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A Local Neural Classifier for the Recognition of EEG
Patterns Associated to Mental Tasks
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Abstract—This paper proposes a novel and simple local neural from the physiological standpoifatFor instance, it has been
classifier for the recognition of mental tasks from on-line sponta- found that string musicians have larger somatosensory cortical
neous EEG signals. The proposed neural classifier recognizes threeareas associated to the fingers than average [8]. Also, it is well

mental tasks from on-line spontaneous EEG signals. Correct recog- known that there exists considerable variability in alpha fre-
nition is around 70%. This modest rate is largely compensated by y P

two properties, namely low percentage of wrong decisions (below duency between subjects (e.g., [9]). These few examples illus-
5%) and rapid responses (every 1/2 s). Interestingly, the neural trate that our exact cortical organization and dynamic are in-
classifier achieves this performance with a few units, normally just dividual and reflect our personal life experience. We bring the
one per mental task. Also, since the subject and his/her personal ;i 4iviquality principle still further in that every single subject

interface learn simultaneously from each other, subjects master it h the stratedies t dertake th tal task
rapidly (in a few days of moderate training). Finally, analysis of May CNOOSE e strategies to undertake those mental tasks (e.q.,

learned EEG patterns confirms that for a subject to operate satis- thinking on moving a finger, the hand, or the whole arm). In this
factorily a brain interface, the latter must fit the individual features ~ way, we believe firmly, users can regularly generate those EEG

of the former. patterns that are better distinguished by their personal BCI. In
Index Terms—Brain—computer interface, local neural classifier, Birbaumer’s and Wolpaw's approaches, subjects are also let at
spontaneous EEG activity. their own in what respect the selection of strategies to achieve

the desired EEG patterns.
BCls are based on the analysis of EEG phenomena associ-
ated to spontaneous mental activity. Thus, Birbauetex. [5]
VER the last years evidence has accumulated to sheweasure shifts of slow cortical potentials over the vertex. Other
the possibility to recognize a few mental tasks fromgroups look at local variations of EEG rhythms. Pfurtscheller’s
on-line EEG signals and have them associated to simpéam works with event-related desynchronization over sen-
commands such as “move cursor up” (e.g., [1]-[6]). Thisorimotor cortex at specific time intervals after the subject
alternative communication channel is called a brain—compuigrcommanded to undertake a mental task [2], [7]. Wolpaw
interface (BCI). Some groups—especially Wolpaw's [1] angnd coworkers focus on the sensorimotor cortex too, but they
Birbaumer's [5]—have demonstrated that some subjects aaeasure continuous changes of the mu and beta rhythms
learn to control their brain activity through appropriate trainingmplitude [1], [10]. We analyze also continuous variations of
in order to generate fixed EEG patterns that the BCI transfor/B&G rhythms, but not only over the sensorimotor cortex and
into external actions. Anderson’s approach [3] lies at the othen specific frequency bands. The reason is that a number of
extreme in that only the BCl is trained. We, as other teams—iieurocognitive studies has demonstrated that different mental
particular Pfurtscheller’s [7], but see also Penny and Robertasks activate local cortical areas at different extents (e.g.,
work [6]—adopt a broader approach based on a mutual learningagination of movements [11], [12]; subtractiéng13],
process whereby the user and the BCI are coupled and adag{; and cube rotation [15]). Our approach seeks to discover
to each other. individual EEG patterns for three mental tasks embedded in the
We buildindividual BCI. We cannot expect a classifier builtcontinuous EEG signal.
with EEG data from a few persons to generalize universally There is a large consensus that an efficient and practical BCI
across subjects since no two people are the same, especighiyuld exhibit the following properties: 1) high scores of cor-
rect recognition; 2) low percentage of wrong decisions to avoid
users’ frustration; and 3) rapid responses, on the order of a
Manuscript received October 6, 2000; revised December 14, 2001. TRECONd, to increase the bit rate of the communication channel. In
work was supported by the European ESPRIT Programme (LTR Projdbiis paper, we investigate different classifiers for the recognition
t2h861?n3ost/;i't)s-t;‘ésinzrg‘3§tr'% li?oﬁ)s(tteon%echvﬁggg. of a paper selected amoggmental tasks from on-line spontaneous EEG signals. It turns
J. del R. Millan, J. Mourifio, and M. Franzé are with ISIS, Joint Resear@Ut that, of these different classifiers we have explored, only
Centre of the EC, Ispra (VA), Italy.
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a simple kind of local neural network fulfills the requirements i E
above. This local neural classifier is embedded in a portable

BCI, called adaptive brain interface (ABI), which allows sub-
jects to operate brain-actuated devices such as a virtual key-
board, a computer game and a wheelchair (interested readers
may visit the site http://sta.jrc.it/abi for some details and illus-
trations of these applications).

mE® G @ed

P

(fo2)

(17)(e5)(e3) (e1) (62) (c2) () (c8) (38

Il. EXPERIMENTAL PROTOCOL

An obstacle to the deployment of BCI systems is the acqui-
sition of high-quality EEG signals outside shielded laboratory @ @ @ @>
settings by means of robust, easy-to-use equipment and a few
electrodes. To this end we have built a portable EEG system.

o1
EEG signals have been acquired using this portable system - Q
as well as a clinical equipment. In both, scalp electrodes are re- V
ferred to a linked-ear reference. The portable EEG system has

eight scalp electrodes, whereas the clinical system supports 5 1. Electrode montage. Al the signals are recorded with respect to a
ed-ear reference. The clinical system acquires EEG signals from all 26

. . Ij
scalp electrodes and six non-EEG channels. In part'CUIar' E|\4 ctrodes shown in the figure, while the portable system records only from

and EOG signals are recorded to confirm the absence of eleese eight indicated in gray.
tromyographic activity during the movement imagination tasks
and to detect ocular artifacts, res_p_ectwely. We have removaedd which task to undertake next. Each recording session lasts
EEG samples where muscular activity of the arms was detecteg. . . ; .
We have gathered data from eiaht voluntary vound subied out 5 min. In a day, subjects perform four recording sessions
9 9 y young J€GiRh a break of 5 to 10 min in between. For the training and

(flve males and three females) according to the followmg eXpe’hre'sting of the classifiers, the subject informs an operator of the
imental protocol. All subjects, except one, are right-handed.

: i .. task he/she is ready to perform next. Currently, this is done b
We want our experimental protocol to fit the real condition ylop Y y

. . : ronouncing aloud the name of the task (e.g., “cube” or “left”).
Ic? V‘.’Q'Ch USEers wouI(I:I w%rk. Thus, people o%era.trg a Cursy, o operator enters manually the corresponding label. Then we
e o e imove o th recording 2 s befre an 2. sfer eery
target is achieved, and want fast re;ponses and feedback %{’on to clean off the art!facts |nt.roduccled by this “communica-
T i |f and to reduce the risk of mislabeling.
means that the experimental protocol cannot depend on externa
events—i.e., decisions are spontaneous and self-paced.
Another critical aspect of the experimental protocol is the
set of mental taskgo recognize (and differentiate from each The sampling rates of the portable and clinical EEG systems
other). We utilize both cognitive tasks (e.g., arithmetic) anake 128 and 400 Hz, respectively. EEG potentials are recorded
motor-related ones (e.g., imagination of left-hand movementjom the electrodes shown in Fig. 1.
Tasks are chosen so that they activate cortical areas at differenthe main operation in the temporal domain isgatial fil-
extents, as mentioned in the previous section. The five mentaling whereby new potentials should represent better the cor-
tasks considered in this study are “relax,” imagination of “lefttical activity due only to local sources below the electrodes. In
and “right” hand movements, “cube rotation,” and “subtragarticular, we computesurface Laplacian (SLderivation [16]
tion.” The tasks consist on getting relax, imagining repetitivever the six centro-parietal electrodes C3, Cz, C4, P3, Pz, and
self-paced movements of the hand, visualizing a spinning culf&. After that, we apply a second-order 4—45 Hz bandpass But-
and performing successive elementary subtractions by a fixedworth filter. With the clinical EEG system the SL is computed
number (e.g.64 — 3 = 61,61 — 3 = 58,58 —3 =155, ...), re- globally by means of a spherical spline of order 2 [17], [18]
spectively. Relax is done with eyes closed, whereas the otlusing all 26 channels to minimize variance in the estimation. On
tasks are performed with eyes opened. The different expetie contrary, with the portable EEG system the SL is estimated
ments reported later aim at recognizing several combinationdaéally using a finite difference method that, for each position
two or three tasks. of interest, subtracts the mean activity at neighboring electrodes
As a baseline for these five tasks, we usedtierage esting (for details, see [10], [19]). The superiority of SL-transformed
patterncomputed over an initial period of 60 s. That is, whenver raw potentials for the operation of BCI has been demon-
the BCl is turned on a signal indicates to the subject to rematrated in different studies (e.g., [10], [20]).
with eyes opened but not undertaking any particular task. Then,The analyzed features are the power spectrum density
after 1 min, another signal tells the subject to start operating tbemponents (estimated withveelch periodogramof each SL
BCI. channel obtained and transformed in the following way. With
During a recording session, the subject is seated and spotite-portable EEG system, sequences are 1-s long and segments
neously concentrates on a mental task. The subject performsf 4/2 s are averaged. This gives a frequency resolution of 2 Hz.
task during 10 to 15 s, and he/she chooses when to stop doingy Hlann windowis applied to each segment, and the overlapping

e
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between the segments is 50%. Then, the power componentsvaith regularization methods, which favors simple models, and
transformed in dB and the values in the frequency band 8—8arly stopping.
Hz are normalized according to the total energy in that band.We have explored different types of local neural classifiers
Thus an EEG sample is represented by 72 features (6 chanseish as LVQ [25] and regularized RBF networks [26], [27].
times 12 components each). The periodogram, and henceHare, we will only describe a simple local neural classifier that
EEG sample, is computed every 1/2 s. With the conventiorethieves the best results and that is successfully used in the brain
EEG system, the length of the sequences and segments amgteétfaces of all the users we have worked with.
and 1 s, respectively. In this case, the frequency resolution is 1n our local neural classifier, every unit represents a prototype
Hz and EEG samples have 138 features (six channels timeso2®ne of the mental tasks (or classes) to be recognized. The
components each). challenge is to find the appropriate position of the prototypes
Finally, it is worth noting that, for our experimental protocoljn the high-dimensional input space described above in order to
periodogram features lead to better or similar performances thdiffierentiate the desired classes. The basic idea is that, during
more elaborated features such as parameters of autoregredsaming, units are pulled toward the EEG samples of the mental
(AR) models and wavelets [21]. task they represent and are pushed away from EEG samples of
other tasks.
IV, NEURAL CLASSIFIERS Ina statistical_ framework, the discriminant function of class
) C,, for samplez is

A. Linear Classifiers P
x . .
Initially, we have explored the use of two kinds of linear yr(z) = P(Cy | z) = pp’(‘—x)"

classifiers for the recognition of mental tasks. The first classi-

fier is the ngl—known Fisher I!near discriminapt [_22], Whereaﬁ/hereP(Ok|x) is the posterior probability of clagsy,, P(Cy,)
the second is base_d on the S|gnal space projection (SSP_)_a[ggqoteS the prior probability of class,, and p(z|Cy) is the
rithm [23]. In a previous study, it was found that SSP classifiefgass-conditional probability density function efgiven that it
achieve significantly better recognition rates than Fisher C|aS§lelongs to clas€’,. Assuming that each class-conditional den-
fiers [24]. Thus, in the sequel we skip any discussion on Fishggy function is taken to be an independent normal distribution,

linear discriminant analysis. equal prior class probabilities and dropping constant terms, then
In the SSP method, givem vectors ofn-dimensional “pat-

terns”(ﬁl, Sa, ..., Sp), thep components of the “activation” |12 exp(_l/g(jj — uk)TE,Zl(w — uk))

vector A(t) = STM(t) weight the presence of each pattern in yr(e) = 2

M(t), then-dimensional feature vector computed from the in- > IE 7 2 exp(—1/2(x — 1) TET (2 — 1)

coming EEG signalsSt is the pseudoinverse of the projection g=1 (1)

matrix S whose columns are the patteifts , So, ..., S,).

SSP is similar to princioal " Vs d rel tW ereuy, is the prototype (mean) of class., X is the covari-
IS Simifar to principal component analysis and refateQ o iy of clas€’;,, and NV, is the number of classes to be

methods in that p_atterrﬁ can be estimated directly from data, . gnized. This is essentially a Bayesian classifier based on
However, contrarily to those methods, SSPs patterns do not naﬁ dratic discriminant analysig22]
to be orthogonal. In particular, each pattétns estimated as the In practice, a sample is assigr;ed to the clégswith the

averageof the available training data for thith mental task. Al- nearest prototype based on fahalanobisdistance provided

ternatively, a SSP classifier can consist of several patterns (.:Otmitm is greater than a given probability threshold; otherwise

response is “unknown” to avoid making risky decisions for

maps (SOM) [2.5].' In this case, pattems of given mental task YFicertain samples. In the experiments below, the probability
obtained by training a SOM on samples of that task only. threshold is set to 0.9

A given EEG sample/(¢) is classified into thath mental To estimate the initial values of the units (i.e., the posijign

ta}sk when this is the Componem of the vectft) with the and the receptive fieltl;) we can use the maximum likelihood
highest value. Even though this is probably the most eIemen%ﬁproaCh

SSP-based classifier, the results achieved are quite promising.

1
B. Nonlinear Classifiers = 5 > )
-
SSP classifiers do not exploit class information during "J’\‘Tkl
training. In this section, we analyze compact and local neural D 1 n n T
. X ' ; =— xp — ) (xy — pk 3
networks trained in a supervised manner. » Ny, nz::l( b ) k) 3

Of the many multilayer perceptron (MLP) architectures we
have tried, the strongest classifier is a ten-member commiti@bereN;, denotes the number of training samples belonging to
trained with early stopping. All the member networks have the classCy andz} is thenth sample of the clas§’ in the
single hidden layer made of ten units and one output lay#mining set.
where the output units (one per mental task) have a lineatWe can go further and try to improve these initial estimations
transfer function. The response of the committee is the averagpeatively. First, we optimize the position of the prototypes of
of the members’ output. The problem of overfitting is foughthe different classes to minimize the mean square error through
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gradient descent. Assuming diagonal covariance mattittesn TABLE |

n i i i GENERALIZATION RATES OF SSP QASSIFIERS FORRIGHT-HAND AND
for every samplec in the training ety Is Updated by LEFT-HAND MOVEMENT IMAGINATION TASKS WITH THE CLINICAL EEG

1 SYSTEM. IN THIS CASE, THE INPUT TO THECLASSIFIERIS A VECTORWITH 138
Apge = afti(z"™) —yp(z™)] 20 (2™ — pr)yr(x™)y; (™) (4)  COMPONENTS 75%OF THE AVAILABLE EEG SAMPLES ARE USED TOTRAIN
THE CLASSIFIER AND THE REMAINING 25%TO TEST THE GENERALIZATION

- , - C S AND THUS THE SUBJECTS PERFORMANC
whereq is the learning ratet;, is the kth component of the APABILITIES AND THUS THE SUBJECTS FERFORMANCE

target vector in the form 1-of; . is the posterior probability of Type| # Units | Subject | Right | Left | Total

classC;, given by (1), andj; is the pr(_)bab|I|ty of the remaining 1 cL | 89% | 53% | 71%

cla_sses. Secpnd, after every |terat|pn over the training set, we . i M| 75% | ss% | esv
estimate again the new value Bf, using (3). &

. . 5 1 RA | 80% | 60% | 70%

Finally, in the case that the classes have several prototypes, z . . .
then only the nearest prototype of a class is used for computing ! RB | 84% | 57% | 73%
age . 0, )

the probability of that class and for learning. These prototypes ! TA |100% | 61% | 81%

can be initially estimated with any clustering algorithm such as - 4 CL | 78% | 67% | 72%

SOM [25]. 2 4 Ml | 60% | 60% | 60%

*2? 2 RA | 86% | 71% | 79%

V. EXPERIMENTAL RESULTS g 2 RB | 70% | 57% | 59%

2 TA [ 100% | 67% | 83%

Initial experiments were done without feedback and subjects’
performance was analyzed off-line—i.e., learning and testing
the classifiers on EEG data previously recorded. The purpose of TABLE I
th . ts was to investigate the limits of the neural classi- GENERALIZATION RATES OF THELOCAL NEURAL CLASSIFIERS FOR

i € experlmen . i g o LEFT-HAND AND RIGHT-HAND MOVEMENT IMAGINATION TASKS FOR
fier. After assessing off-line the validity of the local neural clas- SussecTsUsING THE CLINICAL EEG SYSTEM. FIGURES IN BRACKETS
S|f|erS, a Second group Of experlments |nvest|gated m'eil'ne INDICATE DIFFERENCE INPERFORMANCEWITH RESPECT TO THEBEST SSP

. . . . CLASSIFIER FOR THECORRESPONDINGSUBJECT (SEE TABLE |
performance. To this end, three subjects were trained in the pres- ( )

ence of feedback for a few consecutive days (from three to five). Confusion Matrix (%)] o; X
One of the subjects, MJ, participated in all the experiments. # Units | Subject ; o Correct | % Wrong
i ; Left Right | Responses | Responses
Feedback is provided by means of several colored buttons, o o 1
one for each mental task to be recognized. A button lights up 1 CL _et 0 0 85 (+13)| 15 (-13)
when the arriving EEG sample is classified as belonging to the Right| 20 80
corresponding mental task. Training is done as follows. The first 4 My | Left ] 8010 g sy | 10 (28
day, the subject does not receive any feedback. With the EEG Right] 10 80
data recorded this day, we train off-line his/her first individual | Ra | Left] 63 12| oo b o s
neural classifier. This neural classifier is then embedded in the Right| 0 88
BClI that is operated the following day. Again, the second indi- Left | 71 14
. O . : ] RB 76 (+3)| 12 (-15)
vidual classifier is tuned with the EEG data recorded this second Right| 10 80
day; this classifier is used the third day, and so on. Left | 78 1
Initial experiments aimed at differentiating the two motor-re- ! TA et | 11 go | B 0O IO

lated mental tasks from each other (i.e., imagination of left and

right movements) with the clinical EEG system. To this end, five - ) ) )
subjects (three males and two females) participated in a sin§fgP classifiers recognize quite well the right movement task for

recording session and data were evaluated off-line. This was fHefive subjects (from 75% to 100%), but perform poorly for
first time subjects used the system, and so they did not recei(g left movement task (from 53% to 61%). On the other hand,
any feedback. After assessing the feasibility of the approa¢h® SOM-based SSP classifiers do not recognize the right move-
we proceeded to the recognition of three mental tasks with tHEENt task as well as the basic classifiers. But their performances
portable EEG system. In this case, four subjects (three mafdkthis task are still satisfactory for three of the subjects (from
and one female) were trained either without or in the present8% to 100%) and, more importantly, the recognition rates of
of feedback. The purpose of the experiments without feedbdé¥ 1eft movement task increase considerably (they range now
was to investigate the limits of the neural classifier. in between 57% and 71%). Thus the SOM-based SSP classi-
Table | reports the generalization results for the five sul§ers are to be preferred for they provide a more balanced recog-

jects obtained with the basic SSP classifier (i.e., one pattern péfon. In addition, it is worth noting that these classifiers reach
mental task estimated as the average of the training data) andtffdr best results with a surprisingly small number of spatial pat-
best SOM-based SSP classifier (i.e., the classifier madeca,  t€NS (either two or four for each mental task). Nevertheless, the
patterns estimated with the SOM algorithm that has the best peR2M-based classifiers achieve more than 75% correct recogni-
formance, withn andm ranging from one to five). The basiction for the combined task only for two of the subjects, for one
other is close to that figure, and for the remaining two are quite
3We could have used the full covariance matrices. However, there exist tygy

strong reasons not to do so. First, a very large number of samples is required tc1_ ble 1| ts th f fthe | | | cl .
estimate the full matrices accurately. Second, their manipulation is very costly aple Il reports the performance o € local neural classi-

computationally and may prevent real-time operation of the BCI. fier for the subjects using the clinical EEG system. Compared
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TABLE Il

GENERALIZATION RATES OF THELOCAL NEURAL CLASSIFIERS FORRELAX,

LEFT-HAND AND RIGHT-HAND MOVEMENT IMAGINATION TASKS FORTWO OF

THE SUBJECTSUSING THE PORTABLE EEG SrSTEM TRAINED WITHOUT
FEEDBACK. IN THIS CASE, THE INPUT TO THE NEURAL CLASSIFIER IS A
VECTORWITH 72 COMPONENTS

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 3, MAY 2002

imagined movement and left-hand imagined movement. The
most appealing feature of these classifiers is the low percentage
of wrong responses, 5% for MJR and even 0% for MJ. This ex-
cellent property does not come for free; the price to pay is a
modest percentage of correct recognition for the tasks left-hand

C . — and right-hand movement imagination. Nevertheless, this does
# Units | Subject onfusion Matrix (%) _J % Correct | % Wrong ¢ hreclyde its practical operation, as the neural classifier is em-
! Relax Left Right | Responses | Responses precl p p n,
bedded in a BCI that makes decisions every 1/2 s. Thus, recog-
Relax| 100 0 0 nition of movement imagination tasks takes 1.5 s in average for
2 Ml Left | 0 42 0 52 0 subject MJ and 1 s for subject MJR. As for the previous sub-
Right| 0 0 36 jects, the neural classifiers have a surprisingly small number of
Relax | 92 0 0 units per mental task.
! MIR | Left | 0 51 5 63 5 Once we have assessed the validity of the local neural
Right | 0 9 56 classifiersoff-line—i.e., learning and testing the classifiers on
EEG data previously recorded—we proceed to investigate their
TABLE IV on-line performance. To this end, three subjects have been

ON-LINE CLASSIFICATION PERFORMANCE FORTHREE SUBJECTS AT THEEND
OF SEVERAL CONSECUTIVE DAYS OF TRAINING WITH FEEDBACK USING THE
PORTABLE EEG S/STEM

trained in the presence of feedback with the portable system for
a few consecutive days (from three to five). One of the subjects
is again MJ, whereas the other two had no experience with
BCI before starting their training. In addition, subject CGS is

Last Day of Confusion Matrix (% .
# Units o ) éyo Subject onfusion Matrix °? left-handed. Table IV summarizes the performance of these
Training Relax Left Right :
subjects.
Relax | 1000 0 Figs. 2 and 3 show the on-line performance of subjects
! 3 MIop Left ) 0572 MJ and CGS over time, respectively. Subject MJ achieves
Right| 0 9 52 recognition rates of 100%, 57%, and 52%—for relax, left-hand
Relax | 93 0 movement, and right-hand movement, respectively—whereas
! 5 CGS | Left 61 6 the wrong responses are just 0%, 2% and 9%. MJ’s decrease in
Right 85 performance in the first day with respect to his previous level
Relax | 76 1 (Table 1) can be due to two reasons. First, the subject did not
| 4 Mc | Left u 6 practice the mental tasks between the two sessions. Second,
Right| 0 9 21 he reported that, the first day, he was slightly disturbed by the

feedback he was receiving. Nevertheless, MJ improves almost
linearly his performance well over his previous level in only
with results in Table |, this local classifier clearly outperformghree days. Subject CGS achieves a more impressive control of
the SSP classifiers. Column “Correct Responses” (percentdye BCI. After just five days of moderate training he achieves
of correct combined responses) shows that the local neural rresognition rates of 93%, 61% and 85%—for relax, left-hand
work performs much better for three out of five subjects, equalijovement and right-hand movement, respectively—whereas
for one other and slightly worse for the remaining subject. Ftine wrong responses are only 0%, 6% and 4%. However, being
all five subjects the local neural classifiers achieve more th#e first time CGS works with a BCI, the evolution of his
75% correct recognition, and for three of them generalizationperformance is not linear as for MJ.
even over 80%. But the clearest evidence in improvement come#s for the third subject trained with feedback, MC only
from the column “Wrong Responses.” The local neural classichieved discrete on-line performance. On the fourth day
fier makes much less errors than the SSP classifiers for all thietraining, MC reached recognition rates of 76%, 24% and
subjects. For instance, for subject RA—who achieves 79% c@1%—for relax, left-hand movement and right-hand move-
rect recognition with the SOM-based SSP classifier and 75%ent, respectively—whereas wrong responses were 1%, 6%
with the local network—wrong responses decrease from 21%and 9%. However, based on the evolution of the other two
only 6%. This is extremely important from a practical point oubjects, we think that these figures should greatly improve
view. However, the percentage of wrong responses is higher thaith a few more training days. Unfortunately, MC could not
desirable (in between 10% and 15% in most cases) although sigme additional days in a row and since the experiments aimed
nificantly less than the complementary to correct recognitidn investigate how long it takes a subject to master the BCI, we
figures (except for one of the subjects). It is worth noting thatecided not to continue weeks after.
these generalization results are obtained with only one unit pefTo end this section, we explore the possibility of building a
mental task in all cases. Thus a neural classifier consists of jB&E| based on the recognition of motor-related tasks versus cog-
two units. nitive tasks. Table V reports the generalization results for sub-
Table Il gives the generalization results for two of the subect MJ when using relax, cognitive, and motor-related mental
jects using the portable EEG system trained without feedbat&sks. As motor-related task we have chosen left-hand move-
These results show the first two successful implementationsroént imagination, the task for which MJ achieves better results.
BClI's recognizing three mental tasks, namely relax, right-hamds cognitive task we have explored both subtraction and cube
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Performance (%)

Fig. 2. Evolution of the on-line classification performance for subject MJ over three consecutive days. Solid lines represent the percentateegbgmition
for the corresponding task, whereas dashed lines represent the percentage of wrong recognition.

Performance (%)

Fig. 3. Evolution of the on-line classification performance for subject CGS over five consecutive days. Solid lines represent the percenésgesafogpition

for the corresponding task, whereas dashed lines represent the percentage of wrong recognition. This subject did not have any previous #xpeidreforei
this experiment.

rotation. Then, we have built two classifiers, the first based dion of many single responses, which are either added up until
the three tasks relax-subtraction-left and the second on the tastee threshold is reached [1], [10] or averaged and the result
relax-cube-left. As shown in the table, both classifiers perforoompared to some thresholds [5]. On the other hand, the BCI
exceptionally well. Indeed, they achieve over 90% of correo¢sponds to single EEG samples (or single-trial EEG), which
recognition on the combined task, while keeping the wrong reither are generated in response to external events and recorded
sponses below 2%. only at specific times [2], [7] or are recorded continuously [3],
[6] and even generated in a self-paced manner [4]. In this paper,
VI. CONCLUSION we have followed the latter approach that, in principle, is more

flexible—compared to event-related settings—and should allow
BCI systems evaluate subjects’ performance in two differefaster responses—compared to making decisions only at the end

ways. On the one hand, performance is measured as a combafa period of time. On the other hand, it is true that achieving
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TABLE V L
GENERALIZATION RATES OF THELOCAL NEURAL CLASSIFIERS FORSUBJECT | i o p e L Funa:
MJ WHEN USING THE PORTABLE EEG SYSTEM AND CONCENTRATING ON
RELAX, A MOTOR-RELATED TASK (LEFT-HAND MOVEMENT) AND A
COGNITIVE MENTAL TASK (EITHER SUBTRACTION OR CUBE ROTATION). IN ﬂ
BOTH CASES THERE ISONLY 1 UNIT PER MENTAL TASK
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- S——— |
-

Confusion Matrix (%)

Relax Subtr. Left Relax Cube Left s W AR AR A AL
L] . N W o % it 1R
Relax [ 95 0 0 |Relax| 95 0 0 B
Subtr. | 1 86 3 |Cube| 1 89 1 }
gy ewws Frewd waesd ewss
Left | 0 1 90 | Left | © 0 96 L e b - -
T r ¥ A
performances near to 100% correct responses is far more diffi i { i |
. . . ||
cult with our approach, especially if more than two mental tasks | I
are to be recognized. However, the fact that the task is more dif e '.@ FAAR WmEAE aw =
ficult does not imply that it is impossible to develop practical ;
brain-actuated devices or to scale up the number of mental task - i ,i" — & 5 =
As discussed below, an operational BCI does not require per = [ | [ Ir T | i)
fect recognition, but only a considerably low level of errors and | .., f , M,
quick response times. Furthermore, to the best of our knowledg: i " | A AW AN

this is the only approach where more than two mental tasks hav o= | |-/ o J 3
been reliably recognized. LR LR BRIE § I“'i“ AR 'rrri'-n.
Experimental results show that the proposed local neura Fr——— e ey e T
classifier achieves recognition rates of 70% (or more) for three _::r' i |
mental tasks from on-line spontaneous EEG signals. This £ 2 7 | i 1 |
figure is more than twice random classification, which for three a " ONVEE WY |
L]

|

- 1

P i o ,
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|

tasks is 33.3%. This modest rate is largely compensated b
two properties: wrong responses are below 5% and it make:
decisions every 1/2 s. The first property implies that recognition
is quiterobustsince the neural classifier hardly takes one class
for another. This is extremely important for the user to accept &
BCI as a reliable system. From the second property it follows _
that recognition takes 1 s in average, thus allowing the BCI i - F R RS L BT
to respond quickly. It is worth noting that these results are
obtained with only one unit per mental task in all cases. This
simplicity of the neural architecture makes our BCI very well .
suited for real-time operation. o
For the sake of comparison, the performances of the MLP ﬁ g
committee (ten networks with ten hidden units each), the LVQ el f f
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network (16 codebooks per class for a total of 48 units) and the : FEE LR EE
RBF network (48 units too) for subject MJ when trained with "EEE T TRE 1 o ™
feedback are similar and slightly below 70% of correct classifi- = |\ | [Rd A ®e LW WL PR

cation. This recognition rate is similar to that of the new local k.o - [*
classifier described in this paper (Fig. 2 and Table 1V). However, 4l i
the latter classifier just makes 4% of wrong decisions whereas = sal____
the misclassification rates of the former rise to 30%. In addition, E
these MLP, LVQ, and RBF networks utilized substantially more = @
computational resources than the new local neural classifier. i'“
To the best of our knowledge, only Pfurtscheller's group has £
tried the recognition of three mental tasks. In [7] they achieved
off-line classification rates in between 84% and 94% for three
subjects who performed actual movements of their limbs. In [2]
they attempted on-line recognition while four subjects imaginétp- 4. Prototypes learned for subjects MJ, CGS and MJR, from top to bottom.
movements of their limbs, obtaining 45% of correct classifica-
tion and 30% of wrong responses. These results were obtaitiates, namely every 10 s or more. In this paper, we report sat-
with a BCl that responded to EEG samples recorded at specifitactory on-line, continuous recognition of three mental tasks,
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namely 70% (or more) of correct classification and 5% (or less)[7]
of wrong responses.

Most groups have limited to use MLPs to build adaptive EEG- (g
based classifiers (e.qg., [3], [6]). We have also investigated their
use [21], but our results clearly indicate that local neural classi—[gl
fiers—i.e., classifiers made of prototypes associated to the dif-
ferent mental tasks—are to be preferred. Pfurtscheller's group
has also explored local neural classifiers [2] based on LVQ. W&
have explored different types of local neural classifiers such as
LVQ and RBF networks. The novel and simple local neural clasf11]
sifier reported in this paper performs better than all the others
for our experimental protocol and has made possible to develgg,
individual BCI for all eight subjects we have worked with de-
spite the short training time of most of them. Indeed, since thé'3!
user and his/her personal BCI learn simultaneously from each
other, subjects master it rapidly. This portable BCl is being use¢4]
to operate some brain-actuated devices (see Introduction).

Analysis of learned EEG patterns confirms that for a subjec[( ]
to operate satisfactorily a BCI, the latter must fit the individual
features of the former. This confirms that building individual in- (16!
terfaces greatly increases the likelihood of success. Fig. 4 clearly
illustrates this claim. It shows the learned prototypes (or patf7]
terns) for three of the subjects who master the three mental tasks
relax, left and right movementimagination. Briefly, there hardly|;g
exist features shared by these subjects. The same holds for the
remaining subjects. [19]

The work described here is being extended along two dirego
tions. The first one is the recognition of a larger set of EEG
patterns. Initial results suggest that it is feasible to distinguish
five mental tasks at the same levels of recognition reported ifpy)
this paper for three mental tasks. The second area of current in-
vestigation is the incorporation of temporal information in order
to improve the recognition rates. In particular, a previous study,y
with off-line EEG signals confirms that an artificial neural net-
work distinguishes EEG patterns better if it uses the tempora{??’]
dynamics of brain activity [28]. This is not surprising since
EEG signals carry temporal information. Ongoing research i§4]
exploring the use of time-delay approaches—i.e., the response
of the neural classifier is based on the current as well as several
previous feature vectors—and recurrent networks. (25]

[26]
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