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Abstract. This paper presents a practical program, called sim2, for building local

alignments of two sequences, each of which may be hundreds of kilobases long. Sim2

first constructs n best non-intersecting chains of ‘‘fragments,’’ such as all occurrences

of identical 5-tuples in each of two DNA sequences, for any specified n ≥ 1. Each

chain is then refined by delivering an optimal alignment in a region delimited by the

chain. Sim2 requires only space proportional to the size of the input sequences and

the output alignments, and the same source code runs on UNIX machines, on Macin-

tosh, on PC, and on DEC ALPHA PC. We also describe an application of sim2 for

aligning long DNA sequences from E. coli. Sim2 facilitates contig-building by provid-

ing a complete view of the related sequences, so differences can be analyzed and

inconsistencies resolved. Examples are shown using the alignment display and editing

functions from the software tool, ChromoScope.

Key Words. Sequence comparison, Local alignment, Dynamic programming, Con-

strained alignment, Linear-space algorithm.

1. Introduction.

The local alignment problem (for two sequences) is to find an alignment that is

highest-scoring among all alignments between an arbitrary section of the first sequence

and an arbitrary section of the second sequence (Smith and Waterman, 1981). Prob-

ably the most useful variant for aligning biological sequences is that of computing ‘‘n

best non-intersecting’’ local alignments, for which Waterman and Eggert (1987) gave a

very efficient dynamic programming algorithm. A version of their approach using

only space proportional to the sum of the sequence lengths was developed by Huang

et al (1990), and implemented in a program called sim . Though these methods are

more sensitive than the approach described here, they are much slower in general.

To attain greater speed, Wilbur and Lipman (1983, 1984) employed the strategy

of building alignments from fragments. For example, one could specify some frag-

ment length k ≥ 1 and work with alignment-fragments consisting of exact matches of

length at least k . With protein sequences, it might well work better to begin with

inexact but high-scoring matches, such as those used by the blast program (Altschul

et al. , 1990) for other purposes. In any case, algorithms that optimize the score over

alignments constructed from fragments can run faster than algorithms that optimize

over all possible alignments. Moreover, a full-resolution alignment process can be

made more efficient by restricting the search to a ‘‘neighborhood’’ of the chain of

fragments (Pearson and Lipman, 1988).
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To balance speed and sensitivity, we have developed a new alignment tool, sim2,

that can efficiently detect alignments containing gaps. Moreover, sim2 requires only

space proportional to the size of the input sequences and the output alignments. Sim2

runs in two phases. The first phase generates n best chains of fragments, while the

second refines each chain by applying a more traditional dynamic-programming algo-

rithm in a region delimited by the chain. Sim2 is designed so that these two parts can

themselves also be stand-alone tools or subroutines.

A few variants of sim2 are also provided. For example, sim2 can be used to

compute n best local alignments between two DNA sequences in both orientations. It

can also select only alignments with scores no less than a cut-off score, or compute

alignments within a user-selected region from each sequence. A modified version,

sim2aln, is designed for one-to-many sequence alignment, which can be used as a

post-process for blast search.

Sim2 is written in C using the NCBI software toolkit. It currently runs on UNIX

machines, on the Macintosh, under Microsoft Window on PC, and under Window NT

on ALPHA PC. It can be obtained by anonymous ftp; contact webb@cse.psu.edu for

instructions.

2. Methods.

Basically, sim2 implements two alignment techniques whose theoretical bases

have been described in earlier papers. The first algorithm constructs a rather crude

alignment by efficiently linking together very short alignments, using a method

described by Chao and Miller (1994). The initially approximation is then refined

down to the level of individual matching nucleotides using a technique developed by

Chao et al. (1993). This section outlines the two methods in somewhat more detail.

2.1. Building n best non-intersecting chains of fragments.

The ‘‘very short alignments’’ mentioned above are defined as follows. Let the

given sequences be A = a 1a 2
. . . aM and B = b 1b 2

. . . bN . Define a fragment to be

a triple (i , j , k ) such that ai = bj , ai +1 = bj +1, . . . , ai +k −1 = bj +k −1 and k ≥ k_min , for

fixed minimum fragment length k_min . Moreover, a fragment is to be maximal, i.e.,

not properly contained in another fragment. Fragment f ′ = (i ′, j ′, k ′) is said to be

above fragment f = (i , j , k ) if i ′ + k ′ ≤ i and j ′ + k ′ ≤ j . Notice that this defines a

partial-ordering relation. A chain of fragments is defined as a sequence of fragments

f 1, f 2, . . . ,f l such that f i is above f i +1 for i = 1, . . . ,l −1.

We also need an objective criterion for preferring one fragment chain over

another. The score of fragment f = (i , j , k ) is defined as k and denoted sc ( f ).

Penalties for connecting fragments are needed for scoring chains. Let the nonnegative

constant g and positive constants e and r be the penalties for opening up a gap (hor-

izontal or vertical displacement), for extending a gap by one symbol, and for replacing

one symbol by another, respectively. The affine function gap (t ) = g + te is charged

for a gap of length t . Define the diagonal of fragment f = (i , j , k ) to be j − i ,

denoted by Diag ( f ). Suppose f ′ = (i ′, j ′, k ′) is above f = (i , j , k ). The penalty of

connecting f ′ and f , denoted by Connect ( f ′, f ), is defined as follows:
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Case 1: Diag ( f ) = Diag ( f ′):

Connect ( f ′, f ) = (i − i ′ − k ′)r .

Case 2: Diag ( f ) > Diag ( f ′):

Connect ( f ′, f ) = gap (Diag ( f ) − Diag ( f ′)) + (i − i ′ − k ′)r .

Case 3: Diag ( f ) < Diag ( f ′):

Connect ( f ′, f ) = gap (Diag ( f ′) − Diag ( f )) + ( j − j ′ − k ′)r .

The score of a chain (f 1, f 2, . . . ,f l ) is defined as the sum of the fragment scores,

minus the connection penalties of adjacent fragments, i.e.:

i =1
Σ
l

sc ( f i ) −
i =1
Σ
l −1

Connect ( f i , f i +1)

Chao and Miller (1994) combine a time-efficient algorithm developed by Eppstein

et al. (1992) with a space-saving approach of Hirschberg (1975) to obtain an algo-

rithm that uses O ((M + N + F log N )log M ) time and O (M + N ) space to deliver the

best chain of fragments from a pool of F fragments. They then give a time-and-space

efficient algorithm to compute n best non-intersecting chains of fragments following

the general outline of Huang and Miller (1991). (Here, ‘‘non-intersecting’’ means that

no fragment appears in more than one chain.)

2.2. Refining the chains

To refine the chains of fragments, sim2 delivers an optimal alignment in the

neighborhood of each chain. For region bounds, sim2 uses the upper and lower

envelopes of all upright rectangles extending from the end of the i th fragment to the

start of the (i +2)th, for relevant i , as pictured in Figure 1. It should be noted that

other ways of defining region bounds sometimes work better. For example, sim2 sup-

ports the alternative of determining the region by defining a band of fixed width cen-

tered on each fragment and connecting the bands with rectangles.

Chao et al. (1993) give an algorithm that requires O (R ) time and O (M +N )

space to align two sequences when the alignment is constrained to lie between two

arbitrary boundary lines in the dynamic programming matrix, where R is the area of

the feasible region. To attain this efficient use of both space and time, the paper

develops a strategy for problem division that differs substantially from the classic

approach of Hirschberg.

The following minor alteration to the previously published strategy proved to be

useful. In the first phase of sim2, two maximal fragments can be chained together

only if the end position of one fragment is topologically smaller than the starting posi-

tion of the other. This occasionally keeps sim2 from utilizing particular fragments,

resulting in an inferior alignment score. To avoid this problem, the definition of above

in Section 2 can be altered to: fragment f ′ = (i ′, j ′, k ′) is said to be above fragment

f = (i , j , k ) if i ′ < i and j ′ < j . The penalty of connecting f ′ and f can be redefined

accordingly. However, it remains open whether the algorithms used in Chao and

Miller (1994) can be adapted for this modification. Sim2 employs an ad hoc remedy

for this problem. During the second phase, both ends of the fragment chain are

extended outward using dynamic-programming. The rationale for giving special
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treatment to the ends is that any useful partial fragment lying near the internal part of

the fragment chain is automatically considered in the second phase of sim2. This stra-

tegy proved successful in the experiments we conducted.

3. Implementation.

Space requirements

The first phase of sim2 uses array storage for 7M + 8N integers and 2M + 2N

characters. Candidate lists are implemented as skip lists (Pugh, 1990). At most

3M + 3N elements will be in the lists, where each element uses three integers and, on

average, 4⁄3 pointers, using p = 0.25 (Pugh, 1990). Therefore, the candidate lists

require 13M + 13N integers. In total, the first phase requires storage for 20M + 21N

integers and 2M + 2N characters. Since fragments are found using hashing (Altschul

et al. , 1990), additional storage for hash tables is needed. The second phase of sim2

uses only array storage for about 4M + 8N integers and 3M + 5N characters (Chao

et al. , 1993), which is dominated by the space for the first phase.

I/O

Sim2 can take either a FASTA-formatted text file or a structured ASN.1 Seq-entry

object. Alternatively, it can retrieve sequences on-line from Entrez given the locus

name or the accession number. All the different forms are converted into Sequence

location objects, which specify the start, the stop and the orientation on each sequence.

The output is stored as a ASN.1 Seq-align object, which can either be exported as a

file or attached to the sequence object as the history for the sequence.

4. Example.

Since sim2 aligns long sequences quickly, it is a valuable analytic tool for

genome-sized sequencing projects. It can detect internal sequence inconsistencies,

reveal polymorphism in certain regions, and check for sequencing errors in the pub-

lished record. As an experiment, we applied sim2 to the production of the integrated

E. coli genome map, EcoSeq7 (K. Rudd, personal communication).

E. coli is a very well studied organism, with currently 60% of its 4.67×106 bp

genome sequenced. While some research groups intend to sequence the whole genome

and have produced several sequences over 100,000 bp long (Sofia et al ., 1994; Bur-

land et al ., 1993; Daniels et al ., 1992; Plunkett et al ., 1993; Blattner et al ., 1993),

most sequence data have been generated as independent, non-coordinated efforts.

Rudd (1993) has compiled a non-redundant sequence map by merging overlapping

sequences. However, this process does not allow for display of the differences in all

the published sequence records. To provide a complete view of all the published E.

coli sequences while maintaining the consensus compiled in EcoSeq7, we need to

align all available E. coli sequence data to each contig to provide a sequence history.

First we do a blast search of each contig in EcoSeq7 to generate a list of E. coli

sequences that match the contig. Then we apply sim2 to compute a pairwise align-

ment between the contig and each of its blast hits. The longest contig we have

encountered, ggt-ecoM, is 726,039 bp long. It had 380 blast hits, three of which are

more than 100,000 bp. Sim2 was able to complete the 380 alignments overnight. It

took about four hours to finish aligning the rest of the contigs in the E. coli genome.
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Our experience proves that it is feasible to use sim2 to produce daily updates of

sequence history for a genome as large as E. coli.

The sequence history of each contig is stored as a one-to-many alignment, which

can be displayed graphically in the alignment viewer of ChromoScope (Zhang et al. ,

1994), showing gaps, insertions and mismatches (Figure 2). The graphic output can

help a curator to check internal consistency, so that the alignments agree with the

instructions used to build the contigs. For example, in Figure 2, there is an insertion

and a deletion in constituent ECOUW82 and there is a gap in constituent yigUeco. A

curator can easily find those trouble spots and resolve the discrepancies by rebuilding

the contig with the correct instructions. As an effort to automate the process of

contig-building, we have incorporated sim2 as part of the genome editor in Chromo-

Scope, so consistency can be checked immediately after a contig is built.

A large sequence generated from a genome sequencing group may cover regions

that were previously sequenced by other single-gene research groups, and those

sequences may have conflicts with each other. Aligning those sequences with sim2 is

a good way to visualize all sides of the data. As an example, we aligned one of the

large sequences generated from the E. coli genome sequencing group in University of

Wisconsin (Burland et al. , 1993), ECOUW82 (Genbank Accession L10328, length

136254), with 66 related sequences in GenBank. The alignment is shown in Figure 3.

Sometimes, sequence discrepancies are caused by polymorphism, which can be

observed in the coding region for protein tryptophanase (Figure 4). Two sequences

aligned to this region, ECOTNAA (Accession K00032) and ECLTIL (Accession

X15974). Compared with ECOTNAA, ECLTIL has a lower nucleotide sequence iden-

tity to ECOUW82. However, the protein sequences are identical. Since both ECOT-

NAA and ECOUW82 are sequences for E. coli K12 while ECLTIL is a sequence for

E. coli B/1t7-A, DNA sequence polymorphism in a different strain for the same gene is

the probable explanation. In some cases, each sequencing group has its own view

about the ambiguities for the published data. For example, in the coding region for

DNA recombinase, at positions 15951, 15952 in ECOUW82, the researchers are uncer-

tain if a G or a C should be presented at those two positions. Two other groups

sequenced the same gene and have a different point of view: both Genbank entry

ECORECG (Accession M64367) and EMBL entry ECRCG (Accession X59550) have

a GC pair in their alignment (Figure 6). Sometimes, differences come from the same

group. As shown in Figure 5, sequence A and sequence B aligned to the same region

on ECOUW82, but B has a frame-shift in one of its coding regions, while A does not

have the problem. The references indicate the entries were generated from the same

lab and that sequence B was published three years earlier than sequence A . This sug-

gests sequence A may be a revised version of sequence B .
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5. Open problems.

We have not attempted a systematic evaluation of the biological significance of

alignments of the scale computable with sim2. Such a study would be both arduous

and interesting.

Sch"oniger and Waterman (1992) present a time-efficient algorithm for computing

n best non-intersecting alignments with inversions (reverse complements). Perhaps

some adaptation of their ideas would allow sim2 to use inversions.
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