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Anderson's inequality (Anderson, 1958) as well as its improved version given by Fink (2003) is known to provide interesting
examples of integral inequalities. In this paper, we establish local fractional integral analogue of Anderson's inequality on fractal
space under some suitable conditions. Moreover, we also show that the local fractional integral inequality on fractal space, which
we have proved in this paper, is a new generalization of the classical Anderson's inequality.

1. Introduction

In the year 1958, Anderson [1] established the following very
interesting result.

�eorem1. If��(�) is convex increasing on [0, 1] and��(0) = 0
for each � = 1, 2, . . . , �, then

∫1
0
�1 (�) �2 (�) ⋅ ⋅ ⋅ �� (�) d�

≧ 2�� + 1 (∫1
0
�1 (�) d�) ⋅ ⋅ ⋅ (∫1

0
�� (�) d�) .

(1)

Subsequently, Fink [2] improved Anderson’s inequality
(1) to the following form.

�eorem 2. If ��(�)/� is increasing on (0, 1] and ��(0) = 0 for
each � = 1, 2, . . . , �, then

∫1
0
�1 (�) �2 (�) ⋅ ⋅ ⋅ �� (�) d�
≧ 2�� + 1 (∫1

0
�1 (�) d�) ⋅ ⋅ ⋅ (∫1

0
�� (�) d�) .

(2)

Moreover, Fink [2] also pointed out that the condition��(0) = 0 (� = 1, 2, . . . , �) in �eorems 1 and 2 cannot be
dropped.

In recent years, the local fractional calculus has received
signi�cantly remarkable attention from scientists and engi-
neers. Some of the concepts of the local fractional derivative
were established in [3–26]. In particular, the local fractional
derivative was introduced in [3–9, 17, 21–26], Jumarie mod-
i�ed the Riemann-Liouville derivative in [10, 11], and the
fractal derivative was proposed in [12–16, 18–20]. As a result,
the theory of local fractional calculus plays an important
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role in applications in several di�erent �elds such as the-
oretical physics [5, 9], the theory of elasticity and fracture
mechanics [5], and so on. For example, in [9], the authors
proposed the local fractional Fokker-Planck equation. �e
local fractional Stieltjes transform was established in [27].
�e fractal heat conduction problems were presented in [5,
18]. Local fractional improper integral was obtained in [28].
�e principles of virtual work and minimum potential and
complementary energy in the mechanics of fractal media
were investigated in [5]. Local fractional continuous wavelet
transform was studied in [29]. Mean-value theorems for
local fractional integrals were considered in [30]. In [31], the
authors dealt with fractal wave equations. �e �nite Yang-
Laplace transform was introduced in [32]. Local fractional
Schrödinger equationwas studied in [33].�e local fractional
Hilbert transform was given in [34]. �e wave equation on
Cantor sets was considered in [35]. �e di�usion problems
in fractal media were reported in [15] (see also several
other recent developments on fractional calculus and local
fractional calculus presented in [36–41]).

�e purpose of this paper is to establish a certain
local fractional integral inequality on fractal space, which is
analogous to Anderson’s inequality asserted by �eorem 1.
�is paper is divided into the following three sections. In
Section 2, we recall some basic facts about local fractional
calculus. In Section 3, the main result is presented.

2. Preliminaries

In this section, we would review the basic notions of local
fractional calculus (see [3–5]).

2.1. Local Fractional Continuity of Functions. In order to
study the local fractional continuity of nondi�erentiable
functions on fractal sets, we �rst give the following results on
the local fractional continuity of functions.

Lemma 3 (see [5]). Suppose that F is a subset of the real line
and is a fractal. Suppose also that � : (F , �) → (Ω�, ��) is a
bi-Lipschitz mapping. �en there are two positive constants �
and �, and F ⊂ R:

���� (F) ≦ �� (� (F)) ≦ ���� (F) (F ⊂ R) , (3)

such that, for all �1, �2 ∈ F ,

�������1 − �2����� ≦ ����� (�1) − � (�2)���� ≦ �������1 − �2�����. (4)

From Lemma 3, it is easily seen that (see [5])

����� (�1) − � (�2)���� ≦ �������1 − �2����� (�1, �2 ∈ F) , (5)

so that

����� (�1) − � (�2)���� ≦ �� (�1, �2 ∈ F) , (6)

where � is the fractal dimension of F .

De�nition 4 (see [3, 5]). Assume that there exists

����� (�) − � (�0)���� ≦ ��, (7)

with

����� − �0����� ≦ �� (8)

for �, � > 0 and �, � ∈ R. �en �(�) is said to be local
fractional continuous at � = �0, denoted by

lim�→�0
� (�) = � (�0) . (9)

�e function �(�) is local fractional continuous on the
interval (�, �), denoted by (see [5])

� (�) ∈ �� (�, �) (10)

if (7) holds true for � ∈ (�, �).
De�nition 5 (see [4, 5]). Assume that �(�) is a nondi�eren-
tiable function of exponent � (0 < � ≦ 1).�en�(�) is called
the Hölder function of exponent � if, for �, � ∈ F , one has

����� (�) − � (�)���� ≦ ������ − ������ (0 < � ≦ 1) . (11)

De�nition 6 (see [4, 5]). A function �(�) is said to be
continuous of order � (0 < � ≦ 1) or, equivalently, �-
continuous, if

����� (�) − � (�0)���� ≦ � ((� − �0)�) (0 < � ≦ 1) . (12)

2.2. Local Fractional Derivatives and Local Fractional Integrals

De�nition 7 (see [3–5]). Assume that �(�) ∈ ��(�, �). �en
a local fractional derivative of �(�) of order � at � = �0 is
de�ned by

�(�) (�0) = ��� (�)���
���������=�0 = lim�→�0

Δ� (� (�) − � (�0))(� − �0)� , (13)

where

Δ� (� (�) − � (�0)) ≅ Γ (1 + �) Δ (� (�) − � (�0)) . (14)

It follows from De�nition 7 that there exists (see [5])

� (�) ∈ %(�)� (�, �) (15)

if

�(�) (�) = %(�)� � (�) (16)

for any � ∈ (�, �).
De�nition 8 (see [3, 5]). (a) If �(�)(�) > 0 on a given interval,
then �(�) is increasing on that interval.

(b) If �(�)(�) < 0 on a given interval, then �(�) is
decreasing on that interval.
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De�nition 9 (see [42]). A function�(�) is called �-convex on& if the following inequality holds true:
� ('�1 + (1 − ') �2) ≦ '�� (�1) + (1 − ')�� (�2) (17)

for all �1, �2 ∈ & and 0 ≦ ' ≦ 1 such that '�1 + (1 − ')�2 ∈ &.
�eorem 10 (see [42]). Assume that �(�) is an �-local
di�erentiable function on &. If �(�)(�) is nondecreasing (non-
increasing) on &, then the function � is �-convex (�-concave)
on &.
�eorem 11 (see [42]). Assume that �(�) is a local fractional
continuous function.�en each of the following assertions holds
true:

(1) if �(2�)(�) exists on & and �(2�)(�) ≧ 0 for all � ∈ &,
then � is �-convex on &;

(2) if �(2�)(�) exists on & and �(2�)(�) ≦ 0 for all � ∈ &,
then � is �-concave on &.

De�nition 12 (see [3–5]). Assume that �(�) ∈ ��(�, �). A
local fractional integral of�(�) of order� in the interval [�, �]
is expressed by

	&(�)
 � (�) = 1Γ (1 + �) ∫



	
� (*) ( d *)�

= 1Γ (1 + �) lim
Δ�→0


−1∑
�=0

� (*�) (Δ*�)�,
(18)

where

Δ*� = *�+1 − *� (3 = 0, 1,4 − 1) ,
Δ* = max {Δ*1, Δ*2, . . . , Δ*�, . . .} ,

[*�, *�+1] (3 = 0, 1, . . . , 4 − 1) (*0 = �; *
 = �)
(19)

are a partition of the interval [�, �].
It follows from De�nition 12 that (see [5])

� (�) ∈ 	&(�)� (�, �) , (20)

if

	&(�)� � (�) (21)

for any � ∈ (�, �).
Remark 13 (see [3–5]). Assume that �(�) ∈ %(�)� (�, �) or�(�) ∈ ��(�, �); then

� (�) ∈ 	&(�)� (�, �) . (22)

3. Main Results

Lemma 14. Let �(�), 9(�) ∈ ��(0, 1) satisfy the constraints
that �(0) = 0 and 9(�) is increasing on (0, 1]. If the function

� (�)Γ (1 + 2�) ��/Γ (1 + �) (23)

is increasing on (0, 1], then
1Γ (1 + �) ∫

1

0
� (�) 9 (�) (d�)�

≧ 1Γ (1 + �) ∫
1

0
�∗ (�) 9 (�) (d�)�,

(24)

where

�∗ (�) = Γ (1 + 2�) ��Γ (1 + �) ⋅ 1Γ (1 + �) ∫
1

0
� (?) (d?)� (25)

for � ∈ [0, 1].
Proof. Let

�(�) = 1Γ (1 + �) ∫
�

0
[�∗ (*) − � (*)] (d*)� (� ∈ [0, 1]) .

(26)

�en, clearly,�(0) = 0 and
�(1) = 1Γ (1 + �) ∫

1

0
[�∗ (*) − � (*)] (d*)�

= 1Γ (1 + �) ∫
1

0
�∗ (*) (d*)�

− 1Γ (1 + �) ∫
1

0
� (*) (d*)�

= 1Γ (1 + �) ∫
1

0

Γ (1 + 2�) *�Γ (1 + �)
⋅ 1Γ (1 + �) ∫

1

0
� (?) (d?)�(d*)�

− 1Γ (1 + �) ∫
1

0
� (?) (d?)�

= 1Γ (1 + �) ∫
1

0

Γ (1 + 2�) *�Γ (1 + �) (d*)�

× 1Γ (1 + �) ∫
1

0
� (?) (d?)�

− 1Γ (1 + �) ∫
1

0
� (?) (d?)�

= ( Γ (1 + 2�)Γ (1 + �) ⋅ Γ (1 + �) *2�Γ (1 + 2�)
���������
1

0
− 1�)

× 1Γ (1 + �) ∫
1

0
� (?) (d?)�

= (*2������10 − 1�) 1Γ (1 + �) ∫
1

0
� (?) (d?)� = 0.

(27)
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Moreover, we have

�(�) (0) = �∗ (0) − � (0) = �∗ (0) = 0,
� (�) = �∗ (�) − � (�)

= Γ (1 + 2�) ��Γ (1 + �)
⋅ 1Γ (1 + �) ∫

1

0
� (?) (d?)� − � (�)

= Γ (1 + 2�) ��Γ (1 + �)
× ( 1Γ (1 + �) ∫

1

0
� (?) (d?)�

− � (�)Γ (1 + 2�) ��/Γ (1 + �)) (� ∈ (0, 1]) .
(28)

Since the function

� (�)Γ (1 + 2�) ��/Γ (1 + �) (29)

is increasing on (0, 1], we can see that

�(�) (�)Γ (1 + 2�) ��/Γ (1 + �) (30)

is decreasing on (0, 1].
Next, we show that �(�) ≧ 0 on [0, 1]. �is proof can be

divided into the following two parts.

(a) Assume that there exists a point �0 ∈ (0, 1) such that

�(�) (�0)Γ (1 + 2�) ��0/Γ (1 + �) = 0. (31)

�en

�(�) (�) ≧ 0 (� ∈ [0, �0]) ,
�(�) (�) ≦ 0 (� ∈ [�0, 1]) .

(32)

Hence we assume that � ∈ [0, �0]. �en �(�) ≧ �(0) = 0. If
we assume that � ∈ [�0, 1], then�(�) ≧ �(1) = 0 on [�0, 1].
�us�(�) ≧ 0 on [0, 1].

(b) Suppose that

�(�) (�)Γ (1 + 2�) ��/Γ (1 + �) > 0 (� ∈ (0, 1)) . (33)

In this case, �(�) is increasing on [0, 1). Hence �(�) ≧�(0) = 0 on [0, 1). It follows from �(1) = 0 that �(�) ≧ 0

on [0, 1]. �us, by applying a known result [5,�eorem 2.28],
we have

1Γ (1 + �) ∫
1

0
[� (�) − �∗ (�)] 9 (�) (d�)�

= − 1Γ (1 + �) ∫
1

0
�(�) (�) 9 (�) (d�)�

= −(�(�)(�)9(�)�����10
− 1Γ (1 + �) ∫

1

0
9(�) (�)� (�) (d�)�)

= 1Γ (1 + �) ∫
1

0
9(�) (�)� (�) (d�)� ≧ 0,

(34)

because�(�) ≧ 0 and 9(�) is increasing (and hence 9(�)(�) ≧0). We have thus completed our proof.

We are in a position to state and prove our main result as
follows.

�eorem 15. Let �1(�), �2(�), . . . , ��(�) ∈ ��(0, 1) with��(0) = 0 and
�� (�)Γ (1 + 2�) ��/Γ (1 + �) (35)

increasing on (0, 1] for � = 1, 2, . . . , �. If ��(�) (� = 1, 2, . . . , �)
is increasing on (0, 1], then

1Γ (1 + �) ∫
1

0

�∏
�=1

�� (�) (d�)�

≧ ([Γ(1 + 2�)]�[Γ(1 + �)]� 1Γ (1 + �) ∫
1

0
���(d�)�)

× ( �∏
�=1

1Γ (1 + �) ∫
1

0
�� (?) (d?)�) .

(36)

Proof. It follows from Lemma 14 and the increasing property
of ��(�) (� = 1, 2, . . . , �) that, for �∗� (�) de�ned as in
Lemma 14,

1Γ (1 + �) ∫
1

0

�∏
�=1

�� (�) (d�)�

= 1Γ (1 + �) ∫
1

0
�� (�) �−1∏

�=1
�� (�) (d�)�

≧ 1Γ (1 + �) ∫
1

0
�∗� (�)

�−1∏
�=1

�� (�) (d�)�
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= 1Γ (1 + �)
× ∫1
0
(Γ (1 + 2�) ��Γ (1 + �) ⋅ 1Γ (1 + �) ∫

1

0
�� (?) (d?)�)

× �−1∏
�=1

�� (�) (d�)�

= 1Γ (1 + �) ∫
1

0

Γ (1 + 2�) ��Γ (1 + �)
�−1∏
�=1

�� (�) (d�)�

= 1Γ (1 + �) ∫
1

0
�� (?) (d?)�

× 1Γ (1 + �) ∫
1

0
��−1 (�) Γ (1 + 2�) ��Γ (1 + �)

�−2∏
�=1

�� (�) (d�)�

≧ 1Γ (1 + �) ∫
1

0
�� (?) (d?)�

× 1Γ (1 + �) ∫
1

0
�∗�−1 (�) Γ (1 + 2�) ��Γ (1 + �)

�−2∏
�=1

�� (�) (d�)�

= 1Γ (1 + �) ∫
1

0
�� (?) (d?)�

× 1Γ (1 + �) ∫
1

0
��−1 (?) (d?)�

⋅ 1Γ (1 + �) ∫
1

0

[Γ (1 + 2�)]2�2�
[Γ (1 + �)]2

�−2∏
�=1

�� (�) (d�)�

= 1Γ (1 + �) ∫
1

0
�� (?) (d?)�

× 1Γ (1 + �) ∫
1

0
��−1 (?) (d?)�

⋅ 1Γ (1 + �) ∫
1

0

[Γ (1 + 2�)]2�2�
[Γ (1 + �)]2 ��−2 (�) �−3∏

�=1
�� (�) (d�)�

≧ 1Γ (1 + �) ∫
1

0
�� (?) (d?)�

× 1Γ (1 + �) ∫
1

0
��−1 (?) (d?)�

× 1Γ (1 + �) ∫
1

0
��−2 (?) (d?)�

⋅ 1Γ (1 + �) ∫
1

0

[Γ (1 + 2�)]3�3�
[Γ (1 + �)]3 ��−2 (�) �−3∏

�=1
�� (�) (d�)�

≧ ⋅ ⋅ ⋅ ≧ ⋅ ⋅ ⋅
= �∏
�=1

1Γ (1 + �) ∫
1

0
�� (?) (d?)�

⋅ 1Γ (1 + �) ∫
1

0

[Γ (1 + 2�)]����[Γ (1 + �)]� (d�)�

= �∏
�=1

1Γ (1 + �) ∫
1

0
�� (?) (d?)�

× [Γ (1 + 2�)]�[Γ (1 + �)]� ⋅ 1Γ (1 + �) ∫
1

0
���(d�)�.

(37)

which yields

1Γ (1 + �) ∫
1

0

�∏
�=1

�� (�) (d�)�

≥ ([Γ(1 + 2�)]�[Γ(1 + �)]� 1Γ (1 + �) ∫
1

0
���(d�)�)

× ( �∏
�=1

1Γ (1 + �) ∫
1

0
�� (?) (d?)�) .

(38)

�e proof of �eorem 15 is thus completed.

Remark 16. In its special case when � = 1, the inequality (36)
asserted by �eorem 15 would reduce to the Anderson-Fink
inequality (2).
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