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Abstract. We present a family of numerical implementations of Kato’s ODE prop-

agating global bases of analytically varying invariant subspaces of which the first-order

version is a surprisingly simple “greedy algorithm” that is both stable and easy to pro-

gram and the second-order version a relaxation of a first-order scheme of Brin and Zum-

brun. The method has application to numerical Evans function computations used to

assess stability of traveling-wave solutions of time-evolutionary PDE.

1. Introduction. Let P (λ) ∈ Cn×n be a projection, P 2 = P , and subspace S(λ) ⊂
C

n its range, with P depending analytically on λ within a simply connected subset Λ

of the complex plane. Then, a standard result in matrix perturbation theory [K] is that

there exists a global analytic basis {rj(λ)} of S on Λ; moreover, expressing rj as column

vectors, this can be prescribed constructively as the solution R = (r1, . . . , rk) of Kato’s

ODE

R′ = (P ′P − PP ′)R, R(λ0) = R0, (1.1)

where the initializing value R0 is any matrix whose columns form a basis for S(λ0),

and “′” denotes differentiation with respect to λ. This prescription is also “minimal”

in the sense that PR′ ≡ 0, i.e., the derivative of basis R lies entirely in the direction

complementary to its span (the kernel of P ); see [HSZ, HLZ] for further discussion.

The problem of computing such an analytically varying basis is important in numer-

ical Evans function computations for determining stability of traveling waves. Roughly

speaking, analytic bases for stable and unstable manifolds of certain limiting coefficient

matrices are used to define an analytic Evans function, whose winding number around a

contour Γ ⊂ Λ counts the number of unstable eigenvalues enclosed by Γ of the linearized
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operator about the wave, with zero winding number corresponding to stability. For fur-

ther discussion, see [GZ, Br, BrZ, BDG, HSZ, HuZ, BHRZ, HLZ, CHNZ, HLyZ1, HLyZ2]

and references therein.

Various algorithms for numerical determination of bases R have been introduced in

[BrZ, BDG, HSZ], each of which turns out to be equivalent to (a discretization of)

(1.1), and each of which is O(n3) in complexity (though with different coefficients). The

purpose of this brief note is to introduce a new and particularly simple discretization

of (1.1), which at the first order of accuracy consists of what might be called a “local

greedy algorithm”. Namely, choosing a set of mesh points λj around Γ and denoting by

Rj the approximation of R(λj), our first-order scheme is simply

Rj+1 = Pj+1Rj , R0 = R0. (1.2)

That is, the continuation of basis R to each new step is obtained by projecting the

value at the previous step onto the new subspace: the simplest possible choice, and one

that at first sight seems entirely local. However, remarkably, this local choice leads to a

globally defined basis; in particular, upon traversing the entire contour Γ and returning

to λL = λ0, we find that, up to convergence error, the value of RL returns to the starting

value R0 = R0. This is both simpler and faster than its closest relative in [BrZ]; indeed,

it is completely trivial to program (the main issue in most Evans function applications).

This simplification is based on the reduced version

R′ = P ′R, R(λ0) = R0, (1.3)

of (1.1) ([K], pp. 99–101), which readily yields minimal difference schemes to all orders

of accuracy. A particularly attractive version when speed is an issue appears to be the

second-order version, which is a relaxation of the first-order scheme in [BrZ].

1.1. The reduced ODE. We begin by recalling the properties of the reduced Kato ODE

(1.3).

Proposition 1.1. There exists a global solution R of (1.3) on any simply connected

domain Λ containing λ0, with rankR(λ) ≡ rankR0. Moverover, if P (λ0)R
0 = R0, then:

(i) PR ≡ R. (ii) PR′ ≡ 0. (iii) R satisfies (1.1).

Proof. As a linear ODE with analytic coefficients, (1.3) possesses an analytic solution

in a neighborhood of λ0 that may be extended globally along any curve, whence, by the

principle of analytic continuation, it possesses a global analytic solution on any simply

connected domain containing λ0 [K]. Constancy of rankR(λ) follows likewise by the fact

that R satisfies a linear ODE.

Differentiating the identity P 2 = P following [K] yields PP ′ + P ′P = P ′, whence,

multiplying on the right by P , we find the key property

PP ′P = 0. (1.4)

From (1.4), we obtain

(PR−R)′ = (P ′R+ PR′ −R′) = P ′R+ (P − I)P ′R = PP ′R,

which, by PP ′P = 0 and P 2 = P , gives

(PR−R)′ = −PP ′(PR−R), (PR− R)(λ0) = 0,
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from which (i) follows by uniqueness of solutions of linear ODE. Expanding PR′ = PP ′R

and using PR = R and PP ′P = 0, we obtain PR′ = PP ′PR = 0, verifying (ii). Finally,

using (i) and (ii), we obtain R′ = P ′R = P ′PR − PR′ = (P ′P − PP ′)R, verifying

(iii). �
Remark 1.2. Conversely, (i)–(ii) imply (1.3) through R′ = (PR)′ = P ′R + PR′ =

P ′R.

1.2. Numerical implementation.

1.2.1. First-order version. Approximating P ′(λj) to first order by the finite difference

(Pj+1 − Pj)/(λj+1 − λj) and substituting this into a first-order Euler scheme gives

Rj+1 = Rj + (λj+1 − λj)
Pj+1 − Pj

λj+1 − λj
Rj ,

or Rj+1 = Rj +Pj+1Rj −PjRj , yielding greedy algorithm (1.2) by the property PjRj =

Rj (Note: preserved exactly by the scheme).

Remark 1.3. The same procedure applied to the original equation (1.1) yields

Rj+1 = Rj + (Pj+1Pj − PjPj+1)Rj ,

or, following with a projection Pj+1 to stabilize the scheme without changing the order

of accuracy, the first-order scheme

Rj+1 = Pj+1Rj + Pj+1(Pj+1Pj − PjPj+1)Rj = Pj+1

(
I + Pj(I − Pj+1)

)
Rj . (1.5)

introduced in [BrZ]. This is slightly more costly at two evaluations of P on the average

and three matrix multiplications vs. one evaluation of P and one matrix multiplication

for (1.2). Depending on the cost of evaluating P and whether the mesh is fixed (in which

case evaluations of P may be shared), this can vary between approximately one and three

times the cost of (1.2).

Remark 1.4. An advantage of (1.2) is that it works even for merely continuously

varying P . Thus, this algorithm extends well to the boundary ∂Λ in the case (as for

Evans analysis of multi-dimensional shocks [HLyZ2]) that it contains branch singularities

or worse, something like a lower-order stiff ODE solver designed for stability rather than

accuracy.

1.2.2. Second-order version. To obtain a second-order discretization of (1.3), we make

the second-order approximation Rj+1 −Rj ≈ ΔλjP
′
j+1/2Rj+1/2 with respect to Δλj :=

λj+1−λj . Noting that Rj+1/2 ≈ Pj+1/2Rj to second order, by (1.2), and approximating

Pj+1/2 ≈ 1
2 (Pj+1 + Pj), also good to second order, and P ′

j+1/2 ≈ (Pj+1 − Pj)/Δλj , we

obtain, putting everything together and rearranging,

Rj+1 = Rj +
1

2
(Pj+1 − Pj)(Pj+1 + Pj)Rj .

Stabilizing by following with a projection Pj+1, we obtain after some rearrangement

the reduced second-order explicit scheme

Rj+1 = Pj+1[I +
1

2
Pj(I − Pj+1)]Rj , (1.6)

which may be recognized as a relaxation of the first-order scheme (1.5).

This has the same computational cost per step as (1.5), i.e., two evaluations of Pj

and three matrix multiplications, while the number of steps goes as 1/
√
Tolerance vs.
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1/Tolerance for the first-order scheme (1.5), so is 10 times fewer for the typical value

Tolerance = 10−2. For this typical tolerance value, therefore, there is a computational

savings of ten times for (1.6) over (1.5). In the worst case that P is inexpensive compared

to matrix multiplication so that (1.6) is three times as expensive per step as (1.2), there

is a computation savings of four times for (1.6) over (1.2). Thus, the second-order scheme

(1.6) is the version we recommend for serious computations. For individual numerical

experiments the simpler greedy algorithm (1.2) will often suffice (see discussion, Section

1.4).

1.3. Third and higher-order versions. Arbitrarily higher-order schemes may be ob-

tained by Richardson extrapolation starting from scheme (1.2) or (1.6). For example,

second-order Richardson extrapolation applied to (1.2) yields an alternative second-order

scheme

Rj+1 = Pj+1(2Pj+1/2 − I)Rj , (1.7)

while third-order extrapolation applied to (1.7) yields the third-order scheme

Rj+1 = Pj+1

[4
3

(
2Pj+3/4 − I

)
Pj+1/2

(
2Pj+1/4 − I

)
− 1

3

(
2Pj+1/2 − I

)]
Rj . (1.8)

Third-order extrapolation applied to (1.6) yields the simpler third-order scheme

Rj+1 = Pj+1

[4
3

(
I +

1

2
Pj+1/2(I − Pj+1)

)
Pj+1/2

(
I +

1

2
Pj(I − Pj+1/2)

)

− 1

3

(
I +

1

2
Pj(I − Pj+1)

)]
Rj .

(1.9)

Here, fractional indices denote points along the line segment between λj and λj+1/2 with

corresponding fractional distance.

More generally, denoting by T m,h the matrix advancing Rj to Rj+1 for an mth order

scheme with step h ∈ C, we obtain by Richardson extrapolation an (m + 1)st order

scheme

T m+1,2h
j =

2m

2m − 1
T m,h
j+1 T m,h

j − 1

2m − 1
T m,2h
j .

When P is costly, it appears preferable to use schemes involving evaluations at only

integer steps in order to share evaluations of P (of course, this assumes a fixed, or

non-adaptive, mesh, which may or may not be desirable). For example, Lagrange in-

terpolation of explicit mth-order Euler approximating derivatives of P at λj yields an

(m+1)-step scheme with integer steps. However, the complexity of the resulting schemes

makes these unappealing in practice.

Among higher-order schemes, we thus suggest only (1.6), or for strict tolerance (1.9).

1.4. Implementation in numerical Evans function computations. For Evans computa-

tions, P (λ) is the eigenprojection onto the stable (unstable) subspace of a given matrix

A(λ). Thus, it may be prescribed uniquely as

P (λ) = R(L∗R)−1L∗, (1.10)

for any choice of right and left bases R and L (matrices whose columns consist of basis

elements, as before).

Ordered Schur decomposition, an O(n3) operation supported as an automatic func-

tion in programming packages such as MATLAB, applied to A and A∗, respectively, gives
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orthonormal right and left bases of the left and right stable subspaces of A, hence an opti-

mally conditioned choice in (1.10). Thus, evaluation of P is in practice straightforward to

program. On the other hand, it is typically an expensive (i.e., large coefficient) O(n3) call

involving Schur decomposition and several matrix multiplications, so that it is desirable

to minimize the number of evaluations of P in numerical continuation algorithms. For a

fixed, i.e., non-adaptive, mesh (at least for (1.2), (1.6), or explicit Euler schemes that are

evaluated at mesh points only), P need be evaluated only once for every mesh point, so

that higher-order schemes are clearly preferable in this application. On the other hand,

evaluation of the Evans function, involving solution of a further variable-coefficient ODE

initialized with R, costs far more than the computation of R, so that these details can be

ignored in most computations with (relatively) little effect. Ordered Schur decomposition

(MATLAB version) has been used with good results in [HuZ, HLyZ2].
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