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A LOCAL DISCONTINUOUS GALERKIN METHOD FOR KDV-TYPE EQUATIONS�

JUE YANy AND CHI-WANG SHUz

Abstrat. In this paper we develop a loal disontinuous Galerkin method for solving KdV type equa-

tions ontaining third derivative terms in one and two spae dimensions. The method is based on the

framework of the disontinuous Galerkin method for onservation laws and the loal disontinuous Galerkin

method for visous equations ontaining seond derivatives, however the guiding priniple for inter-ell uxes

and nonlinear stability is new. We prove L2 stability and a ell entropy inequality for the square entropy

for a lass of nonlinear PDEs of this type both in one and multiple spatial dimensions, and give an error

estimate for the linear ases in the one dimensional ase. The stability result holds in the limit ase when the

oeÆients to the third derivative terms vanish, hene the method is espeially suitable for problems whih

are \onvetion dominate", i.e. those with small seond and third derivative terms. Numerial examples are

shown to illustrate the apability of this method. The method has the usual advantage of loal disontinuous

Galerkin methods, namely it is extremely loal and hene eÆient for parallel implementations and easy for

h-p adaptivity.

Key words. disontinuous Galerkin method, KdV equation, stability, error estimate

Subjet lassi�ation. Applied and Numerial Mathematis

1. Introdution. In this paper we develop a loal disontinuous Galerkin method for solving KdV

type equations ontaining third derivative terms in one and multiple spatial dimensions. An example of suh

PDEs is the original KdV equation [18℄

ut + (�u+ �u2)x + �uxxx = 0; (1.1)

where �, � and � are onstants. Our sheme an be designed and proven stable for more general nonlinear-

ities, namely

ut + f(u)x + (r0(u)g(r(u)x)x)x = 0 (1.2)

in one spae dimension for arbitrary (smooth) funtions f , g and r, where r0(u) = dr(u)
du , and

ut +
dX

i=1

fi(u)xi
+

dX
i=1

0�r0i(u) dX
j=1

gij(ri(u)xi
)xj

1A
xi

= 0 (1.3)

in multiple spatial dimensions for arbitrary (smooth) funtions fi, gij and ri.

KdV type equations desribe the propagation of waves in a variety of nonlinear, dispersive media and

appear often in appliations. See, e.g. [1℄. Various numerial methods have been proposed and used

in pratie to solve this type of equations, see, e.g. [4, 5, 17℄. However, in many situations, suh as in

the quantum hydrodynami models of semiondutor devie simulations [15℄ and in the dispersive limit of
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onservation laws [19℄, the third derivative terms might have small or even zero oeÆients in some parts

of the domain. We will all suh ases as \onvetion dominated". The design of stable, eÆient and high

order methods, espeially those for the \onvetion dominated" ases, i.e. when the third derivative terms

are small (j�j � 1 in (1.1)), remains a hallenge.

The disontinuous Galerkin method is a lass of �nite element methods using ompletely disontinuous

pieewise polynomial spae for the numerial solution and the test funtions. One ertainly needs to use

more degrees of freedom beause of the disontinuities at the element boundaries, however this also gives one

a room to design suitable inter-element boundary treatments (the so-alled uxes) to obtain highly aurate

and stable methods in many diÆult situations.

The �rst disontinuous Galerkin method was introdued in 1973 by Reed and Hill [20℄, in the framework

of neutron transport (steady state linear hyperboli equations). A major development of the disontinuous

Galerkin method was arried out by Cokburn et al. in a series of papers [10, 9, 7, 11℄, in whih they

established a framework to easily solve nonlinear time dependent hyperboli onservation laws (i.e. (1.2)

and (1.3) without the third derivative terms) using expliit, nonlinearly stable high order Runge-Kutta time

disretizations [22℄ and disontinuous Galerkin disretization in spae with exat or approximate Riemann

solvers as interfae uxes and TVB (total variation bounded) nonlinear limiters [21℄ to ahieve non-osillatory

properties for strong shoks.

The disontinuous Galerkin method has found rapid appliations in suh diverse areas as aeroaoustis,

eletro-magnetism, gas dynamis, granular ows, magneto-hydrodynamis, meteorology, modeling of shallow

water, oeanography, oil reovery simulation, semiondutor devie simulation, transport of ontaminant in

porous media, turbomahinery, turbulent ows, visoelasti ows and weather foreasting, among many

others. Good referenes for the disontinuous Galerkin method and its reent development inlude the

survey paper [8℄, other papers in that Springer volume, and the review paper [13℄.

The original disontinuous Galerkin method was designed to solve �rst order hyperboli problems. A

simple example to illustrate the essential ideas is the linear transport equation

ut + ux = 0: (1.4)

Let's denote the mesh by Ij =[xj� 1
2
; xj+ 1

2
℄, for j = 1; :::; N , with the enter of the ell denoted by xj =

1
2

�
xj� 1

2
+ xj+ 1

2

�
and the size of eah ell by �xj = xj+ 1

2
� xj� 1

2
. We will denote �x = maxj �xj . If we

multiply (1.4) by an arbitrary test funtion v(x), integrate over the interval Ij , and integrate by parts, we

get Z
Ij

utvdx�
Z
Ij

uvxdx+ u(xj+ 1
2
; t)v(xj+ 1

2
)� u(xj� 1

2
; t)v(xj� 1

2
) = 0: (1.5)

This is the starting point for designing the disontinuous Galerkin method. We replae both the solution u

and the test funtion v by pieewise polynomials of degree at most k. That is, u; v 2 V�x where

V�x = fv : v is a polynomial of degree at most k for x 2 Ij ; j = 1; :::; Ng : (1.6)

With this hoie, there is an ambiguity in (1.5) in the last two terms involving the boundary values at xj� 1
2
,

as both the solution u and the test funtion v are disontinuous exatly at these boundary points. The

idea is to treat these terms by an upwinding mehanism (information from harateristis), borrowed from

suessful high resolution �nite volume shemes. Thus u at the interfaes xj� 1
2
is given by a single valued

numerial ux ûj� 1
2
= u�

j� 1
2

, determined from upwinding, and v at the interfaes xj� 1
2
are given by the
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values taken from inside the ell Ij , namely v�
j+ 1

2

and v+
j� 1

2

. Notie that we use v� and v+ to denote the left

and right limits of v, respetively, at the interfae where v is disontinuous. For more general nonlinear uxes

f(u), the only di�erene is that the single valued ux f̂j+ 1
2
would be taken as a monotone ux depending on

both u�
j+ 1

2

and on u+
j+ 1

2

(exat or approximate Riemann solvers in the system ase). The resulting method

of the lines ODE is then disretized by the nonlinearly stable high order Runge-Kutta time disretizations

[22℄. Nonlinear TVB limiters [21℄ may be used if the solution ontains strong disontinuities. The shemes

thus obtained, for solving hyperboli onservation laws ((1.2) and (1.3) without the third derivative terms),

have the following attrative properties:

1. It an be easily designed for any order of auray. In fat, the order of auray an be loally

determined in eah ell, thus allowing for eÆient p adaptivity.

2. It an be used on arbitrary triangulations, even those with hanging nodes, thus allowing for eÆient

h adaptivity.

3. It is extremely loal in data ommuniations. The evolution of the solution in eah ell needs to

ommuniate only with the immediate neighbors, regardless of the order of auray, thus allowing

for eÆient parallel implementations. See, e.g. [3℄.

4. It has exellent provable nonlinear stability. One an prove a strong L2 stability and a ell entropy

inequality for the square entropy, for the general nonlinear ases, for any orders of auray on

arbitrary triangulations in any spae dimension, without the need for nonlinear limiters [16℄.

In [12℄ these disontinuous Galerkin methods were generalized to solve onvetion di�usion problems

ontaining seond derivative terms. This was motivated by the suessful numerial experiments of Bassi

and Rebay [2℄ for the ompressible Navier-Stokes equations. The idea an be illustrated with the simple

heat equation

ut � uxx = 0 (1.7)

whih we rewrite into a �rst order system

ut � qx = 0; q � ux = 0; (1.8)

we an then formally use the same disontinuous Galerkin method for the onvetion equation to solve (1.8),

resulting in the following sheme: �nd u; q 2 V�x suh that, for all test funtions v; w 2 V�x,Z
Ij

utvdx+

Z
Ij

qvxdx� q̂j+ 1
2
v�
j+ 1

2

+ q̂j� 1
2
v+
j� 1

2

= 0Z
Ij

qwdx +

Z
Ij

uwxdx� ûj+ 1
2
w�
j+ 1

2

+ ûj� 1
2
w+
j� 1

2

= 0: (1.9)

However, there is no longer a upwinding mehanism or harateristis to guide the design of the uxes ûj+ 1
2

and q̂j+ 1
2
. The ruial part in designing a stable and aurate algorithm (1.9) is a orret design of these

uxes. In [12℄, riteria are given for these uxes to guarantee stability, onvergene and a sub-optimal error

estimate of order k for pieewise polynomials of degree k. The (most natural) entral uxes

ûj+ 1
2
=

1

2

�
u�
j+ 1

2

+ u+
j+ 1

2

�
; q̂j+ 1

2
=

1

2

�
q�
j+ 1

2

+ q+
j+ 1

2

�
(1.10)

would satisfy these riteria and give a sheme whih is indeed sub-optimal in the order of auray for odd

k (i.e. the auray is order k rather than the expeted order k + 1 for odd k). This de�ieny however is

easily removed by going to a lever hoie of uxes, proposed in [12℄:

ûj+ 1
2
= u�

j+ 1
2

; q̂j+ 1
2
= q+

j+ 1
2

: (1.11)
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i.e. we alternatively take the left and right limits for the uxes in u and q (we ould of ourse also take

the pair u+
j+ 1

2

and q�
j+ 1

2

as the uxes). Notie that the evaluation of (1.11) is simpler than that of the

entral uxes in (1.10), and this easily generalizes to multi spae dimensions on arbitrary triangulations.

The auray now beomes the optimal order k + 1 for both even and odd k.

The shemes thus designed for the heat equation (1.7), or in fat for the most general multi dimensional

nonlinear onvetion di�usion equations (nonlinear both in the �rst derivative onvetion part and the seond

derivation di�usion part), retain all the four nie properties listed above for the method used on onvetion

equations. Moreover, the appearane of the auxiliary variable q is super�ial: when a loal basis is hosen

in ell Ij then q is eliminated and the atual sheme for u takes a form similar to that for onvetion alone.

This is a big advantage of the sheme over the traditional \mixed methods", and it is the reason that the

sheme is termed loal disontinuous Galerkin method in [12℄. Even though the auxiliary variable q an be

loally eliminated, it does approximate the derivative of the solution u to the same order of auray, thus

mathing the advantage of traditional \mixed methods" on this.

The purpose of this paper is to develop a similar loal disontinuous Galerkin (LDG) method for the

KdV like equations (1.1), (1.2) and (1.3) ontaining third derivative terms. Our objetive is to design the

method to retain again all the four nie properties listed above for the method used on onvetion and

onvetion-di�usion equations, plus the feature that the method is loal, namely the auxiliary variables

introdued to approximate the �rst and seond derivatives of the solution ould be loally eliminated.

We will give a \preview" of the method on the simple linear equation

ut + uxxx = 0 (1.12)

whih we again rewrite into a �rst order system

ut + px = 0; p� qx = 0; q � ux = 0: (1.13)

We an then formally use the same disontinuous Galerkin method for the onvetion equation to solve

(1.13), resulting in the following sheme: �nd u; p; q 2 V�x suh that, for all test funtions v; w; z 2 V�x,Z
Ij

utvdx �
Z
Ij

pvxdx+ p̂j+ 1
2
v�
j+ 1

2

� p̂j� 1
2
v+
j� 1

2

= 0;Z
Ij

pwdx+

Z
Ij

qwxdx� q̂j+ 1
2
w�
j+ 1

2

+ q̂j� 1
2
w+
j� 1

2

= 0; (1.14)Z
Ij

qzdx+

Z
Ij

uzxdx� ûj+ 1
2
z�
j+ 1

2

+ ûj� 1
2
z+
j� 1

2

= 0:

However, the uxes p̂j+ 1
2
, q̂j+ 1

2
and ûj+ 1

2
must be designed based on di�erent guiding priniples than the

�rst order onvetion or seond order di�usion ases. The ruial part in designing a stable and aurate

algorithm (1.14) is again a orret design of these uxes. It turns out that the simple hoies

p̂j+ 1
2
= p+

j+ 1
2

; q̂j+ 1
2
= q+

j+ 1
2

; ûj+ 1
2
= u�

j+ 1
2

; (1.15)

would guarantee stability and onvergene, as an be proven later in this paper and also learly seen in Table

1.1, whih ontains numerial L2 and L1 errors and orders of auray for the omputed solution u for the

method (1.14) with the uxes (1.15) solving the equation (1.12) with an initial ondition u(x; 0) = sin(x)

over the interval [0; 2�℄ and periodi boundary onditions, at t = 1, using uniform meshes.
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Table 1.1

ut + uxxx = 0. u(x; 0) = sin(x). Periodi boundary onditions. L2 and L1 errors. Uniform meshes with N ells. LDG

methods with k = 0; 1; 2; 3. t = 1.

k N=10 N=20 N=40 N=80

error error order error order error order

0 L2 2.2534E-01 1.2042E-01 0.91 6.2185E-02 0.95 3.1582E-02 0.98

L1 4.3137E-01 2.1977E-01 0.97 1.1082E-01 0.98 5.5376E-02 1.00

1 L2 1.7150E-02 4.2865E-03 2.00 1.0716E-03 2.00 2.6792E-04 1.99

L1 5.8467E-02 1.5757E-02 1.89 4.0487E-03 1.96 1.0210E-03 1.99

2 L2 8.5803E-04 1.0823E-04 2.98 1.3559E-05 2.99 1.6958E-06 3.00

L1 4.0673E-03 5.1029E-04 2.99 6.4490E-05 2.98 8.0722E-06 3.00

3 L2 3.3463E-05 2.1035E-06 3.99 1.3166E-07 3.99 8.2365E-09 3.99

L1 1.8185E-04 1.1157E-05 3.97 7.2362E-07 3.99 4.5593E-08 3.99

We remark that the hoie for the uxes (1.15) is not unique. In fat, the ruial part is to take p̂ and

û from opposite sides and to take q̂ from the right. Thus

p̂j+ 1
2
= p�

j+ 1
2

; q̂j+ 1
2
= q+

j+ 1
2

; ûj+ 1
2
= u+

j+ 1
2

;

would also work.

The organization of the paper is as follows. In setion 2 we desribe the method for the one dimensional

ase, and prove its nonlinear L2 stability and a ell entropy inequality, as well as an error estimate for the

linear ase. In setion 3 multiple spatial dimensional ase is onsidered, where the nonlinear stability is given

for the general triangulations. In setion 4 we provide several numerial examples to illustrate the apability

of the method. Conluding remarks and remarks about future work are given in setion 5.

2. The LDG method for the one dimensional ase. In this setion, we present and analyze the

LDG method for the following one dimensional nonlinear problem:

ut + f(u)x + (r0(u)g(r(u)x)x)x = 0; 0 � x � 1 (2.1)

with an initial ondition

u(x; 0) = u0(x); 0 � x � 1 (2.2)

and periodi boundary onditions. Here f(u), r(u) and g(q) are arbitrary (smooth) nonlinear funtions.

Notie that the assumption of periodi boundary onditions is for simpliity only and is not essential: the

method an be easily designed for non-periodi boundary onditions. Also notie that the linear equation

(1.12) and the KdV equation (1.1) are both speial ases of (2.1).

To de�ne the LDG method, we �rst introdue the new variables

q = r(u)x; p = g(q)x (2.3)

and rewrite the equation (2.1) as a �rst order system:

ut + (f(u) + r0(u)p)x = 0; p� g(q)x = 0; q � r(u)x = 0: (2.4)

5



The LDG method is obtained by disretizing the above system with the disontinuous Galerkin method. This

is ahieved by multiplying the three equations in (2.4) by three test funtions v; w; z respetively, integrate

over the interval Ij , and integrate by parts. We also need to pay speial attention to the boundary terms

resulting from the proedure of integration by parts, as mentioned in the previous setion. Thus we seek

pieewise polynomial solutions u; p; q 2 V�x, where V�x is de�ned in (1.6), suh that for all test funtions

v; w; z 2 V�x we have, for 1 � j � N ,Z
Ij

utvdx�
Z
Ij

(f(u) + r0(u)p)vxdx+
�
f̂ + br0p̂�

j+ 1
2

v�
j+ 1

2

�
�
f̂ + br0p̂�

j� 1
2

v+
j� 1

2

= 0;Z
Ij

pwdx +

Z
Ij

g(q)wxdx� ĝj+ 1
2
w�
j+ 1

2

+ ĝj� 1
2
w+
j� 1

2

= 0; (2.5)Z
Ij

qzdx+

Z
Ij

r(u)zxdx� r̂j+ 1
2
z�
j+ 1

2

+ r̂j� 1
2
z+
j� 1

2

= 0:

Notie that we still use letters without a subsript �x to denote funtions in the �nite element spae V�x, to

simplify the notations. The only ambiguity in the algorithm (2.5) now is the de�nition of the numerial uxes

(the \hats"), whih should be designed based on di�erent guiding priniples than the �rst order onvetion

or seond order di�usion ases to ensure stability. It turns out that we an take the simple hoies (we omit

the subsripts j � 1
2 in the de�nition of the uxes as all quantities are evaluated at the interfaes xj� 1

2
)

f̂ = f̂(u�; u+); br0 = r(u+)� r(u�)

u+ � u�
; p̂ = p+; ĝ = ĝ(q�; q+); r̂ = r(u�) (2.6)

where f̂(u�; u+) is a monotone ux for f(u), namely f̂(u�; u+) is a Lipshitz ontinuous funtion in both

arguments u� and u+, is onsistent with f(u) in the sense that f̂(u; u) = f(u), and is a non-dereasing

funtion in u� and a non-inreasing funtion in u+. Likewise, �ĝ(q�; q+) is a monotone ux for �g(q),
namely ĝ(q�; q+) is a Lipshitz ontinuous funtion in both arguments q� and q+, is onsistent with g(q)

in the sense that ĝ(q; q) = g(q), and is a non-inreasing funtion in q� and a non-dereasing funtion in q+.

Examples of monotone uxes whih are suitable for disontinuous Galerkin methods an be found in, e.g.

[10℄. We ould for example use the simple Lax-Friedrihs ux

f̂(u�; u+) =
1

2

�
f(u�) + f(u+)� �(u+ � u�)

�
; � = max

u
jf 0(u)j: (2.7)

where the maximum is taken over a relevant range of u. The algorithm is now well de�ned.

We remark that the hoie for the uxes (2.6) is not unique. In fat, the ruial part is to take p̂ and r̂

from opposite sides. Thus

f̂ = f̂(u�; u+); br0 = r(u+)� r(u�)

u+ � u�
; p̂ = p�; ĝ = ĝ(q�; q+); r̂ = r(u+)

would also work.

We also remark that the algorithm (2.5)-(2.6) is very easy for numerial implementation. Given u, one

�rst uses the third equation in (2.5) to obtain q. This is ahieved loally: q in Ij an be obtained with the

information of u in the ells Ij and Ij�1. The seond equation in (2.5) is then used to obtain p loally: p in

Ij an be obtained with the information of q in (at most) the ells Ij , Ij�1 and Ij+1. Finally, the update of

the solution u is obtained using the �rst equation in (2.5), again loally, namely the update of u in Ij an

be obtained with the information of u in (at most) the ells Ij , Ij�1 and Ij+1 and that of p in the ells Ij

and Ij+1.
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We have the following \ell entropy inequality" for the sheme (2.5)-(2.6). This is a generalization of

the ell entropy inequality obtained in [16℄ for the disontinuous Galerkin method applied to hyperboli

onservation laws (equation (2.1) with g(q) = 0).

Proposition 2.1. (ell entropy inequality) There exist numerial entropy uxes Ĥj+ 1
2
suh that the solution

to the sheme (2.5)-(2.6) satis�es

d

dt

Z
Ij

�
u2(x; t)

2

�
dx+

�
Ĥj+ 1

2
� Ĥj� 1

2

�
� 0: (2.8)

Proof: We sum up the three equalities in (2.5) and introdue the notation

Bj(u; p; q; v; w; z) =

Z
Ij

utvdx �
Z
Ij

(f(u) + r0(u)p)vxdx+
�
f̂ + br0p̂�

j+ 1
2

v�
j+ 1

2

�
�
f̂ + br0p̂�

j� 1
2

v+
j� 1

2

+

Z
Ij

pwdx+

Z
Ij

g(q)wxdx� ĝj+ 1
2
w�

j+ 1
2

(2.9)

+ĝj� 1
2
w+
j� 1

2

+

Z
Ij

qzdx+

Z
Ij

r(u)zxdx� r̂j+ 1
2
z�
j+ 1

2

+ r̂j� 1
2
z+
j� 1

2

:

Clearly, the solutions u, p, q of the sheme (2.5)-(2.6) satisfy

Bj(u; p; q; v; w; z) = 0 (2.10)

for all v; w; z 2 V�x. We then take

v = u; w = q; z = �p

to obtain, after some algebrai manipulations,

0 = Bj(u; p; q;u; q;�p) = d

dt

Z
Ij

�
u2(x; t)

2

�
dx+

�
Ĥj+ 1

2
� Ĥj� 1

2

�
+�j� 1

2

with the numerial entropy ux Ĥ de�ned by

Ĥ = �F (u�) +G(q�)� r(u�)p� +
�
f̂ + br0p̂�u� � ĝq� + r̂p�

and the extra term � given by

� = [F (u)�G(q) + r(u)p℄�
�
f̂ + br0p̂� [u℄ + ĝ[q℄� r̂[p℄;

Here

F (u) =

Z u

f(u)du; G(q) =

Z q

g(q)dq;

and

[v℄ = v+ � v�

denotes the jump of v. Notie that we have dropped the subsripts about the loation j � 1
2 or j + 1

2 as

all these quantities are de�ned at a single interfae and depend only on the left and right values at that

interfae. Now all we need to do is to verify � � 0. To this end, we notie that, with the de�nition (2.6) of

the numerial uxes and with simple algebrai manipulations, we easily obtain

[r(u)p℄ � br0p̂[u℄� r̂[p℄ = 0

7



and hene

� = [F (u)℄� f̂ [u℄� [G(q)℄ + ĝ[q℄

=

Z u+

u�

�
f(s)� f̂(u�; u+)

�
ds�

Z q+

q�

�
g(s)� ĝ(q�; q+)

�
ds (2.11)

� 0;

where the last inequality follows from the monotoniity of the uxes f̂ and �ĝ. This �nishes the proof. 2

Now the L2 stability of the method is a trivial orollary:

Corollary 2.1. (L2 stability) The solution to the sheme (2.5)-(2.6) satis�es the L2 stability

d

dt

Z 1

0

�
u2(x; t)

2

�
dx � 0: (2.12)

Proof: We simply add up (2.8) over j. 2

About time disretizations, if we denote the semi-disrete LDG method (2.5)-(2.6) by

ut = R(u);

then the following impliit � sheme

un+1 � un

�t
= R(un+�); un+� = (1� �)un + �un+1 (2.13)

will also satisfy the same ell entropy inequality and L2 stability as long as 1
2 � � � 1. Notie that this

inludes the �rst order bakward Euler and seond order Crank-Niolson impliit time disretizations as

speial ases. See [16℄ for the purely hyperboli ase.

Proposition 2.2. (impliit time disretization) The ell entropy inequality and the L2 stability also hold

for the time disretization (2.13) with 1
2 � � � 1 for the sheme (2.5)-(2.6). That is,Z

Ij

�
(un+1(x))2 � (un(x))2

2�t

�
dx+ Ĥn+�

j+ 1
2

� Ĥn+�
j� 1

2

� 0; (2.14)

and Z 1

0

(un+1(x))2dx �
Z 1

0

(un(x))2dx: (2.15)

Proof: If we take the test funtions at n+ �, e.g. v = un+� given by (2.13), we obtain just as beforeZ
Ij

un+1(x) � un(x)

�t
un+�dx+ Ĥn+�

j+ 1
2

� Ĥn+�
j� 1

2

� 0;

whih an be rewritten asZ
Ij

�
(un+1(x))2 � (un(x))2

2�t

�
dx+ Ĥn+�

j+ 1
2

� Ĥn+�
j� 1

2

+

�
� � 1

2

�Z
Ij

�
(un+1(x)� un(x))2

�t

�
dx � 0:

Thus, a suÆient ondition to get the ell entropy inequality (2.14) is just � � 1
2 . Again, (2.15) is

obtained simply by adding up (2.14) over j. 2
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The stability result obtained here an be used to get an error estimate in L2 for the numerial solution u,

when the equation (2.1) is linear. Without loss of generality we may take f(u) = u, g(q) = q and r(u) = u,

resulting in the equation

uet + uex + uexxx = 0: (2.16)

Notied that we have used the notation ue to denote the exat solution of the PDE in order not to onfuse

with the numerial solutions. We have the following result, where C here and below denotes a generi

onstant whih may be of di�erent values at di�erent loations.

Proposition 2.3. (error estimate) The error for the sheme (2.5)-(2.6) applied to the linear PDE (2.16)

satis�es sZ 1

0

(ue(x; t)� u(x; t))
2
dx � C�xk+

1
2 ; (2.17)

where the onstant C depends on the derivatives of ue and time t.

Proof: First, we notie that, in this linear ase, most monotone uxes simply beome upwinding

f̂(u�; u+) = u�; ĝ(q�; q+) = q+;

and this is what we will assume. It is then easy to work out the exat form of � in (2.11) for the ell entropy

inequality to be

� =
1

2

�
[u℄2 + [q℄2

�
: (2.18)

We now notie that the exat solution of the PDE (2.16), ue, qe = uex and pe = uexx learly satis�es

Bj(u
e; pe; qe; v; w; z) = 0

for all v; w; z 2 V�x, where Bj is de�ned by (2.9). Taking the di�erene between the above equality and

(2.10), we obtain the error equation

Bj(u
e � u; pe � p; qe � q; v; w; z) = 0 (2.19)

for all v; w; z 2 V�x. As usual this error equation is the basi starting point of error estimates.

We now take

v = Sue � u; w = Pqe � q; z = p�Ppe; (2.20)

in the error equation (2.19). Here P is the standard L2 projetion into V�x, that is, for eah j,Z
Ij

(Pw(x) � w(x))v(x)dx = 0 8v 2 P k;

where P k denotes the spae of all polynomials of degree at most k. In other words, the di�erene between

the projetion Pw and the original funtion w is orthogonal to all polynomials of degree up to k in eah

interval. S is a speial projetion into V�x whih satis�es, for eah j,Z
Ij

(Sw(x) � w(x))v(x)dx = 0 8v 2 P k�1 and Sw(x�j+1=2) = w(x�j+1=2);
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in other words, the di�erene between the projetion Sw and the original funtion w is orthogonal to all

polynomials of degree up to k � 1 in eah interval, and the projetion agrees with the funtion at the right

boundary in eah interval. This speial projetion is needed for u beause we have no ontrol on the jumps

of p in the ell entropy inequality, see (2.18). Substituting (2.20) into the error equation (2.19) and moving

terms, we obtain

Bj(v;�z; w; v; w; z) = Bj(v
e;�ze; we; v; w; z) (2.21)

where v, w, z are given by (2.20), and ve, we, ze are given by

ve = Sue � ue; we = Pqe � qe; ze = pe �Ppe: (2.22)

By the same argument as that used for the ell entropy inequality, the left hand side of (2.21) beomes

Bj(v;�z; w; v; w; z) = d

dt

Z
Ij

�
v2

2

�
dx+

�
Ĥj+ 1

2
� Ĥj� 1

2

�
+�j� 1

2
(2.23)

where, by (2.18),

�j� 1
2
=

1

2

�
[v℄2j� 1

2

+ [w℄2j� 1
2

�
: (2.24)

The right hand side of (2.21) an be written out as

Bj(v
e;�ze; we; v; w; z) = I + II + III + IV (2.25)

where

I =

Z
Ij

vet vdx; (2.26)

II = �
Z
Ij

zewdx +

Z
Ij

wezdx�
Z
Ij

(ve � ze)vxdx +

Z
Ij

wewxdx+

Z
Ij

vezxdx; (2.27)

III = �
��

vej� 1
2

��
�
�
zej� 1

2

�+�
[v℄j� 1

2
+
�
we
j� 1

2

�+
[w℄j� 1

2
+
�
vej� 1

2

��
[z℄j� 1

2
; (2.28)

and

IV = ĥj+ 1
2
� ĥj� 1

2
(2.29)

for some ux funtion ĥ. Notie that v; w; z are given by (2.20) and ve; we; xe are given by (2.22), respetively.

Now, by using the simple inequality ab � 1
2 (a

2 + b2), and standard approximation theory on vet =

(Sue � ue)t, see, e.g. [6℄, we have

I � C�x2k+3j +

Z
Ij

�
v2

2

�
dx:

Beause P is a loal L2 projetion, and S, even though not a loal L2 projetion, does have the property that

w�Sw is loally orthogonal to all polynomials of degree up to k�1, all the terms in II are atually zero. The

last term in III is zero, beause of the speial interpolating property of the projetion S. An appliation
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of the simple inequality ab � 1
2 (a

2 + b2) for the �rst two terms in III and standard approximation theory

on the point values of ve � ze = (Sue � ue) + (Ppe � pe) and of we = Pqe � qe (see, e.g. [6℄) then gives

III � C(�x2k+2j�1 +�x2k+2j +
1

4

�
[v℄2 + [w℄2

�
:

Finally, IV only ontains ux di�erene terms whih will vanish upon a summation in j.

Combining all these and summing over j we obtain the following inequality

d

dt

Z 1

0

�
v2

2

�
dx+

1

4

�
[v℄2 + [w℄2

� � C�x2k+1 +

Z 1

0

�
v2

2

�
dx:

An integration in t plus the standard approximation theory on ve = Sue � ue then gives the desired error

estimate (2.17). 2

3. The LDG method for the multiple dimensional ase. In this setion, we generalize the sheme

disussed in the previous setion to multiple spatial dimensions x = (x1; � � � ; xd). We solve the following

nonlinear problem:

ut +

dX
i=1

fi(u)xi
+

dX
i=1

0�r0i(u)

dX
j=1

gij(ri(u)xi
)xj

1A
xi

= 0; 0 � xi � 1; i = 1; � � � ; d (3.1)

with an initial ondition

u(x; 0) = u0(x); 0 � xi � 1; i = 1; � � � ; d (3.2)

and periodi boundary onditions. Here fi(u), ri(u) and gij(q) are arbitrary (smooth) nonlinear funtions.

Notie that the assumption of a box geometry and periodi boundary onditions is for simpliity only and

is not essential: the method an be easily designed for arbitrary domain and for non-periodi boundary

onditions.

Let's denote a triangulation of the unit box by T�x, onsisting of non-overlapping polyhedra overing

ompletely the unit box. Hanging nodes are allowed. Here �x measures the longest edge of all polyhedra in

T�x. We again denote the �nite element spae by

V d
�x = fv : v is a polynomial of degree at most k for x 2 K; 8K 2 T�xg : (3.3)

Similar to the one dimensional ase, to de�ne the LDG method, we �rst introdue the new variables

qi = ri(u)xi
; pi =

dX
j=1

gij(qi)xj
; i = 1; � � � ; d (3.4)

and rewrite the equation (3.1) as a �rst order system:

ut +

dX
i=1

(fi(u) + r0i(u)pi)xi
= 0;

pi �
dX

j=1

gij(qi)xj
= 0; qi � ri(u)xi

= 0; i = 1; � � � ; d: (3.5)

The LDG method is obtained by disretizing the above system with the disontinuous Galerkin method.

This is ahieved by multiplying the equations in (3.5) by test funtions v; wi; zi respetively, integrate over
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an element K 2 T�x, and integrate by parts. We again need to pay speial attention to the boundary

terms resulting from the proedure of integration by parts, as in the one dimensional ase. Thus we seek

pieewise polynomial solutions u; pi; qi 2 V d
�x, where V

d
�x is de�ned in (3.3), suh that for all test funtions

v; wi; zi 2 V d
�x we haveZ

K

utvdx�
dX

i=1

Z
K

(fi(u) + r0i(u)pi)vxidx+

Z
�K

dhnKvintKds = 0;

Z
K

piwidx +
dX

j=1

Z
K

gij(qi)(wi)xjdx�
Z
�K

[gi;nKw
intK ds = 0; i = 1; � � � ; d (3.6)Z

K

qizidx +

Z
K

ri(u)(zi)xidx�
Z
�K

[ri;nK z
intKds = 0; i = 1; � � � ; d;

where �K is the boundary of element K, and the numerial uxes (the \hats") are de�ned similar to the

one dimensional ases, namely

dhnK =\fnK ;K(u
intK ; uextK ) +

Pd
i=1

�
ri(u

extK )� ri(u
intK )

�
p+i ni;K

uextK � uintK

[gi;nK = \gi;nK ;K(q
intK ; qextK ); [ri;nK = ri(u

�)ni;K : (3.7)

Here nK = (n1;K ; � � � ; nd;K) is the outward unit normal for element K along the element boundary �K,

uintK denotes the value of u evaluated from inside the element K, and uextK denotes the value of u evaluated

from outside the element K (inside the neighboring element). On the other hand, p+ denotes the value of

p evaluated from a pre-designated \plus" side along an edge e, whih is always the boundaries of two

neighboring elements. For example, we ould hoose a �xed vetor � whih is not parallel with any normals

of element boundaries, and then designate the \plus" side to be the side at the end of the arrow of the normal

n with n �� > 0, see Figure 3.1.\fnK ;K(u
intK ; uextK ) is a monotone ux for fnK (u) =

Pd
i=1 fi(u)ni;K , namely

\fnK ;K(u
intK ; uextK ) is a Lipshitz ontinuous funtion in both arguments uintK and uextK , is onsistent with

fnK (u) in the sense that dfnK (u; u) = fnK (u), and is a non-dereasing funtion in uintK and a non-inreasing

funtion in uextK . Moreover, it is onservative (that is, there is only one ux at eah edge shared by two

elements, added to the residue for one and subtrated from the reside for another), namely

\fnK ;K(a; b) = �\fnK0 ;K0(b; a)

where K and K 0 share the same edge where the ux is omputed and hene nK0 = �nK . Likewise,

�\gi;nK ;K(q
intK
i ; qextKi ) is a monotone ux for �gi;nK (qi) = �Pd

j=1 gij(q)nj;K . Notie that we an again

use the one dimensional monotone uxes as in the previous setion. For example, we an use the simple

Lax-Friedrihs ux

\fnK ;K(u
intK ; uextK ) =

1

2

 
dX

i=1

�
fi(u

intK ) + fi(u
extK )

�
ni;K � �(uextK � uintK )

!
; (3.8)

� = max
u

jf 0nK (u)j;

where the maximum is taken over a relevant range of u. The algorithm is now well de�ned.

Again, the algorithm (3.6)-(3.7) is very easy for numerial implementation. Given u, one �rst loally

solves for the qi, then loally solves for the pi, and �nally loally solves for the update of u. All the advantages

listed for the method for the one dimensional ase are still valid in this multiple dimensional ase.

We still have the following \ell entropy inequality" for the sheme (3.6)-(3.7). The proof follows the

same lines as that for the one dimensional ase, so we will omit it.
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Fig. 3.1. Illustration of the de�nition of \plus" and \minus" sides determined by a pre-determined vetor �.

Proposition 3.1. (ell entropy inequality) There exist onservative numerial entropy uxes\HnK ;K suh

that the solution to the sheme (3.6)-(3.7) satis�es

d

dt

Z
K

�
u2(x; t)

2

�
dx+

Z
�K

\HnK ;Kds � 0: (3.9)

2

The L2 stability of the method is then again a trivial orollary, by summing up the ell entropy inequal-

ities over K:

Corollary 3.1. (L2 stability) The solution to the sheme (3.6)-(3.7) satis�es the L2 stability

d

dt

Z



�
u2(x; t)

2

�
dx � 0: (3.10)

2

The same ell entropy inequality also holds for the impliit time disretizations:

Proposition 3.2. (impliit time disretization) The ell entropy inequality and the L2 stability also hold

for the time disretization (2.13) with 1
2 � � � 1 for the sheme (3.6)-(3.7). That is,Z

K

�
(un+1(x))2 � (un(x))2

2�t

�
dx+

Z
�K

\Hn+�
nK ;K

ds � 0; (3.11)

and Z



(un+1(x))2dx �
Z



(un(x))2dx: (3.12)

2

Unfortunately, we ould not get the optimal error estimate beause of the lak of a suitable projetion

S similar to the one dimensional ase. However, numerial examples in the next setion verify that the

auray holds as in the one dimensional ase.
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Table 4.1

ut + uxxx = 0. u(x; 0) = sin(x). Periodi boundary onditions. L2 and L1 errors. Non-uniform meshes with N ells.

LDG methods with k = 0; 1; 2; 3. t = 1.

k N=10 N=20 N=40 N=80

error error order error order error order

0 L2 2.2222E-01 1.2014E-01 0.88 6.2532E-02 0.94 3.1900E-02 0.97

L1 4.3282E-01 2.2006E-01 0.97 1.1210E-01 0.97 5.8810E-02 0.93

1 L2 2.0144E-02 5.2347E-03 1.94 1.3322E-03 1.97 3.3592E-04 1.98

L1 8.8110E-02 2.3302E-02 1.93 5.9387E-03 1.97 1.4969E-03 1.98

2 L2 9.8394E-04 1.1974E-04 3.03 1.4953E-05 3.00 1.8687E-06 3.00

L1 5.2984E-03 6.8421E-04 2.95 8.5138E-05 3.00 1.0728E-05 2.99

3 L2 7.3589E-05 4.6509E-06 3.98 2.9191E-06 3.99 2.0141E-08 3.86

L1 3.4438E-04 2.2260E-05 3.95 1.3992E-06 3.99 9.1039E-08 3.94

4. Numerial examples. In this setion we provide a few preliminary numerial examples to illustrate

the auray and apability of the method. Attention has not been paid to eÆieny in time disretizations,

so expliit third order Runge-Kutta method [22℄ is used. Study of suitable impliit time disretizations whih

have eÆient iterative solvers maintaining the loal struture of the method is the subjet of a future study.

We would like to illustrate through these numerial examples the high order auray of the methods

for both one dimensional and two dimensional, both linear and nonlinear problems. We would also like to

illustrate the good behavior of the method for the so-alled onvetion dominated ases, namely the ase

where the oeÆients of the third derivative terms are small.

Example 4.1. We ompute the solution of the linear one dimensional equation

ut + uxxx = 0 (4.1)

with an initial ondition u(x; 0) = sin(x) and periodi boundary onditions (with 2� periodiity). The exat

solution is given by u(x; t) = sin(x + t). Both uniform meshes and non-uniform meshes are used. The

non-uniform meshes in this and later examples are a repeated pattern of 0:9�x and 1:1�x with an even

number of elements. The L2 and L1 errors and the numerial order of auray are ontained in Table 1.1

(in setion 1) for the uniform mesh ase, and in Table 4.1 for the non-uniform mesh ase. We an learly

see that the method with P k elements are giving a uniform (k + 1)-th order of auray in both norms for

both the uniform and the non-uniform meshes.

Example 4.2. We ompute the solution of the linear two dimensional equation

ut + uxxx + uyyy = 0 (4.2)

with an initial ondition u(x; y; 0) = sin(x + y) and periodi boundary onditions (with 2� periodiity) in

both diretions. The exat solution is given by u(x; y; t) = sin(x + y + 2t). Both uniform and non-uniform

retangular meshes are used. The non-uniform meshes are a repeated pattern of 0:9�x and 1:1�x, in both

diretions, with an even number of edges in both diretions. The L2 and L1 errors and the numerial order

of auray are ontained in Table 4.2 for the uniform mesh ase, and in Table 4.3 for the non-uniform mesh
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Table 4.2

ut + uxxx + uyyy = 0. u(x; y; 0) = sin(x + y). Periodi boundary onditions. L2 and L1 errors. Uniform meshes with

N �N ells. LDG methods with k = 0; 1; 2; 3. t = 1.

k 10�10 20�20 40�40
error error order error order

0 L2 3.5528E-01 2.0535E-01 0.79 1.1090E-01 0.89

L1 7.1359E-01 4.0190E-01 0.82 2.1165E-01 0.92

1 L2 3.3603E-02 9.0904E-03 1.89 2.4084E-03 1.92

L1 2.2074E-01 6.1899E-02 1.83 1.5962E-02 1.95

2 L2 3.8750E-03 4.8463E-04 2.99 6.0501E-05 3.00

L1 3.9084E-02 4.8902E-03 2.99 6.1274E-04 2.99

3 L2 4.1491E-04 2.6426E-05 3.97 1.6550E-06 3.99

L1 4.2847E-03 2.8478E-04 3.91 1.7846E-05 3.99

Table 4.3

ut + uxxx + uyyy = 0. u(x; y; 0) = sin(x + y). Periodi boundary onditions. L2 and L1 errors. Non-uniform meshes

with N �N ells. LDG methods with k = 0; 1; 2; 3. t = 1.

k 10�10 20�20 40�40
error error order error order

0 L2 3.5963E-01 2.0788E-01 0.79 1.1228E-01 0.88

L1 7.3869E-01 4.0713E-01 0.85 2.1681E-01 0.91

1 L2 3.4590E-02 9.1681E-03 1.92 2.3412E-03 1.97

L1 2.5815E-01 7.2978E-02 1.82 1.8533E-02 1.97

2 L2 4.0949E-03 5.1285E-04 2.99 6.4054E-05 3.00

L1 5.0429E-02 6.3078E-03 2.99 8.0584E-04 2.97

3 L2 4.5434E-04 2.8854E-05 3.97 1.8080E-06 3.99

L1 6.0982E-03 4.0321E-04 3.92 2.5340E-05 3.99

ase. We an learly see again that the method with P k elements are giving a uniform (k + 1)-th order of

auray for both the uniform and the non-uniform meshes.

Example 4.3. In order to see the auray of the method for nonlinear problems, we ompute the lassial

soliton solution of the KdV equation

ut � 3
�
u2

�
x
+ uxxx = 0 (4.3)

in �10 � x � 12. The initial ondition is given by

u(x; 0) = �2 seh2(x);

The exat solution is

u(x; t) = �2 seh2(x� 4t):
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Table 4.4

The KdV equation ut � 3
�
u2

�
x
+ uxxx = 0. u(x; 0) = �2 seh2(x). Boundary ondition (4.4). L2 and L1 errors.

Uniform meshes with N ells. LDG methods with k = 0; 1; 2; 3. t = 0:5.

k N=40 N=80 N=160 N=320

error error order error order error order

0 L2 2.5292E-01 1.9098E-01 0.40 1.3019E-01 0.55 7.9780E-02 0.71

L1 9.0170E-01 6.8651E-01 0.39 4.6405E-01 0.56 2.8531E-01 0.70

1 L2 2.6512E-02 4.6652E-03 2.50 1.0108E-03 2.20 2.5906E-04 1.96

L1 1.4748E-01 3.4625E-02 2.09 1.1840E-02 1.55 3.3239E-03 1.83

2 L2 1.5317E-03 1.8083E-04 3.08 2.2642E-05 2.99 2.8335E-06 2.99

L1 1.7486E-02 2.7505E-03 2.66 3.5575E-04 2.95 4.4397E-05 3.00

3 L2 2.0631E-04 1.3981E-05 3.88 8.9054E-07 3.97 5.6029E-08 3.99

L1 2.0155E-03 2.1462E-04 3.23 1.4461E-05 3.89 9.1140E-07 3.98

Table 4.5

The KdV equation ut � 3
�
u2

�
x
+ uxxx = 0. u(x; 0) = �2 seh2(x). Boundary ondition (4.4). L2 and L1 errors.

Non-uniform meshes with N ells. LDG methods with k = 0; 1; 2; 3. t = 0:5.

k N=40 N=80 N=160 N=320

error error order error order error order

0 L2 2.4530E-01 1.9004E-01 0.37 1.3390E-01 0.50 8.4635E-02 0.66

L1 1.0172E+00 7.6826E-01 0.40 5.3383E-01 0.52 3.3655E-01 0.66

1 L2 2.7042E-02 4.9065E-03 2.46 1.0555E-03 2.21 2.6978E-04 1.97

L1 1.4490E-01 4.1570E-02 1.80 1.3925E-02 1.57 3.9129E-03 1.83

2 L2 1.9493E-03 2.0134E-04 3.27 2.4926E-05 3.01 3.1208E-06 2.99

L1 2.2876E-02 3.5163E-03 2.70 4.7161E-04 2.89 5.9033E-05 2.99

3 L2 3.0402E-04 1.5462E-05 4.29 1.0064E-06 3.94 6.3370E-08 3.99

L1 2.7735E-03 2.1464E-04 3.69 1.8358E-05 3.55 1.3119E-06 3.80

We ompute the solution with two di�erent boundary onditions. Table 4.4 (uniform mesh) and Table 4.5

(non-uniform mesh) give the errors of numerial solution at t = 0:5 using the boundary ondition

u(�10; t) = g1(t); ux(12; t) = g2(t); uxx(12; t) = g3(t) (4.4)

where gi(t) orresponds to the data from the exat solution. Notie that the LDG method allows an easy

implementation of suh boundary onditions. Table 4.6 (uniform mesh) and Table 4.7 (non-uniform mesh)

give the errors of numerial solution using the periodi boundary onditions. Although the exat solution is

not periodi, the large size of the omputational domain allows the usage of periodi boundary onditions

with negligible error. We an see from these tables that the orders of auray are omparable to that for

the linear ase.
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Table 4.6

The KdV equation ut � 3
�
u2

�
x
+ uxxx = 0. u(x; 0) = �2 seh2(x). Periodi boundary ondition. L2 and L1 errors.

Uniform meshes with N ells. LDG methods with k = 0; 1; 2; 3. t = 0:5.

k N=40 N=80 N=160 N=320

error error order error order error order

0 L2 2.5292E-01 1.9098E-01 0.40 1.3020E-01 0.55 7.9822E-02 0.70

L1 9.0170E-01 6.8648E-01 0.39 4.6404E-01 0.56 2.8602E-01 0.69

1 L2 2.6600E-02 4.6801E-03 2.50 1.0133E-03 2.20 2.5966E-04 1.96

L1 1.4778E-01 3.4403E-02 2.10 1.1930E-02 1.52 3.3404E-03 1.84

2 L2 1.5883E-03 1.8254E-04 3.12 2.2699E-05 3.00 2.8353E-06 3.00

L1 1.7729E-02 2.7130E-03 2.70 3.5359E-04 2.94 4.4350E-05 2.99

3 L2 2.1442E-04 1.5566E-05 3.78 1.0318E-06 3.91 6.5818E-08 3.97

L1 1.9911E-03 2.2607E-04 3.14 1.5397E-05 3.88 9.7191E-07 3.98

Table 4.7

The KdV equation ut � 3
�
u2

�
x
+ uxxx = 0. u(x; 0) = �2 seh2(x). Periodi boundary ondition. L2 and L1 errors.

Non-uniform meshes with N ells. LDG methods with k = 0; 1; 2; 3. t = 0:5.

k N=40 N=80 N=160 N=320

error error order error order error order

0 L2 2.4530E-01 1.9004E-01 0.37 1.3391E-01 0.50 8.4650E-02 0.66

L1 1.0172E+00 7.6826E-01 0.40 5.3383E-01 0.52 3.3672E-01 0.66

1 L2 2.7071E-02 4.9216E-03 2.46 1.0581E-03 2.21 2.7039E-04 1.97

L1 1.4507E-01 4.1341E-02 1.81 1.3916E-02 1.57 3.9383E-03 1.82

2 L2 2.0350E-03 2.0344E-04 3.32 2.4988E-05 3.02 3.1228E-06 3.00

L1 2.2916E-02 3.4702E-03 2.72 4.6922E-04 2.88 5.8972E-05 2.99

3 L2 3.2212E-04 1.8451E-05 4.12 1.1715E-06 3.97 7.4102E-08 3.98

L1 2.8274E-03 2.2498E-04 3.65 1.9437E-05 3.53 1.3793E-06 3.81

Example 4.4. In order to see the auray of the method for nonlinear problems with small oeÆient for

the third derivative term, we ompute the soliton solution of the generalized KdV equation [5℄

ut + ux +

�
u4

4

�
x

+ �uxxx = 0; (4.5)

in �2 � x � 3, where we take � = 0:2058� 10�4. The initial ondition is given by

u(x; 0) = A seh
2
3 (K(x� x0)) (4.6)

with A = 0:2275, x0 = 0:5, and K = 3
�
A3

40�

� 1
2

. The exat solution is

u(x; t) = A seh
2
3 (K(x� x0)� !t)

where ! = K
�
1 + A3

10

�
. We ompute the solution using the boundary ondition

u(�2; t) = g1(t); ux(3; t) = g2(t); uxx(3; t) = g3(t) (4.7)
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Table 4.8

The GKdV equation (4.5) with initial ondition (4.6) and boundary ondition (4.7). L2 and L1 errors. Non-uniform

meshes with N ells. LDG methods with k = 0; 1; 2; 3. t = 1.

k N=160 N=320 N=640 N=1280

error error order error order error order

0 L2 1.6566E-02 1.1259E-02 0.56 7.0817E-03 0.67 4.1526E-03 0.77

L1 9.3056E-02 6.6829E-02 0.48 4.4502E-02 0.58 2.7539E-02 0.69

1 L2 3.8554E-04 6.0675E-05 2.66 1.1784E-05 2.36 2.8635E-06 2.04

L1 3.2635E-03 6.2508E-04 2.38 2.2689E-04 1.47 6.4595E-05 1.81

2 L2 8.2907E-06 9.5348E-07 3.12 1.1895E-07 3.00 1.5290E-08 2.96

L1 1.6684E-04 2.2545E-05 2.88 3.0858E-06 2.87 3.9503E-07 2.97

3 L2 1.7005E-06 1.3664E-07 3.63 3.0527E-09 5.48 1.9206E-10 3.99

L1 1.7607E-05 1.3291E-06 3.72 8.3962E-08 3.98 5.2861E-09 3.99

with a non-uniform mesh. The result is ontained in Table 4.8.

Example 4.5. In this example we ompute the lassial soliton solutions of the KdV equation

ut +

�
u2

2

�
x

+ �uxxx = 0: (4.8)

The examples are those used in [14℄.

The single soliton ase has the initial ondition

u0(x) = 3 seh2 (k(x� x0)) (4.9)

with  = 0:3, x0 = 0:5, k = (1=2)
p

=� and � = 5�10�4. The solution is omputed in x 2 [0; 2℄ with periodi

boundary onditions, using P 2 elements with 100 ells, and is shown in Figure 4.1.

The double soliton ollision ase has the initial ondition

u0(x) = 31 seh
2 (k1(x� x1)) + 32 seh

2 (k2(x� x2)) (4.10)

with 1 = 0:3, 2 = 0:1, x1 = 0:4, x2 = 0:8, ki = (1=2)
p

i=� for i = 1; 2, and � = 4:84� 10�4. The solution

is omputed in x 2 [0; 2℄ with periodi boundary onditions, using P 2 elements with 100 ells. and is shown

in Figure 4.2.

The triple soliton splitting ase has the initial ondition

u0(x) =
2

3
seh2

�
x� 1p
108�

�
(4.11)

with � = 10�4. The solution is omputed in x 2 [0; 3℄ with periodi boundary onditions and is shown in

Figure 4.3.

Example 4.6. We ompute in this example the KdV zero dispersion limit of onservation laws. The

equation is (4.8) with an initial ondition

u(x; 0) = 2 + 0:5 sin(2�x) (4.12)

for x 2 [0; 1℄ with periodi boundary onditions, and we are interested in the limit when �! 0+. Theoretial

and numerial disussions about this limit an be found in [19℄ and [23℄. Here we are mainly onerned with
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Fig. 4.1. Single soliton pro�les. Solutions of equation (4.8) with initial ondition (4.9) and periodi boundary onditions

in [0,2℄ using P 2 elements with 100 ells. Top left: solution at t = 0; top right: t = 1; bottom left: t = 2; bottom right: spae

time graph of the solution up to t = 3.

the apability of our numerial method in resolving the small sale solution strutures in this limit when �

is small. For this purpose we ompute the solution to t = 0:5 with � = 10�4; 10�5; 10�6 and 10�7 using P 2

elements with 300 ells for the �rst two ases, 800 ells for the third ase and 1700 ells for the last ase.

We have veri�ed that these are \onverged" solutions in the sense that further inreasing the number of

ells does not hange the solutions graphially. These solutions are shown in Figure 4.4. Notie the physial

\osillations" whih are typial in suh dispersive limits, see, e.g. [19℄. Clearly our method is very suitable

to ompute suh solutions.
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Fig. 4.2. Double soliton ollision pro�les. Solutions of equation (4.8) with initial ondition (4.10) and periodi boundary

onditions in [0,2℄ using P 2 elements with 100 ells. Top left: solution at t = 0; top right: t = 1; bottom left: t = 2; bottom

right: spae time graph of the solution up to t = 4.

5. Conluding remarks. We have designed a lass of loal disontinuous Galerkin methods for solving

KdV type equations ontaining third derivatives and have proven their stability for any spatial dimensions for

a general lass of nonlinear equations. Numerial examples are shown to illustrate the auray and apability

of the methods, espeially for the onvetion dominated ases where the oeÆients of the third derivative

terms are small. EÆient impliit time disretizations whih have eÆient iterative solvers maintaining the

loal struture of the method, auray enhanement study, and more numerial experiments with physially

interesting problems onstitute an ongoing projet.
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Fig. 4.3. Triple soliton splitting pro�les. Solutions of equation (4.8) with initial ondition (4.11) and periodi boundary
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right: spae time graph of the solution up to t = 4.
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limits of onservation laws in Example 4.6.
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