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A LOCAL DISCONTINUOUS GALERKIN METHOD FOR KDV-TYPE EQUATIONS�

JUE YANy AND CHI-WANG SHUz

Abstra
t. In this paper we develop a lo
al dis
ontinuous Galerkin method for solving KdV type equa-

tions 
ontaining third derivative terms in one and two spa
e dimensions. The method is based on the

framework of the dis
ontinuous Galerkin method for 
onservation laws and the lo
al dis
ontinuous Galerkin

method for vis
ous equations 
ontaining se
ond derivatives, however the guiding prin
iple for inter-
ell 
uxes

and nonlinear stability is new. We prove L2 stability and a 
ell entropy inequality for the square entropy

for a 
lass of nonlinear PDEs of this type both in one and multiple spatial dimensions, and give an error

estimate for the linear 
ases in the one dimensional 
ase. The stability result holds in the limit 
ase when the


oeÆ
ients to the third derivative terms vanish, hen
e the method is espe
ially suitable for problems whi
h

are \
onve
tion dominate", i.e. those with small se
ond and third derivative terms. Numeri
al examples are

shown to illustrate the 
apability of this method. The method has the usual advantage of lo
al dis
ontinuous

Galerkin methods, namely it is extremely lo
al and hen
e eÆ
ient for parallel implementations and easy for

h-p adaptivity.

Key words. dis
ontinuous Galerkin method, KdV equation, stability, error estimate
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1. Introdu
tion. In this paper we develop a lo
al dis
ontinuous Galerkin method for solving KdV

type equations 
ontaining third derivative terms in one and multiple spatial dimensions. An example of su
h

PDEs is the original KdV equation [18℄

ut + (�u+ �u2)x + �uxxx = 0; (1.1)

where �, � and � are 
onstants. Our s
heme 
an be designed and proven stable for more general nonlinear-

ities, namely

ut + f(u)x + (r0(u)g(r(u)x)x)x = 0 (1.2)

in one spa
e dimension for arbitrary (smooth) fun
tions f , g and r, where r0(u) = dr(u)
du , and

ut +
dX

i=1

fi(u)xi
+

dX
i=1

0�r0i(u) dX
j=1

gij(ri(u)xi
)xj

1A
xi

= 0 (1.3)

in multiple spatial dimensions for arbitrary (smooth) fun
tions fi, gij and ri.

KdV type equations des
ribe the propagation of waves in a variety of nonlinear, dispersive media and

appear often in appli
ations. See, e.g. [1℄. Various numeri
al methods have been proposed and used

in pra
ti
e to solve this type of equations, see, e.g. [4, 5, 17℄. However, in many situations, su
h as in

the quantum hydrodynami
 models of semi
ondu
tor devi
e simulations [15℄ and in the dispersive limit of
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onservation laws [19℄, the third derivative terms might have small or even zero 
oeÆ
ients in some parts

of the domain. We will 
all su
h 
ases as \
onve
tion dominated". The design of stable, eÆ
ient and high

order methods, espe
ially those for the \
onve
tion dominated" 
ases, i.e. when the third derivative terms

are small (j�j � 1 in (1.1)), remains a 
hallenge.

The dis
ontinuous Galerkin method is a 
lass of �nite element methods using 
ompletely dis
ontinuous

pie
ewise polynomial spa
e for the numeri
al solution and the test fun
tions. One 
ertainly needs to use

more degrees of freedom be
ause of the dis
ontinuities at the element boundaries, however this also gives one

a room to design suitable inter-element boundary treatments (the so-
alled 
uxes) to obtain highly a

urate

and stable methods in many diÆ
ult situations.

The �rst dis
ontinuous Galerkin method was introdu
ed in 1973 by Reed and Hill [20℄, in the framework

of neutron transport (steady state linear hyperboli
 equations). A major development of the dis
ontinuous

Galerkin method was 
arried out by Co
kburn et al. in a series of papers [10, 9, 7, 11℄, in whi
h they

established a framework to easily solve nonlinear time dependent hyperboli
 
onservation laws (i.e. (1.2)

and (1.3) without the third derivative terms) using expli
it, nonlinearly stable high order Runge-Kutta time

dis
retizations [22℄ and dis
ontinuous Galerkin dis
retization in spa
e with exa
t or approximate Riemann

solvers as interfa
e 
uxes and TVB (total variation bounded) nonlinear limiters [21℄ to a
hieve non-os
illatory

properties for strong sho
ks.

The dis
ontinuous Galerkin method has found rapid appli
ations in su
h diverse areas as aeroa
ousti
s,

ele
tro-magnetism, gas dynami
s, granular 
ows, magneto-hydrodynami
s, meteorology, modeling of shallow

water, o
eanography, oil re
overy simulation, semi
ondu
tor devi
e simulation, transport of 
ontaminant in

porous media, turboma
hinery, turbulent 
ows, vis
oelasti
 
ows and weather fore
asting, among many

others. Good referen
es for the dis
ontinuous Galerkin method and its re
ent development in
lude the

survey paper [8℄, other papers in that Springer volume, and the review paper [13℄.

The original dis
ontinuous Galerkin method was designed to solve �rst order hyperboli
 problems. A

simple example to illustrate the essential ideas is the linear transport equation

ut + ux = 0: (1.4)

Let's denote the mesh by Ij =[xj� 1
2
; xj+ 1

2
℄, for j = 1; :::; N , with the 
enter of the 
ell denoted by xj =

1
2

�
xj� 1

2
+ xj+ 1

2

�
and the size of ea
h 
ell by �xj = xj+ 1

2
� xj� 1

2
. We will denote �x = maxj �xj . If we

multiply (1.4) by an arbitrary test fun
tion v(x), integrate over the interval Ij , and integrate by parts, we

get Z
Ij

utvdx�
Z
Ij

uvxdx+ u(xj+ 1
2
; t)v(xj+ 1

2
)� u(xj� 1

2
; t)v(xj� 1

2
) = 0: (1.5)

This is the starting point for designing the dis
ontinuous Galerkin method. We repla
e both the solution u

and the test fun
tion v by pie
ewise polynomials of degree at most k. That is, u; v 2 V�x where

V�x = fv : v is a polynomial of degree at most k for x 2 Ij ; j = 1; :::; Ng : (1.6)

With this 
hoi
e, there is an ambiguity in (1.5) in the last two terms involving the boundary values at xj� 1
2
,

as both the solution u and the test fun
tion v are dis
ontinuous exa
tly at these boundary points. The

idea is to treat these terms by an upwinding me
hanism (information from 
hara
teristi
s), borrowed from

su

essful high resolution �nite volume s
hemes. Thus u at the interfa
es xj� 1
2
is given by a single valued

numeri
al 
ux ûj� 1
2
= u�

j� 1
2

, determined from upwinding, and v at the interfa
es xj� 1
2
are given by the
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values taken from inside the 
ell Ij , namely v�
j+ 1

2

and v+
j� 1

2

. Noti
e that we use v� and v+ to denote the left

and right limits of v, respe
tively, at the interfa
e where v is dis
ontinuous. For more general nonlinear 
uxes

f(u), the only di�eren
e is that the single valued 
ux f̂j+ 1
2
would be taken as a monotone 
ux depending on

both u�
j+ 1

2

and on u+
j+ 1

2

(exa
t or approximate Riemann solvers in the system 
ase). The resulting method

of the lines ODE is then dis
retized by the nonlinearly stable high order Runge-Kutta time dis
retizations

[22℄. Nonlinear TVB limiters [21℄ may be used if the solution 
ontains strong dis
ontinuities. The s
hemes

thus obtained, for solving hyperboli
 
onservation laws ((1.2) and (1.3) without the third derivative terms),

have the following attra
tive properties:

1. It 
an be easily designed for any order of a

ura
y. In fa
t, the order of a

ura
y 
an be lo
ally

determined in ea
h 
ell, thus allowing for eÆ
ient p adaptivity.

2. It 
an be used on arbitrary triangulations, even those with hanging nodes, thus allowing for eÆ
ient

h adaptivity.

3. It is extremely lo
al in data 
ommuni
ations. The evolution of the solution in ea
h 
ell needs to


ommuni
ate only with the immediate neighbors, regardless of the order of a

ura
y, thus allowing

for eÆ
ient parallel implementations. See, e.g. [3℄.

4. It has ex
ellent provable nonlinear stability. One 
an prove a strong L2 stability and a 
ell entropy

inequality for the square entropy, for the general nonlinear 
ases, for any orders of a

ura
y on

arbitrary triangulations in any spa
e dimension, without the need for nonlinear limiters [16℄.

In [12℄ these dis
ontinuous Galerkin methods were generalized to solve 
onve
tion di�usion problems


ontaining se
ond derivative terms. This was motivated by the su

essful numeri
al experiments of Bassi

and Rebay [2℄ for the 
ompressible Navier-Stokes equations. The idea 
an be illustrated with the simple

heat equation

ut � uxx = 0 (1.7)

whi
h we rewrite into a �rst order system

ut � qx = 0; q � ux = 0; (1.8)

we 
an then formally use the same dis
ontinuous Galerkin method for the 
onve
tion equation to solve (1.8),

resulting in the following s
heme: �nd u; q 2 V�x su
h that, for all test fun
tions v; w 2 V�x,Z
Ij

utvdx+

Z
Ij

qvxdx� q̂j+ 1
2
v�
j+ 1

2

+ q̂j� 1
2
v+
j� 1

2

= 0Z
Ij

qwdx +

Z
Ij

uwxdx� ûj+ 1
2
w�
j+ 1

2

+ ûj� 1
2
w+
j� 1

2

= 0: (1.9)

However, there is no longer a upwinding me
hanism or 
hara
teristi
s to guide the design of the 
uxes ûj+ 1
2

and q̂j+ 1
2
. The 
ru
ial part in designing a stable and a

urate algorithm (1.9) is a 
orre
t design of these


uxes. In [12℄, 
riteria are given for these 
uxes to guarantee stability, 
onvergen
e and a sub-optimal error

estimate of order k for pie
ewise polynomials of degree k. The (most natural) 
entral 
uxes

ûj+ 1
2
=

1

2

�
u�
j+ 1

2

+ u+
j+ 1

2

�
; q̂j+ 1

2
=

1

2

�
q�
j+ 1

2

+ q+
j+ 1

2

�
(1.10)

would satisfy these 
riteria and give a s
heme whi
h is indeed sub-optimal in the order of a

ura
y for odd

k (i.e. the a

ura
y is order k rather than the expe
ted order k + 1 for odd k). This de�
ien
y however is

easily removed by going to a 
lever 
hoi
e of 
uxes, proposed in [12℄:

ûj+ 1
2
= u�

j+ 1
2

; q̂j+ 1
2
= q+

j+ 1
2

: (1.11)
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i.e. we alternatively take the left and right limits for the 
uxes in u and q (we 
ould of 
ourse also take

the pair u+
j+ 1

2

and q�
j+ 1

2

as the 
uxes). Noti
e that the evaluation of (1.11) is simpler than that of the


entral 
uxes in (1.10), and this easily generalizes to multi spa
e dimensions on arbitrary triangulations.

The a

ura
y now be
omes the optimal order k + 1 for both even and odd k.

The s
hemes thus designed for the heat equation (1.7), or in fa
t for the most general multi dimensional

nonlinear 
onve
tion di�usion equations (nonlinear both in the �rst derivative 
onve
tion part and the se
ond

derivation di�usion part), retain all the four ni
e properties listed above for the method used on 
onve
tion

equations. Moreover, the appearan
e of the auxiliary variable q is super�
ial: when a lo
al basis is 
hosen

in 
ell Ij then q is eliminated and the a
tual s
heme for u takes a form similar to that for 
onve
tion alone.

This is a big advantage of the s
heme over the traditional \mixed methods", and it is the reason that the

s
heme is termed lo
al dis
ontinuous Galerkin method in [12℄. Even though the auxiliary variable q 
an be

lo
ally eliminated, it does approximate the derivative of the solution u to the same order of a

ura
y, thus

mat
hing the advantage of traditional \mixed methods" on this.

The purpose of this paper is to develop a similar lo
al dis
ontinuous Galerkin (LDG) method for the

KdV like equations (1.1), (1.2) and (1.3) 
ontaining third derivative terms. Our obje
tive is to design the

method to retain again all the four ni
e properties listed above for the method used on 
onve
tion and


onve
tion-di�usion equations, plus the feature that the method is lo
al, namely the auxiliary variables

introdu
ed to approximate the �rst and se
ond derivatives of the solution 
ould be lo
ally eliminated.

We will give a \preview" of the method on the simple linear equation

ut + uxxx = 0 (1.12)

whi
h we again rewrite into a �rst order system

ut + px = 0; p� qx = 0; q � ux = 0: (1.13)

We 
an then formally use the same dis
ontinuous Galerkin method for the 
onve
tion equation to solve

(1.13), resulting in the following s
heme: �nd u; p; q 2 V�x su
h that, for all test fun
tions v; w; z 2 V�x,Z
Ij

utvdx �
Z
Ij

pvxdx+ p̂j+ 1
2
v�
j+ 1

2

� p̂j� 1
2
v+
j� 1

2

= 0;Z
Ij

pwdx+

Z
Ij

qwxdx� q̂j+ 1
2
w�
j+ 1

2

+ q̂j� 1
2
w+
j� 1

2

= 0; (1.14)Z
Ij

qzdx+

Z
Ij

uzxdx� ûj+ 1
2
z�
j+ 1

2

+ ûj� 1
2
z+
j� 1

2

= 0:

However, the 
uxes p̂j+ 1
2
, q̂j+ 1

2
and ûj+ 1

2
must be designed based on di�erent guiding prin
iples than the

�rst order 
onve
tion or se
ond order di�usion 
ases. The 
ru
ial part in designing a stable and a

urate

algorithm (1.14) is again a 
orre
t design of these 
uxes. It turns out that the simple 
hoi
es

p̂j+ 1
2
= p+

j+ 1
2

; q̂j+ 1
2
= q+

j+ 1
2

; ûj+ 1
2
= u�

j+ 1
2

; (1.15)

would guarantee stability and 
onvergen
e, as 
an be proven later in this paper and also 
learly seen in Table

1.1, whi
h 
ontains numeri
al L2 and L1 errors and orders of a

ura
y for the 
omputed solution u for the

method (1.14) with the 
uxes (1.15) solving the equation (1.12) with an initial 
ondition u(x; 0) = sin(x)

over the interval [0; 2�℄ and periodi
 boundary 
onditions, at t = 1, using uniform meshes.
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Table 1.1

ut + uxxx = 0. u(x; 0) = sin(x). Periodi
 boundary 
onditions. L2 and L1 errors. Uniform meshes with N 
ells. LDG

methods with k = 0; 1; 2; 3. t = 1.

k N=10 N=20 N=40 N=80

error error order error order error order

0 L2 2.2534E-01 1.2042E-01 0.91 6.2185E-02 0.95 3.1582E-02 0.98

L1 4.3137E-01 2.1977E-01 0.97 1.1082E-01 0.98 5.5376E-02 1.00

1 L2 1.7150E-02 4.2865E-03 2.00 1.0716E-03 2.00 2.6792E-04 1.99

L1 5.8467E-02 1.5757E-02 1.89 4.0487E-03 1.96 1.0210E-03 1.99

2 L2 8.5803E-04 1.0823E-04 2.98 1.3559E-05 2.99 1.6958E-06 3.00

L1 4.0673E-03 5.1029E-04 2.99 6.4490E-05 2.98 8.0722E-06 3.00

3 L2 3.3463E-05 2.1035E-06 3.99 1.3166E-07 3.99 8.2365E-09 3.99

L1 1.8185E-04 1.1157E-05 3.97 7.2362E-07 3.99 4.5593E-08 3.99

We remark that the 
hoi
e for the 
uxes (1.15) is not unique. In fa
t, the 
ru
ial part is to take p̂ and

û from opposite sides and to take q̂ from the right. Thus

p̂j+ 1
2
= p�

j+ 1
2

; q̂j+ 1
2
= q+

j+ 1
2

; ûj+ 1
2
= u+

j+ 1
2

;

would also work.

The organization of the paper is as follows. In se
tion 2 we des
ribe the method for the one dimensional


ase, and prove its nonlinear L2 stability and a 
ell entropy inequality, as well as an error estimate for the

linear 
ase. In se
tion 3 multiple spatial dimensional 
ase is 
onsidered, where the nonlinear stability is given

for the general triangulations. In se
tion 4 we provide several numeri
al examples to illustrate the 
apability

of the method. Con
luding remarks and remarks about future work are given in se
tion 5.

2. The LDG method for the one dimensional 
ase. In this se
tion, we present and analyze the

LDG method for the following one dimensional nonlinear problem:

ut + f(u)x + (r0(u)g(r(u)x)x)x = 0; 0 � x � 1 (2.1)

with an initial 
ondition

u(x; 0) = u0(x); 0 � x � 1 (2.2)

and periodi
 boundary 
onditions. Here f(u), r(u) and g(q) are arbitrary (smooth) nonlinear fun
tions.

Noti
e that the assumption of periodi
 boundary 
onditions is for simpli
ity only and is not essential: the

method 
an be easily designed for non-periodi
 boundary 
onditions. Also noti
e that the linear equation

(1.12) and the KdV equation (1.1) are both spe
ial 
ases of (2.1).

To de�ne the LDG method, we �rst introdu
e the new variables

q = r(u)x; p = g(q)x (2.3)

and rewrite the equation (2.1) as a �rst order system:

ut + (f(u) + r0(u)p)x = 0; p� g(q)x = 0; q � r(u)x = 0: (2.4)
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The LDG method is obtained by dis
retizing the above system with the dis
ontinuous Galerkin method. This

is a
hieved by multiplying the three equations in (2.4) by three test fun
tions v; w; z respe
tively, integrate

over the interval Ij , and integrate by parts. We also need to pay spe
ial attention to the boundary terms

resulting from the pro
edure of integration by parts, as mentioned in the previous se
tion. Thus we seek

pie
ewise polynomial solutions u; p; q 2 V�x, where V�x is de�ned in (1.6), su
h that for all test fun
tions

v; w; z 2 V�x we have, for 1 � j � N ,Z
Ij

utvdx�
Z
Ij

(f(u) + r0(u)p)vxdx+
�
f̂ + br0p̂�

j+ 1
2

v�
j+ 1

2

�
�
f̂ + br0p̂�

j� 1
2

v+
j� 1

2

= 0;Z
Ij

pwdx +

Z
Ij

g(q)wxdx� ĝj+ 1
2
w�
j+ 1

2

+ ĝj� 1
2
w+
j� 1

2

= 0; (2.5)Z
Ij

qzdx+

Z
Ij

r(u)zxdx� r̂j+ 1
2
z�
j+ 1

2

+ r̂j� 1
2
z+
j� 1

2

= 0:

Noti
e that we still use letters without a subs
ript �x to denote fun
tions in the �nite element spa
e V�x, to

simplify the notations. The only ambiguity in the algorithm (2.5) now is the de�nition of the numeri
al 
uxes

(the \hats"), whi
h should be designed based on di�erent guiding prin
iples than the �rst order 
onve
tion

or se
ond order di�usion 
ases to ensure stability. It turns out that we 
an take the simple 
hoi
es (we omit

the subs
ripts j � 1
2 in the de�nition of the 
uxes as all quantities are evaluated at the interfa
es xj� 1

2
)

f̂ = f̂(u�; u+); br0 = r(u+)� r(u�)

u+ � u�
; p̂ = p+; ĝ = ĝ(q�; q+); r̂ = r(u�) (2.6)

where f̂(u�; u+) is a monotone 
ux for f(u), namely f̂(u�; u+) is a Lips
hitz 
ontinuous fun
tion in both

arguments u� and u+, is 
onsistent with f(u) in the sense that f̂(u; u) = f(u), and is a non-de
reasing

fun
tion in u� and a non-in
reasing fun
tion in u+. Likewise, �ĝ(q�; q+) is a monotone 
ux for �g(q),
namely ĝ(q�; q+) is a Lips
hitz 
ontinuous fun
tion in both arguments q� and q+, is 
onsistent with g(q)

in the sense that ĝ(q; q) = g(q), and is a non-in
reasing fun
tion in q� and a non-de
reasing fun
tion in q+.

Examples of monotone 
uxes whi
h are suitable for dis
ontinuous Galerkin methods 
an be found in, e.g.

[10℄. We 
ould for example use the simple Lax-Friedri
hs 
ux

f̂(u�; u+) =
1

2

�
f(u�) + f(u+)� �(u+ � u�)

�
; � = max

u
jf 0(u)j: (2.7)

where the maximum is taken over a relevant range of u. The algorithm is now well de�ned.

We remark that the 
hoi
e for the 
uxes (2.6) is not unique. In fa
t, the 
ru
ial part is to take p̂ and r̂

from opposite sides. Thus

f̂ = f̂(u�; u+); br0 = r(u+)� r(u�)

u+ � u�
; p̂ = p�; ĝ = ĝ(q�; q+); r̂ = r(u+)

would also work.

We also remark that the algorithm (2.5)-(2.6) is very easy for numeri
al implementation. Given u, one

�rst uses the third equation in (2.5) to obtain q. This is a
hieved lo
ally: q in Ij 
an be obtained with the

information of u in the 
ells Ij and Ij�1. The se
ond equation in (2.5) is then used to obtain p lo
ally: p in

Ij 
an be obtained with the information of q in (at most) the 
ells Ij , Ij�1 and Ij+1. Finally, the update of

the solution u is obtained using the �rst equation in (2.5), again lo
ally, namely the update of u in Ij 
an

be obtained with the information of u in (at most) the 
ells Ij , Ij�1 and Ij+1 and that of p in the 
ells Ij

and Ij+1.

6



We have the following \
ell entropy inequality" for the s
heme (2.5)-(2.6). This is a generalization of

the 
ell entropy inequality obtained in [16℄ for the dis
ontinuous Galerkin method applied to hyperboli



onservation laws (equation (2.1) with g(q) = 0).

Proposition 2.1. (
ell entropy inequality) There exist numeri
al entropy 
uxes Ĥj+ 1
2
su
h that the solution

to the s
heme (2.5)-(2.6) satis�es

d

dt

Z
Ij

�
u2(x; t)

2

�
dx+

�
Ĥj+ 1

2
� Ĥj� 1

2

�
� 0: (2.8)

Proof: We sum up the three equalities in (2.5) and introdu
e the notation

Bj(u; p; q; v; w; z) =

Z
Ij

utvdx �
Z
Ij

(f(u) + r0(u)p)vxdx+
�
f̂ + br0p̂�

j+ 1
2

v�
j+ 1

2

�
�
f̂ + br0p̂�

j� 1
2

v+
j� 1

2

+

Z
Ij

pwdx+

Z
Ij

g(q)wxdx� ĝj+ 1
2
w�

j+ 1
2

(2.9)

+ĝj� 1
2
w+
j� 1

2

+

Z
Ij

qzdx+

Z
Ij

r(u)zxdx� r̂j+ 1
2
z�
j+ 1

2

+ r̂j� 1
2
z+
j� 1

2

:

Clearly, the solutions u, p, q of the s
heme (2.5)-(2.6) satisfy

Bj(u; p; q; v; w; z) = 0 (2.10)

for all v; w; z 2 V�x. We then take

v = u; w = q; z = �p

to obtain, after some algebrai
 manipulations,

0 = Bj(u; p; q;u; q;�p) = d

dt

Z
Ij

�
u2(x; t)

2

�
dx+

�
Ĥj+ 1

2
� Ĥj� 1

2

�
+�j� 1

2

with the numeri
al entropy 
ux Ĥ de�ned by

Ĥ = �F (u�) +G(q�)� r(u�)p� +
�
f̂ + br0p̂�u� � ĝq� + r̂p�

and the extra term � given by

� = [F (u)�G(q) + r(u)p℄�
�
f̂ + br0p̂� [u℄ + ĝ[q℄� r̂[p℄;

Here

F (u) =

Z u

f(u)du; G(q) =

Z q

g(q)dq;

and

[v℄ = v+ � v�

denotes the jump of v. Noti
e that we have dropped the subs
ripts about the lo
ation j � 1
2 or j + 1

2 as

all these quantities are de�ned at a single interfa
e and depend only on the left and right values at that

interfa
e. Now all we need to do is to verify � � 0. To this end, we noti
e that, with the de�nition (2.6) of

the numeri
al 
uxes and with simple algebrai
 manipulations, we easily obtain

[r(u)p℄ � br0p̂[u℄� r̂[p℄ = 0

7



and hen
e

� = [F (u)℄� f̂ [u℄� [G(q)℄ + ĝ[q℄

=

Z u+

u�

�
f(s)� f̂(u�; u+)

�
ds�

Z q+

q�

�
g(s)� ĝ(q�; q+)

�
ds (2.11)

� 0;

where the last inequality follows from the monotoni
ity of the 
uxes f̂ and �ĝ. This �nishes the proof. 2

Now the L2 stability of the method is a trivial 
orollary:

Corollary 2.1. (L2 stability) The solution to the s
heme (2.5)-(2.6) satis�es the L2 stability

d

dt

Z 1

0

�
u2(x; t)

2

�
dx � 0: (2.12)

Proof: We simply add up (2.8) over j. 2

About time dis
retizations, if we denote the semi-dis
rete LDG method (2.5)-(2.6) by

ut = R(u);

then the following impli
it � s
heme

un+1 � un

�t
= R(un+�); un+� = (1� �)un + �un+1 (2.13)

will also satisfy the same 
ell entropy inequality and L2 stability as long as 1
2 � � � 1. Noti
e that this

in
ludes the �rst order ba
kward Euler and se
ond order Crank-Ni
olson impli
it time dis
retizations as

spe
ial 
ases. See [16℄ for the purely hyperboli
 
ase.

Proposition 2.2. (impli
it time dis
retization) The 
ell entropy inequality and the L2 stability also hold

for the time dis
retization (2.13) with 1
2 � � � 1 for the s
heme (2.5)-(2.6). That is,Z

Ij

�
(un+1(x))2 � (un(x))2

2�t

�
dx+ Ĥn+�

j+ 1
2

� Ĥn+�
j� 1

2

� 0; (2.14)

and Z 1

0

(un+1(x))2dx �
Z 1

0

(un(x))2dx: (2.15)

Proof: If we take the test fun
tions at n+ �, e.g. v = un+� given by (2.13), we obtain just as beforeZ
Ij

un+1(x) � un(x)

�t
un+�dx+ Ĥn+�

j+ 1
2

� Ĥn+�
j� 1

2

� 0;

whi
h 
an be rewritten asZ
Ij

�
(un+1(x))2 � (un(x))2

2�t

�
dx+ Ĥn+�

j+ 1
2

� Ĥn+�
j� 1

2

+

�
� � 1

2

�Z
Ij

�
(un+1(x)� un(x))2

�t

�
dx � 0:

Thus, a suÆ
ient 
ondition to get the 
ell entropy inequality (2.14) is just � � 1
2 . Again, (2.15) is

obtained simply by adding up (2.14) over j. 2
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The stability result obtained here 
an be used to get an error estimate in L2 for the numeri
al solution u,

when the equation (2.1) is linear. Without loss of generality we may take f(u) = u, g(q) = q and r(u) = u,

resulting in the equation

uet + uex + uexxx = 0: (2.16)

Noti
ed that we have used the notation ue to denote the exa
t solution of the PDE in order not to 
onfuse

with the numeri
al solutions. We have the following result, where C here and below denotes a generi



onstant whi
h may be of di�erent values at di�erent lo
ations.

Proposition 2.3. (error estimate) The error for the s
heme (2.5)-(2.6) applied to the linear PDE (2.16)

satis�es sZ 1

0

(ue(x; t)� u(x; t))
2
dx � C�xk+

1
2 ; (2.17)

where the 
onstant C depends on the derivatives of ue and time t.

Proof: First, we noti
e that, in this linear 
ase, most monotone 
uxes simply be
ome upwinding

f̂(u�; u+) = u�; ĝ(q�; q+) = q+;

and this is what we will assume. It is then easy to work out the exa
t form of � in (2.11) for the 
ell entropy

inequality to be

� =
1

2

�
[u℄2 + [q℄2

�
: (2.18)

We now noti
e that the exa
t solution of the PDE (2.16), ue, qe = uex and pe = uexx 
learly satis�es

Bj(u
e; pe; qe; v; w; z) = 0

for all v; w; z 2 V�x, where Bj is de�ned by (2.9). Taking the di�eren
e between the above equality and

(2.10), we obtain the error equation

Bj(u
e � u; pe � p; qe � q; v; w; z) = 0 (2.19)

for all v; w; z 2 V�x. As usual this error equation is the basi
 starting point of error estimates.

We now take

v = Sue � u; w = Pqe � q; z = p�Ppe; (2.20)

in the error equation (2.19). Here P is the standard L2 proje
tion into V�x, that is, for ea
h j,Z
Ij

(Pw(x) � w(x))v(x)dx = 0 8v 2 P k;

where P k denotes the spa
e of all polynomials of degree at most k. In other words, the di�eren
e between

the proje
tion Pw and the original fun
tion w is orthogonal to all polynomials of degree up to k in ea
h

interval. S is a spe
ial proje
tion into V�x whi
h satis�es, for ea
h j,Z
Ij

(Sw(x) � w(x))v(x)dx = 0 8v 2 P k�1 and Sw(x�j+1=2) = w(x�j+1=2);
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in other words, the di�eren
e between the proje
tion Sw and the original fun
tion w is orthogonal to all

polynomials of degree up to k � 1 in ea
h interval, and the proje
tion agrees with the fun
tion at the right

boundary in ea
h interval. This spe
ial proje
tion is needed for u be
ause we have no 
ontrol on the jumps

of p in the 
ell entropy inequality, see (2.18). Substituting (2.20) into the error equation (2.19) and moving

terms, we obtain

Bj(v;�z; w; v; w; z) = Bj(v
e;�ze; we; v; w; z) (2.21)

where v, w, z are given by (2.20), and ve, we, ze are given by

ve = Sue � ue; we = Pqe � qe; ze = pe �Ppe: (2.22)

By the same argument as that used for the 
ell entropy inequality, the left hand side of (2.21) be
omes

Bj(v;�z; w; v; w; z) = d

dt

Z
Ij

�
v2

2

�
dx+

�
Ĥj+ 1

2
� Ĥj� 1

2

�
+�j� 1

2
(2.23)

where, by (2.18),

�j� 1
2
=

1

2

�
[v℄2j� 1

2

+ [w℄2j� 1
2

�
: (2.24)

The right hand side of (2.21) 
an be written out as

Bj(v
e;�ze; we; v; w; z) = I + II + III + IV (2.25)

where

I =

Z
Ij

vet vdx; (2.26)

II = �
Z
Ij

zewdx +

Z
Ij

wezdx�
Z
Ij

(ve � ze)vxdx +

Z
Ij

wewxdx+

Z
Ij

vezxdx; (2.27)

III = �
��

vej� 1
2

��
�
�
zej� 1

2

�+�
[v℄j� 1

2
+
�
we
j� 1

2

�+
[w℄j� 1

2
+
�
vej� 1

2

��
[z℄j� 1

2
; (2.28)

and

IV = ĥj+ 1
2
� ĥj� 1

2
(2.29)

for some 
ux fun
tion ĥ. Noti
e that v; w; z are given by (2.20) and ve; we; xe are given by (2.22), respe
tively.

Now, by using the simple inequality ab � 1
2 (a

2 + b2), and standard approximation theory on vet =

(Sue � ue)t, see, e.g. [6℄, we have

I � C�x2k+3j +

Z
Ij

�
v2

2

�
dx:

Be
ause P is a lo
al L2 proje
tion, and S, even though not a lo
al L2 proje
tion, does have the property that

w�Sw is lo
ally orthogonal to all polynomials of degree up to k�1, all the terms in II are a
tually zero. The

last term in III is zero, be
ause of the spe
ial interpolating property of the proje
tion S. An appli
ation
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of the simple inequality ab � 1
2 (a

2 + b2) for the �rst two terms in III and standard approximation theory

on the point values of ve � ze = (Sue � ue) + (Ppe � pe) and of we = Pqe � qe (see, e.g. [6℄) then gives

III � C(�x2k+2j�1 +�x2k+2j +
1

4

�
[v℄2 + [w℄2

�
:

Finally, IV only 
ontains 
ux di�eren
e terms whi
h will vanish upon a summation in j.

Combining all these and summing over j we obtain the following inequality

d

dt

Z 1

0

�
v2

2

�
dx+

1

4

�
[v℄2 + [w℄2

� � C�x2k+1 +

Z 1

0

�
v2

2

�
dx:

An integration in t plus the standard approximation theory on ve = Sue � ue then gives the desired error

estimate (2.17). 2

3. The LDG method for the multiple dimensional 
ase. In this se
tion, we generalize the s
heme

dis
ussed in the previous se
tion to multiple spatial dimensions x = (x1; � � � ; xd). We solve the following

nonlinear problem:

ut +

dX
i=1

fi(u)xi
+

dX
i=1

0�r0i(u)

dX
j=1

gij(ri(u)xi
)xj

1A
xi

= 0; 0 � xi � 1; i = 1; � � � ; d (3.1)

with an initial 
ondition

u(x; 0) = u0(x); 0 � xi � 1; i = 1; � � � ; d (3.2)

and periodi
 boundary 
onditions. Here fi(u), ri(u) and gij(q) are arbitrary (smooth) nonlinear fun
tions.

Noti
e that the assumption of a box geometry and periodi
 boundary 
onditions is for simpli
ity only and

is not essential: the method 
an be easily designed for arbitrary domain and for non-periodi
 boundary


onditions.

Let's denote a triangulation of the unit box by T�x, 
onsisting of non-overlapping polyhedra 
overing


ompletely the unit box. Hanging nodes are allowed. Here �x measures the longest edge of all polyhedra in

T�x. We again denote the �nite element spa
e by

V d
�x = fv : v is a polynomial of degree at most k for x 2 K; 8K 2 T�xg : (3.3)

Similar to the one dimensional 
ase, to de�ne the LDG method, we �rst introdu
e the new variables

qi = ri(u)xi
; pi =

dX
j=1

gij(qi)xj
; i = 1; � � � ; d (3.4)

and rewrite the equation (3.1) as a �rst order system:

ut +

dX
i=1

(fi(u) + r0i(u)pi)xi
= 0;

pi �
dX

j=1

gij(qi)xj
= 0; qi � ri(u)xi

= 0; i = 1; � � � ; d: (3.5)

The LDG method is obtained by dis
retizing the above system with the dis
ontinuous Galerkin method.

This is a
hieved by multiplying the equations in (3.5) by test fun
tions v; wi; zi respe
tively, integrate over
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an element K 2 T�x, and integrate by parts. We again need to pay spe
ial attention to the boundary

terms resulting from the pro
edure of integration by parts, as in the one dimensional 
ase. Thus we seek

pie
ewise polynomial solutions u; pi; qi 2 V d
�x, where V

d
�x is de�ned in (3.3), su
h that for all test fun
tions

v; wi; zi 2 V d
�x we haveZ

K

utvdx�
dX

i=1

Z
K

(fi(u) + r0i(u)pi)vxidx+

Z
�K

dhnKvintKds = 0;

Z
K

piwidx +
dX

j=1

Z
K

gij(qi)(wi)xjdx�
Z
�K

[gi;nKw
intK ds = 0; i = 1; � � � ; d (3.6)Z

K

qizidx +

Z
K

ri(u)(zi)xidx�
Z
�K

[ri;nK z
intKds = 0; i = 1; � � � ; d;

where �K is the boundary of element K, and the numeri
al 
uxes (the \hats") are de�ned similar to the

one dimensional 
ases, namely

dhnK =\fnK ;K(u
intK ; uextK ) +

Pd
i=1

�
ri(u

extK )� ri(u
intK )

�
p+i ni;K

uextK � uintK

[gi;nK = \gi;nK ;K(q
intK ; qextK ); [ri;nK = ri(u

�)ni;K : (3.7)

Here nK = (n1;K ; � � � ; nd;K) is the outward unit normal for element K along the element boundary �K,

uintK denotes the value of u evaluated from inside the element K, and uextK denotes the value of u evaluated

from outside the element K (inside the neighboring element). On the other hand, p+ denotes the value of

p evaluated from a pre-designated \plus" side along an edge e, whi
h is always the boundaries of two

neighboring elements. For example, we 
ould 
hoose a �xed ve
tor � whi
h is not parallel with any normals

of element boundaries, and then designate the \plus" side to be the side at the end of the arrow of the normal

n with n �� > 0, see Figure 3.1.\fnK ;K(u
intK ; uextK ) is a monotone 
ux for fnK (u) =

Pd
i=1 fi(u)ni;K , namely

\fnK ;K(u
intK ; uextK ) is a Lips
hitz 
ontinuous fun
tion in both arguments uintK and uextK , is 
onsistent with

fnK (u) in the sense that dfnK (u; u) = fnK (u), and is a non-de
reasing fun
tion in uintK and a non-in
reasing

fun
tion in uextK . Moreover, it is 
onservative (that is, there is only one 
ux at ea
h edge shared by two

elements, added to the residue for one and subtra
ted from the reside for another), namely

\fnK ;K(a; b) = �\fnK0 ;K0(b; a)

where K and K 0 share the same edge where the 
ux is 
omputed and hen
e nK0 = �nK . Likewise,

�\gi;nK ;K(q
intK
i ; qextKi ) is a monotone 
ux for �gi;nK (qi) = �Pd

j=1 gij(q)nj;K . Noti
e that we 
an again

use the one dimensional monotone 
uxes as in the previous se
tion. For example, we 
an use the simple

Lax-Friedri
hs 
ux

\fnK ;K(u
intK ; uextK ) =

1

2

 
dX

i=1

�
fi(u

intK ) + fi(u
extK )

�
ni;K � �(uextK � uintK )

!
; (3.8)

� = max
u

jf 0nK (u)j;

where the maximum is taken over a relevant range of u. The algorithm is now well de�ned.

Again, the algorithm (3.6)-(3.7) is very easy for numeri
al implementation. Given u, one �rst lo
ally

solves for the qi, then lo
ally solves for the pi, and �nally lo
ally solves for the update of u. All the advantages

listed for the method for the one dimensional 
ase are still valid in this multiple dimensional 
ase.

We still have the following \
ell entropy inequality" for the s
heme (3.6)-(3.7). The proof follows the

same lines as that for the one dimensional 
ase, so we will omit it.
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Fig. 3.1. Illustration of the de�nition of \plus" and \minus" sides determined by a pre-determined ve
tor �.

Proposition 3.1. (
ell entropy inequality) There exist 
onservative numeri
al entropy 
uxes\HnK ;K su
h

that the solution to the s
heme (3.6)-(3.7) satis�es

d

dt

Z
K

�
u2(x; t)

2

�
dx+

Z
�K

\HnK ;Kds � 0: (3.9)

2

The L2 stability of the method is then again a trivial 
orollary, by summing up the 
ell entropy inequal-

ities over K:

Corollary 3.1. (L2 stability) The solution to the s
heme (3.6)-(3.7) satis�es the L2 stability

d

dt

Z



�
u2(x; t)

2

�
dx � 0: (3.10)

2

The same 
ell entropy inequality also holds for the impli
it time dis
retizations:

Proposition 3.2. (impli
it time dis
retization) The 
ell entropy inequality and the L2 stability also hold

for the time dis
retization (2.13) with 1
2 � � � 1 for the s
heme (3.6)-(3.7). That is,Z

K

�
(un+1(x))2 � (un(x))2

2�t

�
dx+

Z
�K

\Hn+�
nK ;K

ds � 0; (3.11)

and Z



(un+1(x))2dx �
Z



(un(x))2dx: (3.12)

2

Unfortunately, we 
ould not get the optimal error estimate be
ause of the la
k of a suitable proje
tion

S similar to the one dimensional 
ase. However, numeri
al examples in the next se
tion verify that the

a

ura
y holds as in the one dimensional 
ase.
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Table 4.1

ut + uxxx = 0. u(x; 0) = sin(x). Periodi
 boundary 
onditions. L2 and L1 errors. Non-uniform meshes with N 
ells.

LDG methods with k = 0; 1; 2; 3. t = 1.

k N=10 N=20 N=40 N=80

error error order error order error order

0 L2 2.2222E-01 1.2014E-01 0.88 6.2532E-02 0.94 3.1900E-02 0.97

L1 4.3282E-01 2.2006E-01 0.97 1.1210E-01 0.97 5.8810E-02 0.93

1 L2 2.0144E-02 5.2347E-03 1.94 1.3322E-03 1.97 3.3592E-04 1.98

L1 8.8110E-02 2.3302E-02 1.93 5.9387E-03 1.97 1.4969E-03 1.98

2 L2 9.8394E-04 1.1974E-04 3.03 1.4953E-05 3.00 1.8687E-06 3.00

L1 5.2984E-03 6.8421E-04 2.95 8.5138E-05 3.00 1.0728E-05 2.99

3 L2 7.3589E-05 4.6509E-06 3.98 2.9191E-06 3.99 2.0141E-08 3.86

L1 3.4438E-04 2.2260E-05 3.95 1.3992E-06 3.99 9.1039E-08 3.94

4. Numeri
al examples. In this se
tion we provide a few preliminary numeri
al examples to illustrate

the a

ura
y and 
apability of the method. Attention has not been paid to eÆ
ien
y in time dis
retizations,

so expli
it third order Runge-Kutta method [22℄ is used. Study of suitable impli
it time dis
retizations whi
h

have eÆ
ient iterative solvers maintaining the lo
al stru
ture of the method is the subje
t of a future study.

We would like to illustrate through these numeri
al examples the high order a

ura
y of the methods

for both one dimensional and two dimensional, both linear and nonlinear problems. We would also like to

illustrate the good behavior of the method for the so-
alled 
onve
tion dominated 
ases, namely the 
ase

where the 
oeÆ
ients of the third derivative terms are small.

Example 4.1. We 
ompute the solution of the linear one dimensional equation

ut + uxxx = 0 (4.1)

with an initial 
ondition u(x; 0) = sin(x) and periodi
 boundary 
onditions (with 2� periodi
ity). The exa
t

solution is given by u(x; t) = sin(x + t). Both uniform meshes and non-uniform meshes are used. The

non-uniform meshes in this and later examples are a repeated pattern of 0:9�x and 1:1�x with an even

number of elements. The L2 and L1 errors and the numeri
al order of a

ura
y are 
ontained in Table 1.1

(in se
tion 1) for the uniform mesh 
ase, and in Table 4.1 for the non-uniform mesh 
ase. We 
an 
learly

see that the method with P k elements are giving a uniform (k + 1)-th order of a

ura
y in both norms for

both the uniform and the non-uniform meshes.

Example 4.2. We 
ompute the solution of the linear two dimensional equation

ut + uxxx + uyyy = 0 (4.2)

with an initial 
ondition u(x; y; 0) = sin(x + y) and periodi
 boundary 
onditions (with 2� periodi
ity) in

both dire
tions. The exa
t solution is given by u(x; y; t) = sin(x + y + 2t). Both uniform and non-uniform

re
tangular meshes are used. The non-uniform meshes are a repeated pattern of 0:9�x and 1:1�x, in both

dire
tions, with an even number of edges in both dire
tions. The L2 and L1 errors and the numeri
al order

of a

ura
y are 
ontained in Table 4.2 for the uniform mesh 
ase, and in Table 4.3 for the non-uniform mesh
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Table 4.2

ut + uxxx + uyyy = 0. u(x; y; 0) = sin(x + y). Periodi
 boundary 
onditions. L2 and L1 errors. Uniform meshes with

N �N 
ells. LDG methods with k = 0; 1; 2; 3. t = 1.

k 10�10 20�20 40�40
error error order error order

0 L2 3.5528E-01 2.0535E-01 0.79 1.1090E-01 0.89

L1 7.1359E-01 4.0190E-01 0.82 2.1165E-01 0.92

1 L2 3.3603E-02 9.0904E-03 1.89 2.4084E-03 1.92

L1 2.2074E-01 6.1899E-02 1.83 1.5962E-02 1.95

2 L2 3.8750E-03 4.8463E-04 2.99 6.0501E-05 3.00

L1 3.9084E-02 4.8902E-03 2.99 6.1274E-04 2.99

3 L2 4.1491E-04 2.6426E-05 3.97 1.6550E-06 3.99

L1 4.2847E-03 2.8478E-04 3.91 1.7846E-05 3.99

Table 4.3

ut + uxxx + uyyy = 0. u(x; y; 0) = sin(x + y). Periodi
 boundary 
onditions. L2 and L1 errors. Non-uniform meshes

with N �N 
ells. LDG methods with k = 0; 1; 2; 3. t = 1.

k 10�10 20�20 40�40
error error order error order

0 L2 3.5963E-01 2.0788E-01 0.79 1.1228E-01 0.88

L1 7.3869E-01 4.0713E-01 0.85 2.1681E-01 0.91

1 L2 3.4590E-02 9.1681E-03 1.92 2.3412E-03 1.97

L1 2.5815E-01 7.2978E-02 1.82 1.8533E-02 1.97

2 L2 4.0949E-03 5.1285E-04 2.99 6.4054E-05 3.00

L1 5.0429E-02 6.3078E-03 2.99 8.0584E-04 2.97

3 L2 4.5434E-04 2.8854E-05 3.97 1.8080E-06 3.99

L1 6.0982E-03 4.0321E-04 3.92 2.5340E-05 3.99


ase. We 
an 
learly see again that the method with P k elements are giving a uniform (k + 1)-th order of

a

ura
y for both the uniform and the non-uniform meshes.

Example 4.3. In order to see the a

ura
y of the method for nonlinear problems, we 
ompute the 
lassi
al

soliton solution of the KdV equation

ut � 3
�
u2

�
x
+ uxxx = 0 (4.3)

in �10 � x � 12. The initial 
ondition is given by

u(x; 0) = �2 se
h2(x);

The exa
t solution is

u(x; t) = �2 se
h2(x� 4t):
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Table 4.4

The KdV equation ut � 3
�
u2

�
x
+ uxxx = 0. u(x; 0) = �2 se
h2(x). Boundary 
ondition (4.4). L2 and L1 errors.

Uniform meshes with N 
ells. LDG methods with k = 0; 1; 2; 3. t = 0:5.

k N=40 N=80 N=160 N=320

error error order error order error order

0 L2 2.5292E-01 1.9098E-01 0.40 1.3019E-01 0.55 7.9780E-02 0.71

L1 9.0170E-01 6.8651E-01 0.39 4.6405E-01 0.56 2.8531E-01 0.70

1 L2 2.6512E-02 4.6652E-03 2.50 1.0108E-03 2.20 2.5906E-04 1.96

L1 1.4748E-01 3.4625E-02 2.09 1.1840E-02 1.55 3.3239E-03 1.83

2 L2 1.5317E-03 1.8083E-04 3.08 2.2642E-05 2.99 2.8335E-06 2.99

L1 1.7486E-02 2.7505E-03 2.66 3.5575E-04 2.95 4.4397E-05 3.00

3 L2 2.0631E-04 1.3981E-05 3.88 8.9054E-07 3.97 5.6029E-08 3.99

L1 2.0155E-03 2.1462E-04 3.23 1.4461E-05 3.89 9.1140E-07 3.98

Table 4.5

The KdV equation ut � 3
�
u2

�
x
+ uxxx = 0. u(x; 0) = �2 se
h2(x). Boundary 
ondition (4.4). L2 and L1 errors.

Non-uniform meshes with N 
ells. LDG methods with k = 0; 1; 2; 3. t = 0:5.

k N=40 N=80 N=160 N=320

error error order error order error order

0 L2 2.4530E-01 1.9004E-01 0.37 1.3390E-01 0.50 8.4635E-02 0.66

L1 1.0172E+00 7.6826E-01 0.40 5.3383E-01 0.52 3.3655E-01 0.66

1 L2 2.7042E-02 4.9065E-03 2.46 1.0555E-03 2.21 2.6978E-04 1.97

L1 1.4490E-01 4.1570E-02 1.80 1.3925E-02 1.57 3.9129E-03 1.83

2 L2 1.9493E-03 2.0134E-04 3.27 2.4926E-05 3.01 3.1208E-06 2.99

L1 2.2876E-02 3.5163E-03 2.70 4.7161E-04 2.89 5.9033E-05 2.99

3 L2 3.0402E-04 1.5462E-05 4.29 1.0064E-06 3.94 6.3370E-08 3.99

L1 2.7735E-03 2.1464E-04 3.69 1.8358E-05 3.55 1.3119E-06 3.80

We 
ompute the solution with two di�erent boundary 
onditions. Table 4.4 (uniform mesh) and Table 4.5

(non-uniform mesh) give the errors of numeri
al solution at t = 0:5 using the boundary 
ondition

u(�10; t) = g1(t); ux(12; t) = g2(t); uxx(12; t) = g3(t) (4.4)

where gi(t) 
orresponds to the data from the exa
t solution. Noti
e that the LDG method allows an easy

implementation of su
h boundary 
onditions. Table 4.6 (uniform mesh) and Table 4.7 (non-uniform mesh)

give the errors of numeri
al solution using the periodi
 boundary 
onditions. Although the exa
t solution is

not periodi
, the large size of the 
omputational domain allows the usage of periodi
 boundary 
onditions

with negligible error. We 
an see from these tables that the orders of a

ura
y are 
omparable to that for

the linear 
ase.
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Table 4.6

The KdV equation ut � 3
�
u2

�
x
+ uxxx = 0. u(x; 0) = �2 se
h2(x). Periodi
 boundary 
ondition. L2 and L1 errors.

Uniform meshes with N 
ells. LDG methods with k = 0; 1; 2; 3. t = 0:5.

k N=40 N=80 N=160 N=320

error error order error order error order

0 L2 2.5292E-01 1.9098E-01 0.40 1.3020E-01 0.55 7.9822E-02 0.70

L1 9.0170E-01 6.8648E-01 0.39 4.6404E-01 0.56 2.8602E-01 0.69

1 L2 2.6600E-02 4.6801E-03 2.50 1.0133E-03 2.20 2.5966E-04 1.96

L1 1.4778E-01 3.4403E-02 2.10 1.1930E-02 1.52 3.3404E-03 1.84

2 L2 1.5883E-03 1.8254E-04 3.12 2.2699E-05 3.00 2.8353E-06 3.00

L1 1.7729E-02 2.7130E-03 2.70 3.5359E-04 2.94 4.4350E-05 2.99

3 L2 2.1442E-04 1.5566E-05 3.78 1.0318E-06 3.91 6.5818E-08 3.97

L1 1.9911E-03 2.2607E-04 3.14 1.5397E-05 3.88 9.7191E-07 3.98

Table 4.7

The KdV equation ut � 3
�
u2

�
x
+ uxxx = 0. u(x; 0) = �2 se
h2(x). Periodi
 boundary 
ondition. L2 and L1 errors.

Non-uniform meshes with N 
ells. LDG methods with k = 0; 1; 2; 3. t = 0:5.

k N=40 N=80 N=160 N=320

error error order error order error order

0 L2 2.4530E-01 1.9004E-01 0.37 1.3391E-01 0.50 8.4650E-02 0.66

L1 1.0172E+00 7.6826E-01 0.40 5.3383E-01 0.52 3.3672E-01 0.66

1 L2 2.7071E-02 4.9216E-03 2.46 1.0581E-03 2.21 2.7039E-04 1.97

L1 1.4507E-01 4.1341E-02 1.81 1.3916E-02 1.57 3.9383E-03 1.82

2 L2 2.0350E-03 2.0344E-04 3.32 2.4988E-05 3.02 3.1228E-06 3.00

L1 2.2916E-02 3.4702E-03 2.72 4.6922E-04 2.88 5.8972E-05 2.99

3 L2 3.2212E-04 1.8451E-05 4.12 1.1715E-06 3.97 7.4102E-08 3.98

L1 2.8274E-03 2.2498E-04 3.65 1.9437E-05 3.53 1.3793E-06 3.81

Example 4.4. In order to see the a

ura
y of the method for nonlinear problems with small 
oeÆ
ient for

the third derivative term, we 
ompute the soliton solution of the generalized KdV equation [5℄

ut + ux +

�
u4

4

�
x

+ �uxxx = 0; (4.5)

in �2 � x � 3, where we take � = 0:2058� 10�4. The initial 
ondition is given by

u(x; 0) = A se
h
2
3 (K(x� x0)) (4.6)

with A = 0:2275, x0 = 0:5, and K = 3
�
A3

40�

� 1
2

. The exa
t solution is

u(x; t) = A se
h
2
3 (K(x� x0)� !t)

where ! = K
�
1 + A3

10

�
. We 
ompute the solution using the boundary 
ondition

u(�2; t) = g1(t); ux(3; t) = g2(t); uxx(3; t) = g3(t) (4.7)
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Table 4.8

The GKdV equation (4.5) with initial 
ondition (4.6) and boundary 
ondition (4.7). L2 and L1 errors. Non-uniform

meshes with N 
ells. LDG methods with k = 0; 1; 2; 3. t = 1.

k N=160 N=320 N=640 N=1280

error error order error order error order

0 L2 1.6566E-02 1.1259E-02 0.56 7.0817E-03 0.67 4.1526E-03 0.77

L1 9.3056E-02 6.6829E-02 0.48 4.4502E-02 0.58 2.7539E-02 0.69

1 L2 3.8554E-04 6.0675E-05 2.66 1.1784E-05 2.36 2.8635E-06 2.04

L1 3.2635E-03 6.2508E-04 2.38 2.2689E-04 1.47 6.4595E-05 1.81

2 L2 8.2907E-06 9.5348E-07 3.12 1.1895E-07 3.00 1.5290E-08 2.96

L1 1.6684E-04 2.2545E-05 2.88 3.0858E-06 2.87 3.9503E-07 2.97

3 L2 1.7005E-06 1.3664E-07 3.63 3.0527E-09 5.48 1.9206E-10 3.99

L1 1.7607E-05 1.3291E-06 3.72 8.3962E-08 3.98 5.2861E-09 3.99

with a non-uniform mesh. The result is 
ontained in Table 4.8.

Example 4.5. In this example we 
ompute the 
lassi
al soliton solutions of the KdV equation

ut +

�
u2

2

�
x

+ �uxxx = 0: (4.8)

The examples are those used in [14℄.

The single soliton 
ase has the initial 
ondition

u0(x) = 3
 se
h2 (k(x� x0)) (4.9)

with 
 = 0:3, x0 = 0:5, k = (1=2)
p


=� and � = 5�10�4. The solution is 
omputed in x 2 [0; 2℄ with periodi


boundary 
onditions, using P 2 elements with 100 
ells, and is shown in Figure 4.1.

The double soliton 
ollision 
ase has the initial 
ondition

u0(x) = 3
1 se
h
2 (k1(x� x1)) + 3
2 se
h

2 (k2(x� x2)) (4.10)

with 
1 = 0:3, 
2 = 0:1, x1 = 0:4, x2 = 0:8, ki = (1=2)
p


i=� for i = 1; 2, and � = 4:84� 10�4. The solution

is 
omputed in x 2 [0; 2℄ with periodi
 boundary 
onditions, using P 2 elements with 100 
ells. and is shown

in Figure 4.2.

The triple soliton splitting 
ase has the initial 
ondition

u0(x) =
2

3
se
h2

�
x� 1p
108�

�
(4.11)

with � = 10�4. The solution is 
omputed in x 2 [0; 3℄ with periodi
 boundary 
onditions and is shown in

Figure 4.3.

Example 4.6. We 
ompute in this example the KdV zero dispersion limit of 
onservation laws. The

equation is (4.8) with an initial 
ondition

u(x; 0) = 2 + 0:5 sin(2�x) (4.12)

for x 2 [0; 1℄ with periodi
 boundary 
onditions, and we are interested in the limit when �! 0+. Theoreti
al

and numeri
al dis
ussions about this limit 
an be found in [19℄ and [23℄. Here we are mainly 
on
erned with
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Fig. 4.1. Single soliton pro�les. Solutions of equation (4.8) with initial 
ondition (4.9) and periodi
 boundary 
onditions

in [0,2℄ using P 2 elements with 100 
ells. Top left: solution at t = 0; top right: t = 1; bottom left: t = 2; bottom right: spa
e

time graph of the solution up to t = 3.

the 
apability of our numeri
al method in resolving the small s
ale solution stru
tures in this limit when �

is small. For this purpose we 
ompute the solution to t = 0:5 with � = 10�4; 10�5; 10�6 and 10�7 using P 2

elements with 300 
ells for the �rst two 
ases, 800 
ells for the third 
ase and 1700 
ells for the last 
ase.

We have veri�ed that these are \
onverged" solutions in the sense that further in
reasing the number of


ells does not 
hange the solutions graphi
ally. These solutions are shown in Figure 4.4. Noti
e the physi
al

\os
illations" whi
h are typi
al in su
h dispersive limits, see, e.g. [19℄. Clearly our method is very suitable

to 
ompute su
h solutions.
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Fig. 4.2. Double soliton 
ollision pro�les. Solutions of equation (4.8) with initial 
ondition (4.10) and periodi
 boundary


onditions in [0,2℄ using P 2 elements with 100 
ells. Top left: solution at t = 0; top right: t = 1; bottom left: t = 2; bottom

right: spa
e time graph of the solution up to t = 4.

5. Con
luding remarks. We have designed a 
lass of lo
al dis
ontinuous Galerkin methods for solving

KdV type equations 
ontaining third derivatives and have proven their stability for any spatial dimensions for

a general 
lass of nonlinear equations. Numeri
al examples are shown to illustrate the a

ura
y and 
apability

of the methods, espe
ially for the 
onve
tion dominated 
ases where the 
oeÆ
ients of the third derivative

terms are small. EÆ
ient impli
it time dis
retizations whi
h have eÆ
ient iterative solvers maintaining the

lo
al stru
ture of the method, a

ura
y enhan
ement study, and more numeri
al experiments with physi
ally

interesting problems 
onstitute an ongoing proje
t.
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Fig. 4.3. Triple soliton splitting pro�les. Solutions of equation (4.8) with initial 
ondition (4.11) and periodi
 boundary


onditions in [0,3℄ using P 2 elements with 150 
ells. Top left: solution at t = 0; top right: t = 1; bottom left: t = 2; bottom

right: spa
e time graph of the solution up to t = 4.
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