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Abstract This paper presents a local constitutive model

for modelling the linear and non linear behavior of soft and

hard cohesive materials with the discrete element method

(DEM). We present the results obtained in the analysis with

the DEM of cylindrical samples of cement, concrete and shale

rock materials under a uniaxial compressive strength test,

different triaxial tests, a uniaxial strain compaction test and
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a Brazilian tensile strength test. DEM results compare well

with the experimental values in all cases.
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1 Introduction

Extensive research work on the discrete element method

(DEM) has been carried out in the last decades since the

first ideas were presented by Cundall and [11]. Much of the

research efforts have focused on the development of ade-

quate DEM models for accurately reproducing the correct

behaviour of non cohesive and cohesive granular assemblies

[1,6,8,11,20,24,29,42,45–47], as well as of solid materi-

als [13,14,16–18,22,23,28,31,32,34–36,42,43]. In recent

years the DEM has also been effectively applied to the study

of multifracture and failure of geomaterials (soils and rocks),

concrete, masonry and ceramic materials, among others.

The analysis of solids with the DEM poses a number of

difficulties for adequate reproducing the correct constitutive

behaviour of the material under linear (elastic) and non linear

conditions.

Within the analysis of solids with the DEM the material is

typically represented as a collection of rigid particles [spheres

in three dimensions (3D) and discs in two dimensions (2D)]

interacting among themselves at the contact interfaces in

the normal and tangential directions. Material deformation

is assumed to be concentrated at the contact points. Appro-

priate contact laws are defined in order to obtain the desired

macroscopic material properties. The contact law can be seen

as the formulation of the material model of the underlying

continuum at the microscopic level. For frictional cohesive

material the contact law takes into account the cohesive bonds
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between rigid particles. Cohesive bonds can be broken, thus

allowing to simulate fracture of the material and its propaga-

tion.

A challenge in the failure analysis of solid materials, such

as cement, shale rock and concrete, with the DEM is the defi-

nition of the limit strengths in the normal and shear directions

at the contact interfaces, and the characterization of the non

linear relationship between forces and displacements at these

interfaces beyond the onset of fracture, accounting for fric-

tional effects, damage and plasticity.

In this work we present a local constitutive model for fail-

ure analysis of solid materials typical in geomechanics and

concrete applications with the DEM. The model is validated

in the analysis of cement, concrete and shale rock samples for

several laboratory strength tests. The tests considered include

the uniaxial compression strength (UCS) test, triaxial com-

pressive strength tests, the uniaxial strain compaction (USC)

test and the Brazilian tensile strength (BTS) test. DEM results

compare well with experimental data provided by Weather-

ford for the cement and shale rock samples [19,33] and the

Technical University of Catalonia (UPC) for the concrete

samples [37].

2 Constitutive models for the dem

Standard constitutive models in the DEM are typically char-

acterized by the following parameters:

Local parameters

– Normal and shear stiffness parameters Kn and Ks .

– Normal and shear strength parameters Fn and Fs .

– Coulomb friction coefficient µ.

– Local damping coefficient Cn .

Global parameters

– Global damping coefficient for the translational motion,

αt .

– Global damping coefficient for the rotational motion, αn .

Figure 1 shows an scheme of some DEM parameters for

a 2D model.

The challenge in DEM models for analysis of solids is

finding an objective and accurate relationship between the

DEM parameters and the standard constitutive parameters of

a continuum mechanics model (hereafter called “continuum

parameters”): the Young modulus E , the Poisson ratio ν and

the tension and shear failure stresses σ
f

t and τ f , respectively.

Two different approaches can be followed for determin-

ing the DEM constitutive parameters for a cohesive material,

namely the global approach and the local approach. In the

global approach uniform global DEM properties are assumed

Fig. 1 Model of the contact interface in the DEM

for each contact interface in the whole discrete element

assembly. The values of the global DEM parameters can be

found via different procedures. Some authors have derived

analytical relationships between continuum and global DEM

parameters [24,25]. Others have used numerical experiments

for determining the relationships between DEM and contin-

uum parameters expressed in dimensionless form [14,17,18].

This method has been used by the authors in previous works

[21–23,31,34–36]. Other procedures are based on relating

the global DEM and continuum parameters via laboratory

tests using inverse analysis techniques [29].

The local approach used in this work assumes that the

DEM parameters depend on the local properties of the

interacting particles, namely their radii and the continuum

parameters at each interaction point. Different alternatives

for defining the DEM parameters via a “local approach”

have been reported in recent years [13,14,16,31,32,42,43].

A comparative study of several global and local approaches

for estimating the DEM constitutive parameters is presented

in [36].

In this work we present a new procedure for defining the

DEM parameters for a cohesive material in the framework of

the local approach. In the next section we describe how the

local elastic parameters can be found. Then we define appro-

priate local failure criteria at the contact interface using an

elasto-damage model for the normal tensile stress and the

shear stress, and an elasto-plastic model for the normal com-

pressive stress. The accuracy of the local DEM constitutive

model is verified in the analysis of laboratory strength tests

for different cohesive materials.

The DEM model presented here can be considered as an

extension of that proposed by Donzé and co-workers [13,16,

38,43]. Among the distinct features of our model we note the

inclusion of the effect of the size of the interacting spheres

in the normal and shear parameters, the introduction of a

parameter in the constitutive law accounting for the number

of contacts and the packaging of particles, the definition of the

failure criteria, the estimation of the limit compressive stress

at the contact interface, the effect of damage and plasticity

in the evolution of the normal and shear parameters and the

definition of the material parameters in terms of the uniaxial

stress–strain curve obtained from strength tests.
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Fig. 2 Motion of a rigid particle

Clearly, the local DEM constitutive model presented in

this work is also applicable to standard non-cohesive granular

material, as a particular case of the more general expressions

for the cohesive case. In this sense, the model is able to sim-

ulate the frictional behaviour of the particulate material that

forms once the bonds between particles are broken.

3 Basic equations

3.1 Equations of motion

The translational and rotational motion of rigid spherical or

cylindrical particles is described by means of the standard

equations of rigid body dynamics. For the i-th particle we

have (Fig. 2)

mi üi = Fi , (1)

Ii ω̇i = Ti , (2)

where ui is the particle centroid displacement in a fixed (iner-

tial) coordinate frame X, ωi —the angular velocity, mi —the

particle mass, Ii —the moment of inertia, Fi —the resultant

force, and Ti —the resultant moment about the central axes.

Vectors Fi and Ti are sums of: (i) all forces and moments

applied to the i-th particle due to external loads, Fext
i and

Text
i , respectively, (ii) contact interactions with neighbour-

ing particles Fi j (Fig. 3), j = 1, . . . , nc
i , where nc

i is the

number of particles being in contact with the i-th particle,

(iii) forces and moments resulting from external damping,

F
damp

i and T
damp

i , respectively. Thus, we can be write as

Fi = Fext
i +

nc
i

∑

j=1

Fi j + F
damp
i (3)

Fig. 3 Force Fi j at the contact interface between particles i and j

Ti = Text
i +

nc
i

∑

j=1

r
i j
c Fi j + T

damp
i (4)

where rc
i j is the vector connecting the centroid of the i-th par-

ticle with the contact point c at the interface between particles

i and j (Fig. 3).

The form of the rotational motion of Eq. (2) holds for

spheres and cylinders (in 2D) and is simplified with respect

to a general form for an arbitrary rigid body with the rota-

tional inertial properties represented by a second order tensor.

In the general case it is more convenient to describe the rota-

tional motion with respect to a co-rotational frame x which

is embedded at each element, since in this frame the tensor

of inertia is constant.

3.2 Integration of the equations of motion

Equations (1) and (2) are integrated in time using a stan-

dard central difference scheme [31,48]. The time integration

operator for the translational motion at the n-th time step is

as follows:

ün
i =

Fn
i

mi

, (5)

u̇
n+1/2
i = u̇

n−1/2
i + ün

i ∆t (6)

un+1
i = un

i + ∆ui with ∆ui = u̇
n+1/2
i ∆t (7)

The first two steps in the integration scheme for the rotational

motion are identical to those given by Eqs. (5) and (6):

ω̇
n
i =

Tn
i

Ii

, (8)

ω
n+1/2
i = ω

n−1/2
i + ω̇

n
i ∆t (9)

The vector of incremental rotation ∆θ = [∆θx ,∆θy,

∆θz]
T is calculated for the i th particle as

∆θ i = ω
n+1/2
i ∆t (10)
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Knowledge of the incremental rotation suffices to update the

tangential contact forces. It is also possible to track the rota-

tional position of particles, if necessary. Then the rotation

matrices between the moving frames embedded in the parti-

cles and the fixed global frame must be updated incrementally

using an adequate multiplicative scheme [23,31,48].

Explicit integration in time yields high computational

efficiency and it enables the solution of large models. The

disadvantage of the explicit integration scheme is its condi-

tional numerical stability imposing the limitation on the time

step ∆t [48], i.e.

∆t ≤ ∆tcr (11)

where ∆tcr is a critical time step determined by the highest

natural frequency of the system ωmax as

∆tcr =
2

ωmax
(12)

If damping exists, the critical time increment is given by

∆tcr =
2

ωmax

(
√

1 + ξ2 − ξ
)

(13)

where ξ is the fraction of the critical damping corresponding

to the highest frequency ωmax. Exact calculation of the high-

est frequency ωmax requires the solution of the eigenvalue

problem defined for the whole system of connected rigid par-

ticles. In an approximate solution procedure, an eigenvalue

problem can be defined separately for every rigid particle

using the linearized equations of motion

mi äi + ki ai = 0 (14)

where

mi = {mi , mi , mi , Ii , Ii , Ii }
T,

ai = {(ux )i , (u y)i , (uz)i , (θx )i , (θy)i , (θz)i }
T (15)

and ki is the stiffness matrix accounting for the contributions

from all the interface constraints that are active for the i-th

particle.

4 Frictional contact conditions

4.1 Contact interface

Let us assume that an individual particle is connected to

the adjacent ones by appropriate relationships at the con-

tact interfaces. These relationships define either a perfectly

bond or a frictional sliding situation at the interface.

Particles are assumed to be spherical and can have very

different sizes. Each particle i is characterized by the sphere

radius ri . We will assume that particles i and j are in contact

at a point c located at a distance (1 + β)ri or (1 + β)r j from

the centers of particles i and j , respectively (Fig. 4) where

β is a positive number. Typically, 0 ≤ β ≤ 0.20. We define

Fig. 4 Definition of contact

interface. a β �= 0. b β = 0
(a)

(b)
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the interaction domain between the two particles that share

the contact point c as a cylinder of radius equal to the radius

of the smaller of the two particles in contact (Fig. 4). The

circular section at point c of radius rc is the contact interface

between particles i and j .

This definition of the contact interface and the interaction

domain is motivated by the fact that the two interacting parti-

cles can have very different radius for an arbitrary distribution

of the particle sizes. The contact interface is thus limited by

the size of the smaller of the two particles in contact.

4.2 Interaction range

The overall mechanical behaviour of a material can be repro-

duced by associating a simple constitutive law to each contact

interface. The interaction between spherical (in 3D) or circu-

lar (2D) particles i and j with radius ri and r j , respectively

is defined within an interaction range. This range allows for

a certain gap or an overlapping between the particles. Then

two particles will interact if

1 − β ≤
di j

ri + r j

≤ 1 + β (16)

where di j is the distance between the centroids of particles i

and j and β is the interaction range parameter (Figs. 3, 4).

This choice is made so that the DEM can simulate materi-

als other than simple granular materials, in particular those

which involve a matrix, as it is found for instance in con-

crete, cement and rock. A value of β > 0 is chosen in order

to model the effect of this matrix that may glue two aggre-

gates which are not themselves in contact. In this manner

the model can handle the presence of gaps and overlappings

generated by most of the sphere meshers. Simply, the contact

search is extended using a value of β > 0 and the equilibrium

position of the contact point is then set for its initial configu-

ration (which is not always a tangential contact of particles).

This works inwards for particle inclusions or outwards for

gaps. For the problems solved in this work we have taken

β = 0.10.

From Eq. (16) we deduce

di j = (1 ± β)(ri + r j ) (17)

where the plus and minus sign accounts for the gap and over-

lapping between the two particles, respectively.

4.3 Contact search algorithm

Changing contact pairs of elements during the analysis are

automatically detected. The simple approach to identify

interaction pairs by checking every particle against every

other one would be very inefficient, as the computational time

Fig. 5 Decomposition of the contact force into its normal and tangen-

tial components

is proportional to n2, where n is the number of elements. In

our formulation the search is performed using a grid-based

algorithm. In this case the computation time of the contact

search is proportional to n ln n, which allows us to solve large

frictional contact systems involving many particles [23].

4.4 Decomposition of the contact force

Once contact between a pair of particles has been detected,

the forces occurring at the contact point are calculated. The

interaction between the two interacting particles can be rep-

resented by the contact forces Fi j and F j i , which satisfy the

following relation:

Fi j = −F j i (18a)

We decompose Fi j into its normal and shear components,

F
i j
n and F

i j
s , respectively (Fig. 5)

Fi j = F
i j
n + F

i j
s = Fnni j + F

i j
s (18b)

where ni j is the unit vector normal to the contact interface

between particles i and j and Fn is the modulus of the normal

force at the interface. Equation (18b) implies that the normal

force lies along the line connecting the centers of the two

particles in contact and directed outwards from particle i

(Fig. 5).

The shear force F
i j
s along the shear direction (Fig. 6) can

be written as

F
i j
s = Fs1s1 + Fs2 s2 (19a)

where Fs1 and Fs2 are the shear force components along the

shear directions s1 and s2, and s1 and s2 are unit vectors in

these directions. Vector s1 is taken in an arbitrary direction

orthogonal to the normal vector. Then s2 = ni j × s1.

The shear force modulus Fs is obtained as

F
i j
s = |F

i j
s | = (F2

s1
+ F2

s2
)1/2 (19b)
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Fig. 6 Forces and stresses acting on a contact interface section Ai j .

Definition of normal and shear directions

The relationship between the contact forces Fn , Fs1 and

Fs2 and the particle displacements are obtained using the

local constitutive model described in the next section.

4.5 Definition of the contact law

In this work we have assumed a proportionality between

the normal force at each contact interfaces and the relative

displacement and the relative velocity of the contact point.

As for the shear force, this has been assumed to be pro-

portional to the relative sliding motion at the contact point.

The proportionality coefficients have been estimated start-

ing from the one-dimensional stress–strain relationship for

the cylindrical contact domain of Fig. 4. This approach has

been preferred versus the contact laws proposed by Hertz

[15] and Mindlin [27] for modelling the contact interaction

between two spheres in the normal and tangential directions,

respectively. These laws have been used to model the con-

tact force in granular material with the DEM [4,46]. For

the solids material considered in this work, the existence

of a matrix between grains [(modelled via a gap distance,

Eq. (16)] prevents in most cases the direct contact between

particles, which justifies the more “diffusive” contact model

chosen in this work.

A comparison of different contact has shown that simple

models in the DEM contact models, such as that presented

here, lead to equivalent and, sometimes even better, results

than more sophisticated models [12].

5 Local definition of dem elastic constitutive
parameters

5.1 Normal force parameters

The normal force Fn at the contact interface between particles

i and j is obtained as

F
i j
n = σn Āi j (20)

where σn is the normal stress at the contact interface and Āi j

is the effective area at the interface computed as

Āi j = αi j Ai j with Ai j = πr2
c (21)

Recall that rc is the radius of the smaller of the two parti-

cles interacting at the interface i j (Fig. 4).

In Eq. (21) αi j is a parameter that accounts for the fact

that the number of contacts and the packaging of particles

are not optimal. Clearly, αi j is a local parameter for the i j

interface. In this work, however, we have considered the case

of spherical particles only and used a global definition of αi j

as

αi j = α = 40
P

Nc

(22)

where Nc and P are the average number of contacts per

sphere and the average porosity for the whole particle assem-

bly. Equation (22) has been deduced by defining the optimal

values for the number of contacts per sphere and for the global

porosity equal to 10 % and 25 %, respectively. Clearly α ≃ 1

for quasi-optimal packaging distributions, as it is the case

for the particle meshes using in the examples solved in this

work.

The normal stress σn is related to the normal strain

between the interacting spheres, εn , by a visco-elastic law

as

σn = Eεn + cε̇n (23)

where E is the Young modulus of the solid material and c is

a damping coefficient.

We note that the Young modulus is assumed to be an

intrinsic property of the material. As such it is typically

characterized from axial tests on cylindrical samples. Thus,

the Young modulus obtained from the experimental axial
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stress–strain relationship is used for defining the local nor-

mal stress–strain relationship at a macroscopic level (23) at

the contact interfaces. The same applies to the definition of

the Poisson’s ratio of the material used for defining the local

shear constitutive relationship in Sect. 5.2.

The normal strain and the normal strain rate are defined

as

εn =
un

di j

, ε̇n =
u̇n

di j

(24)

where di j is given by Eq. (17).

Substituting Eq. (24) into (23) gives

σn =
1

di j

[Eun + cu̇n] (25)

In Eqs. (24) and (25) un and u̇n are the normal (relative)

displacement and the normal (relative) velocity at the contact

point defined as

un = (x j − xi ) · ni j − di j , u̇n = (u̇ j − u̇i ) · ni j (26)

where xi and x j are the position vectors of the centroids

of particles i and j . Note that un and u̇n express the relative

(incremental) motion between the centroids of the interacting

particles.

The damping coefficient c is taken as a fraction ξ of the

critical damping c̄ per unit length for the system of two rigid

spherical bodies with masses mi and m j connected by a

spring of stiffness Kn [23,31], i.e.

c =
ξ c̄

rc

= 2
ξ

rc

√

mi j Kn (27)

with 0 < ξ ≤ 1 and mi j is the reduced mass of the contact,

mi j =
mi m j

mi + m j

(28)

In our work we have taken ξ = 0.9.

From Eqs. (20) and (25) we deduce the relationship

between the normal force and the normal relative motion

at the interface between particles i and j as

F
i j
n =

Āi j

di j

(Eun + cu̇n) = Knun + Cn u̇n (29)

Substituting Eqs. (21) and (27) into (29) we find the

expression of the normal stiffness and the normal viscous

(damping) coefficients at the contact interface as

Kn =
αi jπr2

c

di j

E Cn =
2πrcαi jξ

di j

√

mi j Kn (30)

Equation (29) is assumed to hold in the elastic regime for

both the normal tensile force Fnt and the normal compressive

force Fnc .

5.2 Shear force parameters

A similar approach is followed for obtaining the relationship

between the shear forces and the relative tangential displace-

ments at each contact interface.

The shear forces in the s1 and s2 directions (Fig. 6) are

given by

Fs1 = τ1 Āi j , Fs2 = τ2 Āi j (31)

where τ1 and τ2 are the shear stresses at the contact interface.

These stresses are linearly related to the shear strains γ1 and

γ2 at the interface by

τ1 = Gγ1, τ2 = Gγ2 (32)

where G is the shear modulus.

A simple definition of the shear strains is

γ1 =
us1

di j

, γ2 =
us2

di j

(33)

where us1 and us2 are the components in the s1 and s2 direc-

tions of the relative tangential displacement vector at the

contact point given by (Fig. 6)

u
i j
s = [us1 , us2 ]

T = ui j − (ui j · ni j )ni j (34a)

with

ui j =
(

∆ui + (ωωωi × rci
)∆t

)

−
(

∆u j + (ωωω j × rc j
)∆t

)

(34b)

where ∆ui and ∆u j are the displacement increments of the

centroids of particles i and j , respectively [Eq. (7)] and rci

and rc j
are the vectors connecting the particle centers with

the contact point (Fig. 5).

Substituting Eqs. (32) and (33) into (31) we find

Fs1 = Ks1 us1 and Fs2 = Ks2 us2 (35)

with

Ks1 = Ks2 = Ks =
Kn

2(1 + ν)
(36)

where ν is the Poisson ratio.

From Eq. (35) we can obtain a relationship between the

modulus of the shear force and the modulus of the shear

displacement vector as

Fs = Ksus (37)
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with

Fs = |F
i j
s | =

[

(Fs1)
2 + (Fs2)

2
]1/2

,

us = |u
i j
s | =

[

(us1)
2 + (us2)

2
]1/2

(38)

The sign of Fsk
(k = 1, 2) in Eq. (35) depends on the sign

of the velocity component usk
, while in Eq. (37) only the

modulus of vectors F
i j
s and u

i j
s are involved.

For convenience the upper indices i, j are omitted hereon-

wards in the expression of the normal and shear force vectors

F
i j
n and F

i j
s at a contact interface.

6 Global background damping force

A quasi-static state of equilibrium for the assembly of par-

ticles can be achieved by application of an adequate global

damping to all particles. This damping adds to the local one

introduced at the contact interface (Sect. 5.1). We have con-

sidered the following non-viscous type global damping terms

F
damp
i = −αt |Fext

i + Fi j |
u̇i

|u̇i |
(39)

T
damp
i = −αr |Ti |

ωi

|ωi |
(40)

The definition of the translational and rotational damp-

ing parameters αt and αr is a topic of research. A practical

alternative is to define αt and αr as a fraction of the stiffness

parameters Kn and Ks , respectively. In our work we have

taken αt = αr = 0.1. Alternative a viscous type damping

can be used, as described in [23,31].

7 Elasto-damage model for tension and shear
forces

7.1 Normal and shear failure

In this model, cohesive bonds at a contact interface are

assumed to start breaking when the interface strength is

exceeded in the normal direction by the tensile contact

force, or in the tangential direction by the shear force. The

uncoupled failure (decohesion) criterion for the normal and

tangential directions at the contact interface between parti-

cles i and j is written as

Fnt ≥ Fnt , Fs ≥ Fs (41)

where Fnt and Fs are the interface strengths for pure tension

and shear-compression conditions, respectively, Fnt is the

normal tensile force and Fs is the modulus of the shear force

vector defined in Eq. (38).

The interface strengths are defined as

Fnt = σ
f

t Āi j , Fs = τ f Āi j + µ1|Fnc | (42)

where σ
f

t and τ f are the tensile and shear failure stresses,

respectively (also called tensile and shear strengths), Fnc is

the compressive normal force at the contact interface and

µ1 = tan φ1 is a (static) friction parameter, where φ1 is an

internal friction angle. These values are assumed to be an

intrinsic property of the material and are determined exper-

imentally. In our work σ
f

t is taken as the tensile strength

of the material measured in a bending-tensile (BT) test (i.e.

σ
f

t = (σ
f

t )BT ). The value of σ
f

t can also be obtained from

the failure stresses in a Brazilian tensile strength (BTS) test

using the relationship between the tensile strength in BTS

and BT tests. For the examples presented in this paper we

have accepted that σ t
f = (σ

f
t )BT = 1.60(σ

f
t )BT S [2,5].

In absence of values from specific tensile strength tests

the tensile strength σ
f

t can also be estimated from the maxi-

mum compressive stress, (σ
f

nc
)UCS, in a uniaxial compressive

strength (UCS) test in a cylindrical sample. A typical rela-

tionship for concrete, used in this work, is

σ
f

t = 0.464
[

(σ
f

nc
)UC S

]2/3
(43)

There is a big discrepancy in the literature for the value of

the shear strength τ f for frictional cohesive materials. In our

work we have estimated the value of τ f as a percentage of

the maximum compressive stress in an UCS test, (σ
f

nc
)UC S ,

as

τ f = β(σ
f

nc
)UC S (44)

where β is a parameter that is calibrated in numerical experi-

ments via UCS and BTS tests. In our numerical experiments

for cement, concrete and shale rock materials the value of β

used has ranged from 0.4 < β < 0.55. The corresponding

value of τ f is in agreement with the experimental results of

Talbot [41] and Anderson et al. [3] for estimating the shear

strength of cement and concrete materials more than are cen-

tury ago, as well as with more recent experimental data for

concrete and rocks [9,10,39,40,44].

Following tension failure, the constitutive behavior in the

shear direction is governed by the standard Coulomb law

Fs = µ2|Fnc |
us

|us |
with µ2 = tan φ2 (45)

where µ2 is a dynamic Coulomb friction coefficient and φ2

is the post-failure internal friction angle. Both µ2 and φ2 are

determined from experimental tests.

Figure 7a shows the graphical representation of the failure

criterium described by Eqs. (41), (42) and (45). This criterium
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Fig. 7 Failure line in terms of

normal and shear forces. a

Uncoupled failure model. b

Coupled failure model

(a) (b)

Fig. 8 Undamaged and

damaged elastic moduli under

tension (a) and shear (b) forces

(b)(a)

assumes that the tension and shear forces contribute to the

failure of the contact interface in a decoupled manner. On the

other hand, shear failure under normal compressive forces

follows a failure line that is a function of the shear failure

stress, the compression force and the internal friction angle.

Indeed, a coupled failure model in the tension-shear zone

can also be used, as shown in Fig. 7b. For the numerical tests

presented in the paper the uncoupled model has been used.

Figure 8 shows the evolution of the normal tension force

Fnt and the shear force Fs at a contact interface until failure

in terms of the relative normal and tangential displacements.

The effect of damage in the two constitutive laws is also

shown in the figure. The method for introducing damage in

the constitutive equations is explained in the next section.

7.2 Damage evolution law

Elastic damage under tensile and shear conditions has been

taken into account in this work by assuming a linear soft-

ening behaviour defined by the softening moduli Hn and Ht

introduced into the force-displacement relationships in the

normal (tensile) and shear directions, respectively (Fig. 8).

The constitutive relationships for the elasto-damage model

are written as

Normal (tensile) direction

For 0 < dn ≤ 1 : Fnt = (1 − dn)Kn

ul
n

un

un = K d
n un

with K d
n = (1 − dn)

ul
n

un

Kn

For dn ≥ 1 : Fnt = 0

Shear direction

For 0 < ds ≤ 1 : Fs = (1 − ds)Ks

ul
s

us

us = K d
s us

with K d
s = (1 − ds)

ul
s

us

Ks

For ds > 1 : Fs = µ2|Fnc | (46)

where dn and ds are scalar damage parameters in the nor-

mal (tensile) and shear directions at the contact interface,

respectively and K d
n and K d

s are damaged elastic stiffness

parameters. The damage parameters dn and ds are a measure

of the loss of mechanical strength at each contact interface.

For the undamaged state dn = 0 and ds = 0, while for a

damaged state 0 < dn ≤ 1 and 0 < ds ≤ 1.

Damage effects are assumed to start when the strength fail-

ure conditions (41) are satisfied. The evolution of the damage

parameters from the value zero to one can be defined in a

number of ways using fracture mechanics arguments. A key

issue is that the area under the line defining the force (rel-

ative) displacement relationship in the damaged region (the

shadowed area in Fig. 8) equals the specific fracture energy

of the material [26,30,31].

The following damage parameters are defined for conve-

nience
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δn =
u

f
n − ul

n

ul
n

, δs =
u

f
s − ul

s

ul
s

(47)

where u
f
n and u

f
s are values of the interface displacement

increments in the normal and shear directions at failure com-

puted as

u
f
n = di jε

f
n , u

f
s =

√

Āi jγ
f

s (48)

where ε
f

n and γ
f

s are respectively the failure normal strain

and the failure shear strain. These strains are an intrinsic

property of the material that has to be obtained experimen-

tally.

In our work we have defined the damage parameters dn

and ds in Eq. (46) using a simple linear strain softening law

as

dn =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 for un < ul
n =

Fnt

Kn

1

δn

(

un

ul
n

− 1

)

for ul
n ≤ un < u

f
n

1 for un ≥ u
f
n

(49a)

ds =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 for us < ul
s =

Fs

Ks

1

δs

(

us

ul
s

− 1

)

for ul
s ≤ us < u

f
s

1 for us ≥ u
f
s

(49b)

The failure conditions evolve due to damage as follows

Fnt ≥ F
d
nt

, Fs ≥ F
d
s (50)

with

F
d
nt

= Fnt − Hn

(

un − ul
n

)

F
d
s = Fs − Ht

(

us − ul
s

)

(51)

where (Fnt ,F
d
nt

) and (Fs,F
d
s ) are the undamaged and dam-

age interface strengths for pure tension and pure shear

conditions, respectively.

Figure 9 shows the evolution of the failure lines from

the undamaged to the fully damaged state for the uncoupled

model of Fig. 7a.

8 Elasto-plastic model for compression forces

The compressive stress–strain behaviour in the normal direc-

tion at the contact interface for frictional cohesive materials,

such as cement, rock and concrete, is typically governed by

an initial elastic law followed by a non-linear constitutive

Fig. 9 Evolution of the failure lines due to damage for uncoupled nor-

mal and shear failure

equation that varies for each material. The compressive nor-

mal stress increases under linear elastic conditions until it

reaches the limit normal compressive stress σ l
nc

(also called

yield stress). This is defined as the axial stress level where

the experimental curve relating the axial stress and the axial

strain starts to deviate from the linear elastic behaviour. After

this point the material is assumed to yield under elastic-

plastic conditions.

The elasto-plastic relationships in the normal compres-

sive direction are defined as

Loading path

d Fnc = KTn dun (52a)

Unloading path

d Fnc = Kn0 dun (52b)

In Eq. (52) d Fnc and dun are respectively the increment

of the normal compressive force and the normal (relative)

displacement, Kn0 is the initial (elastic) compressive stiffness

for a value of E = E0 (Fig. 10), and KTn is the tangent

compressive stiffness given by

KTn =
ET

E0
Kn0 (53)

where ET is the slope of the normal stress–strain curve in

the elastoplastic branch (i.e. KT = E1, E2, E3 in Fig. 10).

Plasticity effects in the normal compressive direction also

affect the evolution of the tangential forces at the interface,

as the interface shear strength is related to the normal com-

pression force by Eq. (42).

Figure 10 shows the diagram relating the compressive

axial stress and the compressive axial strain used for mod-

elling the elasto-plastic constitutive behaviour at the contact

interfaces. The form of each diagram is typically obtained

from experimental tests on cylindrical samples with the

adjustment explained in the next section.

123



Comp. Part. Mech. (2015) 2:139–160 149

Fig. 10 Compressive axial stress–compressive axial strain diagram for

elastoplastic material. LCS1 = σ l
nc : limit compressive stress dening

the onset of elastoplastic behaviour at the contact interface

The diagram in Fig. 10 will be used for modelling with the

DEM the tests in cement, concrete and shale rock material

in this work.

9 Limit compressive stress at the contact interface:
experimental adjustment

The limit compressive stress at the contact interface is

obtained by correcting the experimental value of the limit

compressive stress obtained in a UCS test. The correction is

needed for taking into account the micro–macro relationship

that relates the limit normal stress at the contact interfaces

with the limit compressive stress obtained from experimental

tests.

Figure 11 shows the average values of the ratio r =
σ l

nc

σ l
a

at all the contact interfaces in terms of the angle that the nor-

mal vector to the interface forms with the horizontal axis for

different triaxial tests on cement samples. In the expression

of r , σ l
nc

is the limit normal compressive stress at the contact

interface and σ l
a is the limit compressive stress obtained in

a UCS test. The results displayed in Fig. 11 shows that the

values of r range form 0.55–0.65 for UCS and triaxial tests.

The conclusion of this study is that the limit normal com-

pressive stress at the contact interface, σ l
nc

, is a proportion

of the actual limit compressive stress in a experimental test.

In our work we have computed σ l
nc

as σ l
nc

= 0.62(σ l
nc

)UC S ,

where (σ l
nc

)UC S is the yield stress obtained in a UCS test.

10 Numerical experiments

The DEM model presented in the previous sections has

been implemented in the DEMPACK code (www.cimne.

com/dempack), based on routines from the open-source

object-oriented software platform KRATOS (www.cimne.

Fig. 11 Micro-macro failure compressive stress ratios

(

r =
σ l

nc

σ l
a

)

obtained for cement samples

com/kratos) and the pre-postprocessing system GiD (www.

gidhome.com). DEMPACK is a fully parallelized DEM code.

Table 1 shows the computer times and speed-ups for the

analysis of a UCS test with a DEM mesh of 70,000 spheres

and 1000 time steps using different processors in a Intel Xeon

ES-2670 machine (2 × 8 = cores) using OpenMP and MPI

parallel computing strategies. Typically, the MPI strategy

provided a better speed up in all cases. Note that the problem

was solved in some 56 s using 16 processors. Indeed, this
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Table 1 CPU times (in seconds) and speed-ups for parallel analysis of

UCS test (70,000 spheres) using MPI and OpenMP strategies

No. of

processors

OpenMP

(time, s)

OpenMP

(speed-up)

MPI

(time, s)

MPI

(speed-up)

1 699,25 1 699,25 1

2 434,03 1,735 372,29 1,878

4 255,35 3,083 243,92 2,867

8 151,23 5,301 111,01 6,299

12 111,05 7,175 71,09 9,725

16 88,04 8,563 56,35 12,410

speed can be improved by enhancing the parallel computing

features of the code.

10.1 DEM analysis of laboratory tests on cement

samples

10.1.1 UCS and triaxial tests on cement samples

The experimental procedure for the triaxial tests on cement

samples studied in this work is as follows:

(1) A right cylindrical plug is cut from the sample core and

its ends ground parallel each other within 0.001 inch.

Physical dimensions and weight of the specimen are

recorded. The dimensions of the cylindrical samples are

1 inch diameter and 2 inch height. The specimen is tested

under saturated condition with water.

(2) The specimen is then placed between two endcaps and

a heat-shrink jacket is placed over the specimen.

(3) Axial strain and radial strain devices are mounted in

the endcaps and on the lateral surface of the specimen,

respectively.

(4) The specimen assembly is placed into the pressure vessel

and the pressure vessel is filled with hydraulic oil.

(5) Confining pressure is increased to the desired hydrostatic

testing pressure.

(6) Specimen assembly is brought into the contact with a

loading piston that allows application of axial load.

(7) Increase axial load at a constant rate until the specimen

fails or axial strain reaches a desired amount of strain

while confining pressure is held constant.

(8) Reduce axial stress to the initial hydrostatic condition

after sample fails or reaches a desired axial strain.

(9) Reduce confining pressure to zero and disassemble sam-

ple.

The simulation of a triaxial test with the DEM reproduces

the experiment as follows.

(a) The confining pressure is applied up to the desired hydro-

static testing pressure.

(b) A prescribed axial motion is applied at the top of the

specimen until this fail, or the axial compressive strain

strain reaches a desired amount of strain while confining

pressure is held constant.

For the UCS test the process starts by step (b) above

described with zero confinement pressure.

We note that the goal of this study was to reproduce with

the DEM model presented the structural behaviour of the

sample during the axial compression phase. For this purpose

an average Young modulus (deduced from the uniaxial strain

compaction (USC) test) was chosen for modelling the the

hydrostatic compaction of the sample during the application

of the confining pressure. A more detailed study of the non

linear behaviour of the cement sample under an hydrostatic

load will be presented in a subsequent work.

Figure 12 shows the normal stress–strain relationship for

a cement material as deduced from the USC test presented in

[19]. The curve shows an initial elastic branch and a (elasto-

plastic) hardening branch.

Figure 13 shows the so-called “differential stress” com-

puted as the difference between the applied axial stress and

the confinement pressure during the USC test for the same

cement material [19]. The curve shows the initial linear

elastic part, a limit axial stress of around 10 Mpa and the

subsequent non linear branch. The non linear region has a flat

part which indicates the compaction of the cement material

for that stress level. This is followed by a hardening branch

which evidences the recovery of the material stiffness for

high compaction values.

For completeness, Figure 14 shows the evolution of con-

finement pressure during the USC test. We note that the curve

in Figure 13 is the difference between the curves of Figures 12

and 14.

The stress in the curve in Figure 13 coincides with the

effective stress only if we accept that the water pressure in

the pores is the same as the external pressure required to

enforce the uniaxial strain conditions during the test.

In our work we have used the stress–strain curve obtained

in the USC test as the basis for computing the normal com-

pressive force at the contact interfaces (σa) for the cement

material examples. Note that for saturated conditions this

curve already accounts for the effect of water pressure at the

pores.

Tables 2, 3 and 4 show the material and DEM parameters

for the cement material studied in this work. Table 2 shows

the basic material parameters reported in [19]. The tensile

strength σ
f

t has been deduced from the BTS test value of

(σ
f

t )BT S = 2.92 MPa [19] using the relationship σ
f

t =

1.60(σ
f

t )BT S ≃ 4.80 MPa as mentioned in Sect. 7.1. On the

other hand, τ f has been taken as τ f = 1
2
(σ

f
nc

)UC S = 8.50

MPa, where (σ
f

nc
)UC S is the maximum compressive stress

obtained in the UCS test.
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Fig. 12 Uniaxial strain

compaction test in cement

sample [19]. Normal total

compressive stress–axial strain

relationship

Fig. 13 Uniaxial strain

compaction test in cement

sample [19]. Differential stress

between the applied axial stress

and the confinement pressure

Fig. 14 Uniaxial strain

compaction test in cement

sample [19]. Confinement

pressure versus axial

deformation

Table 3 shows the DEM constitutive parameters for the

UCS, USC and BTS tests corresponding to the values defined

in Figure 10. Table 4 lists the DEM constitutive parameters

for triaxial tests.

The confining pressure is directly applied to the spheres

that lay on the surface of the specimen. A normal force is

applied to each surface particle in the radial direction. The

magnitude of the force has been approximated in this work
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Table 2 Material parameters for cement

ρ (g/cc) µ1 µ2 E0 (GPa) ν σ
f

t (MPa) τ f (MPa)

1.70 0.30 0.40 3.80 0.20 4.80 8.50

as Fni
= πr2

i pc where ri is the particle radius and pc is the

confining pressure. A more accurate procedure for transfer-

ring the confining pressure to the spheres at the boundary of

the specimen using the areas of the Voronoi polygon created

by the centroids of the spheres is presented in [7].

A small confining pressure of 70 Psi was applied for the

analysis of the UCS test. This pressure reproduces the effect

of the heat-shrink jacket on the lateral deformation of the

sample.

Figures 15 and 16 show DEM results for the UCS and

triaxial tests for a discretization of 42000 spheres.

Figure 15 shows DEM results of the applied axial versus

the axial strain in the cement specimen for the UCS test.

Figure 16 shows DEM results for triaxial tests in the cement

samples for confining pressures of 500, 1000, 2000 and 4000

Psi using again 42000 spheres. Good correlation between the

DEM results and the experimental values [19] is obtained in

all cases.

Figure 17 shows the deformation of the sample at the fail-

ure point for the UCS test where the typical cracking pattern

can be seen. A similar set of results is shown in Fig. 18 for

the triaxial test under a confining pressure of 500 Psi and

different deformation levels.

10.1.2 Uniaxial strain compaction (USC) test on cement

sample

For the USC test the radial strain is constrained in the sample

while a piston presses the sample from the top. The DEM

parameters are those given in Tables 2 and 3.

Again, excellent agreement between DEM and experi-

mental results is obtained using 16000 spheres (Fig. 19).

10.1.3 Brasilian tensile strength (BTS) test on cement

sample

The BTS test was carried out for a sample of 1.487 in diam-

eter and 0.863 in thickness. The density of the material was

1.70 g/cm3. The experimental value of the maximum load

in the BTS test was 847 lb which corresponds to a value of

(σ
f

t )BT S = 420 Psi≈2.9 MPa. Hence,σ
f

t = 1.6(σ
f

t )BT S =

4.8 Mpa (Sect. 7.1).

The DEM parameters used are given in Tables 2 and 3.

Table 3 DEM constitutive

parameters for the UCS, USC

and BTS tests on cement

samples

LCS1 (MPa) LCS2 (MPa) LCS3 (MPa) YRC1 YRC2 YRC3 δn δs α

8.5 9.0 11 3 9 24 0.20 0.2 1.0

Table 4 DEM constitutive

parameters for triaxial tests on

cement samples

Confining

pressure (Psi)

LCS1

(MPa)

LCS2

(MPa)

LCS3

(MPa)

YRC1 YRC2 YRC3 δn δs α

500 9.5 11 13 3 9 24 0.20 0.2 1.0

1000 10 11 14 3 9 24 0.20 0.2 1.0

2000 13 14 15 3 9 24 0.20 0.2 1.0

4000 21 23 26 3 9 24 0.20 0.2 1.0

Fig. 15 DEM and experimental

results for uniaxial compressive

strength (UCS) test in a cement

sample. DEM results for 42000

spheres
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Fig. 16 Triaxial tests in cement

samples. DEM-Drill and

experimental results for

confining pressures of a 500Psi,

b 1000 Psi. DEM results for

42000 spheres. Triaxial tests in

cement samples. DEM and

experimental results for

confining pressures of c

2000 Psi and d 4000 Psi. DEM

results for 42000 spheres
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Fig. 17 UCS fracturing in cylindrical cement sample

The DEM analysis was carried out using a discretization

of 16000 spheres. The stress–displacement curve obtained

with the DEM is displayed in Fig. 20. The maximum ten-

sile strength computed is 3.0 MPa. The agreement with the

experimental value of 2.9MPa is within 3.5 % of relative

error.

Figure 21 shows the x-displacement field on the sample

once it has broken.

10.2 DEM analysis of laboratory tests on concrete

samples

The experimental tests were carried out at the laboratories of

the Technical University of Catalonia (UPC) in Barcelona,

Spain. Details of the test are given in [37]. The concrete used

in the experimental study was designed to have a character-

istic compressive strength of between 32.8 and 38 MPa at 28

days. Standard cylindrical specimens (of 150 mm diameter

Fig. 18 Triaxial test under 500 Psi confinement in cement sample at 1.28, 1.55, 1.80, and 2.0 % axial strain
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Fig. 19 DEM results for

uniaxial strain compaction

(USC) test on cement sample

using 16000 spheres

Fig. 20 DEM results for

Brasilian strength (BTS) test in

cement sample using 16000

spheres

Fig. 21 DEM results for the x-displacement for BTS test in cement sample using 16000 spheres

and 300 mm height) were cast in metal molds and demolded

after 24 h for storage in a fog room.

The triaxial tests were prepared with a 3-mm-thick butyl

sleeve placed around the cylinder and an impermeable neo-

prene sleeve fitted over it. Before placing the sleeves, two

pairs of strain gages were glued on the surface of the speci-

men at mid-height. Steel loading platens were placed at the

flat ends of the specimen and the sleeves were tightened over

them with metal scraps to avoid the ingress of oil.

The tests were performed using a servo-hydraulic testing

machine with a compressive load capacity of 4.5 MN and

a pressure capacity of 140 MPa. The axial load from the

testing machine is transmitted to the specimen by a piston that

passes through the top of the cell. Several levels of confining
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Fig. 22 Uniaxial compression strength (UCS) test in concrete sample.

DEM results for 13000 spheres and experimental values

pressure ranging from 1.5 to 60 MPa were used in order to

study the brittle–ductile transition of the response. First the

prescribed hydrostatic pressure was applied in the cell, and

then the axial compressive load was increased at a constant

displacement rate of 0.0006 mm/s.

Two specimens were tested at each confining pressure,

and all tests were performed at ages of more than 50 days

to minimize the effect of aging response. In addition to the

triaxial tests, uniaxial compression tests were also performed.

Concrete samples were tested in dry conditions. For our

computations the limit compressive normal stress was esti-

mated as the stress level of the axial stress-deformation curve

where elasto-plastic behaviour initiates in the UCS test [37]

(Fig. 22) and taking into account the correction mentioned

in Sect. 9. This gives σ l
nc

= 15 Mpa.

On the other hand, the value of σ
f

t was estimated using

Eq. (43) for a value of (σ
f

nc
)UC S = 37 MPa. This gives σ

f
t ≃

5 MPa. As for τ f we have taken τ f = 0.45(σ
f

n f
)UC S ≃ 16

MPa.

The DEM constitutive parameters for the analysis of the

concrete samples are shown in Table 5. Figures 22 and 23

respectively show DEM results for the UCS and triaxial tests

for confining pressures of 4.5, 9.0 and 60 MPa using a dis-

cretization of 13000 spheres. Results for the BTS test are

shown in Fig. 24. Good agreement with the experimental

results [37] was found in all cases.

Figure 25 shows results of a triaxial test for the same con-

crete material and a confining pressure of 40MPa. The effect

of plasticity for different unloading–reloading paths is accu-

rately predicted with the DEM using just 4000 spheres.

10.3 UCS and BTS tests on shale rock material

We have simulated with the DEM code a UCS test and a

BTS test on a shale rock material corresponding to a Middle

Brown gaseous shale in Devonian formation from Lincoln

County, West Virginia. The essential material parameters for

the DEM simulations were taken from [33].

The simulations were carried out in a cylindrical sample

of dimensions 150 × 300 mm. The material properties used

for the DEM analysis are listed in Table 6. The value of

τ f = 25 MPa was obtained using Eq. (44) with β = 0.5 and

(σ
f

n f
)UC S = 50 MPa as reported in [33].

The curve in Fig. 26 shows the axial stress–axial strain

curve for the UCS test. A maximum compressive stress of

48 MPa was obtained using a discretization of 37000 spheres.

This yields a 4 % error versus the experimental value of 50

MPa [33].

The curve in Fig. 27 shows the tensile stress–versus time

for the BTS test obtained with the DEM using 27000 spheres.

A failure tensile stress of σ
f

t = 5.4 MPa was obtained. This

gives a 8 % error versus the experimental value of σ
f

t = 5

MPa.

11 Concluding remarks

We have presented a local constitutive model for the DEM.

The model governs the linear and non linear relationships

between the normal and tangential forces and the correspond-

ing relative displacements at the contact interfaces between

discrete particles. The good behaviour of the model has been

verified in its application to the analysis with the DEM of

cement, concrete and shale rock samples under different

strength tests. DEM results compare well with experimen-

tal data for the same tests.

The results obtained in this work show that the DEM

model presented yields an accurate and reliable numerical

method for linear and nonlinear analysis of geomaterials and

concrete under mechanical loading.

Further validation of the DEM model presented is still

needed in order to asses its convergence features for the non

linear analysis of cohesive material in terms of the number

and size distribution of the spheres.

Table 5 DEM constitutive

parameters for tests on concrete

samples

ρ (g/cc) µ1 µ2 E0 (GPa) ν σ
f

t (MPa) τ f (MPa)

2.5 0.90 0.25 28 0.2 5.0 16

LCS1 (MPa) LCS2 (MPa) LCS3 (MPa) YRC1 YRC2 YRC3 δn δs α

20 45 70 3 12 22 0.2 0.2 1.0
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Fig. 23 Triaxial tests in

concrete samples. DEM results

for 13000 spheres and

experimental values for

confinement pressures of a

4.5 MPa, b 9.0 MPa, c 60 MPa
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Fig. 24 BTS test in concrete

sample. DEM results for 27000

spheres. The experimental limit

tensile stress is 3 Mpa

Fig. 25 Triaxial test in concrete

sample. DEM results for 4000

spheres and experimental values

[37] for a confinement pressure

of 40 MPa. Results show the

effect of plasticity for different

unloading–reloading paths

Table 6 DEM constitutive

parameters for tests on shale

rock samples

ρ (g/cc) µ1 µ2 E0 (GPa) ν σ
f

t (MPa) τ f (MPa)

2.55 0.7 0.6 30 0.2 5.0 25

LCS1 (MPa) LCS2 (MPa) LCS3 (MPa) YRC1 YRC2 YRC3 δn δs α

20 30 40 1 1 1 0.2 0.2 1.0

Fig. 26 Axial stress–axial

strain curve for UCS test in

shale rock material. DEM

results using 37000 spheres
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Fig. 27 Tensile stress–time

curve for BTS test in shale rock

material. DEM results using

27000 spheres
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Annex

We list below the key analysis parameters involved in the

DEM model presented. All the parameters, except α are

macroscopic material parameters that should be determined

from experimental tests.

ρ: Density

µ1: Static (Coulomb) friction coefficient

µ2: Dynamic (Coulomb) friction coeffi-

cient

E0: Young modulus at the onset of the

uniaxial compression tests

ν: Poisson’s ratio

σ
f

t : Tensile failure stress

τ f : Shear failure stress

LCS1,LCS2,LCS3: Values of limit compressive stress

defining changes on the uniaxial

stress–strain relationship (Fig. 10)

YRC1,YRC2,YRC3 Reduction parameters for the initial

Young modulus E0 at the limit com-

pressive stress values LCS1, LCS2

and LCS3, respectively

δn ,δs : Non dimensional damage parame-

ters in the normal and shear direc-

tions [Eq. (47)]

α: Parameter that accounts for the num-

ber of contacts and packaging dis-

tribution of spheres in the DEM

mesh. This is a model parameter

that depends on the distribution of

spheres in the DEM mesh.
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