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Abstract
In this paper we introduce a complex scheduling problem that arises in a real-world industrial
test laboratory, where a large number of activities has to be performed using qualified person-
nel and specialized equipment, subject to time windows and several other constraints. The
problem is an extension of the well-known Resource-Constrained Project Scheduling Prob-
lem and features multiple heterogeneous resources with very general availability restrictions,
as well as a grouping phase, where the jobs have to be assembled from smaller units. We
describe an instance generator for this problem and publicly available instance sets, both ran-
domly generated and real-world data. Finally, we present and evaluate different metaheuristic
approaches to solve the scheduling subproblem, where the assembled jobs are already pro-
vided. Our results show that Simulated Annealing can be used to achieve very good results,
in particular for large instances, where it is able to consistently find better solutions than a
state-of-the-art constraint programming solver within reasonable time.

Keywords RCPSP · Local search · Real-world · Simulated annealing

1 Introduction

Project scheduling problems appear in countless variations wherever multiple activities have
to be scheduled and assigned resources of some kind, subject to various constraints. Examples
include production and manufacturing environments, event management, software develop-
ment, and many more. Since these problems can become quite large and include complex
constraints in practical settings, there is an ever increasing need for automated solution
approaches to produce high-quality solutions in acceptable time.

In this paper, we introduce a new real-world scheduling problem that arises in an industrial
test laboratory of a large company. It is an extension to the well-knownResource-Constrained
Project Scheduling Problem (RCPSP), on which it builds by adding various additional exten-
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sions, both traditional and new, to capture the specific requirements of this, and other similar
laboratories.

In the Test Laboratory Scheduling Problem (TLSP) tasks have to be grouped into larger
units called jobs, which derive their properties from the tasks they contain. In general, tasks
within a job are executed sequentially, but without any predefined order, and therefore jobs
have to fulfill all requirements of their tasks over their whole duration. A detailed discussion
of the properties of a job and the motivation behind it can be found in Sect. 3.2 of this paper.

Afterwards, the jobs have to be scheduled (i.e. assigned a mode, timeslots and resources),
subject to various constraints. Besides several well-known features of (extensions of) the
RCPSP from the literature, such as multiple execution modes and time windows, the TLSP
also features additional constraints imposed by the real-world problem setting. In particular,
RCPSP and its variants usually assume that units of a resource are identical and homogeneous
and therefore can be used to cover the demand of all tasks. Due to this, an assignment of
individual units to tasks is not necessary. Exceptions exist, e.g. by Dauzère-Pérès et al.
(1998) or Bellenguez and Néron (2005), and sometimes an equivalent effect is achieved by
introducing additional modes for each possible resource assignment (e.g. by Schwindt and
Trautmann (2000) and Bartels and Zimmermann (2009)). However, this is practical only for
a single resource with very few available values per task. In contrast, TLSP features multiple
heterogeneous resources, with very general restrictions onwhich units can be used to perform
a job, and potentially large demands.

In addition, jobs in TLSP can be linked to each other, indicating that these jobs must be
performed by the same employees1. To the best of our knowledge, a similar concept exists
only by Salewski et al. (1997) and Drexl et al. (2000), where the mode of several jobs is
required to be the same.

In real-life practice, it is commonly the case that the grouping of tasks into jobs is already
known and only a solution for the scheduling part of the problem is required. This gives
rise to a restricted problem variant we denote as TLSP-S, which has a (fixed) list of jobs as
additional input, but otherwise follows the same restrictions as TLSP.

The contributions of this article are as follows:

– We introduce TLSP, a new and complex real-world scheduling problem that is of direct
practical relevance. For this new problem, we provide a formal definition and describe its
subproblem TLSP-S. In addition, we prove the NP-hardness of both TLSP and TLSP-S
via a reduction from RCPSP.

– We provide an instance generator for TLSP, which is capable of randomly generating
instances based on real-world data with a wide variety of configuration options.

– Two sets of new generated instances for TLSP, plus three real-world instances taken
directly from the laboratory of our industrial partner, are made publicly available for
download.

– We developed a new local search framework for TLSP-S, and evaluate the performance
of different meta-heuristics on the problem. We show that Simulated Annealing can
be used to produce high-quality results that rival those of a state-of-the-art constraint
programming model and consistently outperforms it on larger instances. The proposed
algorithms have been used successfully in the daily scheduling in the laboratory of our
industrial partner.

1 This can be used tomodelmulti-step procedures that require knowledge fromprevious steps, such as ensuring
that documentation of completed tasks is prepared by the employees who actually performed the tasks.
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This article is an extension of work presented at the conference on Practice and Theory
in Automated Timetabling (PATAT) 2018 (see also the technical report Mischek and Musliu
(2018)) where we first introduced the problem definition for TLSP.

The rest of the paper is structured as follows: Section 2 gives a short overview over
related literature and variants of RCPSP that are particularly relevant for TLSP. Section 3
formally introduces the problem definition, input data and constraints. The last subsection
also provides a reduction outline of RCPSP to TLSP, thereby showing the NP-hardness of
the problem. Section 4 provides information about our instance generator and available data
sets. Section 5 describes the local search framework and the algorithms used, followed by
experimental results in Sect. 6. Finally, concluding remarks and future work are given in
Sect. 7.

2 Related literature

2.1 Problem features

As the standard problem in the area of project scheduling, RCPSP has seen vast amounts
of work over several decades. For surveys on literature regarding this problem and its many
variants, we refer to surveys e.g. by Mika et al. (2015); Hartmann and Briskorn (2010) and
Brucker et al. (1999). In particular, Hartmann and Briskorn (2010) provide a comprehensive
overview regarding work dealing with extensions to RCPSP.

Many of these extensions contain problem features that are also found in the TLSP, or
at least related concepts. Table 1 shows a selection of these features, as well as references
from the literature for RCPSP variants that contain these particular features or at least some
related concepts. While some aspects (e.g. multiple modes, setup times) are already well
known, others have few (e.g. heterogeneous resources) or no (task grouping, linked tasks)
direct correspondence in previously studied problems, to the best of our knowledge.

In the following, we will provide more details about these features and their treatment in
the literature, describing both similarities and differences to TLSP where appropriate.

The first of these, and one of the most well-known, is multi-mode RCPSP (MRCPSP),
originally formulated by Elmaghraby (1977). It allows each activity to be performed in one
of several modes which can affect duration and resource requirements. A survey focused
solely on MRCPSP formulations is provided by Wȩglarz et al. (2011).

Multiple separate projects, with project-specific constraints and objective functions,
appear in the Resource Constrained Multi-Project Scheduling Problem (RCMPSP). Other
works dealing with this problem are e.g. by Gonçalves et al. (2008) and Villafáñez et al.
(2019). Wauters et al. (2016) introduce the Multi-Mode RCMPSP (MMRCMPSP), which
combines both multiple modes and multiple projects and was used for the MISTA 2013
challenge.

RCMPSP also features multiple objectives, including one that is similar to the project
completion time objective in TLSP. The main difference is that in RCMPSP, the completion
times are normalized using the length of the critical path of each project. Also, the remaining
objectives are completely unrelated to those that appear in TLSP. One of the main impacts
of alternative (multi-)objective functions is that permutation schedules (Hartmann (1998)),
which represent a solution as a permutation of activities and are used in many state-of-the-art
works on RCPSP, are no longer guaranteed to yield optimal solutions.
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Table 1 Main features of TLSP and their correspondence in other variants of RCPSP. The last column includes
papers that contain similar concepts, which may not be directly applicable for TLSP

Problem feature RCPSP extension Related concept

Task grouping – Trautmann and Schwindt
(2005); Wilson et al. (2012)

Setup times Survey: Mika et al. (2006) Batch scheduling, e.g.
Schwindt and Trautmann
(2000); Potts and Kovalyov
(2000)

Multiple modes MRCPSP, Survey: Wȩglarz
et al. (2011), e.g. Wauters
et al. (2016)

Multiple projects RCMPSP, e.g. Villafáñez
et al. (2019), MMRCMPSP
by Wauters et al. (2016)

Heterogeneous
resources

Dauzère-Pérès et al. (1998),
MSPSP by Bellenguez and
Néron (2005)

e.g. Schwindt and Trautmann
(2000); Bartels and
Zimmermann (2009)

Linked tasks – Salewski et al. (1997); Drexl
et al. (2000)

Project completion
time objective

Appears in RCMPSP, e.g.
Villafáñez et al. (2019);
Gonçalves et al. (2008)

Setup times have been studied extensively in various forms, here we refer to the survey by
Mika et al. (2006). Of note is that in particular sequence- or schedule-dependent setup times
can be used to model batch processing, treated e.g. by Schwindt and Trautmann (2000) or
Potts and Kovalyov (2000), which is related to the task grouping formalism in TLSP. Both
approaches attempt to remove overheads due to setup times by grouping multiple smaller
activities into larger units. The main difference is that in batch processing approaches, the
batches arise implicitly from the completed schedule and the scheduled activities correspond
to tasks. In contrast, in TLSP jobs are created explicitly from tasks, which are not directly
scheduled at all.

The only paper using a similarly explicit approach to grouping small activities into larger
units is by Trautmann and Schwindt (2005). They decompose a batch-scheduling problem
into two independent subproblems, of which the first assembles the batches and the second
produces a schedule for the previously created batches.

As mentioned in the previous section, the default assumption in RCPSP and most of its
variants is that units of a resource are interchangeable, i.e. each unit can be used for each
activity. A notable exception is by Dauzère-Pérès et al. (1998), who employ very general
resource requirements which are even more flexible than those in TLSP. Unfortunately, the
authors make heavy use of (a variant of) permutation schedules, which are unsuitable for
TLSP.

A second example of heterogeneous resources can be found in the Multi-Skill RCPSP
(MSPSP), introduced by Bellenguez and Néron (2005). In MSPSP, each resource unit has a
number of skills, and resource requirements are given as amulti-set of required skills. Despite
this different resource model, a distinct objective function and several other discrepancies,
MSPSP is still quite closely related to TLSP-S. Instances for MSPSP contain up to 90
activities, compared to 300+ jobs for instances of practical size for TLSP-S.
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Alternatively, heterogeneous resources like those in TLSP can sometimes be modeled
using additional modes in MRCPSP (Bellenguez and Néron (2005)). Since each potential
subset of assigned resources has to be encoded in a separate mode, this is only feasible for
single resources and small numbers and therefore unsuitable for TLSP.

As far as we are aware, the concept of linked jobs, which need to have the same resource
units assigned, has not been applied to any variant of RCPSP before. Salewski et al. (1997)
and Drexl et al. (2000) deal with a somewhat related concept, where several activities have
to be scheduled using the same mode, as described in Sect. 1. Of course, this is easier to add
on top of RCPSP, since the assumption of homogeneous resources can be retained.

Finally, we would like to mention two problems dealing with scheduling activities in lab-
oratories, due to the similarities in their overall setting with TLSP: Bartels and Zimmermann
(2009) deal with scheduling tests of experimental vehicles. The described problem con-
tains several aspects and constraints similar to TLSP. However, it uses a different resource
model (in particular regarding destructive tests) and uses the number of employed vehicles
as the main optimization criterion. Polo Mejia et al. (2017) developed an integer linear pro-
gram for scheduling research activities for a nuclear laboratory, using a problem formulation
derived from MSPSP, but with (limited) preemption of activities. Despite a similar setting,
the requirements are unfortunately incompatible with those of TLSP.

Overall, to the best of our knowledge there is no variant of RCPSP that can fully model
the requirements of TLSP(-S). Regarding TLSP-S, the closest related problem is probably
MSPSP due to similar restrictions on the availability of resources to each activity. However,
trying to model the very general restrictions of TLSP(-S) for MSPSP would result in a
prohibitively large number of skills, not to speak of other features like linked jobs or objective
criteria, which are not included in MSPSP at all. Therefore, a new approach is required to
model and solve the TLSP(-S).

2.2 Solution approaches

As varied as the different extensions to RCPSP are also the solution approaches used to
solve them. While initially the focus was on problem-specific heuristics, such as priority or
dispatching rules, the last few decades have seen much work on metaheuristics, both local
search-based and population-based, but also hybrid heuristic approaches combining two or
multiple other techniques (Pellerin et al. (2020); Mika et al. (2015)).

Such a hybrid approach using a combination of memetic and hyperheuristic methods with
Monte-Carlo tree search by Asta et al. (2016) won the 2013 MISTA challenge mentioned
above, which dealt with MMRCMPSP. The same problem is also treated by Ahmeti and
Musliu (2018), who provided several ideas that were useful in our solver implementation for
TLSP-S.

Exact approaches have so far been mostly limited to smaller or more tightly constrained
variants of RCPSP. However, recent years have seen some progress, in particular in the area
of Constraint Programming (CP), e.g. by Szeredi and Schutt (2016), who developed a CP
model for MRCPSP that is able to solve instances of realistic sizes.

Given its similarities to TLSP-S, successful solution approaches for MSPSP may be of
particular interest. To the best of our knowledge, the best results so far for MSPSP have been
achieved by Young et al. (2017), who also used a CP approach to solve the problem.

In general, metaheuristics seem to be the most promising approach to a new variant of
RCPSP, such as TLSP-S, both due to their ease of implementation and their consistently high
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performance on existing problem variants in the literature. Where exact solution approaches
are desired, CP should certainly be considered, given its recent successes.

3 Problem description

In TLSP, a list of projects is given, which each contain several tasks. For each project, the
tasks must be partitioned into a set of jobs, with some restrictions on the feasible partitions.
Then, those jobs must each be assigned a mode, time slots and resources. The properties and
feasible assignments for each job are calculated from the tasks contained within.

A solution of TLSP is a schedule consisting of the following parts:

– A list of jobs, composed of one or multiple similar tasks within the same project.
– For each job, an assigned mode, start and end time slots, the employees scheduled to

work on the job, and an assignment to a workbench and equipment.

The quality of a schedule is judged according to an objective function that is the weighted
sum of several soft constraints and should be minimized. Among others, these include the
number of jobs and the total completion time (start of the first job until end of the last) of
each project.

3.1 Input parameters

A TLSP instance can be split into three parts: The laboratory environment, including a list
of resources, a list of projects containing the tasks that should be scheduled together with
their properties and the current state of the existing schedule, which might be partially or
completely empty.

3.1.1 Environment

In the laboratory, resources of different kinds are available that are required to perform tasks:

– Employees e ∈ E = {1, . . . , |E |} who are qualified for different types of tasks.
– A number of workbenches b ∈ B = {1, . . . , |B|} with different facilities. (These are

comparable to machines in shop scheduling problems.)
– Various auxiliary lab equipment groups Gg = {1, . . . , |Gg|}, where g is the group index.

These each represent a set of similar devices. The set of all equipment groups is called
G∗.
The scheduling period is composed of discrete time slots t ∈ T = {0, . . . , |T | − 1}. Each

time slot represents half a day of work.
Tasks are performed in one of several modes labeled m ∈ M = {1, . . . , |M |}. The chosen

mode influences the following properties of tasks performed under it:

– The speed factor vm , which will be applied to the task’s original duration.
– The number of required employees em .

3.1.2 Projects and tasks

Given is a set P of projects labeled p ∈ {1, . . . , |P|}. Each project contains tasks pa ∈ Ap ,
with a ∈ {1, . . . , |Ap|}. The set of all tasks (over all projects) is A∗ = ⋃

p∈P Ap .
Each task pa has several properties:
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– It has a release date αpa and both a due date ω̄pa and a deadline ωpa . The difference
between the latter is that a due date violation only results in a penalty to the solution
quality, while deadlines must be observed.

– Mpa ⊆ M is the set of available modes for the task.
– The task’s duration dpa (in time slots, real-valued). Under any given mode m ∈ Mpa ,

this duration becomes dpam := dpa ∗ vm .
– Most tasksmust be performed on aworkbench. This is indicated by the boolean parameter

bpa ∈ {0, 1}. If required, this workbench must be chosen from the set of available
workbenches Bpa ⊆ B.

– Similarly, pa requires qualified employees chosen from Epa ⊆ E . The required number
depends on the mode. A further subset EPr

pa ⊆ Epa is the set of preferred employees.
– Of each equipment group g ∈ G∗, the task requires rpag devices, which must be taken

from the set of available devices G pag ⊆ Gg .
– A list of direct predecessors Ppa ⊆ Ap , which must be completed before the task can

start. Note that precedence constraints can only exist between tasks in the same project.

Each project’s tasks are partitioned into families Fp f ⊆ Ap , where f is the family’s index.
For a given task pa, f pa gives the task’s family. Only tasks from the same family can be
grouped into a single job.

Additionally, each family f is associated with a certain setup time sp f , which is added to
the duration of each job containing tasks of that family.

Finally, each project p may define linked tasks, which must be assigned the same
employee(s). Linked tasks are given by the equivalence relation L p ⊆ Ap × Ap , where
two tasks pa and pb are linked if and only if (pa, pb) ∈ L p .

3.1.3 Initial schedule

All problem instances include an initial (or base) schedule, which may be completely or
partially empty. This schedule can act both as an initial solution and as a baseline, placing
limits on the schedules of employees and tasks, in particular by defining fixed assignments
that must not be changed.

Provided is a set of jobs J 0, where each job j ∈ J 0 contains the following assignments:

– The tasks in the job: Ȧ j

– A fixed subset of these tasks ȦF
j ⊆ Ȧ j . All fixed tasks of a job in the base schedule

must also appear together in a single job in the solution.

– The mode assigned to the job: ṁ j

– The start and completion times of the job: ṫ sj resp. ṫ
c
j

– The resources assigned to the job:

– Workbench: ḃ j

– Employees: Ė j

– Equipment: Ġg j for equipment group g

Except for the tasks, each individual assignment may or may not be present in any given
job. Fixed tasks are assumed to be empty, if not given. In all other cases, missing assignments
will be referred to using the value ε. Time slots and employees can only be assigned if also
a mode assignment is given.

A subset of these jobs are the started jobs J 0S . A started job j s ∈ J 0S must fulfill the
following conditions:
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– It must contain at least one fixed task. It is assumed that the fixed tasks of a started job
are currently being worked on.

– Its start time must be 0.
– It must contain resource assignments fulfilling all requirements.

A started job’s duration does not include a setup time. In the solution, the job containing the
fixed tasks of a started job must also start at time 0. Usually, the resources available to the
fixed tasks of a started job are additionally restricted to those assigned to the job, to avoid
interruptions of ongoing work in case of a rescheduling.

3.2 Jobs and grouping

For various operational reasons, tasks are not scheduled directly. Instead, they arefirst grouped
into larger units called jobs.

A single job can only contain tasks from the same project and family.
Jobs have many of the same properties as tasks, which are computed from the tasks that

make up a job. The general principle is that within a job, tasks are not explicitly ordered or
scheduled; therefore the job must fulfill all requirements of each associated task during its
whole duration.

The motivation behind this restriction, which deliberately overconstrains the schedule, is
due to a combination of conditions in the laboratory of our industrial partner:

– Tasks of the same family usually have equivalent or very similar requirements in practice.
– Many tasks only cover a small fraction of a timeslot (e.g. half an hour out of a four-

hour timeslot). Scheduling tasks directly to timeslots would therefore incur unacceptable
overheads due to rounding. An alternative solution to this problem would be shorter
timeslots, which would conflict with the flexible working times in the lab.

– Related formalisms, e.g. schedule-dependent setup times (Mika et al. 2006), would be
difficult to apply since the actual setup time between two tasks may depend on multiple
resources.

– Tasks frequently need to be reordered or delayed. The chosen formulation guarantees
that this is always possible within a job, adding a measure of flexibility to the schedule.
Results by Wilson et al. (2012) indicate that this flexibility can be useful in the presence
of delays during the execution of a schedule.

Let J = {1, . . . , |J |} be the set of all jobs in a solution and Jp ⊆ J be the set of jobs
of a given project p. Then for a job j ∈ J , the set of tasks contained in j is Ȧ j . j has the
following properties:

p̃ j and f̃ j

are the project and family of j .

α̃ j := max
pa∈ Ȧ j

αpa , ˜̄ω j := min
pa∈ Ȧ j

ω̄pa , ω̃ j := min
pa∈ Ȧ j

ωpa

are the release date, due date and deadline of j , respectively.

M̃ j :=
⋂

pa∈ Ȧ j

Mpa
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is the set of available modes.

d̃ jm := �(sp j f j +
∑

pa∈ Ȧ j

dpa) ∗ vm�

is the (integer) duration of the job under mode m. The additional setup time is added to the
total duration of the contained tasks.

b̃ j := max
pa∈ Ȧ j

bpa

is the required number of workbenches (b̃ j ∈ {0, 1})

B̃ j :=
⋂

pa∈ Ȧ j

Bpa

are the available workbenches for j .

Ẽ j :=
⋂

pa∈ Ȧ j

E pa

are the employees qualified for j .

Ẽ Pr
j :=

⋂

pa∈ Ȧ j

E Pr
pa

are the preferred employees of j .

r̃ jg := max
pa∈ Ȧ j

r pag

are the required units of equipment group g.

G̃ jg :=
⋂

pa∈ Ȧ j

G pag

are the available devices for equipment group g.

P̃ j := {k ∈ J \ { j} : ∃pa ∈ Ȧ j , pb ∈ Ȧk s.t. pb ∈ Ppa}
is the set of predecessor jobs of j . Finally,

L̃ p := {( j, k) ∈ J × J : j �= k ∧ ∃pa ∈ Ȧ j , pb ∈ Ȧk s.t. (pa, pb) ∈ L p}
defines the linked jobs in project p.

In addition, a solution contains the following assignments for each job:

– ṫ sj ∈ T the scheduled start time slot
– ṫ cj ∈ T the scheduled completion time
– ṁ j ∈ M the mode in which the job should be performed
– ḃ j ∈ B the workbench assigned to the job (ε if no workbench is required)
– Ė j ⊆ E the set of employees assigned to the job
– Ġ jg ⊆ Gg the set of assigned devices from equipment group g
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3.3 Constraints

A solution is evaluated in terms of constraints that it should fulfill. Hard constraints must
all be satisfied in any feasible schedule, while the number and degree of violations of soft
constraints in a solution give a measure for its quality.

For the purpose of modeling, we introduce additional notation: The set of active jobs at
time t is defined as Jt := { j ∈ J : ṫ sj ≤ t ∧ ṫ cj > t}.

3.3.1 Hard constraints

H1: Job assignment Each task must be assigned to exactly one job.

∀p ∈ P, pa ∈ Ap :
∃! j ∈ J s.t. pa ∈ Ȧ j

H2: Job grouping All tasks contained in a job must be from the same project and family.

∀ j ∈ J , pa ∈ Ȧ j :
p = p̃ j

f pa = f̃ j

H3: Fixed tasks Each group of tasks assigned to a fixed job in the base schedule must
also be assigned to a single job in the solution.

∀ j0 ∈ J 0 :
∃ j ∈ J s.t. ȦF

j0 ⊆ Ȧ j

H4: Job duration The interval between start and completion of a job must match the job’s
duration.

∀ j ∈ J :
ṫ cj − ṫ sj = d̃ jṁ j

H5: Time Window Each job must lie completely within the time window from the release
date to the deadline.

∀ j ∈ J :
ṫ sj ≥ α̃ j

ṫ cj ≤ ω̃ j

H6: Task precedenceA job can start only after all prerequisite jobs have been completed.

∀ j ∈ J , k ∈ P̃ j :
ṫ ck ≤ ṫ sj

H7: Started jobs A job containing fixed tasks of a started job in the base schedule must
start at time 0.

∀ j ∈ J , j s ∈ J 0S :
t Fjs = 1 ∧ ȦF

js ⊆ Ȧ j ⇒ ṫ sj = 0
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H8: Single assignment At any one time, each workbench, employee and device can be
assigned to at most one job.

∀b ∈ B, t ∈ T :
|{ j ∈ Jt : ḃ j = b}| ≤ 1

∀e ∈ E, t ∈ T :
|{ j ∈ Jt : e ∈ Ė j }| ≤ 1

∀g ∈ G∗, d ∈ Gg, t ∈ T :
|{ j ∈ Jt : d ∈ Ġ jg}| ≤ 1

H9a: Workbench requirements Each job requiring a workbench must have a workbench
assigned.

∀ j ∈ J :
ḃ j = ε ⇐⇒ b̃ j = 0

H9b: Employee requirements Each job must have enough employees assigned to cover
the demand given by the selected mode.

∀ j ∈ J :
|Ė j | = eṁ j

H9c: Equipment requirements] Each job must have enough devices of each equipment
group assigned to cover the demand for that group.

∀ j ∈ J , g ∈ G∗ :
|Ġ jg| = r̃ jg

H10a: Workbench suitability The workbench assigned to a job must be suitable for all
tasks contained in it.

∀ j ∈ J :
ḃ j = ε ∨ ḃ j ∈ B̃ j

H10b: Employee qualification All employees assigned to a job must be qualified for all
tasks contained in it.

∀ j ∈ J :
Ė j ⊆ Ẽ j

H10c: Equipment availability The devices assigned to a job must be taken from the set
of available devices for each group.

∀ j ∈ J , g ∈ G∗ :
Ġ jg ⊆ G̃ jg

H11: Linked jobs Linked jobs must be assigned exactly the same employees.

∀p ∈ P, ( j, k) ∈ L̃ p :
Ė j = Ėk
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3.3.2 Soft constraints

The following constraints can be used to evaluate the quality of a feasible solution. They
arise from the business requirements of our industrial partner and have been formulated in
close cooperation with them.

Each soft constraint violation induces a penalty on the solution quality, denoted as Ci ,
where i is the soft constraint violated.

S1: Number of jobs The number of jobs should be minimized.

:
CS1 := |J |

S2: Employee project preferences The employees assigned to a job should be taken from
the set of preferred employees.

∀ j ∈ J :
CS2

j := |{e ∈ Ė j : e /∈ Ẽ Pr
j }|

S3: Number of employees The number of employees assigned to each project should be
minimized.

∀p ∈ P :
CS3

p := |
⋃

j∈Jp

Ė j |

S4: Due date The internal due date for each job should be observed.

∀ j ∈ J :
CS4

j := max(ṫ cj − ˜̄ω j , 0)

S5: Project completion time The total completion time (start of the first test to end of the
last) of each project should be minimized.

∀p ∈ P :
CS5

p := max
j∈Jp

ṫ cj − min
j∈Jp

ṫ sj

Constraint S1 favors fewer, longer jobs over more fragmented solutions. This helps reduc-
ing overhead (fewer setup periods necessary, rounding of fractional durations) and increases
the flexibility of the schedule, since tasks within a job can be freely reordered. Also, it reduces
the complexity of the final schedule, both for the employees performing the actual tasks and
any human planners in those cases where manual corrections or additions become necessary.

In practice in the lab of our industrial partner, it has proved efficient to have only few
employees cover the tests of a single project, due to the presence of project-specific conditions
and procedures as well as the need for continual coordination and communication with other
parts of the laboratory as well as external clients. This is captured by constraint S3.

Constraint S4 makes the schedule more robust by encouraging jobs to be completed
earlier than absolutely required, so they can still be finished on time in case of delays or other
disturbances.

Finally, constraint S5 also helps reduce overheads, as longer timespans between the tests
of a project would require additional effort to become familiar with project-specific test
procedures, as well as storage space for the devices in between tests.
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The overall solution quality will be determined as the weighted sum over all soft constraint
violations.

The relative importance of these constraints (i.e. their weights) still needs to be defined.
In practical applications, we expect them to be chosen interactively according to the current
situation. For our evaluations, we have assumed a uniform weight of 1 for all soft constraints.

3.4 The TLSP-S problem

A practically relevant subproblem of the TLSP deals with the case where a grouping of tasks
into jobs is already provided for each project, which cannot be changed by the solver. Thus,
the goal is to find an assignment of a mode, time slot and resources to each (given) job, such
that all constraints are fulfilled and the objective function is minimized. Since this variant
focuses on the scheduling part of the problem, we denote it as TLSP-S.

In TLSP-S, the number and properties of jobs (see Sect. 3.2) are fixed and can be precom-
puted from the properties of the tasks they contain.

Without loss of generality, we assume that this fixed initial grouping is provided via the
initial schedule. Thus, an instance for TLSP-S can also be given as input to a solver for TLSP
and vice-versa, as long as the initial schedule contains a valid job grouping for all tasks.

For TLSP-S, constraints H1–H3 will always be trivially satisfied and can therefore be
ignored. Similarly, the penalty induced by soft constraint S1 is constant, since the number of
jobs cannot be modified. We still include this penalty in our results for comparability of the
solutions with instances of TLSP.

3.5 Complexity analysis of TLSP

In this section, we provide a reduction from RCPSP to TLSP, to show that TLSP is indeed
a generalization of RCPSP. Since RCPSP is known to be NP-hard (Blazewicz et al. (1983)),
this also shows the NP-hardness of TLSP.

RCPSP can be defined as follows (summarized from the definition given by Hartmann and
Briskorn (2010)): Input is a list of activities A = {1, . . . , |A|}. Each activity a has a duration
da , a list of predecessors Pa ⊂ A, which must be completed before a can start, and resource
requirements rak for each resource k ∈ K = {1, . . . , |K |}. Each resource has a capacity ck ,
which denotes the number of available units per timeslot. The goal is to find a start time for
each activity, such that precedence constraints are fulfilled, the capacity of each resource is
not exceeded in any timeslot and the total makespan (i.e. the end of the last activity in the
schedule) is minimal.

For this reduction, we use the decision variant of RCPSP (which was also proven NP-hard
by Blazewicz et al. (1983)), which takes an integer s as additional input and asks whether a
schedule with makespan ≤ s exists.

Given an arbitrary instance of RCPSP I, we can then construct a corresponding instance
of TLSP as follows:

– It contains a single project p1.
– For each activity a in I, we create a corresponding task in p1 with the same duration as

a. Each task has its own family (with a setup time of 0).
– Precedences between activities in I can be directly translated to the tasks of p1.
– Each task has a release date of 0 and both a target date and a deadline of s.
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– There is a single mode with speed factor 1 and no required employees. This mode is
available for all tasks.

– For each resource k in I, we create a new equipment group gk , containing ck devices.
– Equipment requirements for each task are determined as follows: A task requires rak

devices of group gk , where a is the activity in I that corresponds to the task. All devices
in each group are available for all tasks.

– There are no workbenches or employees. Tasks do not require workbenches.
– There are no linked tasks.
– The base schedule is empty.

Since each family contains only a single task, the job grouping of each feasible schedule
is uniquely determined: There is a separate job for each task, which has exactly the same
properties (regarding duration, resource requirements, precedences, linked jobs) as the task
it contains. For any activity a in I, there must be exactly one corresponding job ja , which is
the one containing the task corresponding to a in the above construction.

Given a schedule (identified by the set of jobs J ) that is a feasible solution for the TLSP
instance constructed above, it is easy to see that it directly corresponds to a valid schedule S
for theRCPSP instance I, where each activity a starts at the same time as ja ∈ J . Precedences
are satisfied by construction and the capacity of each resource cannot be exceeded at any
time, since otherwise at least one device would have to be assigned to two overlapping jobs
in J at the same time (pidgeonhole principle). Further, all jobs in J must end before the
deadline s. Since both start and duration of abilities and the corresponding jobs are equal,
this also means that all activities in S must end before s, i.e. the makespan of S is at most s.

In the other direction, for any instance I of RCPSP, with a schedule S of makespan at most
s, we can find a feasible schedule J for the corresponding instance of TLSP constructed as
above. As before, each job ja ∈ J should start (and end) at the same time as the corresponding
activity a in S. Precedences and time windows are then satisfied by construction. Next, we
will show that we can always find an equipment assignment for each job that fulfills both the
requirements (constraint H9c) and the single assignment constraint (H8) are satisfied: We
look at each job j in order of increasing start time. Let J< j be all jobs considered before
j which overlap the start of j , A< j be the activities in S corresponding to those jobs and
a be the activity corresponding to j . Since S is feasible, the activities in A< j can require a
total of at most ck − rak units of each resource k (the remaining rak units are required for a).
Therefore, there can be at most ck − rak devices assigned to jobs in J< j . It follows that there
are at least rak devices left to be assigned to j , which is enough to cover its requirements
(H9c). Since jobs are considered in order of increasing start time, there can also be no other
jobs not in J< j that overlap j and have those devices assigned. It follows that constraint H8
must be fulfilled at every step. All other constraints are trivially satisfied.

In conclusion, a schedule for the RCPSP instance with makespan ≤ s exists if and only if
the corresponding TLSP instance is feasible. Since the reduction can be done in polynomial
time, this proves that even the problem of finding any feasible solution for TLSP is already
NP-hard.

If the base schedule is not empty, but instead the (unique) feasible job grouping is provided
as additional input, we immediately arrive at an instance for TLSP-S. As before, each activity
in I corresponds directly to both exactly one task and exactly one job in the constructed
instance. Therefore, the same argument as for TLSP can be used to show the NP-hardness
also of TLSP-S.

123



Annals of Operations Research (2021) 302:533–562 547

4 New instances for TLSP

In this section, we introduce an instance generator, which can be used to randomly generate
instances for both TLSP and TLSP-S based on real-world data. We also propose two sets of
new and publicly available instances for TLSP(-S) assembled using our instance generator.
Finally, we describe three real-world instances taken from our industrial partner, which are
also available online in anonymized form.

4.1 Instance generator

In order to be able to generate instances of specific size and complexity on demand, we
developed an instance generator for TLSP. It randomly generates instances of various sizes
that are based on the real-world data in the laboratory of our industrial partner and can be
configured to produce instances of various sizes and properties. The generator was written
in Java.

To generate a new instance, one has to specify the number of expected projects and the
length of the scheduling period, plus optionally various configuration parameters that refine
the desired properties of the instance. From this, an instance is generated as follows: First, the
laboratory environment, including the available resources, is defined according to the desired
number of projects and the length of the scheduling period. Then, the required number of
projects is generated, together with a set of jobs for each project. This is used to populate
the reference solution, which is guaranteed to be a feasible solution for the final problem
instance. In the third step, task properties (resource requirements and availabilities, prece-
dence constraints, time windows, ...) are defined in accordance with the reference schedule.
Finally, the reference solution is modified to become the base schedule, which completes the
instance generation.

4.1.1 Environment generation

From the number of projects given (together with their average total work) and the length of
the scheduling period, a measure for the expected workload per time slot can be extracted.
The number of employees and workbenches required to achieve a certain mean degree of
utilization can be estimated from this measure.

Equipment is generated by a separate component, which can be passed to the instance gen-
erator. This component also handles equipment requirements of tasks in Step 4.1.2. Currently
supported are two different implementations:

Lab equivalent mode generates devices for exactly those equipment groups that are relevant
for planning at our industrial partner. The equipment requirements for tasks
also closely corresponds to the distribution of requirements in the real-world
laboratory.

General mode is more flexible and creates between 3 and 6 equipment groups,
together with corresponding devices. Equipment requirements for each
groups are selected to be either unitary (i.e. tasks require at most device
of this group) or randomly generated for each project.

In both cases, the number of devices in each group depends on the samemeasure for workload
as for the employees and workbenches, modified by the expected number of required devices
per task.

In this step, also the task modes shown in Table 2 are generated.
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Table 2 Task modes used by the
instance generator

Mode vm em

Single 1 1

Shift 0.6 2

External 1 0

4.1.2 Reference solution

Each project is assigned a certain total workload, which is taken from a distribution that
is as close as possible to the real-world data. It is also assigned to a random interval of
the scheduling period, where earlier intervals are slightly favored over later ones. Then a
number of tasks are created, still without a duration. In general, the expected number of tasks
grows with the project’s workload. These tasks are then distributed into families and further
into jobs. The families can either be taken from the real-world data or generated randomly,
depending on the generator configuration.

Each generated job is then randomly assigned a preliminary duration (taken from the
total workload of the project), a mode (with only a small probability for External mode),
and equipment requirements according to the chosen equipment generation mode (see Step
4.1.1). Most jobs will also be set to require a workbench.

Once these parameters are determined, the job is placed into the reference schedule. This
is done by first randomly choosing a seed point within the project’s assigned interval. Starting
at this point, the job is grown outward in both directions as long as any feasible resource
assignment for it exists or until the desired duration is reached. If no feasible placement at
the whole duration can be found, the position is still accepted as long as the duration is not
much smaller than expected. Where this is not the case or no resource assignment exists even
for the initial seed, the procedure is repeated for another random seed point, up to a certain
maximum number of iterations. While this process cannot guarantee that a feasible schedule
can be found, experiments so far have shown that this is sufficient in most cases.

Once a job is scheduled, it is assigned a feasible set of resources. Its final duration is split
between its tasks, minus the setup time required for its family.

To model started jobs, the scheduling period is extended to the past by one month (about
40 time slots) in the beginning of this step. After all jobs have been scheduled, the scheduling
period is reduced to its original duration. Jobs ending before the newfirst time slot are removed
completely, including their contained tasks – it is assumed that those have been completed
before the start of the scheduling period. Those overlapping the first time slot have their
duration reduced accordingly (potentially including removing some of the contained tasks)
and are defined as started jobs.

4.1.3 Task properties

After the reference schedule has been completed, the remaining properties of the tasks are
finalized.

Release dates, deadlines and due dates for tasks of a project are set to the first start,
respectively last end, of any job in the project. They are then extended outwards by an
additional number of time slots (minimum of 0), which is usually smaller for the due date
than for the deadline.
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The available resources are set for each job (and all contained tasks) such that they include
at least the assigned resources. The number of available resources is taken from the real-world
data for employees (including preferred employees) and workbenches, and handled by the
chosen equipment generation mode for equipment. A small subset of tasks may also have
additional available resources beyond those of the other tasks in the job.

The available task modes are chosen such that tasks of a job with the Externalmode in the
reference schedule must be performed in this mode, while all other tasks can be performed
in Single mode, plus optionally in Shift mode. The latter is always the case if the task’s job
has Shift mode in the reference schedule.

Started jobs will always have their time window, available resources and modes set to
exactly those values that they are assigned to, to ensure that they cannot be altered by the
solver.

The generation of precedence constraints is again delegated to a separate component,
which can be set in the configuration. Two implementations are currently supported, both
start by building a maximum graph of possible dependencies according to the reference
schedule for each project:

Ranked precedence constraints assign ranks to a subset of tasks such that tasks of higher
rank have all tasks of lower rank as prerequisites.

General precedence constraints randomly choose arcs in the maximum dependency graph
that will result in actual dependencies between tasks.

In both cases, the number of precedence constraints between tasks is rather low and most
tasks don’t have any prerequisite tasks at all. This circumstance is directly taken from the
real-world data, where only few dependencies between tasks appear and contrasts with other
project scheduling problems that include tighter constraints on the order of activities.

Finally, possible candidates for linked tasks are identified, both within and between jobs,
and a small subset of those is chosen randomly.

4.1.4 Base schedule

The last step in the instance generation process is the derivation of a base schedule from the
reference solution.

Again, there are several supported options for this, which the generator can be configured
to use. Currently, there are two main implementations supported:

Delete mode Removes some assignments of the jobs in the reference schedule, but leaves
the remaining assignments intact.

Random mode Replaces assignments of the jobs in the reference schedule by randomvalues.
Resource availability constraints and time windows are respected, but other
constraints may be violated by these changes.

Either mode has a parameter that defines the strength of the perturbation (given as the per-
centage of jobs affected). Further, various flags can modify the behavior, including keeping
certain types of assignments intact (e.g. the grouping of tasks into jobs).

Any perturbations do not affect started jobs as well as a number of jobs selected as fixed,
which have their tasks fixed and either all or some assignments fixed to the current value by
restricting the time window, available resources and/or modes to their assigned values.
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Table 3 Instance generator configuration parameters for the two provided datasets

Parameter LabStructure General

Equipment Lab equivalent General

Task families Lab equivalent General

Precedence Ranked General

Base schedule mode Delete Delete

Base schedule perturbation 1.0 1.0

Base schedule options Grouping constant Grouping constant

4.2 Data sets

Currently, there are two sets of test data available, General and LabStructure, both with 60
instances each. These were generated for TLSP, but include a grouping of tasks into jobs in
the (otherwise empty) base schedules that is guaranteed to have at least one feasible solution.
Thus, they are directly usable also for TLSP-S. Feasible solutions for TLSP-S are guaranteed
to also be feasible for TLSP under that grouping and have the same objective values.

Both data sets feature instances of various sizes, starting at 5 projects over a period of 88
time slots, up to 90 projects over 782 time slots. A single project contains an average of close
to 4 jobs. There are no initial assignments except for the started jobs at the beginning of the
scheduling period and a small number (≈ 5%) of jobs whose assignments are fixed.

The difference between the two data sets is that for the LabStructure set, the instance
generator was configured to produce instances that are as close as possible to the actual real-
world data. In contrast, the General set uses the same distribution of work across projects and
tasks, but ismoreflexible regarding several other structural features, such as equipment groups
and job precedence. This distinctionwasmade to obtain a diverse range of instances, including
both those very similar to the real-world laboratory and those with different characteristics.
The instance generator configurations used to create these two datasets are listed in Table 3.

On average, jobs have 5 available workbenches and 6 qualified employees (the different
modes each require between 0 and 2 employees). The demand and availability of equipment
is more varied and differs a lot between data sets and instances. Three different types of
equipment demands appear: Of any given group, jobs require either a single specific device
(these are usually project-specific), one out of a small list of options (< 10) or several (12
on average, but with a large variance) out of a large list (depends on the instance size, up
to several hundred). The distribution of these types is heavily skewed towards the first two
options. Further, the huge number of possible assignments for equipment demands of the
third type is offset by the fact that most jobs do not require equipment of these groups and
the number of devices per group is large enough that feasible equipment assignments can
be found quite easily. These resource distributions were adapted from real-world data in our
partner laboratory.

In addition to the two randomly generated data sets, we also provide three real-world
instances taken directly from the laboratory of our industrial partner in anonymized form.
These instances each cover a planning period of approximately one and a half years and
contain between 59 and 74 projects. Table 4 lists some important parameters of these three
instances.
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Table 4 The three real-world instances. For each instance, the table lists the number of projects, jobs and the
length of the scheduling period, followed by the number of employees, workbenches and equipment groups.
The last columns contain the mean qualified employees and available workbenches per job, as well as the mean
available devices per job and equipment group (only over those jobs that actually require at least one device of
the group, about 10% of all jobs). *The generated instances also include tasks with multiple available devices
per group. This discrepancy arises from the fact that several equipment groups were not yet considered for
planning in practice at the time these instances were created

ID |P| |J | h |E | |B| |G∗| |E j | |B j | |Ggj |
2019-04 74 297 606 22 17 1 5.49 3.06 1*

2019-07 59 251 700 24 17 1 5.33 3.17 1*

2019-10 59 223 572 19 17 1 5.70 3.48 1*

All instances (including the real-world instances) are available for download at https://
www.dbai.tuwien.ac.at/staff/fmischek/TLSP. Once additional data sets become available,
they will also be added there.

5 Local search

For easy implementation of and comparison between different solution techniques, we have
developed a solution framework that provides a unified workflow, common data structures
and utility functionality for TLSP solver implementations.

While theoretically also applicable for other solution approaches, this framework ismainly
intended for use with local search. Here, the basic building block is that of amove, which is a
small change to a given solution, such as a replacement of a time slot or a resource assignment
for a single job. Eachmove contains the necessary information to be applied to a schedule and
to efficiently evaluate its effects on the solution quality. A basic set of move implementations
are provided, which can be combined to form more complex changes. Neighborhoods define
a set of moves available from a current schedule, and provide functionality to access and
iterate over these moves. In addition they also allow for the selection of a random or the best
move among those they contain. These neighborhoods are employed by search heuristics,
which implement the strategies to choose a move that should be applied from among several
neighborhoods in each step of the search.

5.1 Neighborhoods

For this paper, we have developed two different neighborhoods that are suitable to solve
TLSP-S. Both are the combination of several smaller neighborhoods focused on specific
types of moves, and contain the union of all these moves.

The first set, called Simple, contains neighborhoods that each affect a single aspect of a
job’s assignments. It consists of the following neighborhoods:

– Mode change: Switches the assigned mode of the job to a different value. The start time
of the job is kept constant for all moves in this neighborhood, except where the new
duration would conflict with time windows or precedence constraints. In these cases, the
start time is adjusted to ensure that those constraints are satisfied. Also, the number of
assigned employees is adjusted to match the new requirements.
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– Time slot change: Moves the job to a new position in the schedule. As before, time
windows and precedence constraints are respected by all possible moves.

– Resource change: Switches out a single assigned resource unit (workbench, employee or
device) by a different unit of the same type (and group, for equipment).

– Resource swap: Swaps a unit of a resource assigned to this job with a different unit of
the same type assigned to an overlapping job. A resource unit is considered for a swap
only if it is suitable for its new job.

Whilemoves from thefirst three neighborhoods are theoretically sufficient to reach an opti-
mal solution from any schedule already satisfying time window and precedence constraints,
the addition of resource swaps adds more options in situations where a single change would
result in a prohibitively large number of conflicts.

The second variant is a larger neighborhood, with the main idea that a job is completely
removed from the schedule and the neighborhood contains all possible combinations ofmode,
time slot and resource assignments for that job (as before, time windows and precedence
constraints are respected by all moves).

However, the enormous number of potential equipment assignments per job in some
instances made some adjustments necessary. For example, instance LabStructure/010 con-
tains 88 devices in equipment group 1, of which 27 are required by job 45, for a total of(27
88

) ≈ 3.3 × 1022 different possible equipment assignments for this job alone.
Instead, we employed a reduced version of the neighborhood, which keeps the existing

equipment assignments intact, and combined it with a Resource Change neighborhood lim-
ited to equipment changes. We refer to this combination of neighborhoods as JobOpt. To
further increase the efficiency when the best move in the neighborhood is required, we utilize
independencies between assigned resources to precompute and cache the effects of assigning
individual units to the job.

Since the neighborhoods described above do not affect the task grouping, they are not
suitable for solving TLSP, unless the are combined with additional neighborhoods covering
the grouping aspect.

5.2 Search heuristics

The search heuristics make use of the available neighborhoods, which abstract away the
problem specific details and can be dynamically changed. Thus, the heuristics are problem-
agnostic and can be used for TLSP, TLSP-S and other related variants, as long as the employed
neighborhoods are adjusted to fit. This makes implementing and modifying search heuristics
very easy. For this paper,we have implemented and evaluated twowell-knownmetaheuristics,
Min-Conflict and Simulated Annealing, as an example of the kind of search strategies that
are supported by the framework.

5.2.1 Min-conflict

Themin-conflicts heuristic (Minton et al. (1992)) was originally developed to solve constraint
satisfaction problems (including scheduling applications). It works by randomly selecting a
variable appearing in at least one conflict (violated constraint) and choosing a value for it
that minimizes the number of conflicts remaining.

This strategy can be adapted as follows for TLSP(-S) and our solver framework: Choose
a job at random that violates at least one constraint, and pick a move from the neighborhood
involving the chosen job that minimizes constraint violations (i.e. the best move).

123



Annals of Operations Research (2021) 302:533–562 553

Different selection strategies are possible, due to the distinction between hard and soft
constraints. We have experimented with three different variants of Min-Conflict. The first
selects jobs from among those violating hard constraints. Once the solution is feasible, also
soft constraint violations are considered. The second variant considers both hard and soft
constraint violations from the start. Finally, the third variant chooses from all jobs, regardless
of their presence in any kind of constraint violation.

For TLSP(-S), the second and third variants are virtually equivalent due to soft constraints
S3 (Number of employees) and S5 (Project completion time), whose presence entails that
most, if not all, jobs are involved in at least one soft constraint violation2. Further, results did
not differ in any meaningful way between the first and either of the latter variants.

For simplicity, and to avoid having to keep a running account of the jobs involved in
constraint violations, the experiments in Sect. 6 have been done using variant three.

A weakness of MC is that it contains no mechanism to avoid repeating already visited
solutions and thus might get stuck where several adjacent configurations for most or all jobs
are locally optimal. A possible countermeasure is to inject additional randomness into the
solution procedure. In our framework, we have also included a randomwalk (RW) algorithm,
that randomly selects a job and performs a randommove for the chosen job. RW is combined
with MC in a hybrid heuristic that at each step calls RW with a low probability pRW , and
MC otherwise.

Also, the search automatically restarts from a new initial solution if no progress has been
achieved within a certain number of moves.

5.2.2 Simulated annealing

Simulated Annealing (Kirkpatrick et al. (1983)) is a well-known metaheuristic that has
been employed successfully to solve many NP-complete problems, including RCPSP (e.g.
Bouleimen and Lecocq (2003); Laurent et al. (2017)).

In SA, the search starts from a randomly generated solution. In each step, a candidate
move is chosen randomly from the available neighborhoods. The difference in objective
value � due to the chosen move is calculated. If � < 0 (for minimization problems), the
move is applied. Otherwise, it is still accepted with probability e−�/T . Thus, the acceptance
probability depends on � (smaller values have a larger probability to be accepted) and a
parameter T called temperature (higher values result in a larger acceptance probability). The
temperature starts at an initial value T 0 and is iteratively reduced by a cooling factor α, with
0 < α < 1, after a certain number of steps, until a minimum temperature Tmin is reached.
At this point, the search stops.

The choice of α is crucial because it determines the number of moves until the algorithm
halts. In order to ensure that the available time is fully used, i.e. Tmin is reached right at the
timeout, we adjust α according to the number of moves applied per second. At a search speed
of m moves per second, i iterations between successive cooling steps, current temperature

T , Tmin will be reached after u = i
m logα( T

min

T 0 ) seconds. Conversely, for a given timeout of
u seconds, we get the following for α:

α =
(
Tmin

T 0

) i
um

(1)

2 This is exacerbated in TLSP, where soft constraint S1 (Number of jobs) trivially involves every single job
in a soft constraint violation
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Since search speed (the value of m) can vary between different instances, processors and
also in the course of the search, we initially set α to 1, and periodically update it during the
search, using the average measured search speed so far form, the current temperature instead
of T 0 and the remaining time for u.

We have also alternatively experimented with fixed cooling rates, where the search restarts
when the minimum temperature is reached, either from a new initial solution or the best
solution found so far (reheating). Neither of these options (at different cooling rates - and
therefore different numbers of restarts or reheatings) improved upon the solution quality,
with short cooling cycles producing infeasible solutions more often and worse penalties in
most other cases.

Finally, a schedule for TLSP(-S) can contain both hard and soft constraint violations. This
has to be taken into account when calculating a value for �. In our implementation, we have
weighted each hard constraint violation by a factor wH (chosen by the parameter tuner, see
below).

6 Experimental results

For the experiments, a set of thirty instances of different sizes were chosen (15 each from the
General and LabStructure sets described in Sect. 4.2 - one of each size, plus a second instance
for the three smallest sizes), plus the three real-world instances available. The instances and
some important properties are listed in Table 5.

Since we are solving TLSP-S, we use the task grouping provided in the reference solution
(which is otherwise empty except for the assignments of started jobs).

The algorithms described in Section 5 were implemented in Java 8. All experiments were
performed on a Lenovo ThinkPad University T480s with an Intel Core i7-8550U (1,8 GHz),
using a single thread and a timeout of ten minutes.

6.1 Parameter configuration and tuning

For parameter tuning, we used SMAC3 (Hutter et al. (2011)), version 0.10.0. Tuning was
performed on a set of 30 instances chosen in the same way as, but distinct from, the test data
set. In each case, we allocated a budget of 500 target algorithm runs to SMAC.

6.1.1 Min-conflict

For the Min-Conflict heuristic, the restriction to a single job at each step means that both
the Simple and the (larger) JobOpt neighborhoods can be explored in reasonable time. Over
various solver runs, both neighborhoods achieved comparable results on the training set over
several different configurations. For parameter tuning and the final evaluations, we decided
to use the JobOpt neighborhood.

There are two construction heuristics that can be used to generate the initial solution. The
first (Greedy) iterates over the jobs in order of ascending deadline and greedily assigns to each
job the currently best values. The other (Random) uses random values for all assignments,
respecting time windows, job precedence and resource availability constraints.

While MC itself does not include any parameters, there are still several possibilities for
configuration. The parameters submitted to SMAC for tuning are listed on Table 6a and
include the following: Init is the construction heuristic that should be used to build the
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Table 5 The set of test instances used for the experiments. Shown are the data set the instance is taken from and
the ID within that set. The following columns list the number of projects, jobs and the length of the scheduling
period, followed by the number of employees, workbenches and equipment groups. The last columns contain
the mean qualified employees and available workbenches per job, as well as the mean available devices per
job and equipment group (only over those jobs that actually require at least one device of the group, about
10% of all jobs)

# Data Set ID |P| |J | h |E | |B| |G∗| |E j | |B j | |Ggj |
1 General 000 5 7 88 7 7 3 2.08 3.57 1.5

2 General 001 5 8 88 7 7 3 4.88 3.63 15.67

3 LabStructure 000 5 24 88 7 7 3 1.84 3.38 11.67

4 LabStructure 001 5 14 88 7 7 3 4.36 3.5 0.36

5 General 005 10 29 88 13 13 4 4.04 3.48 5.76

6 General 006 10 18 88 13 13 6 5.56 4.22 13.28

7 LabStructure 005 10 37 88 13 13 3 6.16 4.03 0.65

8 LabStructure 006 10 29 88 13 13 3 6.21 3.76 21.01

9 General 010 20 60 174 16 16 5 7.42 4.42 11.36

10 General 011 20 84 174 16 16 4 7.31 4.3 3.7

11 LabStructure 010 20 65 174 16 16 3 6.28 4.43 26.26

12 LabStructure 011 20 62 174 16 16 3 7.27 4.24 1.21

13 General 020 15 29 174 12 12 5 5.76 3.97 1.12

14 LabStructure 020 15 53 174 12 12 3 6.28 4.47 20.63

15 General 025 30 113 174 23 23 3 8.26 4.41 5.71

16 LabStructure 025 30 105 174 23 23 3 7.52 4.25 39.63

17 General 015 40 126 174 31 31 3 9.26 4.48 29.53

18 LabStructure 015 40 138 174 31 31 3 7.36 3.57 41.93

19 General 030 60 208 174 46 46 6 9.85 4.11 31.45

20 LabStructure 030 60 212 174 46 46 3 9.28 4.17 78.16

21 General 035 20 76 520 6 6 5 4.24 3.62 8.08

22 LabStructure 035 20 71 520 6 6 3 4.3 3.42 11.70

23 General 040 40 196 520 12 12 4 6.95 4.47 4.24

24 LabStructure 040 40 187 520 12 12 3 6.55 4.51 1.38

25 General 045 60 260 520 18 18 6 7.65 4.52 23.95

26 LabStructure 045 60 239 520 18 18 3 7.44 4.42 33.65

27 General 050 60 270 782 13 13 4 6.89 4.39 3.89

28 LabStructure 050 60 247 782 13 13 3 6.97 4.21 23.42

29 General 055 90 384 782 19 19 5 7.27 4.29 26.89

30 LabStructure 055 90 401 782 19 19 3 7.34 4.53 36.76

initial solution . Another parameter is the maximum number of moves without improvement
(MMWI) before the search restarts from a new initial solution. Finally, pRW denotes the
probability at each step that a single move of random walk is performed instead of the
min-conflict heuristic.
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Table 6 Tuning parameters for Min-Conflict with Random Walk (a) and Simulated Annealing (b). The last
column lists the parameter values for the best configuration found

Parameter Value range Best configuration

(a) Min-conflict + Random walk

Init {Random, Greedy} Greedy

MMWI {100 . . . 10000} 131

pRW {0, 0.05, 0.1, 0.2} 0.1

(b)Simulated annealing

T 0 {10 . . . 100} 69

Tmin {0.001, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10} 0.1

wH {10, 20, 50, 100, 200} 10

6.1.2 Simulated annealing

The parameters to tune for SA are the initial temperature T 0, the minimum temperature
Tmin and the weight factor for hard constraint violations wH , since the cooling rate is
automatically determined from the available time and the number of moves applied per
second. The parameters for SMAC and tuning results are listed in Table 6b.

As with the Min-Conflict heuristic, we saw comparable results for both the Simple and
JobOpt neighborhoods and opted to continue the experiments with the JobOpt neighborhood
for comparability.

6.2 Evaluation

Table 7 shows a comparison of results for Min-Conflict with Random Walk (MC+RW) and
Simulated Annealing (SA), with the configuration described in the previous section. These
results are compared to those of a Constraint Programming model (CP), written in MiniZinc
(Nethercote et al. (2007)) and using the solver Chuffed (Chu (2011). Details for this CP
model can be found in Geibinger et al. (2019).

Due to their non-deterministic behavior, both MC+RW and SA were run 10 times on each
instance, with different seeds for the (pseudo-) random number generator. The table shows
the best solution found over all runs, the number of feasible solutions found, and the average
penalty among all feasible solutions.

From these results, it can be seen that instances can be split into two groups: For small
instances with 20 projects or less (instances 1–14 and 21,22), good solutions could be found
in most cases. This was much more difficult for larger instances with more than 20 projects.

MC+RWwas unable to reliably find feasible solutions for most large instances within the
given time.Moreover, evenwhere it does find solutionswithout conflicts, the resulting penalty
is often only slightly better than what was already achieved with the greedy construction
heuristic.

SA performed much better and found feasible solutions in more than 97% of all runs.
Also the solution quality is consistently better than with MC+RW, except for some small
instances.

The CP model could find feasible solutions for all of the instances already within one
minute. Within the full time limit, it could prove optimality for 12 of the 16 small instances.
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Table 7 Comparison of results. Min-conflict with random walk and Simulated Annealing were both run 10
times each, with different seeds. Columns Best contain the best solution found, #Feas. the number of feasible
solutions found (out of 10) and Avg the average penalty over all feasible solutions. Solutions for CP marked
with “*” are optimal for the instance

# MC+RW SA CP

Best #Feas. Avg Best #Feas. Avg

1 98 10 98 98 10 98 98 *

2 73 10 73 73 10 73 73 *

3 149 10 149.3 152 10 156.4 149 *

4 105 10 105.3 105 10 105 105 *

5 285 10 286.9 287 10 300.1 283 *

6 162 10 162.4 177 10 192.2 162 *

7 327 10 331.7 307 10 307.4 307 *

8 314 10 323.5 310 10 312 310 *

9 625 10 648.8 501 10 502.7 501 *

10 725 10 751 564 10 565.3 892

11 993 10 1049.9 874 10 879 856 *

12 749 10 768.9 663 10 668 713

13 340 10 341 352 10 352.1 340 *

14 450 10 457.9 422 10 425.7 420 *

15 1800 4 1841 1087 10 1090.6 1653

16 1357 8 1429.8 1143 10 1155.2 1561

17 1381 10 1410.9 1195 10 1234 1382

18 1688 10 1760.7 1364 10 1375.3 1822

19 2675 6 2735.3 2277 10 2337 2650

20 2853 2 2898.5 2312 10 2360.6 2892

21 908 10 1007.7 683 10 686.6 930

22 1033 10 1079.7 767 10 771.9 839

23 – 0 −− 2393 6 2476.3 3531

24 2484 2 2664 1808 10 1852.5 2454

25 – 0 −− 2908 8 3050.9 3281

26 – 0 −− 2724 10 2805 3899

27 3372 3 3405.7 2176 10 2191.3 3146

28 2585 10 2617.2 2367 10 2375.8 2569

29 5334 2 5406.5 4208 9 4428.4 4548

30 6453 10 6646.8 4828 9 4896.8 5905

Compared to the results for SA, CP slightly outperforms SA on those instances where
it could find optimal solutions. However, SA produced better results for every single other
instance, sometimes by more than 30%. In particular, SA decisively outperformed CP on the
large instances, i.e. those with more than 20 projects. These results can also be seen in Fig. 1.

The differences between the results for small and large instances indicates that the number
of projects (and thus jobs) is the main factor in determining the time required to solve an
instance. In contrast, neither the number of time slots in the scheduling period, nor the
number of resources available for each job seem to have a decisive impact on the difficulty
of an instance.
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Fig. 1 Results for Min-Conflict with Random Walk (MC+RW), Simulated Annealing (SA) and Constraint
Programming (CP), with a timeout of 10 minutes per instance. The center and right groups show results only
for small (≤ 20 projects) and large instances, respectively. Results were scaled by the best solution known for
each instance

6.2.1 Additional runtime

We also repeated our experiments with the same configuration for Simulated Annealing with
a longer timeout of one hour. Table 8 shows the results of these experiments, again compared
with the results for the CP model (also with a timeout of one hour).

With the increased time budget, feasible solutions could be found for all instances. As
with the shorter time limit, the solutions produced by SA for all instances where CP could
not find optimal solutions are better than those found by CP, in some cases by more than
30%. In particular, this includes all large instances.

For those small instances, where optimal solutions have been found, SA achieved solutions
with the same or very close penalties.

Compared to the results with a shorter time limit, the penalty for large instances (>20
projects) has improved by nearly 3.8% on average with SA. CP could find optimal solutions
for three of the four remaining small instances. However, the results for large instances
improved by less than 1% on average.

Figure 2 shows a comparison of the performance of the two solvers, both overall and
separated into small and large instances. With the increased running time, CP finds the best
known (indeed optimal) solution for all but one of the small instances, but is still outperformed
by SA both on the larger instances and in overall quality.

Our results are in line with previous findings for RCPSP (e.g. by Pellerin et al. (2020),
for a recent example) that exact approaches are suitable mostly for instances with fewer
activities and that heuristics are needed to find good solutions for instances of larger sizes.
A possible explanation for this may be that exact approaches in general have to examine a
substantial part of the search space, which grows exponentially with the number of activities,
while heuristics can often find more efficient paths through that search space, at the cost of
losing any guarantees about the final solution reached.
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Table 8 Comparison of results
with a timeout of one hour.
Simulated Annealing was run 5
times per instance with different
seeds. Column Best contains the
best solution found, #Feas. the
number of feasible solutions
found (out of 5) and Avg the
average penalty over all feasible
solutions. Solutions for CP
marked with “*” are optimal for
the instance

# SA CP

Best #Feas. Avg

1 98 5 98 98 *

2 73 5 73 73 *

3 151 5 152.4 149 *

4 105 5 105.4 105 *

5 292 5 300.8 283 *

6 180 5 191 162 *

7 307 5 307 307 *

8 310 5 310.2 310 *

9 501 5 501 501 *

10 564 5 564.6 740

11 872 5 873.4 856 *

12 663 5 664.8 656 *

13 352 5 353.6 340 *

14 422 5 422.2 420 *

15 1086 5 1086.8 1647

16 1141 5 1142.2 1561

17 1195 5 1206 1284

18 1360 5 1361 1820

19 2196 5 2233 2650

20 2261 5 2284.6 2888

21 683 5 683.6 679 *

22 765 5 766.6 765 *

23 2200 5 2276 3487

24 1782 5 1799.4 2452

25 2598 5 2737.8 3278

26 2605 5 2633.4 3894

27 2155 5 2159.8 3130

28 2333 5 2341.2 2569

29 4038 5 4204.8 4539

30 4601 5 4636.6 5904

7 Conclusions

In this article, we have introduced the new problem TLSP, and its subproblem TLSP-S,
which are complex extensions to existing RCPSP variants based on real-world requirements.
A complexity analysis via reduction from RCPSP shows that even finding a feasible solution
for either of these two problems is already NP-hard. Our findings and comparison to related
variants of RCPSP indicate that TLSP covers several aspects important in actual practice that
cannot be efficiently modeled by existing formulations.

Our publicly available instance sets, first described in this paper, contain both instances
randomly generated based on real-world requirements, using our configurable instance gen-
erator, and real-world instances. Our experimental evaluations indicate that these instances
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Fig. 2 Results for SimulatedAnnealing (SA) andConstraint Programming (CP), with a timeout of one hour per
instance. The center and right groups show results for small (≤ 20 projects) and large instances, respectively.
Results were scaled by the best solution known for each instance

provide a challenging benchmark data set which can be further used by other researchers to
work on this problem.

In addition, we have introduced a solver framework for solving these problems, which
supports several metaheuristic solvers and provides multiple options for configuration and
extensions. Using this framework, we have shown that Simulated Annealing using a suitable
set of problem-specific neighborhoods can be used to provide high quality solutions for
TLSP-S, and outperforms a state-of-the-art method based on Constraint Programming for
larger and practical instances both under strict time limits and with longer runtimes. Our
results also further support the general finding that for most scheduling problems based on
RCPSP, exact methods work well only for smaller instances, and heuristics are necessary to
solve instances of realistic sizes.

The methods proposed in this work are currently in use in the laboratory of our industrial
partner, who successfully generate schedules for their long-term planning.

Regarding future work, we plan to investigate whether these results can also be transferred
to the TLSP, which combines TLSP-S with an additional grouping stage. A promising direc-
tion of research also seems the combination of both local search and CP-based approaches,
in the form of hybrid algorithms or large neighborhood search, to combine the advantages
of both methods and further improve the results for TLSP-S.
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