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In Tate’s thesis [30], Hecke L-functions are studied by means of the local
integrals

ζ(s, ν, f) =
∫
F

f(x) ν(x) |x|s d×x,

wheref is an element of the Schwartz spaceS(F ) on a local fieldF , and
ν is a character ofF×. Weil [35] defined a representationω = ωψ of the

metaplectic group̃SL(2, F ) onS(F ). We consider the restriction ofω to the
special orthogonal groupSO(2)of S̃L(2, F ), corresponding to the quadratic
form x2 + y2. If −1 is not a square inF , this representation is multiplicity
free, andS(F ) decomposes into a direct sum of one-dimensional invariant
subspaces. TheLocal Riemann Hypothesisis the assertion that iff lies in
one of these spaces, then the zeros of the local integralζ(s, ν, f) lie on the
line re(s) = 1

2 . (We refer to the text for the correct statement if−1 is a
square.) This is proved in a substantial number of cases, in this paper and
its companion piece by Kurlberg [19].

If F = R, we will prove an extension of this result to the harmonic
oscillator inn-dimensions. This result may be formulated in a way that
makes sense over ap-adic field, though we have not investigated this yet.
In this connection, we also have areciprocity lawfor the values at negative
integers of the Laguerre polynomials, and a geometrical interpretation of
these values.
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We will also state a certain conjecture, that if the spherical Whittaker
function of a spherical representation ofGL(n,R) which is a functorial lift
from GL(2,R) vanishes anywhere on the group, then the representation
is tempered. This generalizes a theorem of Pólya on the zeros of Bessel
functions.

We would like to thank Antonia Bluher, David Cardon, Paul Cohen,
Steve Kudla, Dipendra Prasad, Steve Rallis, Karl Rumelhart, Tonghai Yang
and Steve Zelditch for useful conversations or communications. We partic-
ularly thank Jeffrey Hoffstein and Eugene Ng for helping to investigate this
problem. This work was supported by grants from the NSF, DMS-9622556
(Vaaler) and DMS-9531957 (Bump).

1. The zeros of the Mellin transforms of Hermite polynomials

For the quantum mechanical harmonic oscillator see Weyl [36], and Cartier
[7].

We recall the result of Bump and Ng [5], showing that the Mellin trans-
forms of the Hermite functions have their zeros on the line re(s) = 1

2 . (At
first Bump and Ng considered the case ofHn withneven, and Vaaler pointed
out that the casen odd could be added.)

Our normalizations will be different than in [5]. Let

fn(x) = 2−n/2Hn(
√

2π x) e−πx
2
,

where the Hermite polynomials are defined by

Hn(x) = (−1)n ex
2 dn

dxn
e−x

2
.

Thefn are the eigenfunctions of the Hamiltonianx2 − 1
4π2

d2

dx2 of the quan-
tum mechanical harmonic oscillator. That is, they satisfy the Schrödinger
equation (

x2 − 1
4π2

d2

dx2

)
fn =

2n+ 1
2π

fn.

Define polynomialspn by

Mn(s) =

{
π−s/2 Γ

(
s
2

)
pn(s) if n is even;

π−(s+1)/2 Γ
(
s+1
2

) √
2π pn(s) if n is odd.

where the Mellin transform

Mn(s) =

∞∫
0

fn(x)xs
dx

x
.
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We have

fn+1(x) =
(√

2π x− 1√
2π

d

dx

)
fn(x),

and consequently, integrating by parts, we have

Mn+1(s) =
√

2πMn(s+ 1) +
s− 1√

2π
Mn(s− 1).

This implies that

pn+1(s) =

{
pn(s+ 1) + pn(s− 1) if n is even;

s pn(s+ 1) + (s− 1) pn(s− 1) if n is odd.

The polynomialspn have certain properties in common with the Riemann
zeta function. We have the functional equation

pn(1 − s) =

{
pn(s) if n ≡ 0, 1 mod4;

−pn(s) if n ≡ 2, 3 mod4.

Moreover

Theorem 1.The zeros ofpn lie on the linere(s) = 1
2 .

We give two proofs of this. Another proof may be found in Bump and Ng
[5].

First proof.We recall a familiar classical fact, thatorthogonal polymomials
have real zeros.More precisely, letµ be a positive Borel measure onR, and
assume thatµ is not supported on any finite set. We may apply Gram-Schmidt
process to the sequence{1, x, x2, · · · } and obtain a sequence of polynomials
P0, P1, P2, · · · such that the degree ofPn is n, which are orthogonal with
respect toµ. The zeros of these are real and simple. Indeed, after multiplying
the polynomialsPn by suitable constants, they’ll have real coefficients. If
r1, · · · , rk are the zeros ofPn which have odd multiplicity, ifk < n we
could expandQ(x) =

∏
i(x − ri) in terms ofPi with i < n, soQ would

be orthogonal toPn; but patentlyQPn ≥ 0, so this is a contradiction.
Let us show that the polynomialsp2n

(1
2 + it

)
form an orthogonal fam-

ily with respect to a suitable measure. Indeed, the even Hermite functions
f2n are eigenfunctions of a self-adjoint differential operator (the oscilla-
tor Hamiltonian), so they form an orthogonal family on the half-lineR+,
which we parametrize exponentially. Thus, consider the functionsφn(x) =
f2n(e2πx) eπx. These are orthogonal with respect to Lebesgue measure on
R. The Fourier transform ofφn is 2πM2n

(1
2 + it

)
, so by the Plancherel

theorem these are orthogonal:∫ ∞

−∞
M2n

(1
2 + it

)
M2m

(1
2 + it

)
dt = 0
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if m 6= n. Thus the polynomialsp2n
(1

2 + it
)

form an orthonormal family,
with respect to the measure|Γ (1

4 + it
2

)|2 dt.
Similarly, the polynomialsp2n+1 are orthogonal with respect to|Γ (3

4 +
it
2

)|2 dt. They must therefore all have real zeros. 2

Second proof.Letf be an eigenfunction of the oscillator Hamiltonian. Thus,
f satisfies the Schrödinger equation(

x2 − 1
4π2

d2

dx2

)
f =

λ

2π
f

for some value ofλ. Define the Mellin transform

M(s) =

∞∫
0

f(x)xs
dx

x
.

Integrating the above Schrödinger equation by parts gives

M(s+ 2) − 1
4π2 (s− 1) (s− 2)M(s− 2) =

λ

2π
M(s).

We have either

M(s) =

{
π−s/2 Γ

(
s
2

)
p(s) or

π−(s+1)/2 Γ
(
s+1
2

) √
2π p(s),

with p(s) a polynomial, according aŝf = ±f or f̂ = ±if (i.e., according
asf = fn with n even orn odd.) We have therefore either

λ p(s) = s p(s+ 2) − (s− 1) p(s− 2),

or
λ p(s) = (s+ 1) p(s+ 2) − (s− 2) p(s− 2).

The situation will be more symmetrical if we make the substitutionq(s) =
p
(
s + 1

2

)
. Thus, we wish to show the zeros ofq are purely imaginary, and

we have
λ q(s) = (s+ a) q(s+ 2) − (s− a) q(s− 2),

with a = 1
2 or a = 3

2 . The theorem now follows from the following

Lemma. Let q(s) be a polynomial, and assume that the zeros ofq(s) lie in
the closed strip{re(s) ∈ [−c, c]} with c > 0. Then ifa > 0, the zeros of

r(s) = (s+ a) q(s+ 2) − (s− a) q(s− 2)

lie in the open strip{re(s) ∈ (−c, c)}.
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To prove this, suppose that re(s) ≥ c, yet r(s) = 0. We will obtain a
contradiction. (The case re(s) ≤ −c may be handled similarly.) Letq(s) =
c
∏
i=1(s− ri). If r(s) = 0, then

|(s+ a) q(s+ 2)| = |(s− a) q(s− 2)|,

so

|s+ a|
∏

|s+ 2 − ri| = |s− a|
∏

|s− 2 − ri|.
Now since re(s) > 0, a > 0, we have|s + a| > |s − a|; moreover, since
|re(ri)| ≤ c, re(s) > c, we have re(s − ri) ≥ 0, and so|s + 2 − ri| >
|s−2−ri|. Multiplying these inequalities together, we obtain a contradiction.

2

The preceeding proof is similar to the original proof of Pólya of an
interesting property of the K-Bessel functions, namely, his theorem that if
y > 0 andKν(y) = 0, thenν is purely imaginary. Ṕolya’s proof [23]
depends on the recurrence identity (Watson [34], 3.71)

2ν Kv(x) = x
(
Kν+1(x) −Kν−1(x)

)
.

The operator which takes an even functionq(ν) and replaces it byν−1
(
q(ν+

1) − q(ν − 1)
)

has the property (like the operatorq 7→ r in the Lemma)
of moving the zeros of a function closer to the imaginary axis, and so an
eigenfunction of this operator should have its zeros on the imaginary axis.
Sinceν 7→ Kν(x) is not a polynomial function, making this argument
rigorous requires care. An easier (but arguably less insightful) proof may be
found in Titchmarsh [31], Sect. 10.23.

Pólya connects his result with the Riemann hypothesis by arguing that

π2
(
K 9

4+ it
2
(2π) +K 9

4− it
2
(2π)

)
has analytic properties similar to12s(s − 1)π−s/2 Γ

(
s
2

)
ζ(s), with s =

1
2 + it. (Actually this value, taken from Titchmarsh [31], seems to us to be
off by a constant, but this is unimportant.) This function also has its zeros
on the line re(s) = 1

2 .
It is worth pointing out that there is another more “philosophical” way of

connecting Ṕolya’s result on the Bessel functions with the Riemann hypoth-
esis. We begin by noting that it implies a Riemann hypothesis for the Fourier
coefficients of Eisenstein series. Consider the classicalSL(2,Z) Eisenstein
series

E(z, s) = 1
2 π

−s Γ (s)
∑ ys

|cz + d|2s ,
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where the summation is over nonzero pairs of integers(c, d). It is well known
that if n 6= 0, then then-th Fourier coefficient∫ 1

0
E(x+ iy) e2πinx dx = 2 |n|s−1/2 σ1−2s(|n|) √

y Ks−1/2(2π|n|y).

(See Bump [2] Sect. I.6.) Both the divisor functionσ1−2s(|n|) and theK-
Bessel functionKs−1/2 have their zeros on the line re(s) = 1

2 . Now if,
on the other hand, we consider the Eisenstein series of half-integral weight
(see Maass [20], Shimura [28] and Goldfeld and Hoffstein [13]), the Fourier
coefficients are quadratic L-functions. So the analogous assertion—that the
Fourier coefficients of the Eisenstein series satisfy a Riemann hypothesis—
in the case of the Eisenstein series of half-integral weight, should reduce to
the classical Riemann hypothesis.

One may be a bit more careful here. Actually the Fourier coefficients
of these Eisenstein series are the products of quadratic L-functions with
certain finite Dirichlet polynomials, and one would like to assert that these
polynomials themselves have their zeros on the line re(s) = 1/2. David
Cardon has looked at the case of Eisenstein series on the double cover of
GL(2) over a rational function field, and his work suggests that the correct
formulation is thatthe Whittaker coefficients in the modified sense of Gelbart,
Howe and Piatetski-Shapiro [11] should satisfy the Riemann hypothesis.

We propose here a conjectural generalization of Pólya’s result on the
zeros of the Bessel functionKν . Letπ be a spherical principal series repre-
sentation ofPGL(2,R), and letW be theSO(2)-fixed vector (determined
up to constant multiple) in its Whittaker model with respect to the additive
characterψ(x) = e2πix of R. Then

W

((
y1/2 xy−1/2

y−1/2

)
k

)
=

√
y Kν(2πy) e2πix,

whenk ∈ SO(2), for some complex numberν. So Ṕolya’s result may be
formulated as saying thatif theSO(2)-fixed Whittaker vector in a spherical
principal series representation vanishes anywhere onPGL(2,R), then the
representation is tempered.

More generally, letπ be a spherical principal series representation of
PGL(n,R), and assume thatπ is a symmetricn − 1-st power lifting of
a spherical principal series representation ofPGL(2,R). This means that
there is a quasicharacterχof R×/{±1}such thatπ is obtained by normalized
parabolic induction from the character

y1 ∗ · · · ∗
y2 · · · ∗

...
...
yn

 7→ χ(y1)n−1 χ(y2)n−3 · · ·χ(yn)1−n.
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LetW be theSO(n)-fixed vector in the Whittaker model ofπ, determined
up to constant multiple.

Conjecture. In this setting, ifW vanishes anywhere onGL(n,R), thenπ
is tempered (i.e.χ is unitary).

We will offer three pieces of evidence for this statement.
Firstly, it is true whenn = 2 by Pólya’s result.
Secondly, for one particular nontempered spherical Whittaker function

(which is a symmetric square lift fromGL(2)) onGL(3,R) we can verify
this claim—we recall that the spherical Whittaker functions onGL(3,R)
andGL(3,C) are the same, and that for one particular principal series rep-
resentation, corresponding to the cubic theta function onGL(3,C), the
Whittaker function can be expressed in terms of the Bessel functionK1/3,
so the asserted nonvanishing follows from Pólya’s result. See Bump and
Friedberg [3] and Bump and Huntley [4].

And thirdly, an analogous statement is true for spherical Whittaker func-
tions onPGL(n, F ), whenF is a nonarchimedean local field. Letπ be a
spherical principal series representation with Satake parametersα1, · · · , αn.
Let

h =

y1
...
yn


be a dominant element of the diagonal subgroup, so that ifλi is the valuation
of yi, we haveλ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. Let sλ be the Schur polynomial
corresponding to the partitionλ = (λ1, · · · , λn), a symmetric polynomial
in n variables (Macdonald [21]). According to Shintani [29] and Casselman
and Shalika [8], the valueW (h) of the normalized Whittaker function with
respect to an additive characterψ whose conductor is the ringo of integers
in F equalsδ(h)1/2 sλ(α1, · · · , αn), whereδ is the modular quasicharacter
of the Borel subgroup ofGL(n, F ). Now suppose thatπ is a symmetric
n−1-st power lift fromGL(2). Thus we assume that there exists a complex
numberα such that

(α1, · · · , αn) = (αn−1, αn−3, · · · , α1−n).

Proposition. In this situation, ifW (h) = 0 for h dominant, thenπ is
tempered.

Proof. We havesλ(αn, αn−2, · · · , α−n) = 0, and we will show that|α| =
1. Indeed, by homogeneity of the Schur polynomial, we havesλ(α2n−2,
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α2n−4, · · · , 1) = 0. We recall that

sλ(α1, · · · , αn) =

∣∣∣∣∣∣∣∣∣
αλ1+n−1

1 αλ1+n−1
2 · · · αλ1+n−1

n

αλ2+n−2
1 αλ2+n−2

2 · · · αλ2+n−2
n

...
...

αλn
1 αλn

2 · · · αλn
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
αn−1

1 αn−1
2 · · · αn−1

n

αn−2
1 αn−2

2 · · · αn−2
n

...
...

1 1 · · · 1

∣∣∣∣∣∣∣∣∣

.

Substituting(α2n−2, α2n−4, · · · , 1) for (α1, · · · , αn), the numerator here
becomes ∣∣∣∣∣∣∣∣∣

βn−1
1 βn−2

1 · · · 1
βn−1

2 βn−2
2 · · · 1

...
...

βn−1
n βn−2

n · · · 1

∣∣∣∣∣∣∣∣∣ =
∏
i<j

(βi − βj),

whereβi = α2(λi+n−i). If this is zero, then someβi = βj , which implies
thatα is a root of unity. Thus|α| = 1, soπ is tempered. 2

2. The metaplectic representation

Witten, Brekke, Freund and Olsen in [1], [10] and [9] consideredp-adic
analogs of bosonic string theory. This led Ruelle, Thiran, Verstegen and
Weyers [27] to consider thep-adic harmonic oscillator, also studied in the
recent book of Vladimirov, Volovich and Zelenov [32]. Thep-adic harmonic
oscillator may be understood in terms of the restriction of the metaplectic
representation of the double cover ofSL(2,R) onL2(R) to the groupSO(2)
of symmetries of the Hamiltonian of a single particle moving in a quadratic
potential field. In this formulation, there is no obstacle to replacingR by an
arbitrary local field, and this is the point of view we will take.

LetF be a local field of characteristic not equal to2. Let ( , ) denote the
Hilbert symbol ofF . Letψ denote a nontrivial additive character ofF . Let
dx denote the measure onF which is self-dual with respect to the Fourier
transform; thus if

f̂(x) =
∫
F

f(y)ψ(2xy) dy,

dx is self-dual ifˆ̂f(x) = f(−x). If t ∈ F×, let

γ(t) = |t|1/2
∫
F

ψ(tx2) dx.
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This oscillatory integral is conditionally convergent in an obvious sense. The
absolute value ofγ equals1—indeed it is an eight-th root of unity—and

γ(a) γ(b) = (a, b) γ(ab) γ(1).

Furthermore, we have

γ(b2 a) = γ(a), γ(−a) = γ(a)−1.

Let G = SL(2, F ), and let G̃ be the metaplectic double cover of
SL(2, F ) defined by Kubota’s cocycleσ : G×G → µ2 = {±1}. Thus in
terms of the Hilbert symbol,

σ(g1, g2) =
(
X(g1)
X(g1g2)

,
X(g2)
X(g1g2)

)
,

where

X

(
a b
c d

)
=

{
c if c 6= 0;

d otherwise.

Let s : G → G̃ be the standard section, so that

s(g1) s(g2) = σ(g1, g2) s(g1g2).

We will also use the notation[
a b
c d

]
= s

((
a b
c d

))
∈ G̃.

The metaplectic representationω = ωψ is an action ofG̃ on the Schwartz
spaceS(F ). It is given on generators by(

ω

[
1 t

1

]
f

)
(x) = ψ(tx2) f(x),(

ω

[
1

−1

]
f

)
(x) = γ(1) f̂(x),(

ω

[
a
a−1

]
f

)
(x) = |a|1/2 γ(1)

γ(a)
f(ax).

See Weil [35] and Gelbart and Piatetski-Shapiro [12].
Let

H =
{(

a −b
b a

) ∣∣∣∣a, b ∈ F, a2 + b2 = 1
}
,

and letH̃ be the preimage ofH in G̃. LetH ′ be the unique maximal compact
subgroup ofH, H̃ ′ its preimage inH̃. If −1 is not a square inF , thenH is
compact, so actuallyH ′ = H andH̃ ′ = H̃. On the other hand, if−1 is a
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square, thenH ∼= F×, soH ′ is a proper subgroup. The action ofH̃ on the
Schwartz space by means of the metaplectic representation is given by the
following formula:(

ω

[
a −b
b a

]
f

)
(x) = |b|−1/2 γ(b)−1

×
∫
F

ψ

(
1
b
(ax2 − 2xy + ay2)

)
f(y) dy.

If −1 is not a square, so that̃H is compact, then the restriction ofω to H̃ is
multiplicity-free. IfF = R, this follows from our proof of Theorem 2 below
(though it was known long before by Howe). IfF isp-adic, this follows from
the Howe duality principle for the dual pairU(1) × U(1) in SL(2). (Our
groupSO(2) is the same asU(1).) See Howe [16] and Waldspurger [33]
for Howe duality, which is a theorem except in residual characteristic two.
Other papers concerned specifically with the character of the metaplectic
representation restricted toSO(2) in the case of odd residual characteristic
are Moen [22] and Prasad [24]. Tonghai Yang [37] has formulas for the
actual eigenfunctions ofU(1) acting on the Schwartz space.

In the case of residue characteristic two, the fact that the restriction of
the metaplectic representation to compactSO(2) is multiplicity-free is still
known. This is implicit in the work of Rogawski [26], which uses global to
local methods, and a purely local proof may be found in Harris, Kudla and
Sweet [14]. Also P. Ruelle, E. Thiran, D. Verstegen and J. Weyers [27] have
calculated the character of the restriction of the metaplectic representation
to tori in the fieldsQp, includingQ2, and their result implies this multiplicity
one statement forQ2.

On the other hand if−1 is a square inF , the restriction ofω to H̃ does
not decompose into a direct sum of constituents (though its dual space of
distributions does so decompose). Instead we will consider the groupH̃ ′.
The restriction ofω to this group is not multiplicity free.

The metaplectic cover splits over̃H. Indeed, if−1 is not a square,̃H is
contained inSL(2, o), and an explicit splitting over this maximal compact
subgroup was given by Kubota [18]. If we define

κ

(
a −b
b a

)
=

{
−1 if v(b) is odd anda ≡ −1 modulop;

1 otherwise,

then

σ(g1, g2) =
κ(g1)κ(g2)
κ(g1 g2)
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wheng1, g2 ∈ H. (It is worth mentioning that if the valuationv(b) > 0,
thena ≡ ±1 modulop sincea2 + b2 = 1.) We may therefore define a
representation of the abelian groupH by(

ω

(
a −b
b a

)
f

)
(x) = κ

(
a −b
b a

)
|b|−1/2 γ(b)−1

×
∫
F

ψ

(
1
b
(ax2 − 2xy + ay2)

)
f(y) dy.

On the other hand, if−1 is a square inF , thenH is conjugate to the diagonal
torus inSL(2), and it is well known (and easy to prove from Kubota’s cocycle
formula) that the metaplectic cover splits over this subgroup. Since the cover
splits overH ′, we may regardω as giving a representation of this group.

Local Riemann hypothesis.Suppose thatF is a local field. Assume that
F is not complex, and that the characteristic ofF is not equal to2. Let
f ∈ S(F ) be an eigenfunction of this action ofH ∩ K, and letν be a
character ofF×. Then the Mellin transform∫

F

f(x) ν(x) |x|s d×x,

if not identically zero, has its only zeros on the linere(s) = 1
2 .

This assertion is largely proved, in this paper and its companion piece,
Kurlberg [19].

Lt us study what happens when we change the additive character. Ifλ ∈
F×, letψλ be the characterx 7→ ψ(λx). Let dψx denote the additive Haar
measure which is self-dual with respect toψ. Thendψλ

x = |λ|1/2 dψx. Let
ωψ denote the metaplectic representation parametrized byψ. If f ∈ S(F ),
let fλ(x) = f(λx). Then it is easy to see that

ωψλ2

((
a −b
b a

)
fλ

)
(x) = ωψ

((
a −b
b a

)
f

)
(λx).

Thus if f is an eigenfunction of̃H under the representationωψ, thenfλ is
an eigenfunction of̃H underωψλ2 . The zeros ofζ(s, ν, f) andζ(s, ν, fλ)
are at the same places, so we have the freedom to changeψ to ψλ2 for any
squareλ2.

Theorem 2.The Local Riemann Hypothesis is true ifF = R.
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Proof.We reduce this to Theorem 1. Since we have the freedom to change
ψ by a square, we may assume thatψ(x) = e±iπx. We will assume that
ψ(x) = eiπx; the other case is obtained by replacingi by −i throughout the
following discussion.

In this case, the self-dual measure onR coincides with Lebesgue mea-
sure, and

γ(1) =

∞∫
−∞

eiπx
2
dx = lim

t→0+

∞∫
−∞

e−π(t−i)x2
dx

= lim
t→0+

(t− i)−1/2 =
1√
2
(1 − i).

Letgbe the Lie algebra ofSL(2,R). The exponential mapg → SL(2,R)
lifts to a mapẽxp : g → G̃. We then have a representationdω of g onS(R)
by (

(dωX)(f)
)
(x) =

d

dt
(ẽxp(tX) f)(x)|t=0.

Let F : S(R) → S(R) denote the Fourier transformFf = F̂ , and letF−1

be its inverse:

(F−1f)(x) =

∞∫
−∞

f(y) e−2πixy dy.

Define “momentum” and “position” operatorsP andQ on the Schwartz
space by

(Pf)(x) =
1

2πi
df

dx
(x), (Qf)(x) = x f(x).

We have
F−1Q2 F = P 2.

Indeed,(F−1Q2 F f)(x) equals

∞∫
−∞

y2 f̂(y) e−2πixy dy = − 1
4π2

d2

dx2

∞∫
−∞

f̂(y) e−2πixy dy

= − 1
4π2

d2f

dx2 (x).

We now prove that

dω

(
0 1
0 0

)
= iπQ2, dω

(
0 0

−1 0

)
= iπP 2.
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The first identity follows directly from the definitions:(
dω

(
0 1
0 0

)
f

)
(x) =

d

dt

(
ω

[
1 t
0 1

]
f

)
(x)

∣∣∣∣
t=0

=
d

dt
eiπx

2tf(x)
∣∣∣∣
t=0

= iπx2 f(x).

Since (
0 −1
1 0

) (
0 1
0 0

) (
0 1

−1 0

)
=

(
0 0

−1 0

)
,

we have

dω

(
0 0

−1 0

)
=

(
ω

[
0 1

−1 0

])−1 (
dω

(
0 1
0 0

)) (
ω

[
0 1

−1 0

])
= iπ F−1Q2F,

and so the second identity follows from the first.
Now suppose thatf is an eigenfunction of̃H. Since

H̃ = ẽxp
(

R

(
0 1

−1 0

))
,

f is also an eigenfunction of

dω

(
0 1

−1 0

)
= dω

(
0 1
0 0

)
+ dω

(
0 0

−1 0

)
= iπ(P 2 +Q2),

which is (up to constant) the oscillator Hamiltonian. Hencef is one of the
functionsfn.

There are two possibilities forν: ν(x) = sgn(x)δ, whereδ = 0 or
1. Depending on whetherf is even or odd, exactly one of the integrals∫
f(x) ν(x) |x|s dx/x will be nonzero, and this one will be just twice the

Mellin transform off . Consequently, Theorem 2 follows from Theorem 1.
2

We turn now to the case of ap-adic fieldF . In this case, following some
preliminary investigation by Bump and Hoffstein, Kurlberg [19] has proved:

Theorem 3.The Local Riemann Hypothesis is true ifF is a nonarchimedean
local field of odd residue characteristic.

On the other hand, Kurlberg has also shown that the Local Riemann
Hypothesis is false ifF = C.
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3. Laguerre polynomials, then-dimensional harmonic oscillator
and a reciprocity law

TheLaguerre polynomials(cf. Rainville [25]) are defined by:

Lαn(x) =
n∑
k=0

(
n+ α

n− k

)
(−x)k
k!

=
n∑
k=0

(1 + α)n(−x)k
k! (n− k)! (1 + α)k

,

where(α)n = α(α+1) · · · (α+n−1). They satisfy the differential equation

x
d2

dx2 L
(α)
n (x) + (1 + α− x)

d

dx
L(α)
n (x) + nL(α)

n (x) = 0,

and the orthogonality relation:∫ ∞

0
xα e−x L(α)

n (x)L(α)
m (x) dx =

{
0 if n 6= m,
Γ (1+α+n)

n! otherwise.

Let L(α)
n (x) = xα/2 e−x/2 L(α)

n (x). Then theLaguerre functionsL(α)
n are

orthogonal with respect to Lebesgue measure on[0,∞). Their Mellin trans-
forms

M(α)
n (s) =

∫ ∞

0
L(α)
n (x)xs−1 dx = 2s+

α
2 Γ

(
s+ α

2

)
P (α)
n (s),

where

P (α)
n (s) =

n∑
k=0

2k
(
n+ α

n− k

) (−s− α
2

k

)
.

Theorem 4.The zeros ofP (α)
n (s) lie on the linere(s) = 1

2 .

Proof.The first proof of Theorem 1 is easily adapted. Using the orthogonality
of the Laguerre functions, we see that the polynomialsP

(α)
n

(1
2 + it

)
are

orthogonal with respect to the measure21+α |Γ (1
2 + α

2 + it
)|2 dt, and their

zeros are therefore real. 2

The polynomialsP (α)
n (s) satisfy a functional equation:

P (α)
n (s) = (−1)n P (α)

n (1 − s).

We may prove this as follows. We start with the generating function for the
Laguerre polynomials (Rainville [25], p. 202):

∞∑
n=0

L(α)
n (x) tn = (1 − t)−1−α e−xt/(1−t).
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Taking the Mellin transform in this identity yields

∞∑
n=0

P (α)
n (s) tn = (1 − t)s−1−α/2 (1 + t)−s−α/2,

whence the functional equation.
Now let us investigate the harmonic oscillator inn-dimensions. Ifx =

(x1, · · · , xn) ∈ Rn, let r = |x| =
√∑

i x
2
i be the radial distance from the

origin, and let∆ be then-dimensional Laplacian
∑

i ∂
2/∂x2

i . Then consider
the Schr̈odinger equation corresponding to a quadratic potentialV (r) = r2:

(4) (−∆+ r2)φ = εφ.

The eigenvalueε is the energy level. The potential is rotationally symmetric
and the Hamiltonian−∆+r2 commutes with the orthogonal group. We may
thus restrict ourselves toφ which lie in an irreducible subspace ofO(n).

Theorem 5.Let φ be a solution to (4) lying in an irreducible subspace of
O(n). LetX be any radially symmetric function onRn, so thatX(tx) =
X(x). Then the Mellin transform

(5)
∫

Rn

φ(x)X(x) |x|2s− n
2 −1 dx

has its zeros on the linere(s) = 1/2.

Proof. We make use of spherical coordinates. Thus ifx ∈ Rn is given, we
taker = |x| ∈ R+ andξ = x/|x| ∈ Sn−1 as basic coordinates. The group
O(n) acts onL2(Sn−1), which decomposes as a direct sum of irreducible
subspaces, each with multiplicity one. Because of this, our assumption that
φ lies in an irreducible subspace ofO(n) implies thatφ may be written in
the formφ0(r)Φ(ξ), whereΦ lies in one of these irreducible subspaces of
L2(Sn−1). Sincedx = rn−1 dr dξ, the integral equals

(6)
∫ ∞

0
φ0(r) r2s+

n
2 −1 dr

r

times the inner product onSn−1 of X andΦ. In spherical coordinates, the
Laplacian inn dimensions has the form:

∆ =
∂2

∂r2
+
n− 1
r

∂

∂r
+

1
r2
Λ,

whereΛ is the Laplacian onSn−1 (Helgason,Groups and Geometric Anal-
ysisp.16). Moreover, the eigenvalue ofΛ on an element of an irreducible
subspace ofSn−1 is equal to the eigenvalue of the Casimir operator on the
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corresponding irreducible representation, which Helgason shows has the
form −l(l + n − 2), wherel ∈ Z. We thus have the differential equation
(with eigenvalueλ for Λ):

φ′′
0 +

n− 1
r

φ′
0 +

(−l(l + n− 2)
r2

− r2 + ε

)
φ0 = 0.

In order forφ0 = e−r2/2 rl L(r2) to satisfy this differential equation, we
need

r L′′ +
(
l +

n

2
− r

)
L′ +

(
ε

4
− l

2
− n

4

)
L = 0.

This differential equation has a regular singular point at the origin, and a
solution that is well-behaved there must be a constant multiple ofL =
L

(l+n
2 −1)

k , wherek is an integer, andε = 4k + 2l + n. The result now
follows from Theorem 4. 2

We note that this setup can be adapted to the metaplectic group by means
of the Weil representation. The eigenfunctions at hand live in irreducible
subspaces for the groupO(2)×O(n), which is a maximal compact subgroup
of the dual pairSL(2,R) × O(n) in Sp(2n,R), acting onLr(Rn) via the
standard polarization in the Weil representation. Expressed this way, the
integrals of Theorem 5 havep-adic analogs, and though we haven’t had a
chance to investigate whether these satisfy a Riemann hypothesis, we hazard
to conjecture that they do, at least in the case of anisotropicO(n).

The polynomialsP (α)
n satisfy areciprocity lawrelating their values at

negative integers. We will show that

(7)
(
m+ α

m

)
P (α)
n

(
−m− α

2

)
=

(
n+ α

n

)
Pm

(
−n− α

2

)
.

Indeed, the left side equals
n∑
k=0

2k
(
m+ α

m

) (
n+ α

n− k

) (m
k

)
,

and the reciprocity law follows from the identity(
m+ α

m

) (
n+ α

n− k

) (m
k

)
=

(
n+ α

n

) (
m+ α

m− k

) (n
k

)
.

We note the special case

(8) P (0)
n (−m) = P (0)

m (−n).

This identity has an interestingcombinatorial interpretation.

Theorem 6.P (0)
n (−m) equals the number of lattice points(x1, · · · , xn) ∈

Zn such that
∑ |xi| ≤ m.
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Proof.We can count the number of lattice points inZn satisfying
∑ |xi| ≤ m

as follows. The number of lattice points having exactlyk nonzero entries
is 2k

(
n
k

) (
m
k

)
if 0 ≤ k ≤ min(m,n), because there are

(
n
k

)
choices for

which coordinates shall be nonzero; and once this choice is fixed, there are
2k possible distibutions of signs, and

(
m
k

)
possible distributions of absolute

values. Hence the number of lattice points is

min(m,n)∑
k=0

2k
(n
k

) (m
k

)
= P (0)

n (−m).

This completes the proof. 2

We derive a generating function forP (0)
n (−m). Let a(m,n) be the

number of lattice points satisfying the condition on the theorem. Then
a(m,n) − a(m,n − 1) is the number of lattice points satisfying exactly∑ |xi| ≤ m having a nonzero last component. If the last component is
±m− k, with 0 ≤ k ≤ m− 1, then the number of possibilities for the first
n− 1 components isa(k, n− 1), and so we have

a(m,n) − a(m,n− 1) = 2
m−1∑
k=0

a(k, n− 1).

Hence (assumingm, n > 0) we have

a(m,n)−a(m,n−1)−a(m−1, n)+a(m−1, n−1) = 2 a(m−1, n−1),

which leads to the recursion
∞∑
n=0

∞∑
m=0

a(m,n)xm yn = (1 − x− y − xy)−1.

The reciprocity law (8) is reflected by the symmetry of the generating func-
tion.

References

1. L. Brekke, P. Freund, M. Olson, E. Witten, Non-Archimedean string dynamics, Nuclear
Phys. B302(1988), 365–402.

2. D. Bump, Automorphic Forms and Representations, Cambridge University Press (to
appear).

3. D. Bump, S. Friedberg, On Mellin transforms of unramified Whittaker functions on
GL(3, C), J. Math. Anal. Appl.139(1989), 205–216.

4. D. Bump, J. Huntley, Unramified Whittaker functions forGL(3, R), J. Anal. Math.65
(1995), 19–44.

5. D. Bump, E. K.-S. Ng, On Riemann’s Zeta function, Math. Zeitschrift192(1986).



18 D. Bump et al.

6. D. Cardon, Zeros of Fourier coefficients of Eisenstein series on the metaplectic
groups—the function field case, Dissertation, Stanford University (1996). (In progress.)

7. P. Cartier, Quantum mechanical commutation relations and theta functions, in Algebraic
Groups and Discontinuous Subgroups, AMS Proc. Symp. Pure Math.9, Borel and
Mostow, ed. (1966), 361–386.

8. W. Casselman, J. Shalika, The unramified principal series ofp-adic groups II: the
Whittaker function, Compositio Math.40 (1980), 207-231.

9. P. Freund, M. Olsen, Non-Archimedean strings, Phys. Lett. B199(1987), 186–190.
10. P. Freund, E. Witten, Adelic string amplitudes, Phys. Lett. B199(1987), 191–194.
11. S. Gelbart, R. Howe, I. Piatetski-Shapiro, Uniqueness and existence of Whittaker mod-

els for the metaplectic group, Israel J. Math.34 (1979), 21–37.
12. S. Gelbart, I. Piatetski-Shapiro, Distinguished representations and modular forms of

half integral weight, Invent. Math.59 (1980), 145–188.
13. D. Goldfeld, J. Hoffstein, Eisenstein series of half-integral weight and the mean values

of real Dirichlet series, Invent. Math.80 (1985), 185–208.
14. M. Harris, S. Kudla, W. Sweet, Theta dichotomy for unitary groups, J. Amer. Math.

Soc., to appear.
15. S. Helgason, Groups and geometric analysis, Academic Press (1984).
16. R. Howe, Theta series and invariant theory, in part 1 of A. Borel and W. Casselman, ed.,

Automorphic Forms, Representations, and L-functions, AMS Proceedings of Symposia
in Pure Mathematics33 (1979), 275–286.

17. H. Kloosterman, The behaviour of general theta functions under the modular group
and the characters of binary modular congruence groups, I and II, Ann. of Math. (2)
47 (1946). 317–375, and 376–447.

18. T. Kubota, Automorphic Forms and Reciprocity in a Number Field, Kyoto University
and the Kiyokuniya Book Store (1969).

19. P. Kurlberg, A Local Riemann Hypothesis, II, Math. Z.233(2000) 21–37.
20. H. Maass, Konstruktion ganzer Modulformen halbzahliger Dimension, Abh. Math.

Semin. Univ. Hamburg12 (1937), 133–162.
21. I. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press

(1979); second edition (1995).
22. C. Moen, The dual pair(U(1), U(1)) over ap-adic field, Pacific J. Math.158(1993),

365–386.
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adic,p 6= 2, in S. Gelbart, R. Howe, P. Sarnak, ed., Festschrift in honor of I. I. Piatetski-
Shapiro on the occasion of his 60-th birthday, two volumes, The Weizmann Science
Press of Israel (1990), 267–327.

34. G. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press
(1944).
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