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where

i j denotes the j-th column of J, and

(3)

The reduced manipulator Jacobian i J then determines the

kinematic properties of the degraded system. In this article,

a local measure of fault tolerance is defined that measures the

performance of the degraded system relative to the original

system.

In the next section, necessary and sufficient conditions are

derived for determining whether a manipulator with a single

degree of redundancy is in a configuration for which the

reduced system is singular. Using this condition, one can

then develop strategies that will avoid such configurations.

Section III discusses how the manipulability of a manipulator

is affected by a joint failure. Once this has been determined,

configurations can be identified for which the manipulability

is reduced by a minimum amount due to any joint failure.

The case of multiple joint failures is considered in Section

IV. Section V discusses the application of these results to

motion planning and Section VI presents a fully general spatial

example. Finally, conclusions appear in Section VII.

II. FAULT INTOLERANT CONFIGURATIONS

As mentioned earlier, a joint failure can essentially result

in a manipulator being in a singular configuration, even if

the original Jacobian is of full rank. It is easy to show, using

column space arguments, that the rank of the reduced Jacobian

satisfies(1)

Abstract- When a manipulator suffers a joint failure, its
performance can be significantly affected. If the failed joint
is locked, the resulting manipulator Jacobian is given by the
original Jacobian, except that the column associated with the
failed joint is removed. The rank of the resulting Jacobian then
determines if the manipulator still has the ability to perform arbi
trary end-effector motions. Unfortunately, even at an operating
configuration that has a relatively high manipulability index, a
joint failure may still result in a singular Jacobian. This work
examines the problem of determining the reduced manipulability
of a manipulator after one or more joint failures. Configurations
that result in a minimal reduction of the manipulability index for
any set of joint failures are determined.

I. INTRODUCTION

K
INEMATICALLY redundant manipulators offer several

advantages over conventional nonredundant manipula

tors including the potential for obstacle avoidance, torque

minimization, singularity avoidance, and greater dexterity [1],

[3], [4], [9], [13], [14], [18], [19], [26]-[28]. Another ad

vantage that has only recently been investigated is fault

tolerance [8], [16], [17], [20], [24]. Obviously, a complete

joint failure in a nonredundant manipulator automatically

results in the loss of full end-effector control; however, with

a kinematically redundant manipulator, one can design the

manipulator such that the extra degrees of freedom will be

able to compensate for the failure. This article examines the

problem of determining the reduced manipulability after one

or more joint failures have occurred.

Recall that the end-effector velocities, X, and the joint

velocities, iJ, are related by the equation

so that a single joint failure at a nonsingular configuration

will not result in a multiple singularity. For applications that

require a manipulator to work in a hazardous environment

where joint failures are not unlikely, it would be beneficial to

have a simple method for determining whether a joint failure

will render a manipulator to be in a singularity. Necessary and

sufficient conditions for the reduced Jacobian to be singular

in the case of a single degree of redundancy will be derived

in this section.

A configuration o: will be said to be fault intolerant with

respect to joint i if the reduced Jacobian i J is singular. Much

of this article is dedicated to identifying fault intolerant config

urations and quantifying, at least locally, the fault tolerance of

where J is the manipulator Jacobian. If a failed joint i is

locked, the Jacobian equation becomes

(2)
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(a)

Fig. 1. The planar 3R manipulator configurations shown represent examples
of the three types of fault intolerant configurations for this manipulator.
These configurations correspond to situations in which a single locked joint
failure will effectively result in a 2R manipulator in a singular configuration.
Configurations of the type shown in (a) are intolerant with respect to failures in
joint one. These configurations are characterized by B3 := k«. Configurations
of the type shown in (b) are intolerant to failures with respect to joint two.
These configurations are characterized by the end effector, joint one, and joint
three being collinear. Configurations of the type shown in (c) are intolerant
to failures with respect to joint three. Analogous to the other two cases, these
configurations are characterized by the end effector, joint one, and joint two
being collinear.

(-¢=) Suppose ni(()*) = O. Let w denote the (n - 1)
vector that is obtained by deleting the i-th component of

nJ(()*)' It is easy to see that w is a nonzero vector satisfying
i J(()*)w = J( ()*)nJ( ()*) = O. Hence the square matrix i J(()*)

has a nontrivial null space, proving that it is not of full rank.1I

Thus, the question of whether a particular joint failure

results in a singular Jacobian has been reduced to merely

checking the corresponding component of the null vector. As

an application of this result, one can see that a seven degree-of

freedom anthropomorphic arm is fault intolerant with respect

to an elbow joint failure since the corresponding element of

the null vector is always zero (e.g., see [25]). This is physically

explained by noting that the only joint in the human arm that

can change the distance from the shoulder to the wrist is the

elbow joint. In most cases, the elements of the null vector will

not be identically zero but will only be zero for certain special

configurations. For example, consider the same simple planar

manipulator shown in Fig. 1. For the configuration shown in

Fig. 2, the null vector is given by [1 0 Of which shows that

locally all of the redundancy is located in joint one and that the

manipulator is intolerant to failures in either joint two or three.

o

(b)

(c)

(5)

Wi-I 0 ui,

J(()*)w = iJ(()*)W = 0

w = [WI

Then clearly

Let

so that w is a nonzero null vector of J (()*). As the nullity of

J (()*) is one, it follows that nJ (()*) is a nonzero multiple of

W, proving that n.;(e*) = O.

a configuration. It can be shown that a singular configuration

for a planar revolute manipulator is characterized by the

links being collinear. This geometric approach for identifying

singularities can be applied to the problem of determining fault

intolerant configurations. If there is a failure in a joint other

than the first joint, then one can view the manipulator as an

(n - l j-jointed robot with links i-I and i replaced by a

link connecting joints i-I and i + 1 where it is assumed

that the failure has occurred in joint i. One can then check

to see if the links of the new manipulator are collinear. This

is illustrated for a planar 3R manipulator in Fig. 1. For this

simple manipulator it is easy to geometrically identify the

failure intolerant configurations and to develop a physical

intuition into the meaning of failure intolerance. For example,

from Fig. l(a) it is clear that a failure in joint one will result in

a singular configuration whenever (h = kt: since this failure

is physically equivalent to having a two-link manipulator that

is at a reach singularity. A failure in joint two will result in a

singular configuration whenever the origins for link one, link

three, and the end effector are collinear, which is illustrated in

Fig. l(b). A similar geometric argument identifies the family

of configurations represented in Fig. 1(c) as being intolerant

to failures in joint three. It is important to note that the image

of the fault intolerant configurations is the entire workspace.

In other words, for each end-effector position in this example

there is a fault intolerant configuration. This is easy to see from

Fig. 1(c) since this configuration can put the end effector at

any distance from the base. This is in contrast to end-effector

positions that correspond to the kinematic singularities that, for

this example, partition the workspace into regions for which

one would not need to worry about singularities. Thus, as this

example illustrates, one cannot guarantee fault tolerance by

simply restricting the workspace of the manipulator.

The ability to identify failure intolerant configurations from

purely geometric arguments becomes much more difficult for

more general manipulators [6], [12]. Fortunately, a more an

alytical method for determining fault intolerant configurations

can be derived. The following theorem illustrates this for

arbitrary manipulators that have a single degree of redundancy.

Theorem 1: Consider a manipulator with a single degree of

redundancy. Suppose that for the configuration ()*, J(()*) is of

full rank and that its null vector nJ (()*) is known. Then the

configuration ()* is fault intolerant with respect to joint i if and

only if n; (()*) = 0 where n: is the z-th component of nJ.

Proof (::::?) If i J( ()*) is not of full rank, it has a nonzero

null vector
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If certain joints are more likely to fail than other joints, one

may instead want to maximize

where Wi(J) = w(i J).1 This quantity provides a measure of

the amount of manipulability retained after a failure in the i

th joint. The relative manipulability indices clearly range from

zero to one and are independent of the scaling applied to the

linear or rotational components of J due to the normalization.

In particular, if ri is zero, then the manipulability index of

i J is also zero so that the manipulator is in a configuration

that is fault intolerant with respect to joint i; in this case, a

failure in the z-th joint is critical since it essentially renders the

robot singular. At the other extreme, if ri is one, then a failure

of the i-th joint has no effect on the manipulability of the

robot at that configuration. This is clearly true when the z-th

column of J is the zero vector; after developing the necessary

machinery, it should also be clear that the converse to this

statement holds. This is precisely the situation illustrated in

Fig. 2 where j 1 = 0 and thus the local behavior of the end

effector is completely unaffected by a failure in joint one.

If all joint failures are equally likely, then one possible

measure of fault tolerance is to maximize the minimum relative

manipulability index, i.e., to maximize

(7)

(8)

(w(J) ::J 0)'(B) = Wi(J)
r. w(J)

index to the original manipulability; i.e.,

Fig. 2. A planar 3R manipulator with unit length links in a configuration
for which the null vector is given by n J = [1 0 0]T. This also corresponds
to having j 1 = 0 which physically means that the motion of joint one has
no effect on the velocity of the end effector. Since all of the redundancy is
effectively located in joint one for this configuration, a failure in joint one
has no effect on the motion of the end effector. Conversely, the manipulator
is intolerant to a failure in either joint two or joint three.

This characterization of fault intolerant configurations can

also be used in conjunction with an augmented or extended

Jacobian technique to devise a control strategy that will keep

the manipulator away from these configurations [2], [10],

[22]. For example, one could require that the product of the

elements of the null vector remain at a constant nonzero value

throughout the desired end-effector motion. However, as with

any extended Jacobian technique, algorithmic singularities can

limit the usefulness of such an approach [2], [5].

III. RELATIVE MANIPULABILITY INDICES

One shortcoming of the characterization given in Theorem 1

is that it does not say anything about the reduced performance

of the resulting manipulator other than determining whether

it would be in a singularity. There are a variety of kinematic

measures proposed to quantify the performance of a kinemati

cally redundant manipulator [1],[14]. These measures are often

used to define optimal operating configurations. One particular

measure is the manipulability index [27] defined as

The manipulability index is a nonnegative quantity that takes

on the value zero precisely at the singular configurations of

the robot. Configurations that result in a relatively large ma

nipulability index are usually considered to be good operating

configurations. However, the emphasis in this section will

be in determining configurations for which a joint failure

will not result in a small manipulability index. This work

investigates the fault tolerance of kinematically redundant

manipulators by examining the manipulability indices of the

reduced Jacobians i J relative to the manipulability index of

the original Jacobian. Configurations that result in a minimal

reduction of the manipulability index for any joint failure are

determined. Such configurations are locally fault tolerant in

the sense that the robot would not have a substantial reduction

in its manipulability index after a joint failure.

To pursue this approach, we define the i-th relative manip

ulability index ri to be the ratio of the reduced manipulability

(9)

(10)

(12)

n

det(JJT) = L[det(iJW
i=l

1The case where w( J) = 0 is considered in Section V.

n

(11)

where the summation is taken over the (:) subdeterminants of

J. For the case of a single degree of redundancy, this becomes

or

where the nonnegative scalar quantities ai represent some

weighting [21].

To determine the relative manipulability indices, one can

clearly calculate the reduced manipulability for each joint

failure and divide by the manipulability of the original manip

ulator. However, it is possible to determine this information

directly from a knowledge of the null space. This will first be

done for manipulators with a single degree of redundancy and

then generalized to the case of multiple degrees of redundancy.

The case of multiple failures will be considered in the next

section.

It is first noted that by the Binet-Cauchy Theorem,

(6)w(J) = Vdet( J JT).
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where once again Wi(J) = w(iJ). This gives a simple

relationship between the overall manipulability index and the

resulting manipulability indices due to a single joint failure.

This can be rewritten as

Equation (14) shows how the relative manipulability indices

are distributed and clearly illustrates that the overall fault

tolerance to all joint failures must be considered. In particular,

if r j = 1 for some joint j, then the manipulator's configuration

is fault intolerant with respect to any of the other joints. Once

again, this is the case illustrated in Fig. 2, where r1 = 1 and

r2 = r3 = O.
It is important to note that the relative manipulability indices

are intimately related to the null space of the Jacobian [7]. To

see this, first note that for manipulators with a single degree

of redundancy, a null vector nJ can be determined by using

3o
82

Fig. 3. A contour plot showing the minimum reduced manipulability index,
min(wil, for a planar 3R manipulator with equal link lengths. The boldface

line indicates the configurations that possess the optimal value of 1/v'3 for
the minimum relative manipulability index.

(15)

(13)

(14)

i=I,2,···,n

ri + ... + r~ = 1.

so that

where n; is the i-th component of n r. Equation (15) follows

from the Laplace expansion of the determinant, which, for the

special case of a 2 x 3 Jacobian, results in nJ being simply

the cross product of the two rows of J. By taking absolute

values of both sides of (15), one has

(16)

a planar 3R manipulator. If each link is of unit length, the

null vector is

(22)

one has

Optimally fault tolerant configurations have the property that

each component of (22) has the same magnitude. One can

show that this is equivalent to e2 + e3 = k»: These are

illustrated by the boldface lines in the contour plots of Fig. 3

and Fig. 4. It is important to note that the image of the surface

{ele 2 + e3 = (2k + 1}7r} is the unit circle [z] IIxll = I}

centered at the base in the workspace while the image of

the surface {e le 2 + e3 = 2k7r} is all of the workspace
except the open unit disk centered at the base, i.e., {z]I :s;
Ilxll :s; 3}. Thus a significant portion of the workspace can

be covered with the manipulator in an optimally fault tolerant

configuration. Note that (20) can also be used to calculate

optimal solutions to (9) and (10). In particular, the Jacobians

that maximize (9) are characterized by having a; In; I= aj Inj I
while the Jacobians that maximize (10) are characterized by

the null vector being a nonzero multiple of [a1 ±a2 ... ±an]T.
One can also consider the dynamics of a manipulator

experiencing a locked joint failure [15]. In this case, one

is interested in the dynamic manipulability index, J H- 1
,

where H is the moment of inertia matrix [28]. This will,

of course, modify the measure of failure tolerance for the

various manipulator configurations due to the effect of the

inertia matrix. Thus the relative dynamic manipulability will,

in general, differ from the relative kinematic manipulability, as

will the optimally failure tolerant configurations. However, it is

important to note that the failure intolerant configurations will

not be changed since they are strictly due to the singularities

(20)

(21)

(19)

(18)

(17)

i = 1,2," . , n.

which gives the result that

where ni is the i-th component of nJ. Hence the relative

manipulability indices are given by

The values of Inil and w(J) are given directly by the singular

value decomposition J = U~VT as Inil = IV;nl and w(J) =
0'10'2 ... 0'Tn where Vin is the (i, n) element of V. Thus

By letting nJ be the unit length null vector

Note that (19) implies Theorem 1. One can also conclude

from (20) that Jacobians for which the components of the

null vector nJ are of equal magnitude are optimal in terms of

maximizing the minimum relative manipulability index given

in (8). Consider the optimally fault tolerant configurations for
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IV. MULTIPLE JOINT FAILURES

It is possible that a configuration that is optimally fault

tolerant in the sense of (8) may not be fault tolerant for two

or more joint failures. For example, consider the Jacobian

Once again, one should not make the manipulator com

pletely fault tolerant to a particular failure unless it is known

which particular joint failure is imminent. By Theorem 2,

this would mean that IINil1 = 1. Due to the fact that V is

orthogonal, the norm of the i-th column of V[ would then be

oso that the i-th column of J is the zero vector. Hence, having

the manipulator in a configuration where there would be no

loss of manipulability after a failure in joint i means that joint

will not be able to contribute to the end-effector motion prior

to a failure. Optimal Jacobians would have similar null space

properties as before. For example, a Jacobian with the property

that each column of V{ is of equal norm is optimal in terms

of maximizing the minimum relative manipulability index (see

(8». Such a Jacobian will be said to have the optimal reduced

manipulability property.

Fig. 4. A contour plot showing the minimum relative manipulability index,
minf r.}, for a planar 3R manipulator with equal link lengths. The boldface

line indicates the configurations that possess the optimal value of 1/V3 for
the minimum relative manipulability index.

J = [~ o
1

-1

o (25)

where Ni is the i-th column of V{. Hence the relative

manipulability index ri is given by IINiIJ. Furthermore,

in i J. Thus if one is concerned with identifying a region in

the joint space that is guaranteed to not be failure intolerant,

one need only consider the kinematics [15].

The above results have been illustrated for manipulators

with a single degree of redundancy. These ideas can be easily

generalized to include multiple degrees of redundancy as the

following theorem shows.

Theorem 2: Let J be an m by n manipulator Jacobian of

full rank and let J = U~[VI v2 ]T be its SVD where V2 is

a matrix of n - m orthonormal n-dimensional vectors in the

null space of J. Then the manipulability index after a failure

of the z-th joint is given by

Proof See Appendix A.

Like the one-dimensional case, this theorem has a very

elegant physically intuitive interpretation. The magnitude of a

joint's contribution to the null space, i.e. IINill, is effectively

a measure of how much of the manipulator's total redundancy

resides in that particular joint. Thus the more redundancy

associated with a joint, the more tolerant the manipulator is to

a failure in that joint. It is important to note that the matrix

V2 from the SVD of J is not unique; however, the space

spanned by this matrix is unique and all possible V2 matrices

are related by orthogonal transformations. Since orthogonal

transformations are norm-preserving, the results of the theorem

are independent of the particular choice of V2 .

which is clearly fault tolerant to a single joint failure since

joint three duplicates the motion of joint one and joint four

duplicates the motion of joint two. A planar 4R manipulator

configuration that corresponds to this Jacobian is given in

Fig. 5(a). One can see that J maximizes its minimum relative

manipulability index since the columns of the matrix

V? = [~ ~ ~ 0] (26)
o V2 0 ~

are all of the same norm, thus satisfying the conditions of

Theorem 2. However, if the second and fourth joints both

fail, then the rank of the resulting Jacobian is one. Likewise,

failures of the first and third joints also result in a zero

manipulability index. Thus, while (25) is optimally fault

tolerant to single joint failures, it is not fault tolerant to

multiple failures.

In this section, conditions are derived for guaranteeing op

timal fault tolerance with respect to multiple failures. As with

the case of a single joint failure, the reduced manipulability

resulting from multiple joint failures can also be determined

from the SVD of 1. For the case of two joint failures in say

joints i and j, the manipulability index becomes

where <Pij denotes the angle between the vectors Ni and

Nj . Note that the effect of two failures on the reduction of

the original manipulability is not simply the product of the

individual joint failures. The manipulability will be reduced

by a factor that is the product of the magnitudes of Ni and

N j, i.e., the reduction due to considering the joint failures

individually, along with the magnitude of the sine of the angle

Wij(J) = w(J)VIINiI12I1NjI12 - (Ni . Nj )2

=w(J)IINiIIIINj III sin <Pijl (27)

(23)

(24)L:r? = n-m.

i=l
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(31)

o

1

1

V2
1

V2

One such V2 is

[-I 1

~I]
V{== V;

- 0
2

(30)1 -1 1 .
-

V22 2

Each column of (30) has length 1/V2 in order to guarantee

maximum worst-case manipulability for single joint failures,

and each column (or its reflection) is at an angle of 180/n ==
45 degrees from some other column in order to guarantee

maximum worst-case manipulability for two joint failures. Ob

viously, since there are only two degrees of redundancy, any

failure in three joints results in zero manipulability regardless

of V2 . An example of a Jacobian corresponding to the V2 in

(30) is given by

which is optimally fault tolerant in a worst-case sense with

respect to reduced manipulability for any set of joint failures.

A planar 4R manipulator configuration that corresponds to

this Jacobian is given in Fig. 5(b). It is important to note that

maximizing the angle between any two Ni and Nj can allow

one to also spread out the columns of the Jacobian so that for

any j i (or its reflection) there is a j j that is 45 degrees away.

This makes sense from a physical point of view since it makes

the velocity that any two joints can impart to the end effector

overlap as much as possible. The more the columns of J

overlap, the more other joints can compensate for a failed joint.

To quantify this qualitative description, note that like (26), any

single joint failure results in a reduced manipulability index

of w(J)/V2 so that 70.71% of the original manipulability

index is retained. However, for two joint failures, the reduced

manipulability index becomes either w(J)/2 or w(J)/(2V2),
which corresponds to retaining 50% or 35.36% of the original

manipulability, respecti vely.

Thus, (28) can be very useful for identifying configura

tions that optimize worst-case reduced manipulability in the

presence of possible joint failures. If two particular joints are

more likely to fail, then by (27), one may want to keep the

corresponding columns of vl orthogonal to each other. One

may especially want to do this when the failure of one joint

becomes more likely with the failure of the other. If statistical

data are known concerning the likelihood of the individual

joint failures, this could be used to modify the criterion for

optimal fault tolerance, e.g., maximizing the expected value

of the reduced manipulability.

V. DISCUSSION

This work has presented a local failure tolerance measure

that is based on the classic definition of dexterity given by

the manipulability index. The value of the manipulability

index following a locked joint failure is one useful metric for

determining the absolute amount of dexterity available. The

relative manipulability index was also introduced to provide a

measure of fault tolerance relative to the manipulability prior

(29)

" ,
"\

\

1
I
I

I
/

"'"
(b)

r;,,. .. ,i
n
_=(J) == 1.

" ,
"\

\

o

(a)

where Ni1,.,i
f

denotes the (n-m) x f matrix composed of the

columns of vl associated with the failed joints. Furthermore,

if the relative manipulability index ri, ,..,i
f
(J) is defined to

be Wi,,..,if(J)/W(J), then the following relationship holds

for n - m joint failures:

between Ni and Nj . Physically this makes sense, since the

angle between Ni and Nj is related to how much the end

effector motion due to joints i and j are correlated. If the

sine of the angle between these vectors is zero, then these two

joints not only contribute to the same direction of end-effector

motion, but they are also the only joints that contribute to this

particular direction (assuming a nonsingular J), thus resulting

in a zero value of reduced manipulability. This is exactly the

case illustrated by the Jacobian in (25) and its corresponding

null vectors given in (26). The general case for an arbitrary

number of joint failures is given by the following theorem

along with a relationship between the relative manipulability

indices.

Theorem 3: Suppose that a manipulator is in a nonsingular

configuration and that there are f <;; n - m distinct joint

failures occurring in joints iI, i2, ... , if. Then the reduced

manipulability index is given by

Fig. 5. Both of the planar 4R manipulator configurations shown are optimal
in terms of failure tolerance with respect to a single locked joint failure.

The configuration in (a), however, is intolerant to two locked joint failures if

either joints one and three or joints two and four fail. The configuration in
(b) is optimally failure tolerant with respect to any two locked joint failures.
Note that failure tolerance can be geometrically related to the degree that the
columns of the Jacobian overlap with each other.

Proof' See Appendix B.

Once again, it is important to note that all vl matrices for

a Jacobian differ only by a premultiplication of an orthogonal

matrix. Since any such premultiplication by an orthogonal

matrix preserves the inner product of the columns as well

as the column norms, (28) does not depend on the particular

choice of V2
T

.

Theorem 3 can be used for identifying and designing

configurations that are multi-fault tolerant. For example, using

(27) and some purely geometric arguments, one can choose

a V2 that is optimally fault tolerant to any two joint failures.
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where the (n - p)-vector N; is the z-th column of vl. Note

that (24) now becomes

Similarly, the relative constrained manipulabilty index for

the case of multiple failures has the same form as given in

Theorem 3 where Nil ,.··.i f is now an (n - p) x f matrix. Like

the nonsingular case, the relative constrained manipulability

index at a singularity gives an indication of how much further

dexterity is lost by locking a joint. In particular, when ri = 0,

deleting the z-th column of J results in reducing the rank of

to a failure. The relative index proved useful for gaining insight

into the distribution of redundancy throughout the joints.

However, it is important to emphasize that one should not use

the relative index by itself since if the original manipulability

index is small, then that configuration is probably not a

desirable operating configuration, even though it may be

optimal in terms of relative fault tolerance. This will be

illustrated through a specific example.

Consider the standard planar 3R manipulator with unit

length links. Contour plots for the minimum manipulability

index following a single locked joint failure are shown in

Fig. 3. Note that this measure is independent of fh. The

corresponding contour plots for the minimum relative ma

nipulability index are shown in Fig. 4. In comparing these

two plots, the immediate obvious feature is that the zeros

of these two functions coincide, as is expected, and that in

general, larger values of reduced manipulability correspond

to larger values of relative manipulability. However, it is

imperative to appreciate that this is not always the case.

For example, consider the optimal configurations in terms of

relative manipulability. These configurations are characterized

by lines of slope -1 that pass through the kinematically singular

configurations of the original manipulator, i.e., where f)2 and

f)3 are integer multiples of 1f (See Fig. 4). While the relative

manipulability stays constant at its maximum value of 1/J3,
the reduced manipulability index (see Fig. 3) varies from its

maximum to its minimum value along this line of configura

tions. Clearly, the optimal value of the relative manipulability

in these cases is a misleading indicator of the dexterity of the

manipulator configuration. A redundancy resolution scheme

that attempted to simply track the optimal value of the relative

manipulability would have no indication of the reduction in the

original manipulability and thus could inadvertently blunder

into a kinematically singular configuration.

Even though relative manipulability indices are not defined

at singularities due to w(J) being zero, one can extend the

definition using the concept of a "constrained manipulability

index." The constrained manipulability index can be defined

as the product of the p nonzero singular values of J, where p

is the rank of J. The i-th relative constrained manipulability

index r; can now be defined as the ratio of the constrained

manipulability index of ; J over the constrained manipulability

index of J. One can show that

(34)
[

V i ]

Ji - Wi

J by one. Physically, this means that locking the z-th joint

would result in a further reduction in the space of possible

local end-effector motions.

It is also important to note that a decrease in the mini

mum relative manipulability index does not inherently imply

a poorer level of failure tolerance. In particular, since the

sum of the squares of the relative manipulability indices are

constrained to be constant (see (24)), the minimum r; can be

decreased by simply increasing the reduced manipulability of

the other joints faster than that associated with the minimum

r i- Clearly, from a practical point of view, the resulting

Jacobian would have increased its intuitive measure of failure

tolerance.

where Wi is the orientational velocity and Vi is the linear

velocity at the end effector resulting from joint i. The units

of the resulting manipulator Jacobian are not homogeneous

so that an appropriate scaling of the rows associated with

the linear components must be performed before the ma

nipulability index is meaningful. There are many ways in

which to select this scale factor that, of course, must be in

units of inverse length. For example, in cases where the task

being performed imposes a preferred precision in linear versus

rotational errors then this scaling should be used so that least

squares solutions produce the desired results. In the absence

of task specific scalings, one can scale the linear velocity

components by the maximum reach of the manipulator, the

maximum singular value of the linear Jacobian, or by the

characteristic length [23]. Once scaled by an appropriate factor

whose units are of inverse length, column norms become

meaningful, as does the manipulability index. It should be

pointed out that when scaling the linear part of the manipulator

Jacobian by X, the manipulability index becomes ,).3 times

the manipulability index of the unscaled manipulator Jacobian.

Hence, as mentioned earlier, the relative manipulability indices

(7) are completely independent of whatever scaling is chosen

since they are ratios of manipulability indices and thus not

affected by this scaling.

As a specific example of applying the results of the previous

sections, consider a spatial manipulator consisting of seven ro

tational joints. By Theorem 2, a unit null vector corresponding

to an optimally failure tolerant Jacobian for this manipulator

VI. SPATIAL MANIPULATORS

The results developed in the previous sections are com

pletely general and can be applied to manipulators with an

arbitrary number of degrees of freedom. However, when

dealing with spatial manipulators one must be careful to

consider the implications of the manipulability index. This

section will comment on some of these issues and present

a specific example of how to calculate a manipulator Jacobian

that possesses an optimal relative manipulability index.

For a spatial manipulator, each column of the manipulator

Jacobian will consist of a twist denoted

(33)

(32)

n

Lr; =n-p.
;=1
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TABLE I

DENAV1T-HARTENBERG PARAMETERS FOR THE JACOBIAN IN (36)

a basis for utilizing manipulator redundancy in anticipation of

possible joint failures.

IS given by

The Denavit-Hartenberg parameters for a manipulator that is

in a configuration that possesses this optimal Jacobian can be

identified in a straightforward manner [11] and are given in

Table I.

(A2)

(AI)

_[U 0] [8 0] [vt]
I N - 0 I 0 I N

II

Theorem 2: Let J be an m by n manipulator Jacobian of

full rank and let J = Ul',[VI V2]T be its SVD where V2 is

a matrix of n - m orthonormal n-dimensional vectors in the

null space of J. Then the manipulability index after a failure

of the i-th joint is given by (23), where N i is the i-th column

of Vl. Hence the relative manipulability index r, is given by

IfNi II· Furthermore, (24) holds.

where we have used the fact that wiw2 = Is. We only need

to show that W 2 = V2 Q ; this follows from

V2Q = v2viw2 = w2wiw2 = W 2 . (A6)

where 8 = diag(O'I,'" ,O'm)' Clearly, the manipulability

index of ltv is

then w (J) = w (JN ).

Proof: Let J = tn: [VI V2]T be the SVD of J. Then

II

Lemma 2: Let V2 and W 2 be two n x 8 matrices (8< n),

each with the property that its columns are orthonormal. If the

column spaces of these two matrices are identical then there

exists a 8 X 8 orthogonal matrix Q such that W 2 = V2 Q .

Proof: Let VI be an n X (n - 8) matrix whose columns

are orthonormal and orthogonal to the columns of V2 . The

existence of such a matrix is guaranteed by the Gram-Schmidt

orthogonalization procedure. It then follows that [VI V2 ] and

[VI W 2] are n x n orthogonal matrices so that

v2vl = In - VIvt = W2WJ, (A4)

Let Q = vlW2 . Then the 8 X 8 matrix Q is orthogonal since

QTQ = wTv2vlw2 = wiw2wiw2 = Is (AS)

ApPENDIX A

PROOF OF THEOREM 2

Lemma 1: Let J be a full rank m X n matrix and N be

a matrix whose rows are orthonormal and orthogonal to the

rows of J. If

(38)

(37)

(35)11111

W( J) = 11.78.

1
Wi(J) = 4.452 = /7w(J)

i aj d, Cl'i OJ

1 0.3970 1.3170 1.2151 -2.7616

2 -1.3051 -2.4429 1.0699 1.4139

3 0.0262 1.3302 1.7002 -1.4640

4 -0.3970 -1.7480 1.2151 -0.4220

5 1.6172 0.0162 2.2981 1.6939

6 -0.1724 -2.0224 1.2552 -2.8837

7 1.0000 1.2279 0.0000 0.9543

VII. CONCLUSIONS

This article discussed two local measures of fault tolerance

based on the manipulability index as a measure of dexterity.

The reduced manipulability index was defined as the value

of the manipulability following a locked joint failure and the

relative manipulability index was defined to quantify the rela

tive loss of manipulability due to a joint failure. A convenient

method was developed for determining these measures from

the null space of the manipulator Jacobian. Using this result,

one can determine configurations that are locally optimal with

respect to these measures of fault tolerance. These results

impact the design of failure tolerant manipulators as well as the

design of their intended workspace. In addition, they provide

for all joint failures i where

1
nJ = /7[1

There is a whole family of manipulator Jacobians that have

this null vector. One particular example is (36), shown at

the bottom of the page. As required each column satisfies

the condition that the positional part is orthogonal to the

orientational part. Note that for this particular example the

norms of the linear velocity components are equal to the norms

of the rotational components. One can interpret this to mean

that each of the joint axes is constrained to be separated from

the end effector by a distance that is equal to the characteristic

length [23]. The reduced manipulability index is

1 -0.6839 -0.1534 0.9590 -0.4717 -0.3391 -0.3108

0 0.2330 -0.7082 -0.0417 0.4486 0.9365 -0.8682

J=
0 0.6914 -0.6891 0.2804 -0.7591 0.0896 0.3869

(36)
0 -0.6051 -0.9831 0.0417 0.7956 -0.1432 0.8942

1 0.3482 0.0387 -0.9576 -0.1547 -0.1455 -0.1291

0 -0.7159 0.1790 -0.2850 -0.5858 0.9789 0.4287
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Proof: Let N be an (n - m - 1) x n matrix whose rows

are orthonormal and orthogonal to the rows of J and whose

i-th column is the zero vector. The existence of such a matrix

is guaranteed by the fact that dim(ker( J)) = n - m. Let J N

be defined as in (Al). By Lemma 1

(A7)

Appendix A, one can assume that the null space component

of J has the form

r'
* * *

JV;r ~ 1 d2 (BI)

* *
0 dn - m *

Furthermore, because the i-th column of N is the zero vector,

the rows of iN are orthonormal and orthogonal to the rows

of i J so that

By Theorem 2, a failure in joint I results in a reduced

manipulability of WI(J) = Id1Iw(J). Since all but the first

component of the first column of V{ are zero, the matrix

Let it be the unit length null vector of J N. We have already

shown in the text (cf. (19» that the reduced manipulability for

the single degree of redundancy case is simply the product of

the original manipulability with the absolute value of the i-th

component of the unit length null vector. Thus,

is the null space component of I J. It then follows that a

failure in joint 2 results in a manipulability index Wl2 (J) =

Id2IwI(J) = Id1d2Iw(J). Continuing this process, one obtains

the result that

(B2)

* *
o 0 dn - m *

(A8)

(A9)

where ni denotes the i-th component of it. It then follows that
(B3)

for f S; n - m failures.
(AlO) Next, observe that for

It then follows from the theory of determinants that

Since Ni,,. ..,in_m is a square matrix, it follows that

(B4)

(B5)

(B6)

dl * *
0 d2

N 1,
*

",1 = 0 0 dj

0 0 0

0 0 0

[
*

TA T A d2

~
N1,...,jN1, ...,j =

0

dl *

,]0 d2

0 0

so that WI,. ..,j(J) = Vdet(Nr...jN1 ...j )w(J). Note that

orthogonal transformations preserve norms and inner products

so that the result holds for any representative V2 of the null

space.
Now consider (29). Suppose f = m - n. It was shown that

2 AT'
"i«. ..,in_m(J) = det(Nil, ...,in_mNi,,...,in_m)' (B7)

(All)

Now by Lemma 2, there exists an orthogonal matrix Q such

that

Since Q preserves norms, the norm of the i-th column of (All)

is equal to the norm of the i-th column of V{. Since the i-th

column of N is the zero vector, it follows that the norm of

the i-th column of (All) is Inil. Hence Inil = IINill, proving
the result.

To prove (24), note that ~i=l r; is the sum of the squares

of the magnitudes of Ni , which is also equal to the sum

of the squares of the magnitudes of the n - m columns of

V2 • Since each column of V2 has unit norm, it follows that

~i=l r; = n- m. •

ApPENDIX B

PROOF OF THEOREM 3

Theorem 3: Suppose that a manipulator is in a nonsingular

configuration and that there are f S; n - m distinct joint

failures occurring in joints iI, iz, ... , i i : Then the reduced

manipulability index is given by (28), where Ni,,. ..,ij de

notes the (n - m) x f matrix composed of the columns

of vl associated with the failed joints. Furthermore, if the

relative manipulability index Til , ... ,ij (J) is defined to be
Wi" ...,ij(J)/W(J), then the relationship for n - m joint
failures given by (29) holds.

Proof It is sufficient to prove the result for the case

where the failures occur in the first f joints; one can appropri

ately rearrange the columns of J if necessary. Furthermore, by

using a slight variation of the QR factorization and Lemma 2 of



552 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO.4, AUGUST 1996

Summing over the (n:::m) possible indices, one has

However, by the Binet-Cauchy Theorem, the right hand side

of (B9) is just the determinant of V[V2 = In - m , so
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