
the DFS cell. The main steps MAPDFS takes to color
 large graph of filesets are based on the heuristic
algorithm Rosen [11] are given below.
.00 (c) 2002 IEEE 4

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of th
0-7695-1435-9/0
• Assign “color 1” to the vertex with highest
degree.

• Also assign “color 1” to any vertex that is not
connected to this vertex.

• Assign “color 2” to the vertex with the next
highest degree that is not already colored.

• Also assign “color 2” to any vertex not
connected to this vertex and that is not already
colored.

• If uncolored vertices remain, assign “color 3” to
the uncolored vertex with next highest degree
and other uncolored, unconnected vertices.

• Proceed in this manner until all vertices are
colored.

The created color schemas for each component on the
server are used to make a final selection on filesets to
be transferred to currently underused servers to achieve a
better load balance across the DFS cell. Transferring
groups of filesets by color separates the inherent
dependencies between the transferred filesets and hence
distributing the spikes of filesets activity across the cell.
We describe the details of the algorithm to evaluate the
steps in deciding fileset relocation in [17].

The decision on whether a “color” of filesets can be
moved to a particular server is made after evaluating
answers to the two following questions:

• Does the collection of Cross Server Association

Rules contain an entry that connects one of the
filesets of this “color” to a fileset on the target
server?

• Does the move of the current “color” of filesets push
this server beyond the Threshold parameter into the
FROM servers category?

If the answer to any of the two questions is YES, the
server under evaluation is passed, and the search for a
more suitable target place continues until all choices in
the DFS cell are exhausted. Such precise fileset transfer
restrictions make sense for obvious reasons in the case of
the second test question. In case of the first question, we
need not create additional fileset interdependencies on
the target file server, because it is the exact problem we
are trying to solve on the source server. In order to verify
that the new mapping solution of DFS filesets to file
servers is indeed accomplishing the task of better work
load distribution , MAPDFS computes a new round of
statistical analysis of the access request load on file
servers after the virtual completion of fileset transfers.
The transfers are virtual at first because we want to know

0-7695-1435-9/02 $17
e 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)

2 $17.00 © 2002 IEEE

the degree of possible improvements in the system, and
based on the level of improvement, the tool decides
the real need to carry out recommended changes on DFS
file servers.

3.4. Presentation and Defined Interfaces

MAPDFS is designed to be used by system
administrators to monitor and adjust the load of file
access requests on DFS servers. The application takes the
following input parameters:

• <input data file>: name of the file containing
snapshot of the DFS cell with each line of the
form: fileset_name ; server_name ;
number_of_accesses

• <output file>: name of the file or directory
where the output result will be stored.

• <threshold>: number <0 ; 100> without a
percent sign.

• <#_of_heavy_fs> :an integer N; used to record
N heaviest filesets on the server.

• <rules_file>: name of the file containing data
mining association rules

MAP DFS can be run in one of the three ways: (1) a
command line process with all the above mentioned
parameters supplied as command line arguments; (2)a
scheduled job once a day, a week or a month depending
on the needs of a particular DFS environment; (3) a web-
based interface to manage DFS load balancing tasks
remotely through a MAP DFS servlet. The general
design of the web interface is shown in Figure 1.

Figure 1: Design of MAPDFS with a Web Interface

WEB
BROWSER

Servlet Running
Engine

MAP DFS

Process Data
Classes

Rules

DFS
DATA

.00 (c) 2002 IEEE 5

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of th
0-7695-1435-9/0
4. Experiments and Results

The fileset access data was collected on DFS file servers
at IBM Almaden Research Center in San Jose. The data
was recorded between December 1999 and April 2000.

The following statistical analysis of the workload
distribution on DFS file servers is done by MAPDFS:

• Sample Arithmetic Mean X = 1/n Σ x(i), where
i ∈ 1, n - Mean value of hits for servers in the
cell.

• LowerBound and UpperBound values for the
server access request work load based on the
Threshold value. LowerBound = Sample
Arithmetic Mean - Threshold and UpperBound
= Sample Arithmetic Mean + Threshold

• Mean Absolute Deviation S = 1/n Σ x(i) – X 
for the cell, where i ∈ 1, n and X is Sample
Arithmetic Mean.

• Coefficient of variation COV = S / X, where
S is Mean Absolute Deviation and X is
Sample Arithmetic Mean

In the experiments, Mean Absolute Deviation and
Coefficient of Variation are calculated and recorded
before and after the load balancing process. These two
statistical measurements evaluate the extent of disparity
between studied objects, in our case, between access
request loads on different file servers. The Coefficient of
Variation, being a ratio between the Mean Absolute
Deviation and the Sample Arithmetic Mean, reflects
the degree of variability in the workload among DFS
servers. Coefficient of variation can be expressed as a
quotient: S / X , or as a percentage: S / X * 100% .
A zero COV value would indicate no variability at all.
Mean Absolute Deviation was chosen over Sample
Standard Deviation because of the nature of the data
being used in calculations. A DFS server gets hundreds
of millions of hits during each window frame and hence
taking the square roots of such large numbers proved to
be impractical and error prone.

Multiple sets of access request association rules were
produced during the experiments with the data mining
procedure. The extensive data gathering period gave us
an opportunity to run data mining procedures on
different quantities of data in order to verify the best data
collection strategy for file access information mining in
the future. Significant changes in quantities of initial
data yield corresponded shifts in resulting rule sets.
Close examination of the collected fileset control data
reveals possible tremendous variations in numbers of
0-7695-1435-9/02 $17
e 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)

2 $17.00 © 2002 IEEE
accesses between filesets. Some filesets are accessed
less than 100 times during a two hour window, while
others sustain more than 100,000,000 accesses within the
same time frame. The high level of “noise” in the data
lead to a practical decision to filter out the most
infrequently used filesets from future load
balancing efforts.

To compare results of mining association rules from
different volumes of data, we further separated all the
data collected over the five months period into the five
categories named R1, R2, R3, R4, R5 listed in the table
below. Where Ri represents the rules for data collected
for 'i' months.

Table 1: Transaction Data Groups for Rule Mining

 Dec,
1999

Jan,
2000

Feb,
2000

Mar,
2000

Apr,
2000

R1 X
R2 X X
R3 X X X
R4 X X X X
R5 X X X X X

Our experiment investigated how the higher volume of
transaction data affects the rule mining process. We
observed that the number of association rules produced
per set decreases as data mining is performed over larger
volumes of records and as the minimum data mining
support value goes up. This is an obvious result
reflecting increasing variations in resident filesets of a
server and across the DFS cell over a longer period of
time. In fact, mining association rules from data
gathered over a five month period produces mostly
results with 0 rules in the set. The reason for such
results can be explained by the fact that the variations
and turn over in the active fileset population residing on
file servers is too great for the five month period worth
of data to pass successfully through a minimum data
mining support level. From the results obtained with the
current DFS setup at IBM Almaden Research Center, we
conclude that there is no need to collect and mine fileset
access data beyond the four months period, as R5 set of
rules yields no usable information.

Our tool provides system administrators choice between
the two load balancing strategies. The strategies
correspond to the two existing types of fileset
interdependencies. We call them sporadic and stable
dependencies. Sporadic fileset dependencies are
revealed through mining access request data over
relatively short time periods – a day or a week. Stable
.00 (c) 2002 IEEE 6

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of
0-7695-1435-9/0
fileset dependencies are the long lasting access patterns
that can be identified when we mine data collected over
several months and more. Sporadic and Stable are the
two separate, but complementary ways in
which load balancing tasks can be performed.
Combining the two ways together and carefully
manipulating the granularity of rule sets, a system
administrator can manage long term persistent filesets
on a monthly or even quarterly basis with Stable rule sets
which incorporate extensive knowledge of persistent data
patterns, and further augment that schedule balancing the
load of more recent additions to the fileset community
through association rules obtained from the last month’s,
week’s or even yesterday’s data, reflecting Sporadic
access patterns.

Statistical analysis of the DFS file servers’ state before
and after the load balancing work provide quantitative
ways to present the final results for the MAP DFS tool.
The goal of our tests is to determine the optimal length of
time for data collection, which would produce the most
efficient set of association rules used for DFS load
balancing tasks. The tested rule sets are: R1, R2, R3 and
R4. We are not going to consider rule sets R5 for the
reasons explained earlier. In the tests, the threshold
parameter was set at 25%, a number empirically
determined to be optimal considering the average
number of online DFS servers and their typical work
load, and the data mining support value set at 95%,
accounting for high frequency filesets only.

The results of the tests are presented in the charts below.
Mean Absolute Deviation (MAD) and Coefficient of
Variation (COV) are calculated and recorded before and
after the load balancing process. These two statistical
measurements evaluate the extent of disparity between
studied objects, in our case, between access request loads
on different file servers. The lower the values of Mean
Absolute Deviation and Coefficient of Variation are the
more uniform the workload is across DFS file servers. A
zero value for the Coefficient of Variation would indicate
an absolutely equal distribution of work between servers.
An average reduction in the cell Mean Absolute
Deviation (MAD) in millions of access requests after the
load balancing process for rule sets and the average
percent of decrease in the cellCoefficient of Variation
(COV) obtained from one, two, three and four months of
data (R1, R2, R3, R4) is shown in Table 2.

As we can see from the charts, tests showed no further
improvements toward a better work load distribution
with the application of R4 rule set. Rules R4 are mined
0-7695-1435-9/02 $17
the 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)
2 $17.00 © 2002 IEEE
Table 2: Average Decrease in MAD and COV

Rule Sets MAD in
Millions of
Access Request

Percent COV

R1 3.7 5
R2 14.2 20.5
R3 12.4 6
R4 0 0

from large volumes of data (four months). The resulting
associations are the most Stable and persistent
throughout the DFS cell, but they are also too small in
number to carry sufficient access pattern information to
be used successfully for load balancing tasks in the high
volume environment like a DCE cell. Looking at the
rule set R1, we see some improvements in the work load
distribution. But, the most efficient results are achieved
with an application of rule sets R2 and R3. In case of
R2 experiments MAD was reduced on average by 14.2
millions of accesses. The cell COV went down by an
average of 20.5 %. In analyzing R3 test results, we
observe that the initial fileset access request data
recorded in February, 2000 showed good uniformity in
the server work load for the larger part of the month and
we were able to decrease the cell MAD by 12.4 millions
of accesses. The resulting average overall COV
improvement with R3 rules set application was 6 %,
which came on top of already present good initial work
load distribution.

5. Conclusions and Future Work

In this paper we presented a system administrator’s tool
(MAP DFS) to perform load balancing tasks for
Distributed File System (DFS) from Distributed
Computing Environment (DCE). Load balancing of data
is already more efficient in DFS than in standard
nondistributed file systems due to the use of replication,
which allows for “read-only” filesets to be replicated on
multiple machines. We developed a tool to improve
existing load balancing techniques by managing “read-
write” filesets in addition to “read-only” filesets,
therefore preventing any one machine from becoming
overloaded with data requests to any type of filesets in
the system. Our implementation employs data mining
techniques and graph theory algorithms to accomplish
the desired results of improved work load distribution on
DFS files servers. The MAP DFS tool was designed to
make intelligent decisions on mapping “read-write”
filesets with sporadic and stable dependencies to multiple
file servers. The tool was tested on real file access
request trace data collected at IBM Almaden Research
.00 (c) 2002 IEEE 7

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

Proceedings of th
0-7695-1435-9/0
Center in San Jose over a period of five months
(December, 1999 - May, 2000).

Our experiments showed that there is no need to collect
and mine fileset access data beyond the four month
period as it yields no usable information. Statistical
analysis of the DFS file servers’ state before and after
load balancing process with the threshold parameter
identifying groups of TO, FROM and STAY servers set at
25% showed that the most efficient results are achieved
with an application of association rules obtained from
mining data collected over periods of two to three
months. The actual percentage of
improvements in cell’s Coefficient of Variation when
balancing the file server load received from sample test
runs varied from 6% to 20.5% depending on the initial
uniformity of the work load .

Future work could examine the following issues. The
final percentage of improvements on the fileset access
request distribution could be increased in the future by
setting an additional threshold parameter in fileset
transfer validation procedures. A set of “cross server”
rules was used during validation tests to determine if a
fileset that is a candidate for a move carries any
dependencies to the filesets residing on the target server.
If the answer is true, the candidate fileset was passed.
Setting a threshold for the number of rules involving a
candidate fileset and a target server in a “cross server”
rules set will allow to validate transfers for filesets that
fall below the threshold value, therefore increasing the
final number of fileset moves. Also, the threshold
parameters used in the application could be changed to
adjuste dynamically to the present conditions on the DFS
servers, lowering or raising their values depending on the
current number of online file servers and their work load
distribution.

5. References

[1] R. Agrawal, T. Imielinski, and A. Swami, “Database
Mining: A Performance Perspective”, IEEE
Transactions on knowledge and Data Engineering,
Special Issue on Learning and Discovery in
Knowledge-Based Databases, 5(6), December 1993.

[2] R.Agrawal, R.Srikant,"Fast Algorithms for Mining
Association Rules”, In Proc. of the 20th International
Conference on Very Large Databases, Santiago,
Chile, September 1994

[3] R. Agrawal, T. Imielinski, and A. Swami, “Mining
Association Rules between Sets of Items in Large
Databases”, Proceedings: ACM SIGMOD
International Conference on Management of Data,
Washington D.C. May 1993, 207-216
0-7695-1435-9/02 $17.00
e 35th Annual Hawaii International Conference on System Sciences (HICSS-35�02)

2 $17.00 © 2002 IEEE
[4] Pallab Dasgupta, A.K. Majumder, and P.
Bhattacharya, “V_THR: An Adaptive Load
Balancing Algorithm”, Journal of Parallel and
Distributed Computing 42, 1997, 101-108.

[5] D.L.Eager, E.D.Lazowska, J. Zahorian, “Dynamic
Load Sharing in Homogeneous Distributed Systems”,
Technical Report, University of Washington, October
1984.

[6] Prabha Gopinath and Rajiv Gupta, “A Hybrid
Approach to Load Balancing in Distributed
Systems”, Proceedings: Symposium on Experiences
with Distributed and Multiprocessor Systems
(SEDMS II), USENIX, 133-148.

[7] M. Houstma, A.Swami, “Set Oriented Mining of
Association Rules”, Technical Report, IBM Almaden
Research Center, San Jose, California, October 1993.

[8] F.C.H. Lin, R.M.Keller, “Gradient Model: A Demand
Driven Load Balancing Scheme”, In Proc. Of
International Conference on Distributed Computing
Systems, 1986, pages 329 – 336.

[9] L.M. Ni, C.-W. Xu, T.B. Gendreau, “A Distributed
Drafting Algorithm for Load Balancing”, IEEE
Transactions on Software Engineering, SE-
11(10),October 1985,1153-1161.

[10] Jong Soo Park, Ming-Syran Chen, Phillip S.Yu, “An
effective hash-based algorithm for mining association
rules”, In Proc. Of the ACM-SIGMOD Conference on
Management Data, San Jose, California, May 1995.

[11] Kenneth Rosen, Discrete Mathematics and Its
Applications, McGraw Hill Higher Education, 1998.

[12] Yucel Saygin, Ozgur Ulusoy, "Exploring Data
Mining Techniques For Broadcasting Data in Mobile
Computing Environments”, Bilkent Univ., Turkey

[13] J.A.Stankovic, I.S.Sindhu, “An Adaptive Bidding
Algorithm for Processes, Clusters and Distributed
Groups”, In Proc. Of 4th Int. Conference on
Distributed Computing Systems, San Francisco, CA, ,
IEEE, May 1984 ,pages 49-59.

[14] G.Tinhofer, E.Mayer,H.Holtemeier, M.Syslo,
R.Albrecht, Computational Graph Theory,
Springer-Verlag Wien New York, 1990

[15] An Overview of DFS
http://www.transarc.com/Library/documentation/dce/
1.1/dfs_admin_gd_1.html.

[16] An Overview of NFS,
http://www.rs6000.ibm.com/doc_link/en_US/a_doc_l
ib/aixbman/commadmn/nfs_intro.htm.

[17] Alexandra Glagoleva and Archana Sathaye,"
Load Balancing Distributed File System Servers: A
Rule Based Approach" , Proceedings of 13th
International Conference on System Research,
Information and Cybernetics, Baden-Baden
Germany, July 30, 2001.
 (c) 2002 IEEE 8

