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ABSTRACT Biological particle automatic classification is an important issue in index tasking for people
with pollen hypersensitivity. This paper attempts to present a local feature extraction method based on SIFT
for automatic 3D pollen image recognition. In order to solve major issues in previous studies, high rate
of redundant information, high feature dimensions and low recognition rate should be taken into account.
Therefore, this work focuses on a four-part novel approach, including constructing 3D Gaussian pyramid to
obtain muti-scale pollen images, computing the local differential vector to explore local key points, filtering
the key points by inter-layer contrast, and extracting the statistical histogram descriptor of the key points as
discriminant feature for automatic classification of 3D pollen images. Experiments are performed on three
standard pollen image datasets including Confocal, Pollenmonitor and CHMontior. It is concluded that the
descriptor can effectively describe the pollen image and is robust to the rotation, translation and scaling of
the image.

INDEX TERMS Scale invariant feature transform, local feature, pollen recognition, 3D image.

I. INTRODUCTION

With the improvement of the global environment in recent
years, coverage of plants which easily release highly aller-
genic pollen, such as poplar, elm, oriental plane, etc. has
increased rapidly [1]–[3]. Therefore, the high concentration
of allergenic pollen in the air may undermine the health of
those who are pollen hypersensitivity [4]. Thus researchers
have been studying to alleviate the potential threat. According
to some former researches about real-time monitoring of
pollen gains’ type, concentration and propagation path can
effectively help us to forecast the highly allergenic pollen
concentration [5]–[8]. The principal tasks of this method
consist of classifying and counting different kinds of pollen
gains which require highly skilled experts to obtain accurate
identification results. This work, requiring much labor input,
is arduous, time consuming and lack of consistent quality
control. Some researchers [9]–[14] believe that it is an effec-
tive improvement to use computer vision and pattern recog-
nition technique for automated pollen image classification
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since intrinsic digitalized features, such as shape, texture,
geometric and statistical features, can be easily captured
when they are obtained by microscopes [15]–[19].

Methods on automatic recognition and classification of
pollen grains have been developing since Flenley initially
proposed the need for automated palynology in 1996 [20].
Achievements in feature extraction for automatic pollen
recognition can be reviewed with two aspects: planar
features in 2D images and stereoscopic features in 3D
images. Prior researches generally confirm that planar fea-
tures can effectively describe the shape and structures of
two-dimensional pollen images and usually have good rota-
tion invariance [21]–[24]. Rodriguez-Damian et al. achieved
86% recognition rate in the dataset of the algorithm based on
the combination of shape and texture analysis, which has been
widely utilized in Urticaceae family. But the method was only
applied to a single genus [25]. Lozano-Vega et al. considered
about aperture features, and analyzed the effectiveness of
shape features, texture features and aperture features (STAF).
Meanwhile, they designed and developed multithreading
functionality to decrease the processing time in large pollen
dataset [26]. Marcos et al. evaluated different kinds of texture
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extraction method which were widely used in pollen recogni-
tion, and combined GLCM (gray-level co-occurrence matrix)
and DTM (discrete Tchebichef moments) to identify pollen
images, and achieved a better recognition rate compared to
single texture at the cost of increased time complexity [27].
According to empirical evidence, the methods above have
their own advantages, but there are also many drawbacks,
especially the considerable redundant information and the
limitations of ignoring inner structure of pollen grains, which
would easily lead to the decrease of identification efficiency.
As for the stereoscopic features, some research substantiates
the belief that these types of features can effectively describe
the statistical characteristics of pollen images and have good
robustness to rotation transformation, scale transformation
and affine transformation. In addition, some categories of
pollen grains have similar surface structure which would
easily lead to misclassification in 2D cases. However, these
types of pollen grains can be recognized in 3D cases owing to
the significant differences in inner structure. Figure 1 shows
two categories of pollen grains which have similar surface but
different inner structures.

FIGURE 1. Examples of two typical categories of pollen grains in different
dimension.

Ronneberger et al. extracted 14 invariant gray-scale fea-
tures based on an integration over the Euclidian 3D trans-
formation group with nonlinear kernels, using support vector
machine to classify the 26 most important German pollen
taxa, and achieved 82% recognition rate in Confocal pollen
dataset [28]; Kim et al. presented a 3D refractive-index imag-
ing and a quantitative analysis method of pinus pollen grains,
and achieved quantitative 3D information of pollen grains
using optical diffraction tomography while leaving the prob-
lem of time complexity unsolved [29]; Xie et al. developed
a feature extraction method of Fourier descriptor based on
the SC-Zernikemoments(Zernikemoments in spherical coor-
dinates) for 3D pollen images recognition. The simulation
results indicated that the descriptor was robust to the rotation,
translation and scaling of 3D pollen images and achieved 90%
recognition rate on Confocal dataset. But there is still room
for improvement in the classification of deformed or clumped
pollen images [30]. In summary, these descriptors can partly
describe the 3D pollen image. However, redundant informa-
tion caused by high dimension of 3D data is still a mainly

contributory factor of low computational efficiency. Thus a
highly efficient 3D descriptor extracting method should be
proposed [31]. With recent development of machine learning
algorithms in image processing and recognition [32]–[35],
some achievements have been accomplished in automatic
pollen recognition domain. Daood et al. combined stacks of
multifocal images, convolutional and recurrent neural net-
works to learn the optimal features and recognized a pollen
grain as a sequence of multifocal images acquired by an
optical microscope [36]. Khanzhina et al. proposed a deep
learning solution of 11 species pollen grain images based on
a convolutional neural network(CNN) for classification, fea-
ture extraction and image segmentation [37]. Sledevič et al.
found out a sufficient configuration of CNN required for
implementation on low-cost FPGA to classify pollen bearing
bee images [38]. Although the machine learning algorithms
have achieved satisfactory classification results in laboratory
pollen databases, there are still some non-ignorable draw-
backs. High-definition image is required in convolutional
neural network due to the processing procedure of pooling
layer. However, the majority of auto-collected pollen images
are excessively blurred for pooling. Thus recognition results
may be unsatisfactory in such cases. Besides, copious training
images are necessary for CNN to ensure its classification
capacity, which makes it inapplicable for some small pollen
datasets.

Compared with traditional images, pollen images have the
property of distinct texture and conspicuous image corner in
different scales. According to these qualities, we take both
planar features and structural information into consideration,
and present the local key point descriptor based on scale
invariant feature transform(SIFT) for 3D pollen recognition
called spatial local key point(SLKP). Instead of applying
difference of Gaussian in SIFT, our method uses the local dif-
ferential vector to explore local key points. Besides, another
supporting vector is introduced to determine the direction of
z-axis in the procedure of rotation transform of traditional
SIFT. Experimental results on the standard pollen image
dataset show that this method can effectively improve the
recognition rate and has low complexity. Figure 2 shows the
flowchart of the proposed method.

II. METHODS

A. CONSTRUCTION OF 3D GAUSSIAN PYRAMID

In this paper, we introduce a Z-axis vector to assist in detect-
ing key points of 3D pollen image. The first step of key
point detection is to identify locations and angle points that
can be repeatably assigned under different scales of the same
3D pollen target. In order to obtain three-dimensional pollen
image in different scales, 3D Gaussian scale space based on
traditional Gaussian scale space should be constructed.

It has been shown by Koenderink that under a variety of
reasonable assumptions the only possible scale-space kernel
is theGaussian function [39]. Therefore, the scale space of 3D
pollen image is defined as a function, L(x, y, z, σ ), that is
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FIGURE 2. Flowchart of the proposed method.

produced from the convolution of a variable-scale Gaussian,
G(x, y, z, σ ), with an input image, I(x, y, z):

L(x, y, z, σ ) = G(x, y, z, σ )∗I (x, y, z) (1)

where, ∗ is the convolution operation in x, y and z, and

G(x, y, z, σ ) =
1

(2π )3/2σ 3
e−(x2+y2+z2)/2σ 2

(2)

In traditional scale-invariant feature transform, difference
of Gaussian function was used to detect the local extrema
as the key-point. But in 3D cases, the rapid increase of
the algorithm complexity and the high density data may
lead to computational inefficiency. To efficiently detect sta-
ble key-point location in scale space of 3D pollen images,
we have proposed using local differential vector instead of
computing difference of Gaussian in SIFT.

B. EXTRACTION OF LOCAL DIFFERENTIAL VECTOR

The main motive of local differential vector is to detect the
local maximum points of gradient. The extraction procedure
is as follows:
Step 1: Dividing the image into blocks in each layer of the

3D Gaussian image pyramid. The size of the block is related
to the scale factor k, which indicates the range of each block.
Computing the mean value of pixels in each block as the
sampling value.
Step 2: Dividing the sampling values into sampling center

and sampling points as the output. Figure 3 indicates the
sampling model in 3D neighborhood.
Step 3: Setting a Cartesian coordinate system based on

each block. Calculating the differential vector between sam-
pling center and sampling points in such coordinate system.
The differential vectors are divided into positive group and

FIGURE 3. Sampling model in 3D neighborhood.

negative group according to the difference of gray value:

V+ =

G
∑

i

(vc − vi)D(vc, vi)

V− =

G
∑

i

(vc − vi)D(vi, vc) (3)

where, G represents the related neighborhood of current sam-
pling center. D(vi,vc) can be computed from the difference
between sampling center vc and sampling point vi:

D(v1, v2) =

{

1, v1 ≥ v2
0, else

}

(4)

The norm of each differential vector depends on the dif-
ference between the sampling value and the center value.
Direction of differential vector comes from the direction of
the unit vector of sampling points under such coordinate
system. Therefore, positive differential vector V+ and neg-
ative differential vector V− are extracted as the output of
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FIGURE 4. Extraction of positive & negative differential vector.

this step. Figure 4 shows the positive differential and the
negative differential vector of the block.

C. DETECTION OF LOCAL KEY POINT

Just as we determined the differential vectors of each block,
so we must determine the trend of the gray level in the
image domain by positive differential vector and negative
differential vector. In order to detect the stable local key point,
gradient vector of each block in different layers is computed
as follows:

Vloc,σ = V−
loc,σ − V+

loc,σ (5)

where, loc and σ indicate the location and layer of the current
block, and then we can obtain the norm of gradient vector as:

|Vloc,σ | =

√

V 2
x + V 2

y + V 2
z (6)

Once the gradient vector has been obtained by calculating
the difference of pixels to its neighbors as the result of this
section, the next step is to detect the precise location of
local key point by following procedures by inputting gradient
vectors.
The first step is to detect the region of interest (ROI).

The blocks which have greater norm of gradient vector than
specific threshold are chosen:

Instσ = {f(loc1,σ ), f(loc2,σ ), . . . , f(loc3,σ )||Vloc,σ | > Thr} (7)

where, f(loc,σ ) represents the block at the corresponding loca-
tion in the blocked image, and Thr is the threshold of the
norm. Such method is used for the detection of ROI in the
remaining layers of the Gaussian pyramid:

Vnσ = V+
loc,nσ − V−

loc,nσ |floc ∈ Inst (8)

The final step is to screen the results by comparing gradient
vectors of ROI, and marking the location where all the blocks
in every layer have stable local structure. Then we select the
regions from the marked area which have similar gradient
vectors at the same location in different layers as the local
key points (Figure 5).

I = {floc|Vσ ≈ V2σ ≈ . . . ≈ Vnσ |floc ∈ Inst} (9)

The blocks contained in the set I are the outputs of local
key points mentioned above in this section.

FIGURE 5. Examples of local key points obtained by proposed method.

D. DESCRIPTOR REPRESENTATION

After the images are described with local differential vectors,
the next step is to solve the rotation problem of the method
above. Because of the particularity of pollen images, require-
ment for robustness of rotation in such extraction method
should be emphasized. In three-dimensional cases, rotation
problem of pollen gains becomes far more complicated than
traditional images. Therefore, we introduce amethod, namely
rotation invariant feature transform, into the extraction pro-
cedure of gradient vectors mentioned above in expectation of
more stable features.

In three-dimensional cases, translation transformation and
scale transformation can be processed easily as extension
of 2D Cartesian system, but rotation transformation is rel-
atively more complicated. In this paper, 3D rotation matrix
is used to change the vectors from one system to another as
follows:




X ′

Y ′

Z ′



 =





cosαx cosβx cosγx
cosαy cosβy cosγy
cosαz cosβz cosγz









X

Y

Z



 = Trs





X

Y

Z





(10)

where (X ,Y ,Z ) is the local differential vector under previous
coordinate and (X ′,Y ′,Z ′) is the rotated vector. α, β, γ are
used to describe the angles between the previous axes and the
rotated axes. According to Lowe’s theory, the normalization
of coordinate system should be taken into account to enhance
the robustness of rotation transform. In traditional SIFT,
a consistent orientation is assigned to each keypoint based
on local image properties. The descriptor can be presented
based on this orientation and therefore achieve invariance to
image rotation. Similarly, two consistent orientations need
to be assigned under the 3D coordinate system. Therefore,
an assistant orientation should be set to determine the second
axis’ direction. As it is shown in figure 6, twenty-six basic
vectors are defined as dirs = {d1, d2 . . . d26} according to
the pixels’ relation between each other.
According to Lowe’s suggestion, the next step is to rotate

the coordinate axes to the direction of the key point to ensure
rotation invariance. Consistent orientation is determined by
fitting the differential vectors to the nearest basic vector. Each
basic vector corresponds to a neighborhood block. The gra-
dient vectors of both current block and neighborhood block
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FIGURE 6. Basic vectors are determined by comparing the relationship
between neighborhoods.

determine a plane, and the vertical direction of the plane
is defined as the assistant orientation. After describing the
consistent orientation and the assistant orientation, rotation
transformation of coordinate is performed to adjust X axis
and Y axis respectively to the consistent orientation and the
assistant orientation. Therefore, all the vectors related to the
key point can be transformed into the new coordinate system
as follows:

V ′
nσ = Trs(Vnσ ) (11)

where V′ is the output of the rotation transform. In order
to effectively characterize the overall statistical distribution
of the gradient vectors for the key points, the orientation
vector histogram descriptor is obtained as the local feature
descriptor:

H = {h(d1), h(d2), . . . , h(dn)|d ∈ dirs} (12)

III. EXPERIMENTAL RESULTS

Experiments are performed on three standard pollen image
datasets with a PIV computer of 2.8GHz CPU and 8GB
memory. Confocal dataset is the laboratory pollen image
dataset which includes 389 pollen gains in 27 different cat-
egories, in which the images were manually recorded under
the confocal laser scanning microscopy in Germany [39].
All the images in the dataset take on respective appearance
of different transformations especially rotation transform in
order to validate the good geometric invariance of the pro-
posed method. Pollenmonitor dataset is a real-world dataset
with 22750 pollen grains from 33 categories, in which all
the images were automatically collected, recorded by the
first pollenmonitor prototype in Europe [40]. CHMontior
dateset is a typical real-time sampling pollen image dataset,
which includes 28 different categories from 23 provinces
of China. Because of the irregular collection method, some
pollen images are of low quality of contamination in the
real collecting process. Meanwhile, all the images in three
datasets were not geometrically normalized before the feature
extraction. The experiments were performed by randomly
taking 25% of the images of each category as training images
and the remaining ones as test images. Minimum distance
classifier is used for the final feature classification.

For the purpose of keeping enough local structural features
and reducing the complexity of the algorithm, images are
processed by using image filtering and image interpolation
before feature extraction. The performance index of preci-
sion rate (PR), recall rate (RR), F1-score and recognition
time (RT) are used to evaluate the recognition performance
of the descriptors. F1-score is defined as:

F1 − score =
2 × precision× recall

precision+ recall
(13)

Furthermore, in order to validate the performance of the
local feature descriptor proposed above, the average recogni-
tion results of the descriptor are also compared with those
of the four traditional features on three datasets in three
methods including SC-Zernike moment descriptors [30],
STAF descriptors [26], GLCM & DTM descriptors [27] and
CNN [37].

A. EXPERIMENT RESULT IN CONFOCAL DATA SET

Figure 7 presents the recognition results based on six repre-
sentative pollen categories from the Confocal Dataset. It is
shown that without contamination most of the Confocal
pollen images that have a clear edge and abundant local
texture information have been correctly classified.

FIGURE 7. Recognition examples on 6 pollen categories from the
Confocal dataset.

Table 1 shows the recognition rate of six representative
pollen images. It can be inferred that the recognition per-
formance for different pollen categories varies significantly.
Among all the pollen categories, the precision rate reaches
more than 93% in Compositae pollen images, which have
the clearest edge and the most abundant local structure infor-
mation.. As for relatively low quality pollen images, such as
Poaceae, the precision rate can only reach about 76%. It can
be obtained from the recognition results that the precision
rate is affected by the quality of pollen images. Most of
the misclassifications are mainly due to noise or uncleared
sampling. The experimental results validate that the SLKP
are quite suitable for practical pollen classification because
of good rotation invariance.
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TABLE 1. Recognition results on 6 representative pollen categories from
the Confocal dataset.

B. EXPERIMENT RESULT IN POLLENMONITOR DATA SET

Representative recognition examples from six pollen cate-
gories in the Pollenmonitor dataset are presented in Figure 8.
The experimental results indicate that there is a great dif-
ference in image quality between Pollenmonitor dataset and
Confocal dataset because of different collection methods.

FIGURE 8. Recognition examples on 6 pollen categories from the
Pollenmonitor dataset.

TABLE 2. Recognition results on 6 representative pollen categories from
the POLLENMONITOR dataset.

Table 2 presents the detailed recognition results on the
six pollen categories. It can be seen that the recognition
performance also varies between categories, Although the
precision rate in Pollenmonitor dataset is influenced by the
quality of the pollen images, most pollen can still be classified
correctly. The highest precision rate of 91.42% is obtained on

the classification of the Alnus pollen, while the precision rate
on the Aesculus pollen can only reach 71.33%. False exam-
ples are mainly those pollen images with low quality caused
by the deformation and contamination during the collection
process which affects the feature integrity of SLKP feature.
Most pollen images with different posture and rotation can
still be classified correctly. The experimental results further
validate the effectiveness of the method.

C. EXPERIMENT RESULT IN CHMONITOR DATA SET

Representative recognition examples from six pollen cate-
gories in the CHMonitor dataset are presented in Figure 9.
While the pollen images in the same category take on dif-
ferent appearances and structures in CHMonitor dataset and
Confocal dataset, most of the pollen images from CHMoni-
tor dataset that have clear edges and abundant local texture
information can still be correctly classified.

FIGURE 9. Recognition examples on 6 pollen categories from the
CHMonitor dataset.

The detailed experimental results of CHMonitor are pre-
sented in Table 3. It can be inferred that recognition perfor-
mances for different pollen categories vary from one another
due to the differences in image quality and dimensionality
of structure information. For example, among all the pollen
categories, the highest precision rate of 96.35% is obtained
on the classification of the Cruciferae pollen images, which
have the clearest edges and the most abundant local structure
information, while the precision rate on the Quercus pollen
can only reach 78.84%. False examples are mainly caused
by the abnormal pollen gains and obscure surface structures
which may result in the variation of the extracted feature.

D. RESULTS AND DISCUSSION

The experimental results are compared with SC-Zernike
descriptor, STAF descriptor, GLCM & DTM descriptor and
CNN to verify the validity of the algorithm. In addition to
differences of inner key points between pollen of different
categories, there are different engraved textures on the exter-
nal wall of the pollen grains, such as thorn, tumor, rod, cave
and net, according to the variety of pollen, which may seem
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TABLE 3. Recognition results on 6 representative pollen categories from
the CHMONITOR dataset.

more obvious in the three-dimensional pollen images. Thus,
the SLKP extraction methods we proposed can present a
stronger discriminating capability, better recognition results
and higher recognition efficiency. Comparison results regard-
ing the average precision rate and recognition time between
the SLKP and the other three algorithms are shown in Table 4.

TABLE 4. Comparison between SLKP and other methods on average.

It’s obvious that the recognition performance of the pro-
posed SLKP is superior to that of the other three methods on
the pollen images. From the experimental results, the average
recognition rate of the SLKP descriptor proposed in this paper
has been increased to a varying degree compared with the
other three algorithms. The average identification rate for
the pollen images reaches up to 88.25%, which outperforms
that of the other descriptors by 11.8% compared with the
STAF descriptor. Meanwhile, the time complexity of SLKP
is relatively improved and the recognition time can be limited
to 3.8s on average. The complexity of the algorithm is appar-
ently reduced in the process of extracting three-dimensional
features comparing with the GLCM & DTM descriptor.
Besides, the average precision rate with CNN under-performs
that of the proposed method by the 11.62% decline, which
indicates that SLKP may have some advantages in small
data set.
The corresponding classification results of average recog-

nition precision versus average recall rates on the Confocal
dataset are presented in Figure 10. It is obvious that the
proposed SKLP is superior to that of the other methods on
the pollen images in recognition performance. The SLKP
is a lightweight statistical feature extraction method based
on SIFT and histogram algorithms, which can reduce the
high dimensionality of the descriptors for 3D pollen images.

FIGURE 10. Average recognition precision rates versus average recall
rates on the Confocal dataset.

Abundant textures, edges and corners of pollen images make
it easier and faster for the gradient vectors to detect the stable
points between layers with different scales in 3D Gaussian
pyramid so that local features can be effectively extracted
using the proposed method. Besides, the improvement of 3D
rotation transform enhances the applicability of SLKP in the
area of pollen recognition. The average recognition time,
including preprocessing time and feature extraction time,
is calculated to be about 3.7s on average, which is far superior
to that of the other high-complexity algorithms. Satisfac-
tory results on the pollen datasets further validate the good
geometric invariance and high compactness of the proposed
SLKP descriptor.

IV. CONCLUSION

This paper proposed the Spatial Local Key Point descriptor
extraction method based on SIFT, and this method is applied
to a pollen recognition and classification experiment on three
standard pollen image datasets. It contributes to the improve-
ment of pollen recognition in the following aspects: firstly,
local key point is extracted as the original information of
the image which can retain information of extrema of the
image so that high dimensionality can be reduced in such
method. Secondly, the experimental results show that the
SLKP have great robustness to illumination, rotation, scale
transformation, and affine transformation. We will hopefully
contribute to improving the recognition rate and algorithm
complexity in further studies. Experiments on other datasets
with different quality will be performed as well.
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