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I. INTRODUCTION

System-bath dynamical problems arise naturally in chemical physics, e.g.
when studying reactions in condensed phase or gas-surface processes. They
represent one of the most challenging issues in current rate theories, especially
when the need of a quantum description arises, as in the case of inherently quan-
tum systems (e.g. hydrogen atom transfer in biologically relevant environments),
and/or of low temperature media (e.g. the cold surfaces of the interstellar dust
grains).
Our way to tackle this kind of problems is a `brute-force' approach in which

one follows the energy-conserving dynamics of a system coupled to a �nite-size
bath, and observes the dissipative dynamics (of the system) for times less than
the Poincaré recurrence time. Such a (unitary) description of the total sys-
tem+bath has been recently become a possible alternative [1�3] to open-system
quantum dynamical approaches[4, 5] thanks to recent advances in quantum sim-
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ulations of large systems. In this context, the main issue is the size of the bath
(or, more properly, the average frequency spacing) which sets the limiting time
scale for observing dissipative behaviour: in typical situations, a few ps process
requires thousands of degrees of freedom, and this is beyond current computa-
tional possibilities, even for the Multi-Con�guration Time-Dependent Hartree
(MCTDH) method [6, 7], the most e�cient, exact quantum dynamical method
currently available. In order to make progress in this direction, some of the
present authors have recently introduced a set of approximations, collectively
named as Local Coherent-State approximation (LCSA) [8], to the unitary dy-
namics of a typical system-bath problem. The approximations are mainly in
the bath description, whose dynamics is usually of no direct relevance, in the
same spirit as in the reduced density operator approach. The resulting `LCSA'
approach turns out to be a selected-con�guration MCTDH variant which closely
resembles the so-called Gaussian-MCTDH [9�11] method, see below.

II. THEORY

We started by considering a typical system-bath hamiltonian which had been
used for a long time to model dissipation (e.g. see Ref. 12�19), namely

H = Hsys +
F∑

k=1

~ωk(a†kak +
1
2
)−

F∑
k=1

(λ†kak + λka†k) (1)

where Hsys is the subsystem Hamiltonian, the second term on the r.h.s. is
the Hamiltonian describing a harmonic bath and the third term represents the
system-bath coupling, which was assumed to be linear in the bath coordinates

but arbitrary in the subsystem coordinates; a†k,ak are the usual harmonic oscil-
lator (HO) raising/lowering operators. We can generalize it by writing

H = Hsys + Henv(..qkpk..;x) (2)

where Henv is an `environment' Hamiltonian (now comprising the coupling with
the system) which is supposed to be local in system coordinates x and approxi-
mately harmonic in the bath degrees of freedom (..qk, pk..). In this way one can
include anharmonic bath oscillators, coupling between bath modes, etc... Our
approximations come from the following observations concerning the Hamilto-
nian of Eq. (2): (i) coupling to the bath is local in subsystem coordinates,
and (ii) the bath is approximately harmonic. Then, focusing on a wavefunc-
tion description appropriate for the T = 0 K case, point (i) suggests the use
of subsystem Discrete-Variable-Representation (DVR) states in expanding the
wavefunction for the total system, i.e.

|Ψ〉 =
∑
α

Cα |ξα〉 |Φα〉 (3)
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where {|ξα〉} is a DVR set for the subsystem coordinates, and |Φα〉 are the
resulting local bath states, one for each grid point α used to cover the relevant
subsystem con�guration space. In addition, point (ii) suggests that a product
of HO coherent states (CSs) could be appropriate to describe the resulting local
bath states, i.e.

|Φα〉 = |z1
α〉 |z2

α〉 .. |zF
α 〉 := |Zα〉

The result is that the bath dynamics is described by a set of coupled, pseu-
doclassical trajectories zk

α = zk
α(t), one for each bath degree of freedom k and

system grid point α. The system dynamics is contained in the time evolution
of the amplitude coe�cients Cα, which make an important part of the system
reduced density matrix (ραβ = C∗

αCβ 〈Zβ |Zα〉 in the underlying DVR).
At �nite temperature T > 0 K an analogous approach is possible as long as

the initial system+bath density operator ρsb can be written in the form

ρsb =
∑

i

pi

∣∣ΨLCSA
i

〉 〈
ΨLCSA

i

∣∣ (4)

where each
∣∣ΨLCSA

i

〉
is a vector of LCSA form (eq. 3), which then undergoes

the same energy-conserving time-evolution of the T = 0 K case. This is the
case, for example, when the initial density operator ρsb(0) can be factorized
as ρsb(0) = ρsys(0) ⊗ ρbath

β (0) and ρbath
β (0) is a thermal density operator of a

harmonic bath at temperature kBT = β−1. Indeed, using the CS representation
of such thermal density operator, a Monte Carlo sampling of the resulting (bath)
phase-space integral easily provides the set of `realizations' of eq.4.

Equations of motion

Equations of motion can be derived with the help of the Dirac-Frenkel varia-
tional principle, using Cα and zk

α as dynamical variables. When using conven-
tional phase factors for the CSs (what we can call the �standard gauge�) they
take the following form.
The �system equation� is a kind of Schrödinger-Langevin equation

i~Ċα =
∑

β

Hdamp
αβ Cβ + veff

α Cα

in which the elements of the system DVR hamiltonian are damped by the overlap

between bath states, Hdamp
αβ = Hsys

αβ 〈Zα |Zβ〉 . The local, e�ective potential,

veff = vlmf + vgauge, contains a `local mean-�eld' potential

vlmf
α = 〈Zα |Henv(xα)|Zα〉 = Henv

ord (..zk∗
α , zk

α, ..;xα)
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(here Henv
ord is the environment hamiltonian operator expressed in terms in a†k, ak

and normally ordered, i.e. with all a†k's on the left of ak's) and a `gauge' potential

vgauge
α = −i~

F∑
k=1

〈zk
α|żk

α〉 = ~
F∑

k=1

Im(zk∗
α żk

α)

which can be explicitly written down with the bath equations below.
The �bath equations� are pseudoclassical equations

i~Cαżk
α =

∑
β

Hdamp
αβ (zk

β − zk
α)Cβ + Cα

∂Henv
ord

∂a†k
(..zk

αzk∗
α , ..;xα)

containing a `classical, local force'

żk
α,class = − i

~
∂Henv

ord

∂a†k
(..zk

αzk∗
α , ..;xα)

and a `quantum' one

żk
α,quant = − i

~Cα

∑
β

Hdamp
αβ (zk

β − zk
α)Cβ

coupling CSs of the same degree of freedom at di�erent grid points. The latter is
essential for a quantum, though approximate, description of the bath dynamics.
The above gauge potential can then be easily written down with the help of the
matrix

Γαβ =
F∑

k=1

zk∗
α zk

β

which is also useful to evaluate the CSs overlaps, 〈Zα |Zβ〉 = exp(Γαβ −Γαα/2−
Γββ/2). For a derivation of the equations see Ref. 8, and notice that, in general,
[a, ford(a†, a)] = ∂ford(a†, a)/∂a†.

General properties

The above equations have some interesting properties. Some of them arise
from the use of the Dirac-Frenkel variational principle. Norm and energy con-
servation are guaranteed with our ansatz (since it is also an allowed variation)
and can be used in practice to check the quality of the propagation. More gener-
ally, the solutions of the LCSA equations de�ne a hamiltonian �ow in the space
of the parameters, i.e. the equations have a symplectic structure that can be
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used to set up a robust propagation scheme. We'll come back to this point in
Section IV.
Other properties arise from the LCSA ansatz itself. The bath dynamics is

reduced to a set of trajectories, whose number scales linearly with the bath di-
mensions. This means that the method itself has a power-low scaling with such
dimensions, the exponent of this scaling depending on the interaction between
bath modes. For bath modes coupled to the system only (e.g. with the hamilto-
nian of Eq. 1) linear scaling has been observed and model simulations with tens
of thousands of bath degrees of freedom have been performed on modest comput-
ers [8]. This good scaling property is in common with mixed quantum-classical
methods, which however fail to correctly represent the system-bath correlations.
In LCSA a number of trajectories is used for each bath degree of freedom, and
they are coupled to each other by the building up of the (quantum) correlation.
Note also that in our case the system `wavefunction' (the amplitude coe�cients)
enters linearly in the bath equations, and therefore phase factors do play a role
in the classical dynamics, apart from an overall phase factor.
Coupled trajectories arise in a number of closely related approaches, namely

the Coupled-Coherent-State method of Shalashilin and Child [20�23] and the
Gaussian-MCTDH method of Burghardt, Worth and coworkers [9�11]. The
latter, in particular, is strongly connected with LCSA. The two approaches share
a conventional, `exact' description of some interesting degrees of freedom and
an approximate, CS description of other, less interesting degrees of freedom.
Indeed, as a matter of fact, the G-MCTDH equations [9] reduce to LCSA ones
under suitable constraints (e.g. see Appendix B of Ref. 8). The main di�erence
between the two is that in LCSA all the con�gurations are orthogonal to each
other, as a consequence of the presence of a di�erent DVR state in each of them.
This leads to considerable simpli�cations in the resulting equations (see above,
in particular, the bath equations), at the price of a reduced accuracy.
Finally, one interesting property about the pseudo-classical description of the

bath degrees of freedom is that it suits well to induce dissipative dynamics into
the total system. This can be accomplished by adding a suitably designed fric-
tion coe�cient η to the bath equations, mimicking the presence of a secondary
(in�nite, memory-less) bath. More formally, it can be shown that applying the
LCSA approximation to a system+bath+secondary bath con�guration, a clas-
sical approximation to the secondary bath dynamics, and standard assumptions
(Ohmic bath in the continuum limit) a friction coe�cient appears in the LCSA
equations for the system+bath degrees of freedom[28] (e.g. see Appendix A of
Ref. 8). This possibility has been exploited, especially in conjunction with the
need of removing numerical instabilities of the method without altering the sys-
tem dynamics. We call such a modi�ed version of our approach the `damped'
LCSA variant, for obvious reasons.
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Figure 1: A double-well system coupled to a 1D harmonic bath oscillator: tunneling
splitting as a function of the coupling strength. Bold lines for exact results, square
symbols for standard LCSA. Very good results can be obtained by employing the
damped version of LCSA (stars), even when the �ctitious damping is turned on for the
�rst 0.1 ps only (empty circles). Here, damping helps in removing an `initialization'
problem, see Ref. 8 for details.

III. APPLICATIONS

The method has been applied to a number of model problems, ranging
from tunneling to vibrational relaxation and sticking dynamics, and the results
have been compared with those of exact, Multi-Con�guration-Time-Dependent-
Hartree calculations in systems with up to 80 bath oscillators. A detailed account
of such a comparison is given in Ref. 8. Here we merely summarize the main
results.
When the method is applied to problems with small dimensional baths (e.g.

an oscillator coupled to few HO bath oscillators) it performs rather well, and
the results are in close agreement with exact ones. This is particularly true for
1D bath problems, in which LCSA is free of the (local) Hartree approximation,
thereby suggesting that constraining the local bath states to be CSs is a rea-
sonably good approximation. The correct treatment of system-bath correlation
is evident in the test problem of a double well system coupled bilinearly to a
harmonic oscillator[24]. Fig.1 shows, for example, the behavior of the tunneling
splitting for di�erent values of the coupling strength c, compared to exact re-
sults. Notice for comparison that a time-dependent self-consistent �eld approach
to this problem would badly fail in describing the tunneling dynamics at all but
very small coupling strengths [24].
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Figure 2: Average position (left) and system energy (right) for a 50D vibrational re-
laxation dynamics with relaxation time γ−1 = 50 fs. Full lines for converged MCTDH
results, and dashed lines for (damped) LCSA calculations. The latter take ∼ 1 min on
a standard desktop computer.

Application of the method to large-dimensional baths show the main limitation
of the present approach. The vibrational relaxation dynamics of an anharmonic
oscillator coupled to a 50D bath, as described by standard LCSA, is in only
qualitative agreement with converged MCDTH calculations. A detail analysis
suggests that this is more probably due to numerical di�culties than to real
limitations of the LCSA approach. For example, time-reversal invariance is lost
after a few tens of fs, discrepancies increase in weaker-coupled systems (long
time dynamics), and, in general, long-time results show some dependence on
numerical parameters (e.g. the grid spacing de�ning the Colbert-Miller DVR
used in the calculations). This is a much more subtle problem that it seems at
�rst sight; as an example, we notice that our integrator (a standard Runge-Kutta
4-th order one) allows very good norm and energy conservation. Though some
improvement has been recently found by employing better-suited DVR sets (in
particular, the Potential-Optimized DVR set based on the eigenvectors of the
system hamiltonian)[25], the working strategy at present is to use the damped
version of LCSA. The �ctitious friction coe�cient η of the previous Section can
be optimized with a minimum e�ort without reference to any benchmark result,
and turns out be essentially a bath property. The use of such a `trick' allows
one to get results in very good agreement with exact ones in an extremely cheap
way, see Fig. 2. Likewise, one can `stabilize' the bath dynamics in tunneling
problems without a�ecting the system dynamics, as we have shown in Fig.1 and
observed in other, large dimensional tunneling problems.
One interesting feature of the `damped' version of LCSA is that the intro-

duction of a friction coe�cient η, by inducing an overall dissipative dynamics,
completely removes the bath recurrence problem. This is shown in Fig.3 where
di�erent discretizations of the same bath (i.e. which preserve the spectral den-
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Figure 3: A vibrational relaxation dynamics showing the removal of the recurrence
problem when the damped version of LCSA is used. Bold lines for MCTDH calculations
with 80 bath modes, solid, dashed and dotted lines for LCSA calculations with 20,40,
and 80 modes. Vertical bars mark the corresponding `nominal' recurrence times. Top:
average interaction energy. Bottom: average system energy.

sity J(ω)) give the same (essentially exact) results for times much larger than
their corresponding recurrence times.
Thus, the introduction of a simple damping coe�cient in the pseudoclassical

bath equations seems to solve the numerical instability problems, and introduce
nice features in the method. This, however, cannot be the �nal solution. This is
clear, for example, when considering a sticking dynamics (i.e. by using the bath
to model a surface). In this case, the standard version of LCSA works reasonably
well, and correctly reproduces the energy transfer. However, when looking at
detailed quantities such as the sticking probability it is clear that dynamics
does not proceed `smoothly', see Fig.4. The bad break here is that when we
introduce the damping coe�cient we do stabilize the bath dynamics but at the
price of having no more sticking (!). This is clearly due to the important role
that low-frequency bath oscillators play in the dynamics: the use of a frequency
dependent damping coe�cient can improve the situation, but this seems to be a
too ad hoc procedure. For this reason, we have been currently looking for much
more robust propagation algorithms than the ones we have adopted so far. This
motivated a deeper understanding of the properties of the working equations, as
it is sketched in the following Section.

IV. HAMILTONIAN FLOWS

The results obtained so far were based on `brute-force' solution of the �rst-
order LCSA equations of motion. However, a good propagator should take care
of preserving their (non-evident) features, namely their symplectic structure.
Indeed, it has been known for some time[26, 27] that any variational quantum
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Figure 4: A model sticking dynamical problem, describing a H atom colliding with
a 50D-mode surface at a collision energy of 200 meV. Average system energy loss
(∆Esys), interaction energy (Eint), position (< x >) and sticking probability (P stick)
as a function of time. Solid lines for MCTDH results, dashed lines for LCSA.

method (under quite mild regularity conditions) can be recast in the form of
a symplectomorphism on a symplectic manifold. This means in practice that
rather than using a brutal time discretization one can better approximate the
short-time dynamics of the system by a composition of (simple) symplectic maps
in order to keep trace of this extraordinary property. In the following we sum-
marize the important points in this respect, leaving an ampler discussion to a
forthcoming paper.
Let's �rst brie�y introduce the concept of hamiltonian �ows in generic sym-

plectic manifolds. A symplectic manifold is a di�erentiable manifold equipped
with a closed, non-degenerate 2-form ω. In a coordinate system xi it can be
written as ω =

∑
i,j>i ωijdxidxj . Here dxi are the fundamental 1-forms, that

is dxi(v) = vi for any tangent vector v in a given point x, and the product of
di�erentials is the so-called `wedge' product. Non-degeneracy means in practice
that ωij is non-singular everywhere in the manifold[29], and this allows one to set
up a one-to-one map between tangent and co-tangent vectors (1-forms). That
is, for a given 1-form α =

∑
αidxi there is an associated vector �eld Xα such

that α(v) = ω(Xα,v), and its �ow, de�ned by the curves ẋi = Xi
α. Then, given

a smooth function H (which can be called a hamiltonian) and its 1-form dH the
�ow induced by its associated vector �eld XH (what can be called a hamilto-
nian �ow) conserves the function itself, dH(XH) = ω(XH ,XH) = 0. Closedness
(dω = 0 where d is the `exterior' derivative) means that these properties can
be `transported' along the manifold, and guarantees that the symplectic form
ω itself is invariant under any hamiltonian �ow (formally LXH

ω = 0, LY being
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the Lie derivative along the vector �eld Y. This forms the basis for Liouville's
theorem).
In our context, it is worth noticing that a `variational' method can be de�ned

with the help of the time-dependent variational principle, namely δS = 0. Here
the action S =

∫ t2
t1

dt L is given by the (real) Lagrangian[26, 27]

L =
i~
2
〈Ψ|Ψ̇〉 − 〈Ψ̇|Ψ〉

〈Ψ |Ψ〉
− 〈Ψ |H|Ψ〉

〈Ψ |Ψ〉

The time dependent variational principle gives back the time-dependent
Schrödinger equation when |Ψ〉 is allowed to vary in the whole space, with-
out constraints. It is implied by the Dirac-Frenkel one. The converse is also true
when i |δΨ〉 is an allowed variation for any possible variation |δΨ〉.
Then, a general symplectic structure can emerge when (smoothly) introducing

a set of variational parameters x, |Ψ〉 = |Ψ(x)〉, forming a coordinate system in
the manifold of the `sample' space. This can be made up, for example, by the
real and the imaginary parts of a set of n complex parameters, such as our
{..Cα..zk

α..}. In terms of this parametrization,

L =
n∑

i=1

ẋiZi(x)−H(x)

where

Zi =
i~

2 〈Ψ |Ψ〉

(〈
Ψ

∣∣∣∣ ∂Ψ
∂xi

〉
−

〈
∂Ψ
∂xi

∣∣∣∣ Ψ
〉)

are the components of a 1-form α = −
∑

Zidxi, and H(x) =
〈Ψ(x)|H|Ψ(x)〉 / 〈Ψ(x)|Ψ(x)〉. A closed 2-form can then be de�ned as ω = dα,
and it is non-degenerate if ωij = ∂Zi/∂xj − ∂Zj/∂xi is non-singular. In this
case, the 2-form ω =

∑
ωijdxidxj provides the symplectic structure we need.

Indeed, the equations of motion de�ned by the time-dependent variational
principle follow by the above Lagrangian in the form∑

ẋiωij =
∂H
∂xj

or equivalently, for a generic tangent vector v,∑
ẋiωijv

j = ω(ẋ,v) =
∑ ∂H

∂xj
dxj(v) = dH(v)

It follows that if ω is a symplectic form, the `variational �ow' is the hamiltonian
�ow of the hamiltonian H(x), i.e. ẋ = XH. The variational equations can also
be written with the help of Poisson brackets

ẋi = {H,xi}
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which are de�ned by {f, g} = ω(Xg,Xf ) for any two smooth functions f and g.
In a coordinate system they are given explicitly by

{f, g} =
∑ ∂f

∂xi

∂g

∂xj
ξij

where ξij is the matrix inverse of ωij .
A detailed analysis of the LCSA case [25] reveals that the relevant form ω is

indeed non-degenerate in the whole parameter space where none of the amplitude
coe�cients Cα is zero. This is consistent with the ansatz of Eq. 3 since when
one the Cα vanishes the associated CSs zk

α are irrelevant for the dynamics.

V. SUMMARY

In this paper an account has been given of the current status of what we
have called the Local Coherent-State Approximation, and its related quantum
dynamical approach to system-bath problems. An attempt has been made to
show its merits and present limitations. On the one hand, we have shown that
the method can be very accurate and extremely cheap, very nice features for
possible realistic applications. On the other hand, we have also shown that
numerical stability problems have been preventing straightforward application
of the approach. In an attempt to overcome these di�culties, we have also
sketched our ongoing search of a robust propagation scheme.
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