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In this paper a Local Defect Correction technique for time-dependent
problems is presented. The method is suitable for solving Partial Differ-
ential Equations characterized by a high activity, which is mainly located,
at each time, in a small part of the physical domain. The problem is solved
at each time step by means of a global uniform coarse grid and a local uni-
form fine grid. Local and global approximation are improved iteratively.
Results of numerical experiments illustrate the accuracy, the efficiency and
the robustness of the method.

1 Introduction

Solutions of Partial Differential Equations (PDEs) are often characterized, at each
time, by regions where spatial gradients are quite large compared to those in the rest
of the domain, where the solution presents a relatively smooth behavior. Examples are
the solutions of PDEs describing shock hydrodynamics, transport in turbulent flow
fields, combustion processes, etc. An efficient numerical solution of such problems
requires the usage of adaptive grid techniques. In adaptive grid methods, a fine grid
spacing is adopted only where the large variations occur, so that the computational
effort and the memory requirements are minimized.

A large number of adaptive grid methods for time-dependent problems have been
proposed in the literature. A first category includes the moving-grid or dynamic-
regridding methods. In this approach, nodes are moving continuously in the space-
time domain, like in classical Lagrangian methods, and the discretization of the PDEs
is coupled with the motion of the grid. A few examples can be found in [9, 12, 13,
14, 18]. These methods differ in how the motion of the grid is governed. The grid is
anyhow always nonuniform and the number of nodes remains constant in time. A dis-
advantage of this approach is that programming these methods often involves quite
complicated data structures.

Another type of adaptive grid techniques is represented by the static-regridding
methods. Here, the idea is to adapt the grid at each time by adding grid points where a
high activity occurs and removing them where they are no longer needed. This process
is controlled by error estimates or methods based on the measure of some characteris-
tics of the solution (e.g. gradients, slope, etc.). In this kind of methods the number of
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grid points is not constant in time. A static-regridding technique of particular inter-
est is the Local Uniform Grid Refinement (LUGR) method, described in [16]. In this
method, at each time step the problem is first solved on a global uniform coarse grid.
The coarse grid solution provides approximate boundary conditions on a local uniform
fine grid and the problem is then solved locally. At the end, the fine grid values are
used to replace the coarse grid values in the region of refinement. The technique re-
lies on the fact that the coarse grid solution provides artificial boundary conditions
for the local problem that are accurate enough. The main advantage of LUGR is the
possibility of working with uniform grids and uniform grid solvers only.

The Local Defect Correction (LDC) method we present in this paper is a static-
regridding method. LDC shares with LUGR the possibility and the advantage of
working with uniform grids and uniform grid solvers only. Moreover, LDC has the
advantage that the fine grid solution is used not only to replace the coarse grid values
in the area of refinement, but to overall improve the coarse grid approximation. This
can be achieved through the so called defect correction, in which the fine grid solution
is used to approximate the local discretization error. The improved coarse grid approx-
imation defines new artificial boundary conditions for a new local problem, which in
turn can correct the global solution. At each time step, LDC is thus an iterative process
and, as discussed in [2] for stationary cases, its convergence is very fast. In this way,
LDC does not have to rely on the accuracy of the artificial boundary condition provided
by the first coarse grid approximation, turning out to be a more robust method than
LUGR.

As a technique for solving elliptic problems, Local Defect Correction was first intro-
duced in [11]. An analysis of LDC in combination with finite difference is presented
in [7, 8]. The LDC technique is studied in combination with a finite volume discretiza-
tion in [3, 1], and in combination with finite element in [17]. The LDC method has also
been employed with different grid types: in [15] the global coarse grid is cartesian,
while polar coordinates are used locally; in [10] the local fine grid is in a slantwise
direction.

In this work we extend the LDC method for solving time-dependent PDEs. This
paper is organized as follows: in Section 2 we describe the LDC algorithm for a time-
dependent problem; in Section 3 we present the results of some numerical experi-
ments; Section 4 is finally devoted to conclusions.

2 The LDC method for a time-dependent problem

In this section the Local Defect Correction method for time-dependent problems is pre-
sented. At a generic time step, the problem is first solved on a global coarse grid which
provides artificial boundary conditions for a local fine grid solution; this is explained in
Section 2.1. The local solution is then employed to improve the global approximation
through the defect correction; the process can be iteratively repeated till convergence.
The defect correction is the subject of Section 2.2.

2.1 A first approximation of the solution at time t �

To formulate the LDC algorithm for a two-dimensional time-dependent problem, we
consider the following equation:

∂u

∂t
= Lu + f, in Ω×Θ, (1)
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in which u = u(x, t) is unknown, L is a linear spatial differential operator and f =

f(x, t) a source term. Furthermore Ω is an open rectangular subset of R
2 and Θ is

the time interval (0, tend]. We close problem (1) by prescribing the Dirichlet boundary
condition

u = ψ, on ∂Ω×Θ, (2)

and the initial condition
u(x, 0) = ϕ0, in Ω̄. (3)

In (2) and (3), ψ = ψ(x, t) and ϕ0 = ϕ0(x) are two known functions, while ∂Ω denotes
the boundary ofΩ and Ω̄ := Ω∪ ∂Ω. We suppose that u, the continuous solution of (1)
that satisfies (2) and (3), has for every time in Θ a high activity region that covers
some (small) part ofΩ. We also suppose that explicit time integration schemes are not
suitable for computing a numerical approximation of u.

In order to be solved numerically, problem (1) has to be discretized in space and
time. For this purpose, in Ω we introduce a global regular coarse grid (grid size H),
which we denote by ΩH. Grid points ∂ΩH are placed on ∂Ω too and we define Ω̄H :=

ΩH∪∂ΩH. The time interval Θ is divided intoNt ≥ 1 subintervals such that tend/Nt =:

∆t. We also introduce tn := n∆t, with n = 0, 1, 2, . . . , Nt, and by un
H we denote the

approximation of the continuous solution u on the global coarse grid at time tn.
Because of the local high activity of the solution, at time tn a coarse grid approxima-

tion un
H might not be accurate enough to adequately represent un := u(tn). Therefore

we want to find a more accurate (both in space and time) local approximation of un

and eventually use it to correct and improve un
H. At the time interval [tn−1, tn] ⊂ Θ,

we choose for this purpose Ωn
l , an open subset of Ω such that the high activity of u is

entirely contained in Ωn
l . In Ωn

l the subscript l reminds us that we are dealing with a
local region, while the superscript n refers to the fact that this local region is defined
on the n-th time interval, namely [tn−1, tn]. The boundary of Ωn

l is ∂Ωn
l and we also

define Ω̄n
l := Ωn

l ∪ ∂Ωn
l . The high activity may be captured by introducing a local fine

regular grid (grid size h < H), which we denote by Ωn
l,h. We also introduce the grid

points ∂Ωn
l,h on the boundary ofΩn

l,h and we define Ω̄n
l,h := Ωn

l,h∪∂Ωn
l,h. The local fine

grid is chosen such that ΩH ∩Ωn
l ⊂ Ωn

l,h, i.e. grid points of the global coarse grid that
lie in the area of refinement belong to the local fine grid too. In this way the factor of
grid refinement σ, defined as

σ :=
H

h
, (4)

turns out to be a positive integer. The union of coarse and fine grids defines a composite
grid. Figure 1 shows an example of a composite grid. In that figure the coarse grid
pointsΩH are marked with a cross and the grid points ∂ΩH are denoted with an empty
triangle. The region with grey background is the area of refinementΩn

l : in that region
the fine grid pointsΩn

l,h are marked with a small circle, whereas the grid points ∂Ωn
l,h

are denoted with a small triangle. The figure also shows that the coarse grid points
that lie inΩn

l belong to the fine grid too. In this example the factor of grid refinement σ
is 3.

The time interval [tn−1, tn] is further divided into nt ≥ 1 subintervals such that
(tn − tn−1)/nt =: δt. Analogously to σ, we can thus define the factor of time refinement
as

τ :=
∆t

δt
. (5)

We finally introduce tn−1+k/τ := tn−1 + kδt, with k = 0, 1, 2, . . . , nt; with un−1+k/τ

l,h,n we
denote an approximation of u on the local fine gridΩn

l,h at time tn−1+k/τ. In un−1+k/τ

l,h,n
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Figure 1: Example of a composite grid at a certain time tn.

the superscript refers to the time level, while the three subscripts l, h and n remind us
that we are dealing with an approximation defined on a local grid (l) with grid space h
in the n-th time interval [tn−1, tn]. In a time-dependent problem the high activity
region can both move and change its size as time proceeds, so that it can easily happen
thatΩn

l,h 6= Ωn−1
l,h . There is thus a difference between un−1

l,h,n, an approximation of un−1

on Ωn
l,h, and un−1

l,h,n−1, which is defined at the same time level but on Ωn−1
l,h .

In the sequel of this section we will first find an expression for un
H and secondly we

will define the local problem that leads to determine un
l,h,n, a local better approxima-

tion of un.
We suppose that the LDC technique has been applied in the time interval [tn−2, tn−1],

with n > 1. If this is the case, the following approximation of u is available on the
composite grid Ω̄n−1

H,h := Ω̄H ∪ Ω̄n−1
l,h at time tn−1:

un−1
H,h,n−1 :=

{

un−1
l,h,n−1, in Ω̄n−1

l,h ,

un−1
H , in Ω̄n−1

H,h \ Ω̄n−1
l,h .

(6)

In (6) the numerical approximation includes the boundary condition too. The approx-
imation un−1

H,h,n−1 is called composite grid solution. We notice that in the expression of
the composite grid solution the local approximation is considered to be more accurate
and hence defines un−1

H,h,n−1 in the common points between coarse and fine grid. We
call un−1

H,H the restriction of un−1
H,h,n−1 on ΩH. For n = 1, un−1

H,H is expressed through the
initial condition (3):

u0
H,H = ϕ0

�
�
ΩH
, in ΩH. (7)

If now the Implicit Euler scheme is applied to (1), un
H can be computed solving the

linear system
un

H − un−1
H,H

∆t
= LHu

n
H + fnH, in ΩH. (8)

In (8) the Dirichlet boundary condition (2) has been incorporated in the discretized
source term fnH. We have not been specific about the continuous operator L and the
discretized operator LH; it may be helpful to think of L as the Laplacian operator ∆,
and LH as the standard finite differences five-point stencil approximating ∆.

We proceed defining a problem on the local fine grid Ωn
l,h. As already mentioned be-

fore, in a time-dependent problem it is likely that the high activity region moves and
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(a) (b)

Figure 2: An example of composite grid Ω̄n−1
H,h at time tn−1 (a) and of composite

grid Ω̄n
l,h at time tn (b). The fine grid points in (b) marked with an extra

circle form Ω̃n
l,h.

changes its size as time proceeds, so that in general Ω̄n
l,h 6= Ω̄n−1

l,h . This leads to the
fact that a local approximation of u at tn−1 is directly available only at the common
points between Ω̄n−1

l,h and Ω̄n
l,h. In order to obtain it on the remaining part of Ω̄n

l,h,
i.e. on Ω̃n

l,h := Ω̄n
l,h \ (Ω̄n−1

l,h ∩ Ω̄n
l,h), we introduce an operator Qn−1

x that spatially
interpolates un−1

H,h,n−1 on Ω̃n
l,h. Figure 2 represents an example in which, from tn−1

to tn, the local region has changed its location, its shape and its area. The fine grid
points in Figure 2-b marked with an extra circle form Ω̃n

l,h: in those points a fine grid
approximation at time tn−1 is not directly available and it has to be computed through
interpolation from un−1

H,h,n−1. From a practical point of view, we can imagine the oper-
ation performed by Qn−1

x to be a linear interpolation. We should also notice that there
was no high activity at time tn−1 on Ω̃n

l,h (by definition Ω̃n
l,h ∩ Ω̄n−1

l,h = ∅) and there-
fore the interpolation takes place in a region with no high gradients. Furthermore if
the time step ∆t is small enough, we can imagine that the area of high activity does
not move much between two consecutive time steps, so that interpolation is needed on
a small region only. Once the interpolation process has taken place, we have a local
approximation of u at each point of Ω̄n

l,h at time tn−1 (n > 1); this approximation is
called un−1

l,h,n and its expression is given by

un−1
l,h,n :=

{

un−1
l,h,n−1, in Ω̄n

l,h \ Ω̃n
l,h,

Qn−1
x (un−1

H,h,n−1), in Ω̃n
l,h.

(9)

At this stage we have defined a local grid Ω̄n
l,h and provided initial values un−1

l,h,n at
each of its points. If we want to solve a discrete equivalent of (1) onΩn

l,h×{tn−1+k/τ, k =

1, . . . , nt}, we also have to provide conditions on the boundary of the local grid for each
time tn−1+k/τ, k = 1, . . . , nt. For Γn

1 := ∂Ω ∩ ∂Ωn
l , i.e. the part of the local area’s

boundary which is common with the global boundary, we can appropriately use the
original boundary condition (2) at any time tn−1+k/τ, k = 1, . . . , nt. For that purpose
we define Γn

1,h := Γn
1 ∩ ∂Ωn

l,h. As for the rest of the local area’s boundary, namely
Γn
2 := ∂Ωn

l \ Γn
1 , we introduce the interpolation operator in space Pn

x , that interpo-
lates un

H on Γn
2,h := Γn

2 ∩ ∂Ωn
l,h. With Pn

x we are able to prescribe artificial Dirichlet
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boundary conditions on Γn
2,h at tn. Since we need boundary conditions not only at tn,

but for all the tn−1+k/τ, with k = 1, 2, . . . , nt, we define another interpolation opera-
tor Rn,k

t . The operator Rn,k
t performs time interpolation between the time levels tn−1

and tn; in particular, Rn,k
t interpolates between the restriction of un−1

l,h,n on Γn
2,h, see (9),

and Pn
x (un

H). In this way, Rn,k
t enables us to specify artificial Dirichlet boundary condi-

tions on Γn
2,h for every tn−1+k/τ, with k = 1, 2, . . . , nt. We can synthetically write the

boundary condition for the local problem as

u
n−1+k/τ

l,h,n = ψ̃
n−1+k/τ

l,h,n , on Γn
1,h ∪ Γn

2,h, k = 1, 2, . . . , nt, (10)

where

ψ̃
n−1+k/τ

l,h,n :=







ψ(tn−1+k/τ), on Γn
1,h, k = 1, . . . , nt,

Rn,k
t

�
un−1

l,h,n

�
�
Γn

2,h

, Pn
x (un

H) � , on Γn
2,h, k = 1, . . . , nt.

(11)

From (11) we can see that the boundary condition for the local problem depends on un
H,

the approximation of un that we computed on the global coarse grid solving (8).
At this moment we have provided initial values of u onΩn

l,h and boundary condition
on ∂Ωn

l,h = Γn
1,h∪Γn

2,h for tn−1+k/τ, k = 1, . . . , nt. If we now introduce a local discretiza-
tion of (1), we are able to formulate a local problem from which we can compute un

l,h,n.
The local approximation un

l,h,n is regarded to be more accurate than un
H since it is com-

puted using a finer grid (h < H) and a smaller time step (δt ≤ ∆t). If again the Implicit
Euler scheme is used, the local problem that enables us to determine un

l,h,n is

u
n−1+k/τ

l,h,n − u
n−1+(k−1)/τ

l,h,n

δt

= Ll,h,nu
n−1+k/τ

l,h,n + f
n−1+k/τ

l,h,n , in Ωn
l,h, k = 1, . . . , nt. (12)

Boundary condition (11) has been included in the right hand side of (12). The proce-
dure (12) is initialized using (9) if n > 1, or by a proper discretization of the original
initial condition (3) if n = 1.

We briefly summarize what we have done so far in order to compute a first approxi-
mation of u at tn on the composite grid Ωn

H,h:

• un
H is computed performing one time step with (8);

• a local region Ωn
l that includes u’s high activity is chosen and a fine grid Ωn

l,h

introduced on it;

• the time step [tn−1, tn] is divided in subintervals whose length is δt ≤ ∆t;

• an approximation of un−1 is provided at each grid point of Ωn
l,h;

• a boundary condition for the local problem (12) is provided on the border of Ωn
l,h

for tn−1+k/τ, k = 1, . . . , nt;

• un
l,h,n, a local approximation of un which is considered to be more accurate than
un

H, is computed solving (12).

2.2 Defect correction

The crucial part of the LDC algorithm is how the local solution un
l,h,n is used to improve

the global approximation un
H through an approximation of the local discretization error

or defect. The defect dn
H is defined as

dn
H :=

un|ΩH
− un−1|ΩH

∆t
− LHu

n|ΩH
− fnH, in ΩH. (13)

6



(a) (b)

Figure 3: An example of composite grid at time tn with no safety region (a) and with
safety region of depth 1 (b).

In (13) we substituted the projection on ΩH of the continuous solution u into the dis-
cretization scheme (8). If we would know the values of the defect dn

H, we could use
them to find a better approximation of un on the coarse grid. This could be achieved
by putting dn

H on the right hand side of (8). However, since we do not know the ex-
act solution of our partial differential equation, we cannot calculate the values of dn

H.
What we can do, though, is to use the more accurate local approximation un

l,h,n to get
an estimation d̃n

H of dn
H on Ωn

l,H := ΩH ∩Ωn
l,h

dn
H ≈ d̃n

H :=











un
l,h,n − un−1

H,H

∆t
− LHu

n
l,h,n − fnH, on Ωn

l,H,

0, on ΩH \Ωn
l,H.

(14)

Previous results for stationary problems (see [2, 11]) show that it may be beneficial
to estimate the defect not at every point of Ωn

l,H, but in a subset of Ωn
l,H only. In

particular, nodes in Ωn
l,H lying close to the interface Γn

2 should be excluded. This leads
to the introduction of a subset Ωn

l,H,def of Ωn
l,H, separated from the interface Γn

2 by
a so called safety region. In Figure 3 the grid points where an approximation d̃n

H of
the actual defect dn

H is computed are marked with a square. In Figure 3-a Ωn
l,H,def ≡

Ωn
l,H and there is no safety region. In Figure 3-b a safety region of depth 1 has been

introduced: an approximation of d̃n
H is not computed in the first layer of Ωn

l,H next
to Γn

2 .
The estimate d̃n

H of the local discretization error is finally placed on the right hand
side of scheme (8):

un
H,1 − un−1

H,H

∆t
= LHu

n
H,1 + fnH + d̃n

H, in ΩH. (15)

The solution of (15) leads to a better approximation of un on the global gridΩH. In (15)
we have called this new approximation un

H,1, where the new subscript is used to distin-
guish the new approximation from the previous one un

H, from now on referred as un
H,0.

Once un
H,1 is computed, we are able to define new boundary conditions, see (11), for a

new local problem onΩn
l,h and this triggers an iterative procedure which is formalized
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in Algorithm 1. As for the global grid solution, in Algorithm 1 an extra subscript is
added to number the different approximations computed locally; the same is done for
the defect term.

Algorithm 1 (LDC algorithm for a time-dependent problem)
FOR LOOP, n = 1, 2, . . . , Nt

INITIALIZATION

• Compute a global approximation un
H,0 solving problem (8).

• Choose a region of refinement Ωn
l , introduce a fine grid Ωn

l,h on it, divide the
time step [tn−1, tn] in nt ≥ 1 subintervals.

• Compute an initial condition for the local problem; for n = 1 use a discretiza-
tion of the original initial condition (3), otherwise do as in (9).

• Compute a boundary condition for the local problem as in (11).

• Compute a local approximation un
l,h,n,0 solving the local problem (12).

ITERATION, w = 1, 2, . . .

• Use un
l,h,n,w−1 to compute an approximation d̃n

H,w−1 of the local discretization
error as in (14).

• Compute a more accurate global approximation un
H,w solving a modified global

problem as in (15).

• Use un
H,w to update the boundary condition for the local problem.

• Compute a local solution un
l,h,n,w with updated boundary condition.

END ITERATION ON w

• Call un
l,h,n and un

H the latest solutions that have been found on the local and
global grid respectively (remove the last subscript); the solution at time tn
(including boundary condition) is:

un
H,h,n :=

{

un
l,h,n, in Ω̄n

l,h,

un
H, in Ω̄H \ Ω̄n

l,h.
(16)

END FOR LOOP ON n

In Algorithm 1 the iteration on w is called LDC iteration. Each LDC iteration con-
sists in the entire recomputation of the time step ∆t. For a good performance in solving
the transient problem, it is thus desirable than only a small number of LDC iterations
are needed at each time step. However, as it happens for stationary problems, the con-
vergence of the LDC iterations is very fast and it generally requires only one iteration.

When presenting the LDC method for time-dependent problems we have used the
Implicit Euler scheme for time discretization. We should notice here that this is not
restrictive and that other implicit methods for time discretization (e.g. Runge-Kutta
schemes) might be applied as well. Moreover we are not constrained to use the same
scheme for the global and for the local grid.

A final consideration regards the choice of the local region Ωn
l . Many methods have

been proposed in the literature of adaptive methods and in principle one can use any
kind of criterion which is suitable for one’s specific application. In [5, 6, 4], for example,
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Figure 4: Plot of the velocity field v = (y − 0.5,−x + 0.5).

a positive weight functionwij is introduced to determine which coarse grid boxes Bij :=

(xi, xi+1)× (yj, yj+1) require refinement. The weight function wij, which is in practice
an indicator of the solution roughness, is computed on each box Bij from the gradient
of the coarse grid approximation. After that a smoothing filter, an averaging and a
normalization procedure are applied. At the end the boxes Bij for which wij > ε are
labelled for refinement. The threshold value ε is a user-specified parameter typically
ranging from 1.5 to 3. The method is described in further detail in [5, 6, 4] and it will
be used in one of the examples in Section 3.

3 Numerical experiments

In this section we present two numerical examples. The first one, Section 3.1, is a 2D
numerical experiment in which the LDC technique is compared with a standard uni-
form grid solver. We show that LDC can achieve the same accuracy as the uniform
grid solver, while requiring the computation of a smaller number of unknowns and
being thus a more efficient method. In the second example, Section 3.2, a 1D problem
is solved both with LDC and LUGR. We illustrate the robustness of the LDC method
showing that when LUGR fails, LDC can still lead to accurate results.

3.1 Example 1: a 2D convection-diffusion problem

In this section we present the results of a 2D numerical experiment. We choose Ω =

(0, 1) × (0, 1) ⊂ R
2 and Θ = (0, 2], and we solve the following problem































∂u

∂t
+ v · ∇u = λ4u, in Ω×Θ,

u = exp � (x− 0.3)2 + (y − 0.3)2

10−2 � , in Ω, t = 0,

u = 0, on ∂Ω×Θ,

(17)

where v = v(x, y) = (y − 0.5,−x + 0.5), see Figure 4, and λ = 10−4. We observe that

9



Grid and time step ε � Total number unknowns
LDC1 Unif.

LDC �H ∆t σ = τ LDC1 Unif. (coarse + fine) Unif.
3 3.6·10−1 3.7·10−1 7.2·103 + 3.1·104 1.0·105 2.7

H0 ∆t0 5 2.8·10−1 2.8·10−1 7.2·103 + 1.4·105 4.9·105 3.3
7 2.3·10−1 2.3·10−1 7.2·103 + 4.0·105 1.7·106 3.3

H0

2
∆t0
4

3 1.7·10−1 1.7·10−1 1.2·105 + 4.4·105 1.7·106 3.0
5 1.1·10−1 1.1·10−1 1.2·105 + 2.0·106 7.9·106 3.7
7 8.6·10−2 8.6·10−2 1.2·105 + 5.6·106 2.2·107 3.8

H0

4
∆t0
16

3 5.4·10−2 5.4·10−2 2.0·106 + 6.8·106 2.7·107 3.1
5 3.3·10−2 3.3·10−2 2.0·106 + 3.2·107 1.3·108 3.8
7 2.4·10−2 2.4·10−2 2.0·106 + 8.7·107 3.5·108 3.9

Table 1: Results of the 2D numerical experiment. In the table: H0 = 1/20, ∆t0 = 0.2.

in (17) L ≡ λ4 − v · ∇; L is thus a convection-diffusion operator. Figure 5 shows the
contour plots of u for different values of time. The solution of problem (17) has at each
time a region of high activity that covers a limited part of Ω. Figure 5 also shows
(dotted line) the location of the local region Ωn

l in one of our LDC runs.
Problem (17) is solved using LDC with different values ofH, ∆t, σ and τ (see Table 1).

In all the LDC runs, one and only one LDC iteration is performed at each time step ∆t;
to recall this, in Table 1 we write LDC1, where the subscript indicates the number of
LDC iterations at each time step. In all our runs the spatial discretization is performed
using Finite Difference; in particular the second order centered differences scheme is
applied both on the global and on the local grid. The time discretization is performed
using the first order Implicit Euler scheme both globally and locally. The position
and the size of the local region are determined at each time step using the already
mentioned algorithm which is described in [5, 6, 4]; we choose a threshold value ε = 3.
For simplicity of implementation in all our runs the local region Ωn

l has always a
rectangular shape. Furthermore we use no safety region when computing the defect.
The operatorsQn−1

x , Pn
x and Rn,k

t are chosen to perform linear interpolation for everyn.
As a measure of the accuracy of the numerical solution found at tend = 2 using LDC,
we compute the infinity norm

ε � := max
�
uNt

H,H − u(tend)
�
�
ΩH

� . (18)

In (18) uNt

H,H is the restriction on the coarse grid of the composite grid solution at the
final time, while u(tend)|ΩH

is the projection on ΩH of a reference solution that we
computed once on a uniform grid using a very small grid size href and a very small
time step δtref. The two parameters href and δtref are chosen in such a way that they
are a few times smaller than the fine grid size h = H/σ and the time step δt = ∆t/τ

used on the most accurate of our LDC runs; in practice we have href = 1/2000 and
δtref = 2 · 10−4.

The results of each of the LDC runs are compared with the numerical solution found
solving problem (17) on a single global uniform grid with the same discretization
schemes. The grid size in each uniform grid run is the same as the fine grid size
h = H/σ of the corresponding LDC run; the same holds for the time step. Also for the
single uniform grid runs we measure the infinity norm (18). Results in Table 1 show
that in all the cases we considered, LDC is able to achieve the same accuracy as the
uniform grid solver. Of course LDC requires less computational effort than the uni-
form grid solver and it is a more efficient technique since the fine grid and the small
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Figure 5: Contour plots of the solution of problem (17) and position (dotted line) of Ωn
l

at different times.
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time step are used only where it is needed. To give a rough idea of the complexity of
the two methods, in Table 1 we also report the total number of unknowns that have
to be computed to solve problem (17). For the uniform grid solver the total number of
unknowns is calculated as the product of the number of grid points and the number
of time steps. For LDC this product is given separately for the coarse grid and for the
sum of all the local problems; the numbers in Table 1 already take into account that in
LDC1 each time step ∆t has to be repeated twice (computation of a first approximation
at tn plus one defect correction). From the table we can see that in our example, when
we use LDC, we have to compute a total number of unknowns which is about three
times less than when the uniform grid solver is adopted. The gain increases when a
higher factor of grid refinement is used.

To conclude, this example shows that LDC can achieve the same accuracy as a uni-
form grid solver that uses the same grid size and time step as in the LDC local problem.
Yet, LDC is a more efficient method than the uniform grid solver: in LDC the fine grid
is adaptively placed only where it needs to be and this guarantees a saving in the total
number of unknowns that have to be computed to solve the problem.

3.2 Example 2: a 1D convection-diffusion problem

In this section we present the results of a 1D numerical experiment aimed at showing
the robustness of the LDC method. We choose Ω = (0, 2) and Θ = (0, 1], and we solve
the partial differential equation

∂u

∂t
+
∂u

∂x
−
∂2u

∂x2
= f, in Ω×Θ. (19)

We notice that in (19)

L ≡ −
∂

∂x
+
∂2

∂x2
. (20)

Clearly L is thus a convection–diffusion operator. The initial condition, the Dirichlet
boundary conditions and the source term f are chosen in such a way that the exact
analytical solution of the problem is

u(x, t) =
�
tanh

�
100(x − 1/8 − t) � + 1 � �

1 − e−2t � . (21)

At time t > 0 the exact solution (21) has a region of high activity around point xa =

1/8 + t (see Figure 6).
The problem above is solved using both LDC and LUGR. Equation (19) is discretized

in space using Finite Differences; in particular, both globally and locally a second order
centered differences scheme is adopted. The time discretization is performed with the
first order Implicit Euler scheme both on the global and on the local grid. Like in the
previous example, in all our runs we measure the infinity norm

ε � := max
�
uNt

H,H − u(tend)
�
�
ΩH

� , (22)

where uNt

H,H is the computed numerical solution at tend = 1, while u(tend)|ΩH
is the

projection on the coarse grid of the exact solution (21) at the final time. In our exper-
iments the local region Ωn

l has a constant width; at each time step Ωn
l is chosen in

such a way that its left and right bounds coincide with coarse grid points and xa lies
in the middle of Ωn

l . In this way there is no need to define the operator Pn
x . We only

have to define Qn
x and Rn,k

t : we choose them to perform linear interpolation in space
and time respectively. In all our runs in this section the safety region has depth 1.
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Figure 6: Plot of the exact solution (21) at different values of time t. At each time t > 0,
u has a region of high activity around point xa = 1/8 + t.

ε � Ng Nl

LUGR 5.2 · 101 1·49= 49 1·75= 75

LDC1 1.9 · 100 2·49= 98 2·75=150

LDC2 1.0 · 10−1 3·49=147 3·75=225

LDC3 3.4 · 10−2 4·49=196 4·75=300

Table 2: Results of run #0. Ng and Nl indicate the sum of the dimensions of all the
linear systems that have to be solved per time step ∆t on the global and local
grid respectively.

The results of a first numerical experiment, run #0, are presented in Table 2. In
this run the width of the local region is 0.6. In the table the subscript next to LDC
indicates the number of LDC iterations that are performed at each time step (e.g.
LDC3 means three LDC iterations for every tn). In this experiment we want to test
the robustness of the LDC algorithm. For that reason we choose a very coarse global
grid (H = 1/25) and a rather big time step (∆t = 1/5). Locally we refine in space
and time and we set h = 1/125, δt = 1/25; in this way σ = τ = 5. LUGR is not able to
provide a good boundary condition for the local problem and it fails dramatically. LDC,
on the other hand, can lead to results of order 10−2 accurate if enough LDC iterations
(3 in our example) are performed at each time step. Thanks to the process of defect
correction, LDC proves to be a more robust technique than LUGR. Of course, Table 2
also shows that increasing the number of LDC iterations, we proportionally increase
the complexity that has to be computed per time step ∆t: each defect correction (see
Algorithm 1) means in fact reperforming the entire time step ∆t again and computing
new (more accurate) coarse and fine grid approximations. In particular, we have that

NLDC1

NLUGR
= 2, (23)

whereN is the total number of unknowns (global grid + local grid) per time step. With
total number of unknowns we mean the sum of the dimensions of all the linear systems
that have to be solved per time step.

In Table 3 we present the results of other two numerical simulations: run #1 and
run #2. In both of them the width of the local region is 0.2, the factors of grid and
time refinement are both equal to 5 and we only consider the comparison between
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H ∆t ε � ,LUGR ε � ,LDC1

ε � ,LUGR
ε � ,LDC1

run #1 1/50 1/20 3.9·100 3.6·10−2 108

run #2 1/100 1/80 3.1·10−2 5.5·10−3 5.6

Table 3: Coarse grid size, time step ∆t and results of run #1 and run #2. In both
runs σ = τ = 5.
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x
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Exact
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Figure 7: Exact solution (21) at tend = 1 and numerical approximations computed us-
ing LDC and LUGR in run #1.

LUGR and LDC1. In run #1 we have a situation similar to run #0: LUGR fails, while
the approximation computed using LDC has an accuracy of order 10−2 (see Figure 7).
Keeping in mind that we are using a second order method in space and a first order
method in time, in run #2 we take H twice as small and ∆t four times as small with
respect to run #1. LUGR finally gives meaningful results; yet LDC is a factor 5.6 more
accurate than LUGR, costing only twice as much in terms of total number of unknowns
per time step, see (23).

4 Conclusions

In this paper we have presented a Local Defect Correction method for time-dependent
problems. LDC is an iterative process suitable for efficiently solving problems charac-
terized at each time by a region of high activity that covers a small part of the physical
domain. At each time step the problem is first solved on a global coarse grid; the com-
puted coarse grid approximation defines an artificial boundary condition for a local
problem, where a more accurate solution can be computed by means of a smaller time
step and a smaller grid size. The local solution is then used to improve the first coarse
grid approximation through the defect correction. The new coarse grid solution can in
turn define new artificial boundary condition for a new local problem. The process can
be repeated till convergence, which is in general very fast.

Results of numerical experiments show that LDC can achieve the same accuracy
as a uniform grid solver whose grid size and time step coincide with those used in
the local problem of the LDC algorithm. At the same time LDC guarantees a lower
computational cost than the uniform grid solver.

The LDC method shares with the Local Uniform Grid Refinement technique the ad-
vantage of working with uniform grids only at each time step. LUGR differs from LDC
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though in that it does not have the defect correction step: LUGR totally relies on the
fact that the first coarse grid approximation provides an accurate artificial boundary
condition for the local problem. This cannot be guaranteed in general. Results of nu-
merical experiments show that LDC is a more robust technique than LUGR: when the
latter fails, LDC can still lead to accurate results.
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