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ABSTRACT

The accuracy and computational efficiency of a parallel computer implementation of the Local Ensemble Transform

Kalman Filter (LETKF) data assimilation scheme on the model component of the 2004 version of the Global Forecast

System (GFS) of the National Centers for Environmental Prediction (NCEP) is investigated.

Numerical experiments are carried out at model resolution T62L28. All atmospheric observations that were opera-

tionally assimilated by NCEP in 2004, except for satellite radiances, are assimilated with the LETKF. The accuracy of

the LETKF analyses is evaluated by comparing it to that of the Spectral Statistical Interpolation (SSI), which was the

operational global data assimilation scheme of NCEP in 2004. For the selected set of observations, the LETKF analyses

are more accurate than the SSI analyses in the Southern Hemisphere extratropics and are comparably accurate in the

Northern Hemisphere extratropics and in the Tropics.

The computational wall-clock times achieved on a Beowulf cluster of 3.6 GHz Xeon processors make our implemen-

tation of the LETKF on the NCEP GFS a widely applicable analysis-forecast system, especially for research purposes.

For instance, the generation of four daily analyses at the resolution of the NCAR-NCEP reanalysis (T62L28) for a full

season (90 d), using 40 processors, takes less than 4 d of wall-clock time.

1. Introduction

In Ott et al. (2004) we proposed a Local Ensemble Kalman Fil-

ter (LEKF) for atmospheric data assimilation. The most impor-

tant features of this scheme are that (i) it assimilates all ob-

servations that may affect the analysis at a given grid point si-

multaneously and (ii) it obtains the analysis independently for

each model grid point. An implementation of the LEKF on the

National Centers for Environmental Prediction Global Forecast

System Model (NCEP GFS) has previously been successfully

tested using simulated grid point observations (Szunyogh et al.,

2005). The LEKF was also used to generate initial conditions for
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the assessment of predictability in the NCEP GFS model (Kuhl

et al., 2007).

Hunt et al. (2007) proposed many algorithmic changes to

the LEKF and suggested that the new scheme should be called

the Local Ensemble Transform Kalman Filter (LETKF). While

the LETKF retains the two aforementioned distinguishing fea-

tures of the LEKF, it also introduces changes that improve the

computational efficiency of the algorithm and adds flexibilities

that are beneficial when non-local observations, such as satellite

radiances, are assimilated (Fertig et al., 2007b). The change in

the name of the scheme reflects that, similar to the Ensemble

Transform Kalman Filter (ETKF) of Bishop et al. (2001), matrix

computations are done without orthogonalizing the background

ensemble perturbations. When only local observations are assim-

ilated, as done in the present paper, the LETKF and the LEKF

schemes produce identical results. The main goal of this paper
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is to assess the accuracy and computational efficiency of the

LETKF in a realistic setting.

Section 2 describes our particular formulation of the LETKF

for the NCEP GFS, while Section 3 explains our parallel com-

puter implementation of the scheme. Section 4 provides a de-

tailed description of the experimental design, and Section 5

presents the results of the numerical experiments. Section 6 sum-

marizes our main findings. A reader more interested in the accu-

racy of the scheme than in the details of the computer implemen-

tation can skip Section 3, as the material presented in that section

is not essential for understanding the rest of the paper. (More de-

tails on the computer implementation are given in Appendices A

and B.)

2. Implementation of the LETKF
on the NCEP GFS

In this section, we explain how the LETKF algorithm of Hunt

et al. (2007) is implemented on the NCEP GFS. Hunt et al. (2007)

provides not only a detailed justification of the LETKF algo-

rithm, but also explains how different aspects of the scheme relate

to ideas published by others in the literature. The reader inter-

ested in a comprehensive review of ensemble-based Kalman fil-

ters is referred to the recently published book by Evensen (2007)

or to one of the review articles by Evensen (2003), Houtekamer

and Mitchell (2005) and Hamill (2006).

As in Szunyogh et al. (2005), the analysis calculations are

carried out in model grid space. Since the NCEP GFS model is a

spectral-transform model, performing the grid space calculations

requires that the members of the background ensemble first be

transformed from spectral to grid space. Once the analysis step

is completed, the analysis ensemble is transformed back from

grid to spectral space. The components of the state vector x in

our description of the LETKF algorithm are the model grid point

variables.

Following the convention at NCEP, we prepare analyses with

6-h frequency at 0000UTC, 0600UTC, 1200UTC and 1800UTC,

using observations from a 6-h window centred at the analy-

sis time. However, unlike the current NCEP data assimilation

scheme, where a single analysis is prepared at each time, we

generate a k-member ensemble of global analyses, xa(i), i = 1,

2, . . . , k.

The background is an ensemble of global forecast trajectories

xb(i)(t), i = 1, 2, . . . , k, for the 6-h time window from which ob-

servations are considered. These trajectories are obtained by in-

tegrating each ensemble member for 9 h starting from the global

analysis ensemble of the previous analysis time. That is, the

members of the global background ensembles are all 3–9-h lead

time forecast trajectories. The role of the forecast trajectories

is to provide the information needed to compute the ensemble

mean background state and the ensemble-based estimate of the

background error covariance at the times and locations of the

observations (Hunt et al., 2004, 2007; Fertig et al., 2007a). To

suppress gravity wave oscillations, the background trajectories

and all other forecasts described in this paper are initialized with

a digital filter algorithm (Lynch and Huang, 1992) employing a

3-h half-window.

The data assimilation procedure we follow is summarized by

the nine steps given below.

(i) The observation operator H is applied to each ensem-

ble background trajectory, xb(i) (t), i = 1, 2, . . . , k, to obtain the

global background observation ensemble {yb(i)}, i = 1, . . . , k.

The ensemble average of the background ensemble is calculated

in observational space by calculating the ensemble average ȳb

of {yb(i)}. Then a global background observation ensemble per-

turbation matrix Yb is constructed by taking its rows to be the

vectors obtained by subtracting ȳb from each ensemble member

yb(i). Here, H is a four-dimensional observational operator that

interpolates the background ensemble members to the time and

location of the observations. The time interpolation is carried

out by outputting the background ensemble trajectories with a

1-h frequency and applying a linear interpolation to obtain the

background state at the observation time. In the two horizontal

spatial dimensions, H is a simple bilinear interpolation. Since the

vertical coordinate in the NCEP GFS model is sigma (defined

as the ratio of the pressure to the surface pressure), while the

vertical coordinate of the observations is pressure, the vertical

interpolation is somewhat more complicated than the temporal

and the horizontal interpolations: for each ensemble member,

we first calculate the pressure at the sigma levels, multiplying

sigma by the background surface pressure of the given ensemble

member; the 28 sigma levels define 28 sigma layers, where the

lowest layer is defined by the surface (where sigma is 1) and

the lowest sigma level; we find the sigma layer that contains the

observation; finally we linearly interpolate using the logarithm

of the pressure values at the bottom and top of the sigma layer.

Since the logarithm of the surface pressure is part of the state

vector, H is a non-linear function.

(ii) The global background ensemble perturbation matrix Xb

is constructed by first taking the ensemble mean x̄b of {xb(i)} at

the analysis time and then taking the ith column of the matrix to

be xb(i) − x̄b.

(iii) All data needed to obtain the analysis ensemble at a given

grid point are selected. In this study, we assimilate only local

observations and follow the strategy outlined in Ott et al. (2004)

and Szunyogh et al. (2005): observations are used if they lie in

the local volume centred at the grid point where the state is to

be estimated. Below, ȳb
[ℓ] and Yb

[ℓ] refer to the rows of ȳb and

Yb that correspond to the local background information at the

location of the observations that were chosen for the calculation

of the local analysis ensemble, {x
a(i)
[ℓ] }, at the given grid point. The

notation yo
[ℓ] refers to the local vector of observations, and R[ℓ]

is the local observation error covariance matrix for the chosen

set of observations. (Hereafter, the subscript [ℓ] refers to a local

region associated with an arbitrary grid point.)
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(iv) The matrix C[ℓ] = (Yb
[ℓ])

T R−1
[ℓ] is computed. We define

the entries of R[ℓ] by the values provided by NCEP in the oper-

ational observational data files. In addition, we assume that the

observational errors are uncorrelated. This assumption makes

R[ℓ] diagonal, so the calculation of C[ℓ] is inexpensive. [Hunt

et al. (2007) suggest solving R[ℓ]C
T
[ℓ] =Yb

[ℓ] for C[ℓ] when R[ℓ] is

non-diagonal.] In some of the experiments, we reduce the weight

of observations that are located further than a given distance (e.g.

500 km in this paper) from the analysis grid point. We achieve

this by multiplying the entries of R−1
[ℓ] by a factor μ(r) ≤ 1,

which is a monotonically decreasing function of the distance, r,

between the location of the state estimation and the location of

the observation.

(v) The eigensolution of (k − 1)I/ρ + C[ℓ]Y
b
[ℓ] is determined.

The eigenvectors and eigenvalues are then used to calculate the

matrix P̃a
[ℓ] =

[

(k − 1)I/ρ + C[ℓ]Y
b
[ℓ]

]−1
. Here ρ ≥ 1 is a multi-

plicative covariance inflation factor. In our implementation, ρ is

a smoothly varying, three-dimensional scalar field. (See Section

4 for more details.)

(vi) The matrix Wa
[ℓ] = [(k − 1)P̃a

[ℓ]]
1/2 is computed using the

eigenvalues and eigenvectors calculated in the previous step.

(vii) The vector w̄a
[ℓ] = P̃a

[ℓ]C[ℓ](y
o
[ℓ] − ȳb

[ℓ]) is computed and

then added to each row of Wa
[ℓ]. The columns of the resulting

matrix are the weight vectors {w
a(i)
[ℓ] }.

(viii) The analysis ensemble members {x
a(i)
[ℓ] } at the analysis

grid point are obtained from x
a(i)
[ℓ] = Xb

[ℓ]w
a(i)
[ℓ] + x̄b

[ℓ]; here Xb
[ℓ]

and x̄b
[ℓ] represent the rows of Xb and x̄b corresponding to the

analysis grid point.

(ix) After completing steps (iii)–(viii) for each grid point,

the results of step (viii) are collected to form the global analysis

ensemble {xa(i)}.

3. Parallel code implementation

In this section, we outline our computer implementation of the

LETKF, including program design, preliminary timing results,

and parallelization issues. Appendix A explains the computa-

tional procedure for the simple case when only two processors

are used, while Appendix B provides further details on the tech-

nical aspects of the program design.

The code consists of three main components: pre-analysis,

analysis, and post-analysis. Pre-analysis transforms the back-

ground ensemble from spectral to grid-point space, executes

steps (i)–(iii) of the LETKF algorithm and distributes the model

grid points and the data from the associated local regions be-

tween the processors. Analysis carries out steps (iv)–(viii), while

post-analysis carries out step (ix) and transforms the analysis en-

semble from grid to spectral space.

Of the three main components of the code, the analysis is by

far the most computationally expensive: it takes about 90% of

the total CPU time. The wall-clock time is primarily limited by

the slowest processor in the analysis component, but an efficient

load-balancing scheme must also account for the time needed to

distribute the data among the processors.

3.1. The pre- and post-analysis components

Given p processors and k ensemble solutions, the simplest imple-

mentation is to transform k/p solutions from spectral to physical

space on each processor if p divides k (and any leftover solu-

tions distributed in the obvious way otherwise). The transforms

between spectral and physical space, which are adapted from the

GFS model code, are fast: they take less than 10% of the total

wall-clock time.

However, the data transport costs are significant: they com-

prise approximately 1/3 to 1/2 of the total wall-clock time in

our current implementation on a Beowulf cluster. The present

version of the GFS writes out one disk file for every background

ensemble solution at every forecast time. Since we need the

background trajectory with 1-h resolution, there are seven fore-

cast files that must be read from disk for each member of the

ensemble background. In the present implementation, all these

files are written to a central disk farm; significant time savings

would be possible if a distributed file system were used instead.

(Appendix B contains additional discussion on this topic.)

3.1.1. Observation lookup. Step (iii) of the LETKF requires find-

ing all the observations that belong to a given local region. With-

out an efficient lookup algorithm, this step can dominate the total

computation time. The data structure of choice for this problem

is the K-D tree, which is a binary search tree whose comparison

key is cycled between K components. Here K = 3 because each

observation has a three-dimensional location vector. At the Lth

level of the K-D tree (where L = 0 is the root), the comparison

key is the [(L mod 3) + 1]st component of the location vectors.

The time required to locate all the observations within a given

distance of a three-dimensional reference point is proportional

to log s, where s is the number of observations on a given proces-

sor. The time required to build the K-D tree is proportional to s

log s. In our implementation of the LETKF, observation lookups

take less than 5% of the total CPU time. The construction of the

K-D tree, which needs to be done only once, takes only a few

seconds. (On a 3.6-GHz Intel Xeon processor, for example, the

required time is about 2 s for 45 000 observations.) More infor-

mation about K-D trees and associated algorithms can be found

on the Web or in any textbook on data structures (e.g. Gonnet

and Baeza-Yates, 1990). Unlike conventional binary search trees,

there is no simple procedure to remove an element from a K-D

tree. Thus the quality control is applied to the observations before

the K-D tree is constructed.

3.1.2. Load balancing algorithm. Once the observation lookup

is completed, the grid points and the data from the associated lo-

cal regions (ȳb
[ℓ], Yb

[ℓ], x̄b
[ℓ], Xb

[ℓ], y0
[ℓ]) are distributed between the

processors. In principle, the LETKF is trivially parallelizable:

one can assign every grid point to a different processor on a suf-

ficiently large computer. However, the wall-clock time is limited

by the time required (i) to distribute the data to the processors,

(ii) to obtain the analysis ensemble at the centre grid point of the
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Table 1. Processing time (in seconds) for the two slowest processors

and for the fastest processor when the LETKF is run at 0Z on 40

processors with an ensemble of size k. The last row shows the total

number of assimilated observations

k 20 Jan 2004 21 Jan 2004 22 Jan 2004

40 397/390/58 397/383/30 421/393/48

60 697/696/58 904/858/124 929/897/83

80 1570/1546/201 1518/1498/284 1581/1523/168

Number of 316 633 334 455 332 907

observations 316 633 334 455 332 907

most densely observed local region and (iii) to collect the anal-

ysis ensemble information from the different grid points. In our

current implementation, the load-balancing strategy is simply to

minimize the maximum time spent by any CPU to process its

set of local regions (data transport times will be considered in a

future version).

First, we estimate how many observations belong to every

local region. Timing data collected from previous runs are used

to estimate the corresponding processing time for each local

region. Then, we find the division (into northern and southern

slices) of the model grid that most nearly equalizes the total

estimated running time on two processors. At every subsequent

step, a similar bisection (either longitudinally or latitudinally)

is performed on the remaining region with the largest estimated

running time. The process continues until the number of regions

equals the number of available processors. Table 1 shows the two

largest and the slowest processing times for the LETKF on 40

processors, using observation datasets at 0000 UTC, for various

ensemble sizes on three typical dates.

One advantage of the bisection strategy is that it assigns a ge-

ographically contiguous region to every processor, which min-

imizes the amount of observation data that must be replicated

when adjoining local regions are assigned to different CPUs. An-

other advantage is that the observation and model grid data can

be distributed in large chunks, which optimizes the efficiency of

message-passing systems. The disadvantage is that the bisection

strategy ignores the time required to distribute the data, which

may be significant on a Beowulf architecture.

In the current implementation, the bisection strategy is applied

only in the horizontal direction; each processor handles all the

vertical levels in its assigned region. Depending on the number

of available processors and the distribution of observations, the

bisection algorithm may produce a horizontal region consisting

of a single point. If a one-point subregion is the most expensive,

then the algorithm halts.

In operational practice, it may be desirable to run the LETKF

on a number of processors that is between two consecutive pow-

ers of 2 (e.g. on 96 or 384 processors). In this case, the globe

can be divided initially into three latitudinal regions of approx-

Table 2. Approximate median time and time range (in milliseconds)

required to compute CYb as a function of the number of observations,

s, for one local region for an ensemble of size k = 60. The timing

resolution is 1 ms

s Median time Time range

30 1 <1–2

100 2 1–3

1000 14 13–22

5000 330 220–490

10 000 4000 1600–6200

15 000 7500 2900–7800

Table 3. Approximate median time and time range (in milliseconds) of

the eigensolver DSYEVR for one local region as a function of the

ensemble size k

k Median time Time range

40 2.8 1–10

80 11.2 3–30

100 15.1 5–40

imately equal computational cost, and the bisection algorithm

can be applied to each of the three subregions.

3.2. The analysis component

The implementation of the analysis step is straightforward. Given

a subgrid assigned to a processor and the set of relevant obser-

vations for all of its grid points, one loops over every point of

the subgrid and performs steps (iv)–(viii). Particular attention

must be paid to the implementation of step (v). This step is by

far the most expensive: it takes about 85% of the total CPU time

in our implementation. Unless the number of observations in a

local region is small, the calculation of C[ℓ]Y
b
[ℓ] takes most of the

time. For good performance, a highly-tuned matrix multiplica-

tion routine is essential.1 Table 2 shows some typical results for a

3.6-GHz Intel Xeon processor with a 2 MB secondary memory

cache using the matrix multiplication routines in Intel’s Math

Kernel Library (version 8.0.1). The Intel library spawns threads

to divide the computation among available processor cores, and

this processing, along with cache misses, makes the running time

a non-linear function of the local observation count, s.

To perform the eigensolution, we use the routine DSYEVR from

version 3 of the LAPACK library (Anderson et al., 1999). This

routine uses an iterative algorithm whose running time varies

but is generally much less than that required to form C[ℓ]Y
b
[ℓ];

see Table 3.

1Version 9.1 of the Intel Fortran compiler calls the appropriate BLAS

routine in the Intel Math Library where available. The latter makes effi-
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Table 4. Wall-clock time (in seconds) required to complete an analysis

step at January 20, 2004 0000UTC with an ensemble of size k = 60

using varying numbers of processors. The total number of assimilated

observations at this time is 334 455

Number of CPUs Pre-analysis Analysis Post-analysis Total

16 347 1383 43 1773

32 245 768 45 1060

64 248 500 45 793

3.3. Wall-clock time

Typical wall-clock times of a complete data assimilation cyle,

including pre- and post-analysis and analysis, for a typical

0000UTC observational data set are 9–10, 14–16 and 24–27

m for a 40-, 60- and 80-member ensemble, respectively, using

40 processors on a 3.6 GHz Xeon cluster.2 That is, doubling the

ensemble size increases the total wall-clock time by about a fac-

tor of three. In a practical application, the burden of this increase

of the computational time should always be weighed against

the increase of accuracy that can be achieved by increasing the

ensemble size (Section 5.4).

Table 4 shows the reduction in wall-clock time as the num-

ber of processors is increased for a 60-member ensemble and a

fixed set of observations. The wall-clock time decreases with the

number of processors due to the faster execution of the analysis

component. In pre- and post-analysis, the faster execution of the

spectral transforms and interpolation of the background ensem-

ble to the time and location of the observations is offset by the

increase of time spent on I/O operations and data transport. We

expect to see a gain from using more processors in pre-analysis

once satellite radiances are also assimilated. In that case, in addi-

tion to the interpolations, the observation operator also involves

the calculation of the radiative transfer model.

The very reasonable wall-clock times achieved on our Be-

owulf cluster suggest that our data assimilation system should

be widely applicable for research purposes. For instance, on our

cluster, the GFS takes about 2.5 mins to generate one forecast

on two CPU cores at T62L28 resolution. That is, a 40-member

background ensemble can be generated in 5 mins using 40 pro-

cessors. Adding this time to that needed to obtain the analysis,

the estimated wall-clock time to complete a 0000UTC analy-

sis cycle is about 15 mins. Since the number of observations is

smaller at the other three analysis times, the four daily analy-

ses can be calculated in less than 1 h. Thus, the generation of

the analyses for a full season (90 d) takes less than 4 d. This

cient use of all local processing cores and provides excellent performance

on Intel architectures.
2For comparison, the operational SSI takes approximately 3 m of wall-

clock time using 56 processors in a 2.2 GHz Xeon cluster assimilating the

same observations at the same model resolution. (Jeff Whitaker, 2007,

pers. comm.).

computational speed is more than sufficient for the investigation

of most research problems concerning global-scale atmospheric

dynamics. Furthermore, since the computational cost scales lin-

early with the number of observations, the number of assimilated

observations can be easily increased.

3.4. On the feasibility of an operational implementation

In an operational implementation, both the model resolution and

the number of assimilated observations will be larger than what

we have considered so far. In Appendix B, we provide rough es-

timates of the computational resources that would be needed for

an operational implementation. Since numerical weather pre-

diction centres already generate ensemble forecasts as part of

their routine operational procedure, the need to generate back-

ground ensembles for the LEKTF does not necessarily increase

the overall computational burden, especially if the resolution of

the operational ensemble forecasts has been deemed sufficient

for data assimilation purposes. (It has been a standard practice to

generate operational 4D-VAR analyses and ensemble forecasts

at resolutions somewhat lower than the resolution of the deter-

ministic model forecasts.) In addition, when a variational data

assimilation procedure is used, the operational centres generate

the ensemble of analyses by a separate procedure (e.g. singular

vectors, ensemble-based Kalman filter) at a significant additional

computational cost. Finally, the LETKF is a much simpler algo-

rithm than 4D-VAR, because it does not require the development

of the adjoints of the model dynamics and the observation oper-

ator, so may require fewer human resources to maintain.

4. Experimental design

The goal of our numerical experiments is to compare the per-

formance of the LETKF with a state-of-the-art operational data

assimilation system. In our experiments, we assimilate all ob-

servations that were operationally assimilated at NCEP between

January 1, 2004 0000UTC and February 29, 2004 1800UTC,

with the exception of satellite radiances, but including all

satellite-derived wind observations. Since our current implemen-

tation does not include a model or observational bias correction

term, we also exclude all types of surface observations except

for the surface pressure. The state-of-the-art reference data as-

similation system used in this study is the Spectral Statistical

Interpolation (SSI) of NCEP (Parrish and Derber, 1992; Envi-

ronmental Modeling Center, 2003), one particular implementa-

tion of 3D-VAR. NCEP generously provided analyses that were

generated with the SSI using the same version of the model (at

T62L28 resolution) and the same observational data set as those

we used in our LETKF experiments. In what follows, we refer to

this data set as the NCEP benchmark. NCEP also made available

their operational high-resolution (T254L64) analyses for the 2-

month period used in this study. We use these operational analy-

ses for verification purposes after truncating them to the T62L28
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resolution. The most important differences between the NCEP

operational and benchmark systems are in their resolution and

the use of satellite radiances in the operational system. [The same

NCEP benchmark and operational data sets are also used in the

study of Whitaker et al. (2007).]

4.1. Verification methods

The main challenge in verifying the performance of a data as-

similation system for real observations is that the true value zt

of the verified meteorological parameter z is not known, which

makes it difficult to obtain reliable estimates of the statistics

for the analysis error z̄a − zt , where z̄a is the ensemble mean

analysis of z. When an estimate zv of the true state is used as

a proxy for the true state, there are two sources of error in the

estimate E = 〈(z̄a − zv )2〉1/2 of the true root-mean-square error

T = 〈(z̄a − zt )2〉1/2, since

E = [T 2 + V 2 − 2C]1/2, (1)

where V = 〈(zt − zv )2〉1/2 is the root-mean-square error in the

verifying data set and C = 〈(z̄a − zt )(zv − zt )〉 is the covariance

between the error in the verifying data set and the error in the state

estimate. Here, the angled bracket 〈·〉 stands for the average of

the grid point values of the given meteorological field over space

and/or time. Eq. (1) shows that errors in the verifying data lead

to an overestimation of the true error, while a positive covariance

between the errors of the verifying and verified data leads to an

underestimation of the true error.

When the accuracy of two estimates of the same field is com-

pared, it is usually wise to compare E2 instead of E, since when

the difference is taken between the two values of E2, the term V2

cancels out. Thus C is the more problematic component when

comparing two analysis fields. In what follows, we use E2 to

compare fields of estimated errors for the LETKF and bench-

mark analysis-forecast cycles and to test the significance of the

difference between the mean errors in the two cycles.

Let �i be the difference between the values of E2 for the

two cycles at time i, where the mean in the calculation of E2

is taken only over space. To test the statistical significance of

the difference between the estimated errors of the two cycles,

we apply a two-sample t- test for correlated data, as described

in Wilks (2006), to the time series of �i , i = 1, . . . , n. In our

case, the total sample size n is 96 (twice-daily forecasts for 48 d).

The test involves calculating the effective sample size, n′ ≤ n,

based on the assumption that the random variable �i , n = 1, . . . ,

n, describes a first-order autoregressive process. Under this as-

sumption, the effective sample size n′ can be estimated by

n′ ≈ n(1 − r1)(1 + r1)−1,

where the auto-correlation coefficient r1 is computed by

r1 =

∑n−1

i=1

[(

�i − �̄−

)(

�i+1 − �̄+

)]

[
∑n−1

i=1

(

�i − �̄−

)2 ∑n

i=2

(

�i − �̄+

)2]1/2
. (2)

Here, �̄− = (n − 1)−1
∑n−1

i=1 �i and �̄+ = (n − 1)−1
∑n

i=2 �i .

If r1 were zero, n′ would equal n, but as the auto-correlation in-

creases, n′ decreases. We find that, depending on the atmospheric

level and verification variable, the effective sample size n′ is 25–

50% smaller than the sample size n for the results presented in

Section 5. In what follows, we regard the difference between

the performance of the LETKF and benchmark as statistically

significant when the null hypothesis, that the true value of the

time mean �̄ = n−1
∑n

i=1 �i is zero, can be rejected at the 99%

confidence level.

We use three different methods to compare the analysis and

forecast errors for the LETKF and the NCEP benchmark. First,

error statistics are computed by comparing the LETKF and

NCEP benchmark analyses to the operational NCEP analyses.

In general, this verification technique favors the NCEP bench-

mark analysis, since the benchmark and the operational analy-

ses are obtained with the same data assimilation scheme, which

may lead to a strong covariance between the errors in the two

NCEP analyses [that is, it is expected that C > 0 in eq. (1)].

On the other hand, a strong positive correlation is less likely in

regions where the LETKF and the benchmark systems assim-

ilate very few observations and the verifying analysis assimi-

lates many observations. The most important such region is the

Southern Hemisphere, where satellite radiances are known to

have a strong positive impact on the quality of the operational

analyses.

The second approach is to compare 48-h forecasts started from

the LETKF and benchmark analyses to the verifying analyses.

This approach reduces the effect of correlations between the

benchmark and verifying analyses and is expected to provide

more reliable comparison results in and downstream of regions

where large numbers of observations have been assimilated into

the verifying analyses during the previous 48-h period. While

this approach reduces the effects of correlated errors, we can

still expect it to be more favourable for the benchmark.

Our third approach is based on comparing short-term fore-

casts to radiosonde observations. More precisely, the root-mean-

square error is estimated by comparing the z component of H(x f )

with observations zv of the verified field at the observational lo-

cations, and averages are calculated over observational locations

instead of grid points within the verification region. Here, x f is a

forecast started from the analysis x̄a . While this approach has the

advantage that the verified and the verification data sets are truly

independent, thus providing a neutral verification approach for

the comparison of the two systems, it has the significant disad-

vantage that the radiosonde network is strongly inhomogeneous,

and the verification results reflect forecast accuracy over highly

populated areas of the globe (Fig. 1).

4.2. LETKF parameters

In what follows, we provide results for the following choice of

the LETKF parameters.
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Fig. 1. Location of the radiosonde

observations on a typical day at 0000UTC at

the 300 hPa level. The number of radiosonde

observations at the mandatory levels changes

little between the surface and the 50 hPa

pressure level.

(i) The ensemble has k = 60 members.

(ii) In the horizontal direction, observations are considered

from an 800-km radius neighbourhood of the grid point at which

the state is to be estimated.

(iii) The observations have equal weight [μ = 1, see step (iv)

of the LETKF algorithm] within a 500-km radius of the grid

point, beyond which the weight of the observations, μ decreases

linearly to zero at 800 km.

(iv) In the vertical direction, observations are considered

from a layer around the grid point, and this layer has a depth of

0.35 scale height between model levels 1 and 15 (below sigma

= 0.37 2), above which the depth gradually increases to 2 scale

heights at the top of the atmosphere (defined by sigma = 0.00

3). Here, the scale height is defined as the vertical distance in

which the surface pressure decreases by a factor of e, that is, the

unit-scale-height deep vertical layer is defined by ln (σ 1/σ 2) =

1, where σ 1 is sigma at the bottom of the layer and σ 2 is sigma

at the top of the layer.

(v) The covariance inflation coefficient ρ tapers from 1.25

at the surface to 1.2 at the top of the model atmosphere in the SH

extratropics and from 1.35 to 1.25 in the NH extratropics, while

ρ changes smoothly throughout the tropics (between 25◦S and

25◦N) from the values of the SH extratropics to the values of the

NH extratropics.

4.3. Data selection strategy

To analyse the surface pressure, we use all surface pressure ob-

servations from the local region and all temperature and wind

observations between model levels 2 (sigma = 0.98 2) and 5

(sigma = 0.91 6). The virtual temperature and the two compo-

nents of the wind vector are analysed at all model levels. To

obtain the analysis of these variables, we assimilate temperature

and wind observations, and when the state is estimated for the

lower 15 model levels, the surface pressure observations are also

added to the assimilated data set.

We do not analyse the humidity, liquid water content, or ozone

mixing ratio model variables; the values of these variables are

simply copied from the background ensemble members to the

respective analysis ensemble members. We do not prepare a

surface analysis either; all background ensemble members are

obtained by using the operational NCEP surface analysis to ini-

tialize surface variables like soil temperature, sea surface tem-

perature, snow cover, etc. This approach is suboptimal insofar as

it underestimates the background error variance near the surface,

which may explain the need for a stronger inflation of the vari-

ance closer to the surface. In the future, we hope to eliminate this

potential problem by incorporating the surface data assimilation

process into the LETKF system.

4.4. Adjustment of the surface pressure observations to

the model orography

Due to the differences between the true and the model orogra-

phies, the surface pressure observations must be adjusted to the

model surface. To make this adjustment, we follow the proce-

dure described by Whitaker et al. (2004): the difference between

the real and the model orographies at the observational location

is calculated, then the hydrostatic balance equation is applied to

calculate the pressure adjustment. The vertical mean tempera-

ture, which is needed for the evaluation of the hydrostatic balance

equation for the layer between the real and model orography, is

obtained by using the surface temperature observation at the lo-

cation of the surface pressure observation and assuming that the

lapse rate is 0.65 K/100 m in that layer. The observational error

is also modified accordingly, assuming that the uncertainty in the

estimation of the lapse rate is 0.3 K/100 m. When the difference

between the two orographies is more than 600 m, the observation

is discarded.

4.5. Quality control of the observations

We perform a simple quality control of each observation: an

observation is rejected when the difference between the observed

value and the background mean is at least five times larger than
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both the ensemble spread (standard deviation of the ensemble)

and the assumed standard error of the observation.

4.6. Generation of the initial background ensemble

We randomly select operational NCEP analyses from the pe-

riod between January 1, 2004 and February 29, 2004 to define

the initial background ensemble members. This choice has the

disadvantage that, due to the relative closeness of the analysis

times, the initial ensemble members are not as independent as

they would be if chosen from a climatological archive. On the

other hand, this choice has the advantage that the necessary data

are easily available to us and would also be easily available for an

operational implementation. For this choice of the initial ensem-

ble members, the analysed values of the different meteorological

fields settle after a 4–5-d initial spin-up period. To be conserva-

tive the verification statistics, we exclude all data associated with

the analysis from the first 10 d of cycling.

5. Results

5.1. Verification against analyses

First, the LETKF and benchmark analyses are compared to the

operational NCEP analyses (Fig. 2). Results are shown only for

the SH extratropics, since (i) in the tropics, the difference be-

tween the accuracy of the two analyses is negligible except for

the stratosphere, where the LETKF analyses are more similar

than the benchmark to the operational analyses and (ii) in the NH

extratropics, we cannot expect to obtain fair comparison results

due to the strong similarity between the observational data sets

used in the two systems that are compared and the operational

system. (In the SH extratropics, the NCEP benchmark and the

LETKF assimilates only a small portion of the the operationally

assimilated observations.)

As seen from Fig. 2, the LETKF analyses are generally more

similar than the benchmark analyses to the operational analy-

ses. The only exceptions are the geopotential height and wind

below the 700 hPa level. Based on the available information,

it is impossible to decide with certainty whether in these re-

gions the benchmark analyses are truly more accurate than the

LETKF analyses or whether the correlation between the errors in

the benchmark analysis and the operational analysis are simply

stronger than the correlations between the errors in the LETKF

analysis and the operational analyses.

We suspect that the latter explanation is more likely based

on Fig. 3, which compares 48-h forecasts with the operational

analyses: in the SH extratropics the LETKF forecasts are more

similar to the operational analyses throughout the entire depth

of the model atmosphere. Of course, it is also possible that this

increased similarity near the surface is due to the influence of

the stronger similarity in the upper layers at the analysis time.

Nevertheless, we can conclude with high confidence that the
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Fig. 2. Root-mean-square error, E, of the LETKF analyses (crosses

connected by solid lines) and the NCEP benchmark analyses (open

circles connected by dashes) in the SH extratropics. E is computed

using the operational NCEP analyses as proxy for truth, zv . The

averages are taken over all model grid points south of 20◦N and over all

analyses times between January 11, 2004 0000UTC and February 29,

2004 1800UTC.

LETKF analyses lead to more accurate 48-h forecasts than the

benchmark analyses in the SH extratropics. In the NH extrat-

ropics, the advantages of the LETKF system are less obvious:

above 100 hPa, the LETKF provides more accurate predictions

of all variables, while below that level, the benchmark shows
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Fig. 3. Root-mean-square error, E, of the

48-h LETKF forecasts (crosses connected by

solid lines) and the 48-h NCEP benchmark

forecasts (open circles connected by dashes).

E is computed using the operational NCEP

analyses as proxy for truth, zv . Left panels

show the results for the SH extratropics,

while right panels show the results for the

NH extratropics. The averages are taken over

all model grid points south of 20◦N in the SH

and over all model grid points north of 20◦N

in the NH, and over all forecasts started

between January 11, 2004 0000UTC and

February 27, 2004 1800UTC. (The last 2 d of

February are not included in the verification,

because the verifying data set was not

available beyond the end of February.)

slightly better agreement with the operational model. Although

the differences between the forecast errors are small at most lev-

els, these differences are statistically significant except for the

geopotential height below 300 hPa and the wind between 200

and 100 hPa.

5.2. Geographical distribution of the forecast errors

First we compare the 48-h LETKF forecasts with the verifying

analyses (Fig. 4). The errors are the largest in the intersections

of the regions of lowest observation density and the regions of

the extratropical storm tracks. In particular, the errors are the

largest in the oceanic region between, and east of, Cape Horn

and the Antarctic Peninsula. In apparent contrast, in Szunyogh

et al. (2005) we found that the LEKF analyses and short-term

forecasts were the most accurate in the extratropical storm track

regions. There are two important differences between the design

of the two experiments, which may explain this important change

in the quality of the short-term forecasts in the extratropical

storm track regions. While the previous paper studied the perfect-

model scenario, assimilating simulated observations that were

homogeneously distributed in space, the present study is based

on highly inhomogeneous observations of the real atmosphere.

To see whether the spatial distribution of the observations or

the model error plays a more important role in changing the dis-

tribution of the short-term forecast errors, we have carried out

experiments in which we assimilate simulated observations at

the real observational locations. In this experiment, the time se-

ries of ‘true’ atmospheric states is generated by integrating the

NCEP GFS starting from the NCEP operational analysis at Jan-

uary 1, 2004, 0000UTC. The random observational noise that is

added to the ‘true’ states to create the simulated observations is

generated by using the standard deviation values provided with

each observation by NCEP. To simplify the generation of the
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hPa

gpm

gpm

Fig. 4. Root-mean-square error, E, of the 48-h LETKF forecasts (color

shades) for three different forecast variables. E is computed using the

operational NCEP analyses as proxy for truth, zv , and the average is

taken over all forecasts started between January 11, 2004 0000UTC

and February 27, 2004 1800UTC. Also shown are the time means of

the related fields in the operational NCEP analyses (contours).

simulated observations, we assume that all observations are taken

at the analysis time. The difference between the 48-h forecasts

obtained when assimilating simulated observations at real ob-

servational locations and the true state is shown in Fig. 5. Based

on the strong similarity between Figs. 4 and 5, we can conclude

that the spatial error distribution shown in Fig. 4 mainly reflects

the distribution of the observational density.

The ratio between the errors shown in Figs. 4 and 5 is about

two, which indicates that imperfections of the model approxi-

mately double the forecast errors, but they do not dramatically

change the spatial distribution of the forecast errors. However,

the errors in the perfect-model experiment could likely be fur-

ther reduced by reducing the variance inflation factor, which was

tuned for the imperfect model. A more detailed comparison of

Figs. 4 and 5 is not appropriate, as the state trajectory is different

for the two experiments. In particular, although the cycling of

gpm

gpm

hPa

Fig. 5. Same as Fig. 4, except for simulated observations and using the

known true states in place of zv .

the two data assimilation cycles is started from the same initial

condition, the contours in Figs. 4 and 5 show that there are im-

portant differences in the temporal means along the trajectories

(e.g. the stationary cyclone in the Bay of Alaska is much deeper

in the real atmosphere than in the ‘nature run’).

We now turn our attention towards the comparison of the

LETKF and the benchmark forecasts (Fig. 6). It is clear that

on average, the better performance of the LETKF in the SH

extratropics (depicted in Figs. 2 and 3) is predominantly due

to better performance in the region between 150◦W and 60◦W,

centred at around 75◦S. This is the general area where the obser-

vational density is the lowest on Earth for the assimilated data

set. Interestingly, the area where the LETKF has the largest ad-

vantage over the benchmark is to the west of the area where the

LETKF forecast errors are the largest (Figs. 4 and 5). In the NH

extratropics, the LETKF produces better forecasts in some ar-

eas, while in other regions, the NCEP benchmark is better. (This

result is consistent with the spatially averaged results shown in

Fig. 3.) In particular, the LETKF forecasts are more accurate

in the southeast quadrant of North America. Considering the
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gpm2

gpm2

hPa2

Fig. 6. Difference between the mean-square errors, E2, of the 48-h

LETKF and benchmark forecasts (color shades) for three different

forecast variables. E2 is computed using the operational NCEP analyses

as proxy for truth, zv , and the average is taken over all forecasts started

between January 11, 2004 0000UTC and February 27, 2004 1800UTC.

Negative values indicate regions where the estimated error is smaller

for the LETKF forecasts. Results are shown only at locations where the

difference between the two cycles is significant at the 99% confidence

level. By lowering the significance level to 95 and 90%, we have found

that the regions where the LETKF is superior become larger, but no

important additional regions of significant differences between the two

forecast cycles were revealed. Also shown are the time means of the

related fields in the operational NCEP analyses (contours).

westward (on average) propagation of the errors in the region,

this result implies that the LETKF analyses are more accurate

over the northeast Pacific and the western US.

The finding that the LETKF has the largest advantage over

the SSI in regions where the observational density is the lowest

is not unexpected. Earlier studies with simulated observations

obtained similar results [e.g. Fig. 4 in Ott et al. (2004) and Fig. 4

in Hamill and Snyder (2000)]. Ensemble-based Kalman filters

are expected to be more efficient than a 3D-VAR in propagat-

ing information into data voids and spreading information from

sparse observations due to the use of a background error co-
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Fig. 7. Root-mean-square error, E, of the 48-h LETKF forecasts

(crosses connected by solid lines) and the 48-h NCEP benchmark

forecasts (open circles connected by dashes). E is computed using the

radiosonde observations as proxy for truth, zv , and the the averages are

taken over all radiosonde observations and over all forecasts started

between January 11, 2004 0000UTC and February 27, 2004 1800UTC.

Shown are the results for the temperature (left panels) and for the

meridional component of the wind (right panels). The differences

between the two analysis cycles are statistically significant at the 99%

confidence level except for the SH extratropics wind below 850 hPa,

for the SH extratropics temperature below 700 hPa and at 300 hPa, for

the tropical wind below 50 hPa, for the tropical temperature at 850, 500

and 200 hPa, and for the NH wind at 150 and 100 hPa.

variance matrix that adapts to the spatiotemporal changes of the

flow and the observing network. Our results demonstrate that

this important advantage of the ensemble-based Kalman filters

is preserved when the simulated observations are replaced with

observations of the real atmosphere. This finding suggests that

the NCEP GFS model provides a representation of the atmo-

spheric dynamics that is sufficiently accurate to provide useful

information about the evolution of uncertainties in the short-term

forecasts.

5.3. Verification against radiosonde observations

The results of the verification against radiosonde observations

(Fig. 7) are in generally good agreement with those against the

high-resolution operational analyses (Fig. 3). We believe that
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the smaller advantage of the LETKF in the SH extratropics and

the slight disadvantage of the LETKF in the NH extratropics

are artefacts of the verification and are associated with under-

representation of errors in data-sparse regions (Fig. 1): while

in the verification against analyses, errors at different locations

contribute with equal weight to the overall root-mean-square

value, in the verification against observations, the errors in re-

gions of high observation density contribute more to the overall

root-mean square error than the errors in regions of low observa-

tion density. An interesting common property of the verification

results against the analyses and observations is the big advantage

of the LETKF in the stratosphere and above. Figure 8 suggests

that this advantage of the LETKF over the SSI is due to the much

smaller bias of the LETKF analyses in the upper layers.

P
re

s
s
u
re

 (
h
P

a
)

6

200

400

600

800

1000

P
re

s
s
u
re

 (
h
P

a
)

P
re

s
s
u
re

 (
h
P

a
)

P
re

s
s
u
re

 (
h
P

a
)

P
re

s
s
u
re

 (
h
P

a
)

P
re

s
s
u
re

 (
h
P

a
)

Tropics Temperature

SH Temperature

NH Temperature NH Meridional Wind

Tropics Meridional Wind

SH Meridional Wind

K

K

K m/s

m/s

m/s

0

0

200

400

600

800

1000

1000 1000

1000

800 800

600600

400400

400

200

200

200

0

00

600

800

800

1000

600

400

200

0

0

0

2

2 0

04

4 1

1

6 2

2

20 14 620 3

3

3

P
re

s
s
u
re

 (
h
P

a
)

Fig. 8. Absolute value of the bias of the 48-h LETKF forecasts (crosses

connected by solid lines) and the 48-h NCEP benchmark forecasts

(open circles connected by dashes). E is computed using the radiosonde

observations as proxy for truth, zv , and the averages are taken over all

radiosonde observations and over all forecasts started between January

11, 2004 0000UTC and February 27, 2004 1800UTC. Shown are the

results for the temperature (left-hand panels) and for the meridional

component of the wind (right-hand panels). The differences between

the two analysis cycles are statistically significant at the 99%

confidence level except for the SH extratropics wind below 850 hPa,

for the SH extratropics temperature below 700 hPa and at 300 hPa, for

the tropical wind below 50 hPa, for the tropical temperature at 850, 500

and 200 hPa, and for the NH wind at 150 and 100 hPa.

5.4. Sensitivity to the ensemble size and the definition of

the local region

One key to optimizing the performance of an implementation of

the LETKF on a particular model, in terms of accuracy of the

state estimates, is finding a proper balance between the number

of ensemble members and the size of the local regions. Although

the LETKF algorithm does not require that all observations be

selected from closed local volumes centred at the grid points,

physical intuition suggests that whenever the observation opera-

tor is local, that is, whenever it depends on the model state only

at the grid points that surround the observation, observations

should be selected from a local volume.

A conceptual explanation for the importance of the balance

between the number of ensemble members and the size of the

local regions can be given along the following lines. The set

of k background ensemble perturbations can be thought of as k

basis vectors that represent the tangent space at the model state

defined by the background mean. Our goal is to make an ad-

justment, through the analysis process, to the background mean

in the tangent space to obtain the analysis. Thus, the number

of ensemble members has to be sufficiently large to provide an

accurate representation of all dynamically active degrees of free-

dom in the tangent space. The larger the local volume, the larger

the number of ensemble members needed to properly represent

the model dynamics in the local volume. This suggests that, on

one hand, one should use the smallest possible local volume to

minimize the size of the ensemble. On the other hand, to ensure

the smoothness of the global analysis fields, the local volumes

must be large enough to ensure that they overlap significantly

with those at the neighbouring grid points and contain most of

the same observations. The small grid point by grid point changes

in the observational data sets guarantee the smooth spatial varia-

tion of the weight vectors {wa(i)} (Ott et al. 2004). For instance,

in the idealized experiments of Szunyogh et al. (2005), we found

that when about 10% of the grid points were observed and the

number of grid points in the local volumes was fixed in the ver-

tical direction, a 40-member ensemble with a 5 × 5 grid point

horizontal local region provided about the same accuracy as an

80-member ensemble with a 7 × 7 grid point horizontal local

region. That is, preserving the accuracy required doubling the

number of ensemble members when the number of grid points

in the local volume was doubled. Using 3 × 3 horizontal grid

points to define the local volume, however, always led to inferior

results, regardless of the ensemble size.

The non-uniformity of the real observing network in space

and time makes it harder to find the proper balance between en-

semble size and local volume size. The parameters used in the

experiments described so far have been determined by numeri-

cal experimentation, but we have found that the accuracy of the

analysis is only weakly sensitive to the ensemble size and the

selection of the local regions. For instance, we started our search

for a reasonable choice of the parameters by first setting their
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Fig. 9. Root-mean-square error, E, of the

48-h LETKF forecasts using an 80-member

ensemble and 800 km radius local regions

with tapering from 620 km (solid line and

crosses) and the 48-h LETKF forecasts using

a 40-member ensemble and 620 km radius

local regions without tapering near the

boundaries (dashes and open circles). E is

computed using the operational NCEP

analyses as proxy for truth, zv . Left-hand

side panels show the results for the SH

extratropics, while right-hand side panels

show the results for the NH extratropics. The

averages are taken over all model grid points

south of 20◦N in the SH and over all model

grid points north of 20◦N in the NH, and

over all forecasts started between January

11, 2004 0000UTC and January 27, 2004

1800UTC. (The last 2 d of February are not

included in the verification, since the

verifying data set was not available beyond

the end of February.)

values to those we found best in Szunyogh et al. (2005): we set

the ensemble size to k = 40 and the horizontal radius of the local

volume to 620 km. This radius roughly spans 5 model grid points

in the mid-latitudes, which is the value that we found optimal

for a 40-member ensemble. This parameter set provides analy-

ses (results not shown) that are almost as accurate, in the root-

mean-square sense, as those we showed before for our standard

choice of the LETKF parameters. We also carried out another

experiment in which we increased the ensemble size to k = 80

members, but still used the 800-km regions and an observation

localization coefficient μ that tapered from 1 to 0 between 500

and 800 km. The improvement that was achieved by increasing

the ensemble size from 60 to 80 was hardly notable.

To illustrate the weak sensitivity of the accuracy to the local-

ization parameters, we plot the vertical profile of the errors for

the aforementioned 40- and 80-member ensembles (Fig. 9). The

advantage of the 80-member ensemble is small but statistically

significant. The price we pay for this small improvement is a

threefold increase of the computational wall-clock time. Finally,

we note that decreasing the ensemble size to 40, but keeping the

800 km radius local regions, led to a small, but more noticeable

degradation, indicating that a 40-member ensemble is slightly

smaller than what is needed to efficiently capture the degrees

of freedom of the local model dynamics in an 800-km local

region.

6. Summary

We have described an implementation of the LETKF data as-

similation algorithm on the NCEP GFS model. Ours is one of

the first successful attempts to assimilate a large number of ob-

servations of the real atmosphere for an extended period with an

ensemble-based Kalman filter in an operational global weather

prediction model. To our knowledge, the only other compara-

bly successful attempts are those described in Houtekamer and

Mitchell (2005) and Whitaker et al. (2007).

Tellus 60A (2008), 1



126 I . SZUNYOGH ET AL.

The performance of our implementation is assessed by com-

paring the results to those obtained with the operational SSI sys-

tem of NCEP. We find that our data assimilation system provides

a computationally efficient and accurate estimation of the atmo-

spheric state. The accuracy of the LETKF is competitive with that

of operational SSI algorithm. In particular, the LETKF provides

more accurate analyses in regions of sparse observations, such as

the SH extratropics and the stratosphere, and comparably accu-

rate results in regions of dense observations. The computational

efficiency of our implementation of the LETKF on the NCEP

GFS makes it a potentially widely applicable analysis-forecast

system for research purposes. For instance, the generation of

four daily analyses at the resolution of the NCEP-NCAR re-

analysis (T62L28), using 40 ensemble members, takes less than

4 d on a Beowulf cluster of forty 3.6 GHz Xeon processors.

Similar computers are readily available to many academic re-

search groups. We speculate (see Appandix B for details) that

an implementation of our data assimilation system in an opera-

tional environment would be feasible at model resolutions that

are somewhat lower than the highest resolutions currently used

at the operational centres.

The LETKF algorithm has also been tested and compared with

a serial ensemble-based data assimilation scheme by Whitaker

et al. (2007). They found that the performance of the two

ensemble-based schemes was very similar. Although Whitaker

et al. (2007) used larger local volumes than we do, we believe

that the most important difference between our implementation

and the implementation of Whitaker et al. (2007) of the LETKF

are in the definition of H and R. While Whitaker et al. (2007)

used H from the operational NCEP data assimilation system, we

use our own H, which in its current form is presumably less so-

phisticated than the one used by Whitaker et al. (2007). While

Whitaker et al. (2007) used the R from the operational NCEP

data assimilation system, we used R from the operational NCEP

data files. The main difference between the two realizations of R

is that the NCEP data assimilation system increases the value of

the prescribed observational errors at locations where the den-

sity of the observations is high in the vertical direction. This is

done to reduce the detrimental effects of the representativeness

errors in the observations (Whitaker et al., 2007). These differ-

ences and the data-thinning procedure employed in the serial

scheme may explain why, in contrast to our results, Whitaker et

al. (2007) found a small but statistically significant advantage of

both ensemble-based schemes over the benchmark system in the

NH extratropics.

Our goal is to further develop our data assimilation system

for both research and operational numerical weather forecasting

purposes. (Centro de Previsão de Tempo e Estudos Climáticos of

Brazil has already made the decision to replace its current data

assimilation system with the one we have been developing.) In

addition to further improving the implementation of the obser-

vational operator and tuning the entries of R, we are planning

to integrate the Community Radiative Transfer Model (CRTM)

of the Joint Center for Satellite Data Assimilation (JCSDA) into

the system to support the assimilation of satellite radiances. We

are also planning to add capabilities to the system to correct for

model and observational biases with the techniques described in

Baek et al. (2006).
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8. Appendix A: Parallel implementation
on two processors

As a pedagogical example, here we illustrate our computer im-

plementation of the LETKF algorithm on a distributed-memory

computer with two processors. Assume an ensemble of 40 solu-

tions and that each local region includes all observations within

600 km of the centre grid point for now. For simplicity, also

assume that all observations occur at the analysis time.

8.1. Pre-analysis component

To begin, Processor 1 reads the 6-h forecast files containing the

spectral coefficients for the first 20 ensemble members, then

transforms each of them to physical space to obtain xb(i). Pro-

cessor 2 proceeds similarly for ensemble members 21–40. Next,
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Processor 1 reads the observation file and sends a copy of all the

observations to Processor 2. Processor 1 applies the observation

operator H to obtain the global background observation ensem-

ble yb(i), i = 1, . . . , 20. Processor 2 proceeds similarly to obtain

yb(i), i = 21, . . . , 40.

Suppose that Processor 1 is assigned all the model grid points

from 0◦ longitude west to the 180◦ longitude (the ‘Western Hemi-

sphere’ subgrid). Processor 2 gets all model grid points from 0◦

longitude east to 180◦ longitude (the ‘Eastern Hemisphere’ sub-

grid). Processor 1 sends the components of xb(i), i = 1, . . . , 20

belonging to the Eastern Hemisphere subgrid to Processor 2.

Processor 2 sends the components of xb(i), i = 21, . . . , 40 be-

longing to the Western Hemisphere subgrid to Processor 1. Each

processor now has all 40 ensemble solutions for the background

grid in its respective hemisphere.

A similar procedure is used for the background observation

ensemble: Processor 1 gets the Western Hemisphere components

of yb(i), i = 21, . . . , 40 from Processor 2. Processor 1 also needs

the components of yb(i), i = 21, . . . , 40 up to 600 km to the east

of the 0◦ line, because they belong to the local regions centred

at model grid points nearest 0◦.

Processor 2 gets the Eastern Hemisphere components of yb(i),

i = 1, . . . , 20 from Processor 1, plus components up to 600 km

west of the 0◦ line. Analogous overlaps occur at 180◦ longitude

and at the poles.

8.2. Analysis component

Each processor then performs steps (iv)–(viii) of the LETKF

algorithm using its respective data. This yields a Western Hemi-

sphere analysis subgrid on Processor 1 and an Eastern Hemi-

sphere analysis subgrid on Processor 2.

8.3. Post-analysis component

Processor 1 sends the components of the Western analysis sub-

grid corresponding to ensemble solutions 21–40 to Processor 2.

Processor 2 sends the Eastern portion of ensemble solutions 1–

20 to Processor 1. Each processor transforms the global analysis

grid for its respective ensemble solutions to spectral space and

writes out the results.

9. Appendix B: Technical aspects of the
computer program design

This appendix provides additional information about the pro-

gram design (including where to compute the H operator) and

the load balancing algorithm. It also provides preliminary per-

formance results of the implementation on a dataset containing

approximately 8 million observations.

9.1. Memory requirements

The present implementation requires four physical grids: the sur-

face pressure, virtual temperature, and the u- and v-components

Table 5. Memory requirements for reduced physical grids consisting of

G horizontal points at selected resolutions. The 3-D grid includes the

virtual temperature, u- and v-components of wind, mixing ratio, and

ozone concentration at each of L levels in addition to the surface

pressure

Resolution G Grid size Memory

T62L28 13 072 1 843 152 7.03 MB

T126L28 52 208 7 361 328 28.08 MB

T126L64 52 208 16 758 768 63.93 MB

T170L42 90 984 19 197 624 73.23 MB

T170L64 90 984 29 205 864 111.41 MB

T254L64 205 004 65 806 284 251.03 MB

of the wind. Except for the surface pressure, each variable is de-

fined on L = 28 vertical levels. At T62 resolution, a full physical

grid consists of 192 × 94 = 18 048 horizontal points at each

level. With 28 levels (denoted T62L28), the full physical grid

occupies 192 × 94 × (3L + 1) = 1 534 080 single-precision

(32-bit) memory locations (i.e. about 5.83 megabytes for each

ensemble solution).

Because the spacing between horizontal grid points on a full

physical grid varies significantly from the equator to each pole,

the GFS provides for a reduced-resolution grid with approxi-

mately constant horizontal spacing. At T62 resolution, the num-

ber of horizontal grid points ranges from 192 at the 28 latitudes

nearest the equator to 30 at the three latitudes nearest each pole;

there are G = 13, 072 horizontal grid points altogether.

Eventually, it will be necessary to include the mixing ratio of

the tracers (e.g. humidity, ozone, liquid water content) at each

physical grid point to accommodate satellite radiances, and, of

course, higher model resolutions will be used. The full three-

dimensional grid will occupy G × (5L + 1) memory locations,

where G is the number of horizontal grid points at a particu-

lar resolution. Table 5 summarizes the memory requirements to

process one ensemble solution using a reduced-resolution grid

at various resolutions, assuming that each grid value is stored in

a 32-bit (4-byte) single-precision word.

The LETKF can be implemented on either shared- or

distributed-memory computers. On a shared-memory machine

(such as the SGI Altix), the entire background grid must be kept

in main memory. On a distributed-memory machine (such as a

Beowulf cluster), only the portion of the background grid corre-

sponding to the geographical region assigned to each processor

needs to be available.

If the observation operator H is computed in the pre-analysis

step, as in our implementation, then the variables at each grid

point of the background grid can be overwritten with the analysis

after the corresponding local region is processed. Thus, the total

memory required to store the physical grid is given by the product

of the last column of Table 1 and the ensemble size, k. If k = 100,

for instance, then the model grid in the analysis step occupies
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about 25 gigabytes at T254L64 resolution. This memory require-

ment is quite manageable on a shared-memory supercomputer.

On a Beowulf cluster with p processors, the required memory is

about 25/p gigabytes per CPU at this resolution.

In typical applications of the LETKF, the computation of H

involves temporal as well as spatial interpolation. If the analysis

is done every 6 h, for example, then forecast grids at 3, 4, . . . ,

9 forecast hours, plus the previous analysis grid, are required

if the time interpolation interval is restricted to no more than

1 h. Therefore, the model grids needed to compute H for one

ensemble member occupy up to 7 times as much memory as

stated in Table 5.

In our implementation, H is computed one ensemble solution

at a time. The memory required for one ensemble background

grid even at T254L64 resolution is considerably less than 2 GB.

Moreover, if observations are binned into 1-h intervals, then the

time interpolation requires only that the two background grids

bracketing each 1-h interval be present in memory.

Of course, storage is required for the observations themselves.

The minimum required amount is linearly proportional to the

number of observations, n. The present implementation uses 11

words per observation: its location, time, type, value, standard

error, pressure level, reference surface pressure, and miscella-

neous flags related to quality control. (Additional data would

be needed to account for the cross-correlation between observa-

tions.) The H operator requires an 2nk words of data: one for

each of the k members of the ensemble background grid interpo-

lated to each observation location and another for the adjusted

vertical level, relative to each ensemble background forecast, of

each observation.

9.2. Where to compute H?

In our implementation, H is computed in the pre-analysis step

using the global physical grid for one or more ensemble solu-

tions. However, depending on the number of observations and

the complexity of codes that compute satellite radiances and sim-

ilar observations, which may need access to large geographical

regions of the model grid, in certain cases it may be advanta-

geous to apply H at the beginning of the analysis step (using

a grid that contains all ensemble solutions for a portion of the

globe).

If H is computed as part of the pre-analysis step, then a copy

of all the observations must be sent to each of the processors

that perform the pre-analysis. Insofar as observations typically

come from at most a few sources (one or more disk files or

master processors), broadcasting all of them to many processors

requires considerable bandwidth.

On the other hand, if H is computed at the start of the analysis

step, then the appropriate portion of the background grid must

be sent to each processor; when H involves time interpolation,

this requires one grid at multiple intermediate forecast times, as

noted above. Insofar as a given observation belongs to more than

one local region in general, it must be copied to all processors

that handle the relevant adjoining local regions.

The number of observations assimilated by the current data

assimilation system is at least one order of magnitude less than

the number of physical grid points in the forecast model. Un-

less the number of processors running the pre-analysis step is

more than 100 or so, the cost of transporting model grid data is

likely to exceed the cost of broadcasting all the observations to

each processor. For this reason, it is preferable to incorporate the

computation of H as part of the pre-analysis step.

The computation of H for satellite radiance observations re-

quires a set of local regions that is not the same as the local

regions used for the LETKF Fertig et al. (2007). If H is not

computed in the pre-analysis step, then one must determine the

appropriate background subgrid to send to each processor for the

analysis step. This additional complexity is another argument in

favour of putting H in the pre-analysis step.

9.3. Scaling and performance on large data sets

We now consider the performance of the LETKF on a data set

that is more typical of those that would be used in the near fu-

ture in an operational setting. The observations consist of the

same data used elsewhere in the paper with the addition of high

resolution temperature retrievals of The Atmospheric Infrared

Sounder (AIRS) instrument soundings. (This data set was kindly

provided by William Blackwell of the Massachusetts Institute of

Technology). The dataset consists of 8.41 million observations,

of which 7.88 million were retained after quality control checks.

These data were assimilated into a T62L28 grid with 40 ensem-

ble members and 32 processors using the localization criteria

described in Section 5 (Fig. 10).

To assess the scalability of the algorithm, and to estimate the

data transport requirements, we built a database consisting of

the number of observations assimilated and the total processing
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Fig. 10. Estimated maximum CPU times and data transport

requirements for the LETKF on a dataset of 7.88 million observations

assimilated into a 40-member ensemble of T62L28 grids.
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time for each model grid point. The former is independent of

how the model grid is partitioned among processors, and the

latter is expected to be nearly so. We then ran the load balancing

algorithm assuming that 2k processors were available, k = 3,

4, . . . , 13 (i.e. from 8 to 8192 CPUs). Using the database, we

then estimated how long each processor would need to assimilate

all the data in its local region as well as the amount of grid and

observational data that would have to be transported from the

other processors.

Figure 9 shows the estimated maximum time on any CPU

and the total amount of data, in millions of 32-bit words, that

need to be exchanged between the processors to complete the

LETKF algorithm for this dataset. The actual CPU times were

measured for 8, 16, and 32 processors and agree closely with

the simulated results; the data transport requirements can be

computed precisely.

The estimated maximum CPU time decreases inversely with

the number of processors, p. The decrease goes almost exactly as

1/p for p = 8, 16, . . . 128 and somewhat more slowly afterwards.

Each observation typically is assimilated in several local re-

gions. The associated data must be copied to each processor that

handles a local region to which the observation belongs. As the

model grid is partitioned more finely, it becomes increasingly

likely that a given observation must be copied to more than one

processor. Thus, the total data transport requirements increase

with the number of CPUs: from 2.23 × 106 32-bit words at p =

128 to 24 × 109 words at p = 8192.

The advent of dual- and quad-core commodity processors,

however, can be expected to significantly reduce the data trans-

port requirements. Our empirical measurements show that, on

two cores, Intel’s matrix multiplication routines almost exactly

halve the time required to process each local region compared

to a single-core implementation if the number of observations

is more than a few hundred. This is because most of the CPU

time is spent computing C[ℓ]Y
b
[ℓ], and the matrix multiplication

routine in Intel’s Cluster Math Library is threaded: each core

multiplies two submatrices of approximately equal size. There-

fore, one can obtain the wall-clock time performance of 64 CPUs

but only need to transport data to 32 processors. If such perfor-

mance gains can be extended to four cores, then 256 quad-core

chips would be able to assimilate all the observations in about

1000 s (17 m) of wall-clock time, but only 3.1 × 109 words of

data would need to be transported between them.

Of course, in operations, one would use higher resolution.

A T254L64 grid contains nearly 36 times as many points as

a T62L28 grid, and the total number of local regions would

increase by the same amount.

9.4. Remarks on computing resources

It is clear that an operational implementation of the LETKF

on a high-resolution grid will require substantial computing

resources, particularly if the wall-clock time must be kept to

a minimum, even though the algorithm can be expected to scale

well among thousands of processors. Furthermore, one must gen-

erate the ensemble of background forecasts. On our cluster, the

GFS takes about 2.5 m to generate one forecast on two CPU cores

at T62L28 resolution. The required time for T254L64 probably

would be 100 times greater. A 100-member background ensem-

ble, therefore, would take roughly 50 000 CPU m to generate.

However, it is not unreasonable to assume that, in a few years,

an operational centre would be able to devote 1000 quad-core

processors to the task and so be able to generate the background

ensemble in less than 15 m of wall-clock time.

An extrapolation of the timing results above suggests that

the LETKF, with 8 million observations and a T254L64 grid,

would need about 9000 s of wall-clock time on 1024 quad-core

chips. Most likely, some combination of data thinning and more

processors will be needed to meet operational wall-clock time

requirements.
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