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ABSTRACT Metric plays a key role in the description of similarity between samples. An appropriate metric
for data can well represent their distribution and further promote the performance of learning tasks. In this
paper, to better describe the heterogeneous distributions of data, we propose a semi-supervised local-to-
global metric learning framework from the geometric insight. Our contributions can be summarized as:
Firstly, to enlarge the application scope of local metric learning, we introduce the unsupervised information
as the regularization term into our smoothly glued nonlinear metric model. Secondly, we propose two
different nonlinear semi-supervised metric learning models with two different loss terms, and find that the
smooth loss performs better than the hinge loss by comparison results. Thirdly, we have established not
only two metric learning models, but also a nonlinear metric learning framework based on local metrics,
which includes supervised and semi-supervised as well as linear and nonlinear metric learning. Moreover,
we present an intrinsic steepest descent algorithm on the positive definite manifold for implementation of our
semi-supervised nonlinear metric learning models with smooth triplet constrain loss. Finally, we compare
our approaches with several state-of-the-art methods on a variety of datasets. The results validate that the
robustness and accuracy of classification are both improved under our metrics.

INDEX TERMS Local metric learning, semi-supervised method, partition of unity, intrinsic steep descent
method.

I. INTRODUCTION

In artificial intelligence tasks, it is often required to judge
whether a sample is similar or dissimilar to others. Thus,
we need a measurement to evaluate the similarity of samples.
Metric is often used as a tool for this purpose. Therefore,
learning an appropriate distance metric to measure the dis-
tance or similarity between samples, i.e., metric learning,
becomes one of the key topics in machine learning [1]–[4].
The applications of metric learning include re-identification,
medical image analysis and place recognition [5]–[10].
From the geometric viewpoint, metric learning can be cat-

egorized as linear and nonlinear metric learnings [11], [12].
For example, the linear metric learning can be formulated by
a globally linear mapping from the original domain to the new
data space.

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

To improve the separability in classification and retrieval
tasks, metric learning often aims to find an appropriate
distance metric which keeps similar samples closer while
dissimilar ones farther. A variety of linear metric learning
methods are developed, such as Distance Metric Learning
(DML) [13], Neighborhood Component Analysis (NCA)
[14], Large Margin Nearest Neighbors (LMNN) [15], and
Mirror Descent Metric Learning (MDML) [16]. Among
them, LMNN is the most representative method which sepa-
rates samples from different classes with a large margin while
keeping k-nearest neighbors similar and tight [15]. Both
empirically and theoretically, these metric learning methods
can significantly improve the performance in a variety of
machine learning problems via a linear globalmetric. Inmany
real world applications, however, such methods cannot fit the
complicated data distribution well and lead to unsatisfactory
performance.

Therefore, many methods on nonlinear metric learn-
ing, including kernel and multi-metric methods, have been
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proposed and performed well on many real datasets. In par-
ticular, kernel-basic metric learning is to map the original
low-dimensional data into a high-dimensional feature space
for a better separation. Davis et al. [17] kernelize themodel by
a low-rank kernel learning method in Information-Theoretic
Metric Learning (ITML). Jain et al. [18] propose a gen-
eral kernel-based framework for learning metrics via linear
transformations, which bridges the metric learning and ker-
nel learning. Later, Li et al. [19] develop a multiple kernel
metric learning method to choose an appropriate kernel for
classification. However, the computational burden limits their
application to large scale datasets.
Meanwhile, multi-metric learning is to learn multiple local

metrics on local regions [20], [21]. A usual kind of local
metric learning method constructs either instance-specific
metrics [22] or cluster-specific metrics based on prior knowl-
edge such as label information [23]. For instance, Zhan et al.
propose an Instance Specific Distances learning by metric
propagation under a convex optimization framework, which
propagates and adapts metrics of individual labeled instances
to individual unlabeled ones. Wang et al. [24] propose Para-
metric Local Metric Learning (PLML) based on LMNN,
which defines several anchor points with different basic
Mahalanobis metrics. Later, Peng et al. [25] develop Global
Nonlinear Smooth Metric Learning (GNSML) by gluing the
local linear metrics, which constructs a smooth nonlinear
metric for every sample. Then, Nguyen et al. [26] propose
the Clustered Multi-Metric Learning (CMML) by learning
multiple distance metrics jointly with triplet constraints con-
structed in clusters.

Nevertheless, these methods are supervised and do not suf-
ficiently consider those unlabeled data. Thus, making good
use of those large amounts of unlabeled data is a challenging
problem. Semi-supervised methods can exploit the informa-
tion of labeled and unlabeled data to learn an appropriate
metric, which combines the advantages of supervised and
unsupervised metric learning methods. With semi-supervised
clustering, Bilenko et al. [27] conduct distance metric learn-
ing by using the pairwise constraints to learn an appropriate
metric. Later, on the basis of such model, Hoi et al. [28]
propose a semi-supervised metric learning method, which
encodes the similarity between point pairs with a weight
matrix and a graph Laplacian regularity. Moreover,
Li and Fu [29] introduce the low-rank constraint into the
semi-supervised metric learning. Liu et al. [30] construct the
weight matrix in a refined way. Baghshah and Shouraki [31],
Zhong et al. [32] and Wang et al. [33] use different manifold
regularizers respectively, in which Wang et al. define three
semi-supervised assumptions, i.e., smoothness, manifold and
cluster, via density and similarity [33].

However, most of these semi-supervised metric learn-
ing methods simply learn a global linear metric, which
may fail to deal with heterogeneously distributed data.
Furthermore, we need a smooth metric defined on every
point in the entire space, not only on the training
set.

FIGURE 1. Flowchart of the proposed local-to-global metric learning
framework.

FIGURE 2. Visualization on a toy example with heterogeneous
distribution. Different colors represent different classes.

In this paper, we propose a semi-supervised local-to-global
metric learning framework with multi-local metrics for het-
erogeneously distributed data, which introduces the manifold
regularization to preserve the data structure. In particular,
we conduct metric learning by smoothly gluing locally linear
metrics, whose basic framework is illustrated in Fig. 1. It is
worth to mention that, as illustrated in Fig. 2, our framework
can handle the heterogeneously distributed data well, while
the global metric learning method LMNN fails.

The remainder of this paper is organized as follows.
In Section II, we introduce a local-to-global metric con-
struction theory and strategy with the partition of unity.
Under this metric construction, in Section III we propose a
semi-supervised multi-metric learning framework, and then
discuss two models for the semi-supervised local metric
learning problem with different triplet constraint losses and
the associated optimization algorithms. In Section IV, we
conduct extensive experiments to validate the effectiveness
of the proposed methods. Section V concludes the paper.

II. THE PROPOSED METHODOLOGY

The goal of metric learning is to learn an appropriate metric
for describing data. Since the data are often nonlinear and
heterogeneously distributed and can be viewed lying on a
latent manifold, a global linear metric is no longer proper.
As we know, manifold can be viewed as Euclidean locally.
Intuitively, to fit the data manifold locally, we consider learn-
ing multiple local linear metrics since similar samples share
the similar distribution within a local area. Thenwe glue these
local metrics smoothly to have a smooth nonlinear metric for
every point in the entire data space.

A. THE LOCAL-TO-GLOBAL METRIC CONSTRUCTION

Therefore, a smooth way to glue the locally linear met-
ric on the data manifold is needed. Fortunately, the the-
orem of Partition of Unity [34], an important theorem in
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differentiable manifold, establishes a bridge from local to
global. Intuitively, we can use the theorem of Partition of
Unity for gluing the local structures to obtain a global smooth
metric and to fit the data manifold. Here we state one version
of the theorem.
Theorem 1 (Partition of Unity): Let A ⊆ R

n and O be an

open cover of A. Then there exists a collection 8 of C∞

functions φ defined on an open set containing A, with the

properties below:

1) ∀x ∈ A, 0 ≤ φ(x) ≤ 1.
2) ∀x ∈ A, there is an open set V containing x such that all

but finitely many φ ∈ 8 are 0 on V .
3) ∀x ∈ A,

∑

φ∈8 φ(x) = 1.
4) ∀φ ∈ 8, ∃U ∈ O, s.t. φ = 0 holds outside of some

closed set contained in open set U.

A collection8 that satisfies 1) to 3) is called aC∞ partition
of unity for A. Moreover, if 8 also satisfies 4), it is said
to be subordinate to the cover O. We introduce the strategy
to construct a novel local-to-global distance metric via the
Partition of Unity in the following.

Given a datasetD = {x1, · · · , xn}, where xi ∈ R
d , without

loss of generality, we assume that the first l samples in
D are the labeled data L = {x1, · · · , xl} with the label
Y = {y1, · · · , yl}.
Definition 1 (Smoothly Glued Metric): Suppose we con-

struct a partition of unity {φc ∈ C∞(M) | 1 ≤ c ≤ N }

on the data manifold M (samples are finite so the manifold

is compact) such that the global metricM at any point x could

be defined as:

M (x) =

N
∑

c=1

φc(x)Mc, ∀x ∈ M,

where φc(x) is a truncated function for 0 ≤ φc(x) ≤ 1,
∑N

c=1 φc(x) = 1, and M1,M2, · · · ,MN are N basic metrics

defined on N local regions.

These local regions could 1) be clusters acquired via
some structure unsupervised methods, such as k-means; and
2) depend on the label information of classes. For simplicity,
we allow different classes be viewed as different regions in
our experiments. So, N could be the number of different
classes. Then the squared distance between two samples xi
and xj can be defined as:

D2
ij = (xi − xj)

Tm(M (xi),M (xj))(xi − xj),

where m(M (xi),M (xj)) is set as M (xj) by default in some
literature. Obviously, the symmetry D2

ij = D2
ji cannot be

satisfied when the metrics defined on M (xi) and M (xj) are
different. We then introduce a symmetric metric as

m(M (xi),M (xj)) = (M (xi) +M (xj))/2

=

N
∑

c=1

φc(xi) + φc(xj)

2
Mc.

Therefore, the distance between xi and xj can be rewritten
with the symmetrical metric

D2
ij =

N
∑

c=1

φc(xi) + φc(xj)

2
(xi − xj)

TMc(xi − xj).

The key of this work is the construction of truncated
functions {φc}

N
c=1.

Unlike most existing metrics defined only on the training
data, we try to define a metric on every point in the entire data
space by establishing the truncated function with the heat-
diffusion:

φc(x) = fc(x)/
∑

i

fi, fc(x) = e
−
d2c (x,xc)

σ20 ,

where xc is the center point of the c-th class, and σ0
is a hyperparameter to describe the covering of samples.
By definition, the value of fc(x) is inversely proportional to
the distance between sample x and xc, which means that the
basic metricMc would have less effect on the samples farther
away from the class center. As long as the basic metrics are
given, the global metric value at any sample x is determined.
Thus, we obtain the smooth metric function defined on every
point in the entire manifold.

B. THE PROPOSED SEMI-SUPERVISED METRIC LEARNING

FRAMEWORK

In this section, we firstly propose a semi-supervised metric
learning framework by defining an objective function as

E = λReg+ (1 − λ)L, (1)

where L is the loss of data fitting term, and Reg is the
regularization term. Here 0 ≤ λ ≤ 1 is a trade-off parameter.
Usually, the loss term keeps the inner- and inter- class data
balanced, and the regularization term controls the smoothness
and structure.

C. THE TRIPLET CONSTRAINT LOSS

For well fitting the data and quantifying the similarity of the
samples, we introduce a triplet constraint in an intuitive way,
i.e.,

T = {(xi, xj, xk ) : D2
ij < D2

ik},

where xi is similar to xj, and dissimilar to xk . It means that
the distance of samples in different classes should be as large
as possible, while as small as possible in the same class.

Hinge loss function [25] [15] is often used for the triplet
constraint D2

ij + 1 < D2
ik as

LH =
∑

T

[1 + D2
ij − D2

ik ]+, (2)

where [m]+ = m ifm ≥ 0, and 0 otherwise. It is clear that the
hinge loss function is non-smooth and time-consuming for
computation. Furthermore, to balance the scale between the
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similar and dissimilar data, we rewrite the triplet constraint in
a smooth version as

T ′ = {(xi, xj, xk ) : D2
ij < γ D2

ik}

by introducing an adaptive parameter γ = 1/(1 + D̃−1) ∈

(0, 1], where D̃ is the mean distance between samples. The
parameter γ fully depends on the distribution of dataset, and
can well balance the difference of inner- and inter-class.
Then, we obtain the corresponding smooth loss function

for this smooth triplet constraint as

LS =
∑

T ′

(D2
ij − γD2

ik ). (3)

With this loss function, we can well describe the dataset
structure and reduce the computation complexity. Neverthe-
less, the corresponding loss term is supervised and prone to
over-fitting due to the absence of regularization, especially in
high dimensions.

D. REGULARIZATION TERM

Inspired by the regularization method in [33], with the help
of some unlabeled data, we introduce a regularizer

Reg =

n
∑

i=1

βi

∑

j∈N (i)

SijD
2
ij (4)

to better describe the sample structure and distribution.
Here βi ∈ R

+ is a parameter related to density for the
sample xi,N (i) is the set of the neighbor samples of xi, and
Sij is the similarity between xi and xj. This term can better
preserve the topology structure by penalizing large distance
between inputs and their neighbors. Moreover, an adaptive
weight depending on density is used to penalize the cluster
information. The regularization term is unsupervised since
the label information are unknown.

E. SEMI-SUPERVISED METRIC LEARNING MODELS

Based on the analysis of the triplet constraint loss (2) (3) and
regularizer (4), the optimization problem for semi-supervised
metric learning framework can be established.
We consider two semi-supervised metric learning models

based on different triplet constraints respectively, namely
Partition of Unity based Local Learning Metric with Hinge
loss (PULLMH) and Partition of Unity based Local Learning
Metric with Smooth constraint (PULLMS). The two models
can be presented as

min
M1,··· ,MN

EH = λ

n
∑

i=1

βi

∑

j∈N (i)

SijD
2
ij

+ (1 − λ)
∑

T

[1 + D2
ij − D2

ik ]+

s.t. M1, · · · ,MN � 0, (5)

and

min
M1,··· ,MN

ES = λ

n
∑

i=1

βi

∑

j∈N (i)

SijDn
2
ij

+(1 − λ)
∑

T ′

(D2
ij − γD2

ik )

s.t. M1, · · · ,MN ≻ 0, (6)

respectively.
EH is the objective function of PULLMH, while ES is that

of PULLMS. In fact, the previous work [35] [25] can be
viewed as two special cases of our metric learning framework
when the local metrics M1, · · · ,MN are the same or the
trade-off parameter λ = 0 respectively.

III. OPTIMIZATION

We will optimize these two models with different optimiza-
tion methods in this section.

A. OPTIMIZATION MODEL WITH HINGE LOSS - PULLMH

The optimization problem for PULLMH can be rewritten as:

min
M1,··· ,MN

EH = λ

n
∑

i=1

βi

∑

j∈N (i)

SnijDnn
2
ij

+(1 − λ)
l

∑

i,j,k=1

hij(1 − yik )[1 + D2
ij − D2

ik ]+

s.t. M1, · · · ,MN � 0, (7)

and

hij =

{

1 xi and xj are neighbors in the same class;

0 otherwise

yik =

{

1 xi and xk are in the same class;

0 xi and xk are in different classes

are indicator functions respectively.
The second term in (7) is the loss, penalizing small dis-

tances between samples with different labels. We hope that
there exists a finite margin (default 1) between samples
with different labels. Like [23], we implement an iterative
sub-gradient projection method to optimize the model (7) in
terms of the positive semi-definite metricsM1, · · · ,MN .
Specifically, to simplify the notation, let Zij = (xi −

xj)(xi − xj)T and 8c
ij =

φc(xi)+φc(xj)
2 . Then at the t-th iter-

ation, the squared distance between xi and xj is D2
ij(t) =

N
∑

c=1
8c
ij tr(Mc(t)Zij). Consequently, (7) can be rewritten as:

EH = λ

n
∑

i=1

βi

∑

j∈N (i)

Sij

N
∑

c=1

8c
ij tr(Mc(t)Zij)

+ (1 − λ)
l

∑

i,j,k=1

hij(1 − yik )

[1+

N
∑

c=1

8c
ij tr(Mc(t)Zij)−

N
∑

c=1

8c
ik tr(Mc(t)Zik )]+ (8)

Note that (8) is piecewise linear with respect to the basic
metrics M1, · · · ,MN . Without the loss of generality, we
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define a set of triplets Nt , such that (i, j, k) ∈ Nt if and only if
the indices (i, j, k) trigger the hinge loss in (8). Then we can
get the gradient Gc(t) of E(Mc) as:

Gc(t) =
∂E

∂Mc(t)
= λ

n
∑

i=1

βi

∑

j∈N (i)

Sij8
c
ijZij

+ (1 − λ)
∑

i,j,k∈Nt

hij(1 − yik )(8
c
ijZij − 8c

ikZik ) .(9)

Thus, at the next (t + 1)-th iteration,

M̂c(t + 1) = Mc(t) − α(t)Gc(t),

where α(t) is the optimal step-size at t-th iteration. Since (8)
requires the positive semi-definiteness of the basic metricMc,
we project M̂c(t + 1) onto the positive semi-definite cone:

Mc(t + 1) = PS (M̂c(t + 1)) = V max(1,0)V T ,

where V and 1 are the matrices of eigenvectors and eigen-
values of M̂c(t + 1). Therefore, we have the iterative formula
of metrics.
However, the sub-gradient projection method can only find

a semi-definite positive matrix, which in fact is a pseudo-
metric since it cannot satisfy the distinguishability. There-
fore, we use the intrinsic steepest descent (ISD) algorithm to
solve the optimization problem (6) on positive definite matrix
group.

B. OPTIMIZATION MODEL WITH SMOOTH LOSS - PULLMS

The optimization problem for PULLMS can be rewritten as:

min
M1,··· ,MN

ES = λ

n
∑

i=1

βi

∑

j∈N (i)

SijD
2
ij

+ (1 − λ)
l

∑

i,j,k=1

hij(1 − yik )(D
2
ij − γD2

ik )

s.t. M1, · · · ,MN ≻ 0, (10)

It is remarkable that the basic metricsM1, · · · ,MN in (10)
are positive definite and can be solved in the positive definite
matrix group with intrinsic matrix iteration. To achieve that,
we rewrite the model as a minimization problem with the
variable of matrix.
First, we translate the loss term in (10) as

l
∑

i,j,k=1

hij(1 − yik )(D
2
ij − γD2

ik )

=

l
∑

i,j=1

[(eTi (11
T − Y )1)hijD

2
ij − γ eTi H1(1 − yij)D

2
ij],

where Y = (yij)l×l and H = (hij)l×l are indicator matrices,
1 is a column vector with all elements 1, and ei is a column
vector with all elements 0 but the ith element 1.
If let

P1ij = (eTi (11
T − Y )1)hij,

P0ij = γ eTi H1(1 − yij),

then
l

∑

i,j,k=1

hij(1 − yik )(D
2
ij − γD2

ik ) =

l
∑

i,j=1

(P1ijD
2
ij − P0ijD

2
ij).

Also, let Pij = P1ij − P0ij, then

l
∑

i,j,k=1

hij(1 − yik )(D
2
ij − γD2

ik ) =

l
∑

i,j

PijD
2
ij. (11)

Because

D2
ij =

N
∑

c=1

φc(xi) + φc(xj)

2
(xi − xj)

TMc(xi − xj)

=

N
∑

c=1

8c
ij(x

T
i Mcxi + x

T
j Mcxj − 2xTi Mcxj),

Eq. (11) can be rewritten by

l
∑

i,j=1

PijD
2
ij

=

l
∑

i,j=1

N
∑

c=1

(Pij8
c
ijx

T
i Mcxi

+Pij8
c
ijx

T
j Mcxj − 2Pij8

c
ijx

T
i Mcxj)

=

l
∑

i,j=1

N
∑

c=1

(tr(Pij8
c
ijx

T
i Mncxi) + tr(Pij8

c
ijx

T
j Mcxj)

− 2 tr(Pij8
c
ijx

T
i Mcxj))

=

l
∑

i,j=1

N
∑

c=1

(tr(xiPnnij8
c
ijx

T
i Mc) + tr(xjPij8

c
ijx

T
j Mc)

− 2 tr(xjPnij8
c
ijx

T
i Mnc))

=

N
∑

c=1

tr(XL(D
c
P − 2Qc)XTL Mc), (12)

where XL = [x1, · · · , xl] is the labeled data matrix, DcP =

diag(diag(P(8c)T + PT8c)), Qc = P ⊙ 8c, and ⊙ is the
multiplication between corresponding elements in two matri-
ces.
Similarly, we can calculate the regularization term:

Reg(Mc) =

n
∑

i=1

βi

∑

j∈N (i)

SijD
2
ij

=

n
∑

i=1

βi

n
∑

j=1

NijSijD
2
ij

=

n
∑

i,j=1

WijD
2
ij, (13)

where Nij =

{

1, if j ∈ N (i),

0, if j /∈ N (i),
and Wij = βiNijSij.
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FIGURE 3. Geometry of the positive definite matrix group.

Clearly, similar to the loss term, the regularization term
of (10) can be rewritten by

Reg(Mc) =

N
∑

c=1

tr(X (DcW − 2Rc)XTMc),

where X = [x1, x2, · · · , xn] is the data matrix consisting
of all samples, DcW = diag(diag(W (8c)T + W T8c)), W =

(diag(β)S) ⊙ N , and Rc = W ⊙ 8c.
Consequently, the model (10) is rewritten in the matrix

form:

min
M1,··· ,MN

ES =

N
∑

c=1

[λ tr(AcMc) + (1 − λ) tr(BcMc)]

s.t. M1, · · · ,MN ≻ 0. (14)

where Ac = X (DcW − 2Rc)XT , and Bc = XL(DcP − 2Qc)XTL .
In order to avoid solving (14) on a positive definite matrix

group and projecting onto the PSD cone, we use the ISD
algorithm [36] [35].

1) GEODESIC STRUCTURE ON SYMMETRIC POSITIVE

DEFINITE GROUP

Let P(n) be the set of all n-th order symmetric positive
definite matrices. That is,

P(n) := {P ∈ R
n×n|P = PT ,P ≻ 0}.

Note that P(n) is a smooth Riemannian manifold with
dimension n(n+ 1)/2. Its tangent space TPP(n) at the point
P ∈ P(n) represents the set of all tangent vectors at point P,
which is a local linearization of P(n) at the point P. Then,
from the Riemannian manifold structure, a geodesic starting
from the identity I along the direction of S ∈ TIP(n) is given
explicitly by the exponential map exp(tS) in the neighborhood
of I .
As shown in Fig. 3, using the invariance under congruent

transformations, the blue geodesic P(t) with P(0) = P ∈

P(n) and Ṗ(0) = S ∈ TPP(n) is therefore given by

P(t) = P
1
2 exp(tP− 1

2 SP− 1
2 )P

1
2 .

2) INTRINSIC ITERATIVE ALGORITHM FOR PULLMS MODEL

Inspired by the geodesic structure on symmetric positive def-
inite group, on the positive definite matrix group, the iterative
formula from the current stepMc(t) to the next stepMc(t+1)
turns to be

Mc(t+1)=Mc(t)
1
2 exp[α(t)·Mc(t)

− 1
2 S(t)Mc(t)

− 1
2 ]Mc(t)

1
2 ,

(15)

where Mc(t)−
1
2 S(t)Mc(t)−

1
2 is a descent direction, and α(t)

is the optimal step-size at time t . The minor gradient, i.e., the
steepest descent direction, is always selected as the descent
direction. Then, the iterative formula is rewritten by

Mc(t + 1) = Mc(t)
1
2 exp(−α(t) · Gc(t))Mc(t)

1
2 , (16)

where −Gc(t) is the steepest descent direction at pointMc(t).
As the exponential exp(M ) of a matrix M in Lie groups

is defined by exp(M ) =
∞
∑

k=0

1
k!
M k , the exponential of any

symmetric matrix is a positive-definite symmetric matrix. So
Mc(t + 1) is still symmetric positive definite.
According to the objective function ES (M1, · · · ,MN )

of (14), we gain a steepest descent flow (16) on the positive
definite matrix group. Generally, the gradient of the objective
function should be symmetrized with a symmetric operator

Sym[∇Mc(t)ES ] :=
1

2
[∇Mc(t)ES + ∇Mc(t)E

T
S ],

before it is selected as the gradient direction.
It is remarkable that, in the geometric viewpoint, the sym-

metrization of the gradient is a projection of the gradient
vector to the Lie algebra of the positive definite matrix group.

The symmetrization step is omitted here, since the gradient
of the objective function ES in our model (10) is symmetric.
That is, we have the descent direction as:

Gc(t) = [Mc(t)]
− 1

2 [∇Mc(t)ES ][Mc(t)]
− 1

2 .

The rest is calculating the gradient of the objective function
by

∇Mc(t)ES = λATc + (1 − λ)BTc .

After obtaining the partition of unity φc(x) and the metric
Mc, we input the labeled samples and use the learned squared
distance D2

ij for classification via the kNN method.

3) THE COMPUTATIONAL COMPLEXITY OF THE PROPOSED

OPTIMIZATION METHOD

Note that the ISD algorithm on matrix manifolds is at least
linear convergence. Denoting the precision of the objective
function by ǫ > 0, the iterationwill be terminated atO(log 1

ǫ
).

In each iteration, the distance with the k-nearest samples
should be calculated for n samples, and hence the complexity
is O(n2). Therefore, the total complexity is O(n2 log 1

ǫ
).

For the local metrics version, in each iteration, n sam-
ples should calculate the distance with the k-nearest samples
under N basic metrics, and hence the complexity is O(n2N ).
Therefore, the total complexity is O(n2N log 1

ǫ
).

IV. EXPERIMENTS

To demonstrate the effectiveness of the proposed met-
ric learning methods, we implement experiments on five
datasets, i.e., UCI dataset1, ORL face dataset2, USPS digit

1http://archive.ics.uci.edu/ml/datasets.php
2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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TABLE 1. Details of the datasets.

image dataset3, COIL-20 object dataset4, and Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset5. Table 1
provides the details of these datasets, where |L|, |U |, |D| are
the sizes of the labeled data, unlabeled data and the whole
dataset, respectively, and |L|/|D| is the labeled sample ratio.

We evaluate the 1NN classification performance after
PULLMH and PULLMS, respectively. Then, we compare
them with
1) supervised single metric learning method: LMNN [23];
2) semi-supervised single metric learning method:

ISSML [35];
3) supervised multiple metric learning methods: multiple

metrics LMNN (mmLMNN) [23], PLML [24], GNSML [25]
and CMML [26];
4) a baseline experiment, i.e., the Euclideanmethod, is con-

ducted by using kNN classifier with the Euclidean distance.
The metric matrixM is initialized by the identity matrix I .

A. CLASSIFICATION ON UCI DATASETS

For UCI, the experiments of classification are conducted
on six datasets, i.e., wine, iris, balance, heart, dermatology
and ionosphere. We randomly separate all datasets into two
subsets: the labeled dataset L, and the unlabeled dataset U .
Specifically, we select the same number of samples from
each class as the labeled dataset, then the rest samples as
the unlabeled dataset. The unlabeled dataset also acts as the
testing dataset due to data inadequacy. Training samples are
randomly chosen in every experiment. The average results
of 30 times are presented.

1) EXPERIMENTAL SETTING

We set different values of the trade-off parameter λ for dif-
ferent datasets, by tuning on the training data. In order to
calculate βi = f [p(xi)], a simple linear mapping f [p(xi)] =

p(xi) is adopted. We use the Parzen window to estimate the
density

p(xi) =
1

|N (i)|hd
∑

j∈N (i)

Kh

(

xi − xj

h

)

,

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
4http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
5http://www.loni.ucla.edu/ADNI

FIGURE 4. Test error rates for 1NN classification using different metrics
on UCI.

whereN (i) is the neighbor list of xi, its size |N (i)| is set to 10,
d is the dimension of the sample xi, h is the bandwidth, and
Kh : Rd → R is a Gaussian-kernel. Then we normalize the
estimated density by p(xi) := p(xi)/max{p(x)}.
Similarity can be calculated as

Sij = exp(−d2ij/2σ
2),

where dij is the Euclidean distance between samples xi

and xj, and

σ = minD+ (1/v)(maxD− minD), (17)

where maxD and minD are the maximum and minimum
Euclidean distances between samples in the dataset, respec-
tively. In our models, the value of v depends on the dataset,
varying from 1 to 15.

2) EXPERIMENTAL RESULTS

By using the 1 nearest neighborhood (1NN) classification,
the results under the learned metrics via LMNN, ISSML,
mmLMNN, PLML, GNSML, CMML and our methods
PULLMH, PULLMS are shown in Fig. 4.

Table 2 and Fig. 4 provide the classification results (aver-
age error rate) based on a 1NN classifier using different
distance metrics. For each dataset, we assign rank 1 to the
method with the lowest error, rank 2 to the one with the
second-lowest error, and so on. The average rank for each
method over all datasets is reported in the last row of Table 2.
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TABLE 2. Comparison of average error (standard deviation) rates on UCI (%).

FIGURE 5. Visualization results of ‘wine’ and ‘ionosphere’. Different colors represent different classes.

We have four observations from Table 2 and Fig. 4.
First, almost all metric learning methods improve the

recognition results of the Euclidean distance (without metric
learning) on all datasets.
Second, according to the average rank, PULLMS performs

the best among all methods, followed by PULLMH. It is
interesting that CMMLperforms evenworse than some single
metric learning methods. This is mainly due to the lack of
labeled data in the training process, since CMML needs to
use sufficient labeled data to implement the clustered multi-
metric learning. ISSML works well overall with unlabeled
data information.
Third, methods using the regularizer, i.e., ISSML,

PULLMH and PULLMS, are better than LMNN which lacks
the regularizer.
Fourth, multiple-metric learningmethods aremore suitable

for nonlinear datasets, while ISSML achieves satisfactory
performance on the highly linear dataset iris.
To better illustrate the classification effect of PULLMH

and PULLMS, we use tSNE [37] to visualize the results on
wine and ionosphere, as plotted in Fig. 5. The local multiple
metrics provided by PULLMH and PULLMS with regular-
ization show high discriminative capability, compared with
those learned by other methods.
Fig. 6 shows the box plot of recognition error rate along

with the iteration with 30 tests. Fig. 7 presents the variation
of objective function along with the iteration. The recogni-
tion error rate and the value of objective function decrease

FIGURE 6. The box plot of the recognition error rate along with the
iteration of the algorithms.

along with the iterations in the statistical sense, and they
also converge finally. On the other hand, PULLMS with
ISD decreases faster and converges earlier than PULLMH
with PSD.

3) PARAMETER ANALYSIS

Moreover, we test the sensitivity of the parameter λ in (10)
and v in (17) to compute σ in Gaussian kernel by fixing other
settings.

Fig. 8(a) and Fig. 8(c) show the recognition error
rate against the parameter λ from 0.1 to 0.9 on UCI.
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FIGURE 7. The variation of objective function along with the iteration of
the algorithms.

FIGURE 8. (a), (c) The variation of the recognition error rate along with
turning λ in [0.1,0.9] and the step size 0.1 on UCI with other parameters
fixed. (b), (d) The variation of the recognition error rate along with turning
v in [1,15] and the step size 1.

The recognition rates on most datasets are stable when the
parameter λ changes. The ionosphere dataset is relatively
sensitive to λ in PULLMS. In general, our proposed methods
are not very sensitive to the parameter λ.
With regard to the parameter v used to calculate σ in

similarity Sij = exp(−d2ij/2σ
2), where σ = minD +

(1/v)(maxD − minD), we set different values of v for dif-
ferent datasets. When other parameters are fixed, the effect
of v to the recognition error rate is presented in Fig. 8(b) and
Fig. 8(d). Clearly, the recognitions in PULLMH are stable
to v, while those in PULLMS are a little sensitive.
To further test the performance of all algorithms with

different magnitudes of labeled data, we select different ratios
of labeled data. Fig. 9 shows the changes of the mean recogni-
tion error rates with respect to the ratio |L|/|D|. The curves of
all methods tend to decrease when the ratio |L|/|D| increases,
and our proposed methods have the lowest mean recognition
error rates.
In general, our proposed methods are more accurate for

classification than several conventional methods without los-
ing computational efficiency. At the same time, they are stable
to the parameters. For further testing our proposed methods,
we apply them to four real datasets for classification and
image retrieval below.

FIGURE 9. The curves of the mean recognition error rates w.r.t the
|L|/|D| on UCI datasets.

FIGURE 10. Examples of images from ORL dataset.

B. CLASSIFICATION ON ORL DATASET

The ORL facial dataset contains 400 images with 40 classes,
where the variability between images of the same person
is mainly due to different lighting conditions. The images
are automatically centered and then converted to vectors.
All images are cropped and resized to the size of 32×32.
Examples of images from ORL are shown in Fig. 10.

We randomly select 30% of the data as the labeled sam-
ples L, 50% as the unlabeled samples U and the rest 20%
as the testing samples. Same as the UCI dataset, we com-
pare our performance with the Euclidean, LMNN, ISSML,
mmLMNN, PLML, GNSML and CMML. All the algorithm
parameters are tuned for the best performance. The test pro-
cess is repeated 20 times, and the average error rate is used for
comparison. The results are shown in Table 3. Similar experi-
mental setting and result illustration are also implemented on
USPS and COIL-20 datasets in the following.

Table 3 verifies the efficiency of PULLMS from a numeri-
cal point of view, and also in USPS and COIL-20. PULLMH
performs unsatisfactory, which may due to the heavy overfit-
ting for large-scale problems. Meanwhile, this demonstrates
that the hinge loss function is not suitable for smooth gluing
metrics. We can find that LMNN is effective and stable for
this kind of problems.
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TABLE 3. Comparison of average error (standard deviation) rates on real
datasets (%).

FIGURE 11. Retrieval result of 1NN classification on USPS.

C. RETRIEVAL ON USPS DATASET

USPS is a handwritten digits dataset with grayscale images
of ‘0’ through ‘9’. The digits have been normalized to size
16×16 gray-level images. Thus the dimension of input space
is 256. It is used to validate algorithms for image retrieval in
[38]. The results are shown in Table 3 and Fig. 11.

Fig. 11 shows the nearest sample to the query image under
the metrics of Euclid, LMNN, ISSML, mmLMNN, PLML,
GNSML, CMML and our proposed methods PULLMH and
PULLMS, respectively. The first row shows the queries. The
rest rows correspond to the nearest neighbors of the queries
obtained under metric learning methods. It indicates that
PULLMS finds much better results than the methods using
other learned metrics.

D. RETRIEVAL ON COIL-20 DATASET

COIL-20 is a 3D object dataset containing 1440 images
with 20 different objects. Each object contains 72 images
with size 128×128, where each image corresponds to a
projection angle ranging from 0◦ to 355◦ with an interval
of 5 degrees. Before training, we conduct principal compo-
nent analysis (PCA) on the whole COIL-20 to reduce the
dimension and relieve the computation burden, and it only
contains 1439 principal components. Thus we reduce all sam-
ples to 1439 dimension with PCA and then train the metric

FIGURE 12. Retrieval result of 1NN classification on COIL-20.

TABLE 4. Experimental results on ADNI data.

learning model. The experiment results are shown in Table 3
and Fig. 12.

Fig. 12 shows some results about retrieved samples. The
first row is the retrieval samples, and the rest are the retrieved
images obtained with the Euclidean distance and other met-
rics. It can be seen that PULLMS improves the retrieval
performance effectively.

E. ANALYSIS ON ADNI DATASET

ADNI is a medical dataset consisting of 51 Alzheimer’s
Disease (AD) patients and 52 normal controls (NC) with
93 features, extracting from MRI images. We select 10 AD
patients and 10 NC as the labeled dataset L randomly and
the rest as the unlabeled dataset U , which also as the test
set due to the lack of samples. Every experiment selects the
training samples randomly and the average results of repeated
30 times are presented in Table 4.

To evaluate the performance of those metric learning meth-
ods, in ADNI dataset, besides the average recognition error
rate, we adopt the area under ROC curve (AUC) and F1-score.
We can find that PULLMS outperforms other state-of-the-art
methods under different evaluation indexes.

V. CONCLUSION

In this paper, we have extended the smoothly glued local
metric learning method to a nonlinear semi-supervised
metric learning framework via introducing a manifold

16962 VOLUME 8, 2020



Y. Peng et al.: Local-to-Global Metric Learning Framework From the Geometric Insight

regularization to preserve the data structure. We have pro-
posed two different nonlinear semi-supervised metric learn-
ing models with two different loss terms, showing that the
smooth loss performs better than the hinge loss. Comparison
with several state-of-the-art methods on standard datasets
shows that our proposed method improves the accuracy of
classification and the robustness.
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