
A Local Greibach Normal Form
for Hyperedge Replacement Grammars

Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, and Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University, Germany
http://moves.rwth-aachen.de/

Abstract. Heap-based data structures play an important role in mod-
ern programming concepts. However standard verification algorithms
cannot cope with infinite state spaces as induced by these structures.
A common approach to solve this problem is to apply abstraction tech-
niques. Hyperedge replacement grammars provide a promising technique
for heap abstraction as their production rules can be used to partially ab-
stract and concretise heap structures. To support the required concretisa-
tions, we introduce a normal form for hyperedge replacement grammars
as a generalisation of the Greibach Normal Form for string grammars
and the adapted construction.

1 Introduction

The verification of programs that use pointers to implement dynamic data struc-
tures is a highly challenging and important task, as memory leaks or dereferenc-
ing null pointers can cause great damage especially when software reliability is
at stake. As objects can be created at runtime, dynamic data structures induce a
possibly infinite state space and therefore cannot be handled by standard verifi-
cation algorithms. Abstraction techniques such as shape analysis [18] that yield
finite representations for these data structures are a common way to address
this problem. Other popular techniques are based on separation logic [10, 14]
(duality with hyperedge replacement grammars is observed in [4]) and regular
tree automata [2].

Our approach is to verify pointer-manipulating programs using hyperedge re-
placement grammars (HRGs) [7]. Dynamic memory allocation and destructive
updates are transcribed on hypergraphs representing heaps. Production rules of
the HRG reflect employed data structures. Terminal edges model variables and
pointers, whereas nonterminal edges represent abstract parts of a heap. Thus,
hypergraphs are heap configurations that are partially concrete and partially
abstract, such that heap fragments relevant for the current program state are
concrete while a finite heap representation is achieved. Concretisation of abstract
heap fragments is obtained by classical forward grammar rule application, ab-
straction by backward application. This use of HRGs has been first proposed
by us in [15]; tool support and the successful verification of the Deutsch-Schorr-
Waite tree traversal algorithm have been reported in [8]. Graph grammars for

2 C. Jansen, J. Heinen, J.-P. Katoen, and T. Noll

heap verification have also been advocated in, e.g. [18, 12, 11, 1, 13]. Primarily
this yields a rather intuitive and easy-to-grasp heap modelling approach, where
no abstract program semantics is needed. In particular, it avoids a (often te-
dious) formal proof how this relates to a concrete semantics, see e.g. [3]. Pointer
statements such as assignments and object creation are realised on concrete sub-
graphs only. Thus if pointer assignments “move” program variables too close to
abstract graph fragments, a local concretisation is carried out. To enable this,
our heap abstraction HRGs are required to be in a specific form that is akin to
the well-known Greibach normal form (GNF) for string grammars.

In [15] we proposed to use the GNF introduced in [6] for this purpose, re-
stricting manageable data structures to ones where each object is referenced by
a bounded number of objects. This paper defines a normal form for HRGs as
a generalisation of the original GNF for string grammars. Compared to [6], it
allows us to model data structures without restrictions to referencing and in gen-
eral results in grammars with less and smaller production rules. Furthermore our
normal form allows to adapt the well-known GNF transformation algorithm for
string to graph grammars. We present the adapted construction and its correct-
ness in Section 3. In Section 2, the above concepts are formalised, we consider a
notion of typing for HRGs, and provide all relevant theoretical results. The full
version of this paper 1 contains the omitted proofs.

2 Preliminaries

Given a set S, S? is the set of all finite sequences (strings) over S including
the empty sequence ε. For s ∈ S?, the length of s is denoted by |s|, the set of
all elements of s is written as [s], and by s(i) we refer to the i-th element of s.
Given a tuple t = (A,B,C, . . .) we write At, Bt etc. for the components if their
names are clear from the context. Function f � S is the restriction of f to S.
Function f : A→ B is lifted to sets f : 2A → 2B and to sequences f : A? → B?

by point-wise application. We denote the identity function on a set S by idS .

2.1 Heaps and Hypergraphs

The principal idea behind our Juggrnaut framework [8, 15] is to represent (ab-
stract) heaps as hypergraphs.

Definition 1 (Hypergraph). Let Σ be a finite ranked alphabet where rk : Σ →
N assigns to each symbol a ∈ Σ its rank rk(a). A (labelled) hypergraph over Σ
is a tuple H = (V,E, att , lab, ext) where V is a set of vertices and E a set of
hyperedges, att : E → V ? maps each hyperedge to a sequence of attached vertices,
lab : E → Σ is a hyperedge-labelling function, and ext ∈ V ? a (possibly empty)
sequence of pairwise distinct external vertices.

For e ∈ E, we require |att(e)| = rk(lab(e)) and let rk(e) = rk(lab(e)). The set
of all hypergraphs over Σ is denoted by HGΣ.

1 Technical Report AIB-2011-04 available from http://aib.informatik.rwth-aachen.de

A Local Greibach Normal Form for Hyperedge Replacement Grammars 3

Hypergraphs are graphs with edges as proper objects which are not restricted
to connect exactly two vertices. Two hypergraphs are isomorphic if they are
identical modulo renaming of vertices and hyperedges. We will not distinguish
between isomorphic hypergraphs.

To set up an intuitive heap representation by hypergraphs we consider finite
ranked alphabets Σ = VarΣ] SelΣ , where VarΣ is a set of variables, each
of rank one and SelΣ a set of selectors each of rank two. We model heaps as
hypergraphs over Σ. Objects are represented by vertices, and pointer variables
and selectors by edges connected to the corresponding object(s) where selector
edges are understood as pointers from the first attached object to the second
one. To represent abstract parts of the heap, we use nonterminal edges i.e. with
labels from an additional set of nonterminals N of arbitrary rank (and we let
ΣN = Σ ∪ N). The connections between hyperedges and vertices are called
tentacles.

L

list

head tail

3

1 2

1

Fig. 1. Heap as hypergraph

Example 1. A typical implementation of a doubly-
linked list consists of a sequence of list elements
connected by next and previous pointers and an
additional list object containing pointers to the
head and tail of the list. We consider an extended
implementation where each list element features
an additional pointer to the corresponding list ob-
ject. Fig. 1 depicts a hypergraph representation of
a doubly-linked list. The three circles are vertices representing objects on the
heap. Tentacles are labeled with their ordinal number. For the sake of readability,
selectors (head and tail) are depicted as directed edges. A variable named list
referencing the list object is represented as an edge of rank one. The L-labeled
box represents a nonterminal edge of rank three indicating an abstracted doubly-
linked list between the first and second attached vertex, where each abstracted
list element has a pointer to the list object. In Section 2.2 we will see how
abstract structures are defined.

Note that not every hypergraph represents a feasible heap: it is necessary
that each variable and each a-selector (for every a ∈ SelΣ) refers to at most one
object. Therefore we introduce heap configurations as restricted hypergraphs:

Definition 2 (Heap Configuration). H ∈ HGΣN
is a heap configuration if:

1. ∀a ∈ SelΣ , v ∈ VH : |{e ∈ EH | att(e)(1) = v, lab(e) = a}| ≤ 1, and
2. ∀a ∈ VarΣ : |{e ∈ EH | lab(e) = a}| ≤ 1

We denote the set of all heap configurations over ΣN by HCΣN
. If a heap con-

figuration contains nonterminals it is abstract, otherwise concrete.

2.2 Data Structures and Hyperedge Replacement Grammars

As pointed out earlier, both abstraction and concretisation are transformation
steps on the hypergraph representation of the heap. We use hyperedge replace-
ment grammars for this purpose, implementing abstraction and concretisation
as backward and forward application of replacement rules respectively.

4 C. Jansen, J. Heinen, J.-P. Katoen, and T. Noll

Definition 3 (Hyperedge Replacement Grammar). A hyperedge replace-
ment grammar (HRG) over an alphabet ΣN is a set of production rules of the
form X → H, with X ∈ N and H ∈ HGΣN

where |extH | = rk(X). We denote
the set of hyperedge replacement grammars over ΣN by HRGΣN

.

Example 2. Fig. 2 specifies an HRG for doubly-linked lists. n, p stand for next
and previous while l is the pointer to the corresponding list object shared by all
elements. head and tail (cf. Fig. 1) do not occur as they are not abstracted.

L→ 3 1 2

n

p

l

3 1 L 2

n

p

l

3

1 2

Fig. 2. A grammar for doubly-linked lists

The HRG derivation steps are defined through hyperedge replacement.

Definition 4 (Hyperedge Replacement). Let H,K ∈ HGΣN
, e ∈ EH a

nonterminal edge with rk(e) = |extK |. W.l.o.g. we assume that VH ∩VK = EH ∩
EK = ∅ (otherwise the components in K have to be renamed). The substitution
of e by K, H[K/e] = J ∈ HGΣN

, is defined by:

VJ = VH ∪ (VK \ [extK]) EJ = (EH \ {e}) ∪ EK
labJ = (labH � (EH \ {e})) ∪ labK extJ = extH
attJ = attH � (EH \ {e}) ∪mod ◦ attK

with mod = idVJ
∪ {[extK(1) 7→ attH(e)(1), . . . , extK(rk(e)) 7→ attH(e)(rk(e))}.

L

list

head tail

n

p

l
3

21

1

Fig. 3. Hyperedge replacement

Example 3. Reconsider the hypergraph H
of Fig. 1 as well as the second rule in
Fig. 2, denoted by L → K. In H we re-
place the nonterminal edge e labelled with
L by K, which yields H[K/e]. This is pos-
sible since rk(L) = |extK | = 3. Replacing
the L-edge we merge external node ext(1)
with the node connected to the first ten-
tacle, ext(2) with the second and so on.
The resulting graph is shown in Fig. 3.

Definition 5 (HRG Derivation). Let G ∈ HRGΣN
, H,H ′ ∈ HGΣN

, p =
X → K ∈ G and e ∈ EH with lab(e) = X. H derives H ′ by p iff H ′ is

isomorphic to H[K/e]. H
e,p
==⇒ H ′ refers to this derivation. Let H

G
=⇒ H ′ if

H
e,p
==⇒ H ′ for some e ∈ EH , p ∈ G. If G is clear from the context ⇒? denotes

the reflexive-transitive closure.

A Local Greibach Normal Form for Hyperedge Replacement Grammars 5

The definition of HRGs does not include a particular starting graph. Instead,
it is introduced as a parameter in the definition of the generated language.

Definition 6 (Language of a HRG). Let G ∈ HRGΣN
and H ∈ HGΣN

.
LG(H) = {K ∈ HGΣ | H ⇒? K} is the language generated from H using G.

We write L(H) instead of LG(H) if G is clear from the context. To define
the language of a nonterminal we introduce the notion of a handle which is a
hypergraph consisting of a single hyperedge attached to external vertices only.

Definition 7 (Handle). Given X ∈ N with rk(X) = n, an X-handle is the
hypergraph X• = ({v1, . . . , vn}, {e}, [e 7→ v1 . . . vn], [e 7→ X], v1 . . . vn) ∈ HGΣ.

Thus L(X•) is the language induced by nonterminal X. For H ∈ HCΣN
,

L(H) denotes the set of corresponding concrete heap configurations. Note that
it is not guaranteed that L(H) ⊆ HCΣ , i.e., L(H) can contain invalid heaps.

Definition 8 (Data Structure Grammar). G ∈ HRGΣN
is called a data

structure grammar (DSG) over ΣN if ∀X ∈ N : L(X) ⊆ HCSelΣ . We denote
the set of all data structure grammars over ΣN by DSGΣN

.

Theorem 1. It is decidable whether a given HRG is a DSG.

Later we will see that DSGs are still too permissive for describing heap ab-
straction and concretisation. In Section 2.4, we will therefore refine this definition
to so-called heap abstraction grammars.

2.3 Execution of Program Statements

The overall goal of our framework is to reduce the large or even infinite program
state spaces induced by dynamic data structures. To this aim, heap configura-
tions are partially abstracted by backward application of replacement rules. As
long as pointer manipulations are applied to concrete parts of the heap, they
can be realised one-to-one. In order to avoid the need of defining an abstract
semantics we avoid manipulations on abstract parts by applying local concreti-
sation steps before. As pointers are not dereferenced backwards, restricting the
dereferencing depth to one reduces the (potentially) affected parts of the heap
to those nodes that are directly reachable from variable nodes by outgoing edges.

Definition 9 (Outgoing Edges). Let H ∈ HCΣ , v ∈ VH . The set of outgoing
edges at vertex v in H is defined as: out(v) = {e ∈ EH | att(e)(1) = v}.

In abstract heap configurations, variable vertices can have abstracted outgo-
ing edges derivable at connected nonterminal tentacles.

Definition 10 (Tentacle). Let X ∈ N , i ∈ [1, rk(X)], the pair (X, i) is a
tentacle. (X, i) is a reduction tentacle if, for all H ∈ L(X•), out(extH(i)) = ∅.

6 C. Jansen, J. Heinen, J.-P. Katoen, and T. Noll

Example 4. Reconsider the grammar of Fig. 2. (L, 3) is a reduction tentacle, as
no outgoing terminal edges are derivable at external vertex 3.

A heap configuration is inadmissible if variable nodes are connected to non-
reduction tentacles.

Definition 11 (Admissibility). For H ∈ HCΣN
, e ∈ EH , and i ∈ N, the

pair (e, i) is called a violation point if (lab(e), i) is not a reduction tentacle and
∃e′ ∈ EH : lab(e′) ∈ VarΣ ∧ att(e′)(1) = att(e)(1). H is called admissible if it
contains no violation point, and inadmissible otherwise.

Heap manipulations may introduce violation points. This inadmissibility can
be resolved by concretisation, that is, by considering all possible replacements
of the corresponding edge. Notice that concretisation generally entails nondeter-
minism, viz. one successor state for each applicable replacement rule.

Example 5. On the left side of Fig. 4, an inadmissible heap configuration is de-
picted. While its list object is only connected to concrete edges and reduction
tentacle (L, 3), there is a violation point at the shaded (L, 1)-tentacle. Concreti-
sation by applying both production rules of the grammar given in Fig. 2 results
in the two admissible configurations on the right.

L

list

pos

head tail

3

1 2

1

1

L

list

pos

head tail

n

p

l
3

21

1

1

list

pos

head
tail

n

p

l

1

1

Fig. 4. Concretisation of inadmissible heap configurations

Theorem 2. For G ∈ HRGΣN
, H ∈ HCΣN

, e ∈ EH , X ∈ N with X = lab(e):

L(H) =
⋃

∀X→K∈G

L(H[K/e])

This theorem follows directly from the confluence property of HRGs [16].
While concretisation is realised by standard, forward application of produc-

tion rules, abstraction is handled by backward rule application. Thus we call
H ∈ HCΣN

an abstraction ofH ′ ∈ HCΣN
ifH ⇒? H ′. Obviously L(H ′) ⊆ L(H)

and therefore abstraction leads to an over-approximation of the state space. The
latter fact together with Theorem 2 yields the soundness of our heap abstraction
approach. We apply the principle “Abstract if possible – Concretise when nec-
essary” to obtain the best possible results in terms of the size of the resulting
state space.

A Local Greibach Normal Form for Hyperedge Replacement Grammars 7

2.4 Heap Abstraction Grammars

As mentioned before, DSGs are not sufficient in our setting. Additional restric-
tions that ensure termination and correctness of the abstraction technique are
listed and discussed in detail below.

Definition 12 (Heap Abstraction Grammar). G ∈ DSGΣN
is a heap ab-

straction grammar (HAG) over ΣN if:

(1) G is productive ∀X ∈ N : L(X•) 6= ∅
(2) G is increasing ∀X → H ∈ G : |EH | ≤ 1⇒ H ∈ HGΣ
(3) G is typed see below
(4) G is locally concretisable see below

We denote the set of all heap abstraction grammars over ΣN by HAGΣN
.

Productivity (1) is a well-known notion from string grammars, ensuring that
each abstract configuration represents at least one concrete configuration. A rule
is increasing if its right-hand side is terminal or “bigger” than the correspond-
ing handle. Increasing grammars (2) guarantee termination of abstraction, as
applying rules backwards reduces the size of the heap representation. We call a
grammar typed (3) if every concrete vertex has a well-defined type as induced
by the set of outgoing edges.

Definition 13 (Typedness). G ∈ DSGΣN
is typed if ∀X ∈ N, i ∈ [1, rk(X)],

∃type(X, i) ⊆ Σ : ∀H ∈ L(X•) : type(X, i) = outH(extH(i)).

As DSGs restrict the number of outgoing edges to a finite set of selectors,
every untyped nonterminal can be replaced by a typed one for each derivable
type.

Theorem 3. It is decidable whether a HRG is typed. For any untyped DSG an
equivalent typed DSG can be constructed.

Local concretisability (4) ensures that admissibility of a heap configuration
can be established within one concretisation step.

Example 6. Fig. 5(left) reconsiders the original heap configuration given in Fig. 4
with variable pos set to the tail of the list. This leads to an inadmissible config-
uration and two corresponding concretisations, cf. Fig. 5(right). While the first
concretisation is an admissible configuration, the second one remains inadmissi-
ble. Successive concretisations would lead to further inadmissible configurations.
Ignoring the second rule yields termination but is unsound as Theorem 2 requires
concretisations by every corresponding rule.

Let G ∈ HRGΣN
with p = X → H ∈ G. (X, i)→p (Y, j) denotes that (X, i)

can be replaced by (Y, j), i.e. extH(i) is connected to a (Y, j)-tentacle.

Example 7. For p the second rule of Fig. 2 it holds that (L, 3) →p (L, 3) and
(L, 3)→p (l, 2) denoting an incoming l-selector edge.

For simplicity we useGX as the set of all rulesX → H ∈ G andGX = G\GX .

8 C. Jansen, J. Heinen, J.-P. Katoen, and T. Noll

L

list

pos

head tail

3

1 2

1

1

L

list

pos

head tail

n

p

l
3

21

1

1

list

pos

head
tail

n

p

l

1

1

Fig. 5. Inadmissible concretisation

Definition 14 (Local Concretisability). G ∈ HRGΣN
is locally concretis-

able if for all X ∈ N there exist grammars GX1 , · · · , GXrk(X) ⊆ GX such that:

1. ∀i ∈ [1, rk(X)], L
GX

i ∪GX (X•) = LG(X•)

2. ∀i ∈ [1, rk(X)], a ∈ type(X, i), p ∈ GXi : (X, i)→p (a, 1)

Theorem 4. For each DSG an equivalent HAG can be constructed.

Property (1) can be achieved easily by removing non-productive rules, typed-
ness (3) by introducing new, typed nonterminals. The Local Greibach Normal
Form presented in the next section ensures properties (2) and (4), cf. Theorem 6.

3 Local Greibach Normal Form

The Greibach Normal Form (GNF) for string grammars restricts production
rules to the form X → aN1 . . . Nk such that using left derivation only a word w ∈
ΣnN? is derived after n derivation steps. Thus terminal words are constructed
from left to right extending a terminal prefix by one symbol each step.

Up to now the normal form given in [6] is the only notion of a GNF for graph
grammars widely known and accepted. In contrast to [6], where graph derivation
is from outside to inside, we consider a generalisation of GNF for strings where
one-sided derivation is of interest.

Definition 15 (Local Greibach Normal Form). G ∈ DSGΣN
is in local

Greibach Normal Form (LGNF) if for every non-reduction tentacle (X, i) there
exists GXi ⊆ GX with:

1. L
GX

i ∪GX (X•) = LG(X•)

2. ∀ p ∈ GXi : (X, i)→p (Y, j) implies Y ∈ Σ or (Y, i) is a reduction tentacle.

Example 8. Strings can be uniquely represented by HGs containing chains of
terminal edges only, production rules can be translated to HRGs analogously
[7]. In Fig. 6, graph representations for word w = aab and string grammar
X → aX | b are given. As nonterminals are of rank two and (X, 2) is a reduction
tentacle for each nonterminal X exactly one GXi remains namely GX1 containing
the string GNF rules.

A Local Greibach Normal Form for Hyperedge Replacement Grammars 9

a a b

(a) String Representation

N → 1 N 2
a 1 2

1 2
b

(b) String Grammar Representation

Fig. 6. String Graphs

The LGNF for DSG G is established by merging corresponding sets GXi ,
constructed in four steps along the lines of the GNF construction for string
grammars: Assume a total order on the non-reduction tentacles T1, . . . , Tn over
N . For increasing i ∈ [1, n] (1) every rule p, such that Ti →p Tj with j < i,
is eliminated, then (2) local recursion is removed. In a next step (3) all rules
are brought into LGNF using simple hyperedge replacements. Finally (4) rules
for nonterminals introduced during the construction are transformed. In the
following we guide through the four construction steps and define them in detail.

For each non-reduction (X, i)-tentacle we initialise the set GXi = GX and we
define an ordering T1, . . . , Tn on non-reduction tentacles.

Step 1: Elimination of rules. We first eliminate the rules p = X → H ∈ GXi
with (X, i) = Tk →p Tl, l < k. Let Tl = (Y, j), e ∈ EH with lab(e) = Y and
att(e)(j) = ext(i). Then p is replaced by the set {X → H[K/e] | Y → K ∈ GYj }.
Theorem 2 states that this procedure does not change the language.

Lemma 1. Let G ∈ HRGΣN
. For a grammar G′ originating from G by elimi-

nating a production rule, it holds that LG(H) = LG′(H) for all H ∈ HGΣN
.

Note that GYj does not contain any rule p with Tl →p Tm, m < l, as they
are removed before. Thus after finitely many steps all corresponding rules are
eliminated.

Step 2: Elimination of local recursion. After step 1, rules p with Ti →p Ti remain.

Definition 16 (Local Recursion). Let G ∈ HRGΣN
, X ∈ N , i ∈ [1, rk(X)].

G is locally recursive at (X, i) if there exists a rule p with (X, i)→p (X, i).

LetGXr ⊆ GXi be the set of all rules locally recursive at (X, i). To remove local
recursion in p = X → H ∈ GXi we introduce a new nonterminal B′j , a recursive
rule B′j → Jn and an exit rule B′j → Jt. Jt corresponds to graph H, where edge
e causing local recursion is removed. We also remove all external nodes singly
connected to e (VR = {v ∈ [extH] | ∀e′ ∈ EH : v ∈ [attH(e′)] ⇒ e = e′}).
By removing border-edge e, its previously connected internal nodes move to the
border and get external. Thus Vext = ([attHj

(e)] ∪ [extHj
]) ∩ VJt is the set of

arbitrary ordered external nodes.
Jn extends Jt by an additional edge e′ labelled by B′j . As this edge models

the structure from the other side, it is connected to the remaining external nodes
of H that will not be external any longer. Note that the rank of B′j is already
given by Jt and therefore introduced gaps in the external sequence are filled by
new external nodes that are connected to edge e′ (fill(i) = extJt(i) if extJt(i) ∈
attH(e), a new node otherwise). To build up the same structure as (X, i) “from
the other side” edge e′ has to be plugged in correctly:

10 C. Jansen, J. Heinen, J.-P. Katoen, and T. Noll

plug(g) =

{
extHj

(y) if extJn(g) ∈ VJt
extJt(g) otherwise

, with attHj (e)(y) = extJt(g).

B′j → Jt with:

VJt = VHj \ VR(e)
EJt = EHj

\ {e}
labJt = labHj

� EJt
attJt = attHj

� EJt
extJt ∈ V ∗ext

B′j → Jn with:

VJn = VJt ∪ [extJn]
EJn = EJt ∪ {e′}
labJn = labJt ∪ {e′ → B′j}
attJn = attJt ∪ {e′ → plug}
extJn = fill

Newly introduced nonterminals are collected in a set N ′, Σ′ = Σ ∪N ′. For
mirrored derivations, each terminal rule in GXi can be the initial one thus we
add a copy, extended by an additional B′j-edge, the GXi .

Lemma 2. Let G ∈ DSGΣN
. For the grammar GXi over Σ′ = Σ ∪ { B′ |

B′ newly introduced nonterminal } originating from grammar G by eliminating
the (X, i)-local recursion as described above, it holds that LG(H) = LGX

i
(H) for

all H ∈ HGΣN
.

Example 9. The doubly-linked list HRG with production rules L→ H | J given
in Fig. 2 is locally recursive at (L, 2). We introduce nonterminal B′ and the rules
B′ → Jt | Jn, cf. Fig. 7. The terminal right-hand side Jt corresponds to J with
removed L-edge and attached external node ext(2). Jn is a copy of Jt with an
additional B′-edge and replaced external node ext(1). Intuitively, local recur-
sion is eliminated by introducing new production rules which allow “mirrored”
derivations.

B′ → 3 1 2

n

p

l

3 1 B′ 2

n

p

l

3

1 2

Fig. 7. Doubly-Linked Lists: GB′
2

Step 3: Generation of Greibach rules. Starting at the highest order tentacle, for
each GXi LGNF can be established by elimination of every non-reduction (Y,j)-
tentacle connected to external node i. That is because (Y,j) is of higher order
and thus already in LGNF.

Step 4: Transforming new nonterminals to GNF . In the final step we apply
steps one to three to the newly added nonterminals from step two. Obviously
further nonterminals could be introduced. To avoid nontermination we merge
nonterminals if the right-hand sides of the corresponding production rules are
equal.

Theorem 5. After finite many steps a nonterminal can be merged, thus the
construction of LGNF terminates.

A Local Greibach Normal Form for Hyperedge Replacement Grammars 11

Note that step 2 is nondeterministic as the order on external nodes can
be chosen arbitrarily. Unnecessary steps introduced by unsuitable orders can be
avoided by considering permutations of external nodes isomorphic. If we reach an
isomorphic nonterminal after arbitrary many steps all nonterminals in between
represent the same language and thus can be merged as long as the rank of the
nonterminals permit this.

Example 10. Applying steps 1 to 3 to GB
′

1 results in a new nonterminal B′′

isomorphic to L. Thus we can merge L with B′′ and even B′ as the latter
occurred between the formers.

Theorem 6. Any DSG can be transformed into an equivalent DSG in LGNF.

Note that LGNF directly implies the local concretisable property of HAGs.
It additionally ensures the increasingness property, as every production rule
belongs to at least one GXi composed by rules with terminal edges at external
node ext(i).

Lemma 3. Each DSG in LGNF is increasing.

While we restrict the normalisable grammars to DSGs here the procedure
can easily be lifted to arbitrary bounded HRGs.

4 Related Work

The idea of using HRGs for verifying heap manipulating programs was proposed
in [8, 15]. No technique for transforming a given HRG into a suitable grammar
was provided though, instead using the GNF construction from [6] was proposed,
allowing hypergraphs to be concretised from outer to inner. This generally results
in more and larger rules compared to our LGNF approach, as LGNF generalises
GNF, i.e. every resulting grammar from [6] is in LGNF. Considering the exam-
ple grammar for binary trees with linked frontier [6], its GNF consists of 135
production rules whereas our local Greibach construction results in 36 rules. In
number of nodes and edges our largest rule is half the size of the normalised
example rule given in [6]. Note that [6] restricts the input grammars to bounded
degree ones, i.e. those allowing only boundedly many references to each object,
excluding for instance rooted grammars like the one given in Fig. 2. Adapting
the construction to HAGs without additional restrictions leads to a complex
construction with poor results.

A further GNF approach for HRGs can be found in [5]. The basic idea is to
use the string GNF construction on a linearisation of the considered HRG. It
is however not clear how to re-obtain the HRG from the resulting linearisation.
Further normal form constructions addressing node replacement can be found
in [17] and [9].

12 C. Jansen, J. Heinen, J.-P. Katoen, and T. Noll

5 Conclusion

This paper presented the theoretical underpinnings of heap abstraction using
hyperedge replacement grammars (HRGs). We showed that concretisation and
abstraction are naturally obtained by forward and backward rule application
respectively. The main contribution is a Greibach normal form (GNF) together
with a procedure to transform an HRG into (local) GNF.

Future work will concentrate on advancing our prototypical tool [8], incre-
mental LGNF construction, and on the automated synthesis of heap abstraction
grammars from program executions.

References

1. Bakewell, A., Plump, D., Runciman, C.: Checking the shape safety of pointer
manipulations. In: RelMiCS ’03. Volume 3051, Springer (2003) 48–61

2. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree
Model Checking. ENTCS 149 (2006) 37–48

3. Distefano, D., Katoen, J.P., Rensink, A.: Safety and Liveness in Concurrent Pointer
Programs. In: FMCO. Volume 5 (2005) 280–312

4. Dodds, M.: From Separation Logic to Hyperedge Replacement and Back. In: ICGT
’08. Volume 5214 (2008) 484–486

5. Dumitrescu, S.: Several Aspects of Context Freeness for Hyperedge Replacement
Grammars. W. Trans. on Comp. 7 (2008) 1594–1604

6. Engelfriet, J.: A Greibach Normal Form for Context-free Graph Grammars. In:
ICALP ’92. Volume 623 (1992) 138–149

7. Habel, A.: Hyperedge Replacement: Grammars and Languages. Springer-Verlag
New York (1992)

8. Heinen, J., Noll, T., Rieger, S.: Juggrnaut: Graph Grammar Abstraction for Un-
bounded Heap Structures. TTSS ’09 (to be published in ENTCS) (2009)

9. Klempien-Hinrichs, R.: Normal Forms for Context-Free Node-Rewriting Hyper-
graph Grammars. Math. Structures in Comp. Sci. 12 (2002) 135–148

10. O’Hearn, P.W., Hongseok, Y., Reynolds, J.C.: Separation and Information Hiding.
POPL ’04 39 (2004) 268–280

11. Rensink, A.: Canonical Graph Shapes. In: ESOP ’04. Volume 2986 of LNCS (2004)
401–415

12. Rensink, A.: Summary from the Outside In. AGTIVE’03 3062 (2004) 486–488
13. Rensink, A., D., D.: Abstract Graph Transformation. SVV ’05 157 (2006) 39–59
14. Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures.

In: LICS ’02 (2002) 55–74
15. Rieger, S., Noll, T.: Abstracting Complex Data Structures by Hyperedge Replace-

ment. In: ICGT ’08. Volume 5214 (2008) 69–83
16. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Trans-

formation: vol. World Scientific Publishing Co., Inc., River Edge, NJ, USA (1997)
17. Rozenberg, G., Welzl, E.: Boundary NLC Graph Grammars-Basic Definitions,

Normal Forms, and Complexity. Inf. Control 69 (1986) 136–167
18. Sagiv, M., Reps, T., Wilhelm, R.: Parametric Shape Analysis via 3-Valued Logic.

ACM Trans. Program. Lang. Syst. 24 (2002) 217–298

