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1. Introduction. -

One of the oldest guestions in integral geometry has been

N from the knowledge of

that of recovering a function £ 1in R
its average over balls. It is easy to see that unless f decays
sufficiently fast at infinity the average over all balls of a
fixed radius could vanish without f being identically zero. It
is not always possible to assume such decay but a very elegant
result of Zalcman [20] and, independently, Brown-Schreiber-Taylor
[10], describes explicitly a countable set E, such that
averages over all balls of radii Ly Ty suffice as long as

r,/r, ¢ E . This-"two circles" theorem can be described as

saying that the map

c(R") » c(R™) ® c(r™)

£+ ([ f(yray, | f£(yray)

B(x,r1) B(x,rz)

is injective if and only if r1/r2 ¢ E .
(B(x,r)={y Rn:!x-yl<r}). Under slightly stronger conditions on
the quotient r1/r2 this map has also a continuous and explicit
inverse [8]. This result and other variants of the so-called
Pompeiu problem have been generalized to symmetric spaces (see
the surveys [20}], [1] for positive results and their limitations)
In practical situations of a tomographic nature one is
limited to balls that fit into a fixed region . One could take
smaller and smaller balls when approaching the boundary 32 of

Q, this is roughly the situation when we consider the case
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Q@ = unit ball of R™ as the hyperbolic space, but it is clear
that it might be hard to accomplish if we are dealing with
physical devices whose size cannot be made infinitesimally small
or cannot even be changed at will. It is this kind of problem
that we call a local version of the two—circles theorem. The
main difference with the above mentioned results is that we do
not have any longer the whole group of Euclidean motions at our
disposal which was the crucial ingredient lying behind the two
circles theorem and its generalizations. The inversion formula
of [8] would allow us to reconstruct f away from 3 but gives
no indication of whether we could change the values of f in a
collar-like region near 3@ without affecting its average.
There-is some recent work on systems of convolution equations in
convex domains which deals with this type of question [4] but the
hypotheses required are far too restrictive to be satisfied by
our simple looking problems. Nevertheless, using a combination
of ideas from classical harmonic analysis and results of Cormack-
Quinto on the Radon transform on spheres [12] we are able to

prove the following.

r, be positive numbers, r /r, ¢ E .

h . -
Theorem Let r1, 2

Q2 an open subset of R® such that every point lies in an open
ball contained in @ of radius strictly larger than r_  + rz.

1

If f € C(Q) satisfies

f f(y)dy = 0 for every B(x,r.)
B(x,r ) J

T
©
.
i
-
~
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then f = 0. Furthermore, this statment does not hold if @

!
fails the above geometrical restriction.

The method of proof allows us to generalize this theorem
greatly, providing in particular new local mean-value theorems
for harmonic functions.

We will like to express our appreciation to Professor L.
Zalcman who called our attention to these problems.

The second author wishes to thank the Mathematics Department
of the University of Maryland for its hospitality while this work

was carried out.

2. Preliminaries. -

We will follow the standard notation for distributions found
in [14]. We denote B(x,r) = {yGanlx—yf<r}(r>0), B(x,r) its
closure and X, the characteristic function of B(O,r). Let

be an open set in R, Qr = {xEQ:d(x,Qc)<r}. For a locally-

integrable function f in an open set @ the average

(1) A_(£,x) LI £(y)dy
Y n
wnr B(x,r)

i

is defined for x € Qr. Here wn is the volume of B(O,{). If
we let w. o= xr/wnrn, we can interpret this average as a
convolution and hence it makes sense to define it for f ¢ D' (&)
giving a distribution A_(f) in D'(ﬂr), namely

Ar(f) = £ = ur. Therefore, for uniqueness questions, if the

averages of f are zero, by restriction ourselves to Qe, € > 0

L. -]
small, we can assume f ¢ C . Henceforth, all distributions with

vanishing averages will be assumed to be C® functions in Q.
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For r > 0, we denote by o the distributions defining

the spherical average

(2) A (f,x) = | £(x+ry)do(y) = (0 *£)(x)
r n-1 Y
S
do 1is the normalized Lebesgue measure on Sn—1.
1
For T €ELE the Fourier transform
- -i(x
T(g) = (KT _ ,e ( IC)>, (x|zgy = z X.C.,
X . J 3
3
is an entire function in €% which satisfies, for some
A, N > 0, the estimates
- N
(3) [T(zg)] < at1+]g])" exp(H(ImZ)).
where [ = & + in, &, n € Rn, ImZ = n and H 1is the

supporting function of the support of T, i.e.:

H(n) = Max{(x'n):xesuppT}

Note that H 1is also the supporting function of cv(suépT), the
convex hull of suppT. The Fourier transform is an isomorphism
between the convolution algebra E'(Rn) and E'(Rn), the
algebra of entire functions of exponential type and polynomial

growth on the real axis.

A distribution T will be called invertible (or T is

-~ "~

]
slowing decreasing) if whenever S ¢ E (R™) and S/T is an
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1 ]
entire function, then there is a distribution © € E (Rn) such

~ ~

that U = S/T, that is

(4) S = T * U

and we have the identity

(5) H = H,., + H

or, what amounts to the same thing

(6) cv(suppU*T) = cv(suppU) + cv{suppT),

where, for two sets A,B E_Rn we have A t+ B = {xiy;xGA,yGB}.
We will need to use that v is an invertible distribution.
This will follow from the explicit formula for ;r given below
and the characterization of invertible distributions: T is
invertible if and only if there is a positive constant a such

that for all & ¢ Rn

(7) Max{|T(E+n)|:n¢R", [n]<a.log(2+]|E])} > (a+]E])72

The Fourier transform of a radial distribution T is a

radial function, i.e.: if:

-1
<T,foA > = KT,£f>



for every A € 0O(n) then

T(Z) = T(A.T)
for every A € 0O(n), ;¢ ¢n, and depends, for § ¢ Rn, only
on |E|. Hence we consider the associated even entire function
; of one variable by
~ . . e 2 2!
(8) T(leh = 16y ana mn = T((gl+...+c2)7?

]
Let us call EO(Rn), the space of radial distributions. This

correspondence establishes an isomorphism between the algebras

E;(Rn) and E;(R). Using this notation we have
n-2
~ _ 2 n _ n/2
(9) ur(t) = n2 F(z){g(rt)/(rt)
2
n-2 n-2
(10) s (t) = 22 13 . (re)/(re) 2
r - 2" "n-2
2
and, more generally, if £f(x) = ¢(|x|) is a radial function of
compact support
~ n/2
- _ 2m) o n/2 _
(11) £(g) = £(t) = ——5— [le(e) I _, (pt)p"/%dp (|g]|=t)
2 2

t
To show that u is invertible it is now sufficient to
recall the asymptotic development of the Bessel functions [19] on

the positive real axis
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A -
(12) I, (e) = / —i- t /zcos(t--z——-\—"%) + o(t~ 32

It follows, for IEI > 1 and some c > 0

n+1
2

Max{lur(£+n)|:neRn,|n|<n} > cle]

which is the condition of invertibility.

From (12) we also obtain Mac-Mahon's asymptotic development

of the positive zeros ak,v of Jv
0 < a1'v < az’v < oo
(13) a = (2k+1)% + (2Vv+1)= + O(1/k)
k,v 2 4

which will be used further on.

3., Series development of mean-periodic functions.

Let & be an open convex set in R" and
L
K = cv(suppu), v € E (Rn). We say that a function

a0
f € C (Q-K) is mean-periodic with respect to if

(14) u*rf(x) = <uy,f(x—y)> = 0 for all x ¢ &

If an exponential-polynomial, that is a finite linear

combination of terms of the form x° el(XIC)
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.o 3
1 n . . . . .
(xJ=x1 ...xn . Jk € N, 1 < k € n), is mean-periodic with respect

to ¥ then the frequencies { must satisfy

u(Z) = 0 since

i(e]g) i(x|z)

(15) (utre Y(x) = u(g)e

-~

When the zeros of u are simple no non constant monomials

can appear. More generally if a monomial x7 appears with non
zero coefficient then
MBI

(——)u(zy = o
3¢l

for the corresponding frequency Z.

For n = 1 there is a well-known series development for
such functions in terms of the exponential polynomial solution of
the same convolution equation (14) due to L. Schwartz [18])], [15],
[13]. The case of interest for us is n » 2, U invertible. In

this case, a development in terms of integrals over the zero set

~

of 4 has been proved when §Q = R" {6]. For § arbitrary

convex set, a similar development has been proved in [4] but only
for a very restrictive class of invertible distributions. 1In all
these cases one obtains also some knowledge of the behavior of
the terms involved in this development. Regretfully, the
distributions ur, though invertible, do not satisfy the
conditions required in [4], as it was shown (for a different
reason) in [3], besides we are interested in Q = B(O}R),

therefore we cannot depend on any of the previously known
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results. We obtain here a series development but no precisions
on the coefficients that appear in it, nevertheless the existence
of this development is all we need later.

- Proposition ' - Let & be an open convex subset in

t
R (n>2), u €E (Rn) an invertible distribution,
K = cv(supp¥). Any function f € Cm(Q-K), mean periodic with

respect to ¥ can be written as

(16) £(x) = ) P.(x) (x€Q-K)
31
with Pj exponential-polynomials also mean-periodic with respect

(-]
to U, and the series is convergent in the C -topology of

Q - K. Furthermore, given a sequence (sj)j>1 of positive

numbers, let Py = 0, we can chose the Pj so that the absolute

value of all frequencies in P exceeds the largest absolute

F+1

value of the frequencies in Pj by at least sj+1.

Proof. Let us show first that, for any s > 0, the exponential

polynomials which are mean-periodic with respect to u and whose

frequencies lie outside the ball of center 0 and radius s

. n . had .

in ¢ are dense in the space N = {f€C (R-K):u*f=0 in 8}. N

is a closed subspace of a Frechet space and we only need to show
L}

that if Vv ¢ EF (2-K) 1is orthogonal to the above exponential-

polynomials then Vv is orthogonal to N. Hence (v) is

divisible by u at every point of c“\'E(o,s). Since n > 2,

A - .

by Hartogs' theoren, (v) /u 1is an entire function. Since

L] .
is invertible there is a distribution T € E (Rn) such that

IX



We need to know where is the support of T. By (6)

~ v

cv(suppv) = cv(suppu) + cv(suppT)
or

cv(suppT) - X = cv(suppv) € @ - K
By the Hahn - Banach theorem one concludes that

cv(suppT) < Q
Hence <V,f> = (V*f)(0) = (T*u*f)(0) = <T,u*f> = 0 for f € N.
To end the proof of the proposition, we pick an exhaustion

of Q@ - K by convex compacts sets Kj’ hence we can find P,.

exponential~polynomial with frequencies lying in

{c€¢n=;(c)=0,|c|>s1} such that

sup|f-P_| < 1.
K 1
1
Let o¢_ = maximum of the absolute values of frequencies in

1

P We can find P2 with frequencies in

1-

{C€¢"=u(c) = 0, ICI > B +01} such that

2

max supIDa(f-P1—P2)' < 1/2
[a]< K,



Continuing in this fashion we obtain the desired expansion. [l
Remark. One can eliminate the requirement of u being
invertible by using [14,16.4.1].

From (9) we know that the zero variety of ur is the union

of the hypersurfaces

2 2 2 2
(17) 4 = ;1+...+cn = )‘k Kk = 1,2,¢00
where A = a /r. We disregard temporarily the dependence
k k,n/2

on r though it will play a role later on. Furthermore the

function Er(t) vanishes at t = Ak with multiplicity one, in
fact
n-2
4 -~ _ 2 n n/2
(18) 3T ur(t) = n2 F(z)r J(n/2)+1(rt)/(rt)

and well known properties of Bessel functions show that this
expression does not vanish for t = Ak. Using the asymptotic

expressions (12) and (13) we obtain

(19)

d; n+1 _ h+3
o 4 T (A) = rn 2(n-1)/2 F(n/2)(-1)k+1/(X r)2 + ok 2 )
dat k k
We introduce some auxiliary radial distributions Tr k by the
’
formula
- u_(t)
(20) T () = —/——m .
r,k t2_A2
k
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They are even and entire since ;r(tkk) = 0. Hence they

1.1 functions) whose

correspond to radial distributions (in fact C
supports are contained in the support of ur, i.e. E(O,r).

Furthermore they satisfy

2
(21) (& + Ak)Tr'k = -u_ and
_ ;'(Ak) k+1 _ n;3 _ n;S
(22) Tr'k(kk) = __ET;_ = const.(~-1) Ak + O(R ).

We remark that these distributions have conspicuously
appeared in previous work on the Pompeiu problem (2], [7].

Proposition 2 - Let r > 0 be fixed. For any p, 0 < p < ®, we

can decompose op in the following form

(23) o = VvV + * 5 ,

where Sp is a radial distribution, whose support satisfies

(24) supp Sp_g E(O,Max(r,p)-r)
and vp is given explicitly Dby:
o (X))
(25) v o= - 1 ok AT
o] k21 A2 ; (x.) r,k
k 'r,k k

hence supp vp C E(o,r).
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Proof. We consider the series

k ~
(26) gte) = [ 2T (o)
’
k>1 AkTr,k(Ak)
s s -2 ~ ~ :
The coefficients Ak op(kk)/Tr'k(Ak) are uniformly bounded

by a constant depending only on p as it can be seen from (10),
{(13) and (22), since Ak ~ const. k. Therefore, if

|t]| < R, n, > 2R we have |t2 ;r,k(t)l < const. k~? which
guarantees the convergence of the series, and shows g 1is an

even entire function. We can obtain more precise estimates by

picking a sequence of circles of center 0 and radii
. L .
R, = (4J+n+5) /41‘, J = 1,2,..

Decomposing the sum into those terms where
Ak < 2Rj and Ak ’ 2Rj one can estimate the second sum over

|t| = R by

3

Max  |t? u_(e)]. c_(p)
le]=r,

The first (finite) sum can be estimated by

2~
c tp)(Max|tu _(£)]) (max ] )
t|{=R, ’ Q. O<A_<2R_|A -t
el 3 jee” Tk JI k !
where nj.e is the region obtained from |t| < Rj by removing
’
disks of radius €, 0 < € very small, about %A . One can

k.
then see, without Qdifficulty, that the last sum is estimated by

conste. el In any case we obtain as a final estimate

XIII



Max lgtt)| < clp) Max Itzﬂr(t)l.
|t|<Rj lt|<Rj

Thus g defines a radial distribution of order 2,

v , by v
o BY V,

g, oOne can see vp is given explicitly by (25).

We also have

with h even entire function since g(xA ) = Vv (A ) = P (A )
k o] k fo} k
by (26). Since ur is an invertible distribtion it follows

h = gp for some sp € Eo(Rn). The identity (6) gives

(27) cv(supp(op—Vp)) = cv(suppSp) + cv(suppur).

There are two cases to consider. If p € r, then the support on
the left hand side of (27) is contained in B(o,r) and

cvi{supp Sp) = {0}, which says Sp is a polynomial in the
Laplace operator; if p > r then the left hand side of (27) 1is

contained in E(o,p), which says cv(suppsp) < B(g,p-r). 0O

Remark The decomposition we have just given in proposition 2
works also if we replacg op by any radial distribution. We
need only to change (t/kk)2 by (t/kk)zq with q c¢onvenient
non negative integer. In particular there is such a

decomposition with %9 = 6§, the Dirac mass at the origin (take

n+1

>
4

)
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Corollary 3 - Let £ be a ur -mean-periodic function in

CQ(B(O,R)) (R>r). Let !xol < R~ r. Then, for any o,

0 < p <R - 'xcl we have

P (A, )
(28) A _(f,x.) = (v _*£)(0) = - ) P A(T  *£)(x )
P 0 P k>1 A2 T (A 'k 0
k r,k k
Proof. It suffices to use (2) and (23). O

4. Local two-circles theorem.

Let 1r,, r, be two positive numbers and consider the

distributions ur R ur - They will have no common, mean-
1 2 - ~
periodic, exponential-polynomials if and only if ur and ur
1 2
have no common 2zeros. By (17) this occurs if and only if

r,/t, { quotient of two zeros of I

/2

The set

E :1<3 , k¢ }

n - {“k,n/2/°j,n/2

is the exceptional set described in the two-circles theorem.

Proposition 4 Let R > r, + r,. r1/r2 f En. The only

o0
function in € (B(O,R)) which is mean-periodic with respect to

both and ¢ is the zero function.
T4 : Ty
Proof. We assume ry < ry. Let £ € CQ(B(O,R)) be ur
1

mean periodic. By proposition 1 we have

Xv



£(x) = ) P.{x) (|x]|<Rr)
j»1

where the frequencies appearing in the exponential sums Pj lie
in
n ° n _2 2
{zec N (g)=0} = U {zec :g%=(a n/2/r1) b= U .
1 k21 ! k>1
We fix now k 2 1, and consider Tr k*f which is in

o 1
c (B(O,R-r1)), furthermore

(29) T *f = ) T *p
Lk j>1 Tqrk 3
If P.(x) = 2 c el(xlcj,k) then
J 2 JIQ/
. - itxlz, o)
Tr k%5 Loy o T k(85,00 3.
1 L 1

but Tr1,k(cj,£) + 0 only if ;i,ﬁé Vk in which case we obtain
the value T (X,) = 0 (where A is computed with respect

r1,k k k

to r1). Therefore

(30) T *f = T (A,) )}
r1,k k 331 j.k

where Pj " is the sum of the terms in Pj whose frequencies
’
o0
lie in Vi o This series is convergent in C (B(O,R-r1)). We

convolve now with ur o We obtain

*€) = T L) u O 2 P,

(31) u_ *(T X
1’ 2 i1 I’
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since ur is also a radial distribution. The expansion (31) is

2
valid in CQ[B(O,R-r,—tZ)). Since f is also u_ - mean -
2
periodic we have
= * ® =~ *
0 (T, KUy £) (x) wo (A (r, X £) (x)
1 2 2 1
for le < R =- Ly = Iy The hypothesis r1/r2 q E, now implies
that ur (Ak) + 0. Hence
2
* = - -
(32) (Tr1'k £)(x) = 0 for |x| <R r, - r,
On the other hand we have (by (22))
2
* = - * = i -
(A+Xk)(Tr1’k £) (£ "r1) 0 in x| <R - r,
hence Tr k*f is a real analytic function in lxl < R - r,-. We
1'
conclude that
* = -
(33) (Tr , £) (x) 0 for |[x| < R r,

1'

Applying now corollary 3, formula (28), we have

(34) Ap(f,x) = O whenever |x| <R -1r,, 0< p <R - lxl

1

(We are allowed to take p = 0 by continuity). In ﬁarticular
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f(x) = 0 for |x| < R - r,

To finish the proof of the proposition we need to show f
is zero in the remaining annulus, we do that using (34). It is
at this point that we use Cormack-Quinto [12]., For any vy
B(O,R), consider R{(f)(y) = Aly'/Z(f,y/Z). This is the Radon
transform on spheres through the origin discussed in [12]. We
want to show Rf(y) = 0. We only need to verify that the

conditions stated in (34) are valid. Here

p = lyl/z, Xx = y/2, hence
R - !xl = R - l%l = R -p > R/2 >0
The only condition left to see is that le < R -1r_ . We

1

have 2r1 < r1 + r2 < R hence r, < R/2 and R - r, > R/2,
therefore |x| < R - r; holds.

By [12, corollary 2] f(y) = 0. (We note that in [12], they
require that f Cm(Rn) while we only have f ¢ Cm(B(O,R)) but
the proof of corollary 2 depends on an explicit inversion formula
for the Radon transform on spheres which uses, for each y, values
of f in a neighborhood of B(0,|y]|).) 0

Remark. The crucial point of the proof above is (32). One
does not really need the whole strength of Propositon 1 to obtain
it. One can get by using the density of the exponential
polynomial solutions in the sub-space N introduced in

Propositon 1. Nevertheless, we feel that the proof is clearer using

the expansion (16) as we have done.
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We want to show that the condition R > r, + r, is sharp.
It is easier to show this under the slight restriction that
r2/r1 is not too well approximated by elements in E .

n

Definition. - For N > 0, we say that a positive number is

N-well approximated by points in E, if, for every & > 1,

there are indices j,k such that

1
Ja.| < ——
k3 sz

(35) [r - @

where ak = ak,n/z

Proposition 5 For any N > 2, the set of numbers N-well

approximates by En has zero measure in (0,x=)
Proof. Given P9, 0 < p< r <« g and v » 0, from (13)

we have

a = a = (2k+D)n/2 + (2y+1)T/4 + o(1/k)
Therefore, if r satisfies (35), for g > 1, we have
(36) lrei - kx + Ar + B| < ¢
for some constants A,B,C. Hence

Pi - C, < k< qg3j+cC

1 2

for some constant C1, 02 > 0. Hence the cardinal of the set

of k satisfying (36) is bounded by (g-p)j + L, L constant > O.
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Now, the set of N~well approximated numbers in {[p,ql] is

(37) n U {r: p<r<q, [r-a,/a | < 1703V}
231 3,k>1 j

For & fixed, the Lebesgue measure

. C
| U {r:p<r<q,lr-a sa | < 1438} <« 2 7 lamelisl o 3

(C3 > 0) since N > 2. Therefore the set (37) has zero measure
and by letting q@ = p + 1, p € N we obtain the proposition.

It is interesting to compare proposition 5 with [8, Lemma
2.1] where examples of numbers which are not 2-well approximated
by En(n=2) are discussed. It might be that these include all
rationals ¢ 1, all quadratic irrationals +1, but no such theorem
seems to be known. Also, it is easy to see that, for N <'1,
every positive number is N-well approximated by E .

Proposition 6. - Let r,, r, be two positive numbers such

that r2/r1 is not N-well approximated by E,. Denote by

~

Ak the positive zeros of ur o There is a positive constant
1

C such that

~ C
(38) lur (Xk)l >
2 N+—2——
k
Proof. Let us denote o = ak,n/z' Recall that Ak = ak/r1 and
that
J (r_t)
u. (t) = const. —ELE——%73
2 (r t)

2
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From the asymptotic development (13) we have

Grpy ~ % = T4 o(1/k)
Hence, if k 1s fixed and jk is chosen such that lrzlk-ajl
is minimal we have

= - < .
(39) € lrzxk ajk] m/2 + 0(1/k)

Let us distinguish two cases: ek < /4 or not. In the second

case we have

(n+1) _ s s 1
Icos(rzkk-~—z— )| = lcos(tek+(2]k+1) 5+ O(k))l
= |sin(e, + o(1/x))]| » i% + o(%) >cg >0

for large k. 1In this case the asymptotic development (12) gives

the estimate

n+1
2

|ur2(xk)| > C X

for some ¢, >0 and all large k.

By hypothesis we have that for all j,k

r a C
|—3 - ;ll > —% (c, > 0)
T4 x x
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Therefore & > C3/kN_1 (C, > 0). Suppose also € < n/4. By

k 3 k

the mean-value theorem there is a £ between aj and rzxk
k

such that

Jn/2(r2)‘k) _ - Jn{2+1(g) .(r [ )

(r_A )n/2 2 En/2 2 k Iy

2 k

(Recall Jn/z(ajk) = 0.) Note that § = IE-ajkl <€ < T/4.

Again by (12) we have to estimate

. T {(n+1)mw (n+2)7
cos( 6, +( 23, +1)5+", - 57— to(1/x))

cos(16k+jkﬂ+o(1/k))

+ cos Gk + O(1/k).

Then

]ur (Ak)| > ————— (Cc, > 0).

2 N-1+“;1 4
k

Since N » 1 the estimate (38) holds in both cases. 0

Proposition 7 let f be a function in

1

L oc(B(O,R)), qg ¢ L1 c(B(O,R)), suppg < B(0,r), g radial.

1 lo
For |x0| < R-r and p <R -r - |x0| we have
(40) AtExg,xg) = (A) | (£.x5)%a ()] (y) (|y]=p)
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(The notation indicates that we are convolving in the variable

denoted by a dot).

Recall that the average Ap(f,xo) can also be computed

Proof.
by
A (£,x.) = [  E(x_+Ay)dAa
P ° Oo(n) °

where y is any point with ]yl = p, 0(n) 1is the orthogonal

group and dA is the normalized Haar measure. Let

$(y) = (X'.l(f.xo)*q(°))(y)
we have

$(y) = fn (f f(xo+A(y—x)dA)g(x) dx
R O(n)
=] (fnf(xo+A(Y-x))9(x)dx)dA
o(n) R
Set u = Ax then g(x) = g(u) and dx = du Hence

¢ly) = [ (f f(xo+Ay—u)g(u)du)dA
0(n) R

= Ap(f*g,xo), 0

Corollary 8. Let g be radial integrable function of

‘compact support and & a positive number. Then
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(41)

Proof.

(42)

Jn_z(alxl)

2

g(x)* 3

2

(a]|x])

Let £ € R"

be any vector with

o CE] SeEyet (BT

(g ))(y)

- 3(a) ei(EIy).

On the other hand

Applying now to (42) Proposition 7 we obtain the desired

formula

Pro

(41). J

Let be two positive numbers such

position 9.

that r,

number,

function

U an
r

1
Proof.

ye T3

E L]

n Let

is not N-well approximated by R be any

/x4

max(r1,r2)<R<r1+r2. Then there is a non zero radial

£ € C“(B(O,R)) which is mean periodic with respect to

4 u .

r

2
Let ¢ ¢ D(]O,r1[),¢ # 0 such that supp¢ < [R-rz,r1[

It follows from [16,

theorem 2.1 page 247] that ¢ admits a

series development of the form

XXIV A



I (A t)
(43) | | oe) = ] o —F—0
k> (A £) 2

where A = « This is the Sturm-Liouville expansion for

x = “k,ns2’%4
a boundary value problem singular at t = 0 and derivative equal

to zero at t = Lye It can be seen by successive integrations of

parts that

(44) | a = o(k P) for every p > O.

x|

Since r2/r1 is not N-well approximated by En we see that

satisfies the same estimates as a, (Proposition 6) Hence the

function
Jn—Z(Ak'x')
2
(45) £(x) = ] b, —
k>1 5
(A =D
is a C°° radial function in Rn, f # o, . And, from corollary
8, it follows that £ is ur mean-periodic. Furthermore
1
Ty 12D
~ 2
(u_ *£)(x) = ] b u_ (A)
r, k> 1 k r, k n;2
O Ix])
= ¢(|x])
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which is zero in B(O,R-rz) and therefore the function f
restricted to B(O,R) is ur1 and urz mean-periodic. (]
The above propositions can be summarized by the following:
Theorem 10. Let ry, > 0 and r, > 0 be such that
r2/r1 € En' The necessary and sufficient condition on a open

set 2 of R"™ so that the only distribution T € D'(Q) which

can be mean-periodic with respect to both ur and ur is
1 2

T = 0, is that @ is the reunion of balls of radii strictly
larger than r, + ry.

An amusing corollary of theorem 10 is the following:

Corollary 11 If rz/r1 € E., r.+r_. <R and f € C(B(O,R))

2 1 2

then the conditions

/ £(g)dt = 0 for every z, |z| < R - r_ (j=1,2),
aB(z,rj) J

imply that f 1is holomorphic in the disk B(O,R).

5. Generalizations

After a first version of this paper was written, Professor
Zalcman pointed out to us that J. D. Smith [17] had also proved
the two-circles, starting precisely with a local version of it.
It turns out it was not as sharp as Propqsition 4 since he
required R > 2r1 + r2. Furthermore, Dr. Smith had also
indicated to Professor Zalcman. that his method did not

generalize to the other problems discussed in [20}, e.g. the

converse of the mean value property for harmonic functions. The

aim of this section is to show that the methods used above do

generalize.
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Definition. We say that a radial distribution u of

compact support is hyperbolic if:
(i) uw 1is invertible, and
(ii) there is a constant C such that every zero

A of ; gsatisfies

|zmA| = ¢ log(2+]|A]).

Theorem 12 Let u H_,+.+. be a (possibly infinite) family of

1'

2

radial distributions of compact support, cv(suppuj) = E(O,rj).

Suppose {zec“:uj(z)=0 Vj} = @, u1 is hyperbolic, and
]

R - r, > sup rj. Then {fED (B(O,R):uj*f=0 Vj} = {0}.
j
Proof: Due to the condition on R Wwe can assume

£ € CO(B(O,R)) as done before. The proof that leads to (32)

can be repeated almost verbatim just using for each Ak' zero of

;1, a convenient uj(j>2) with ;j(lk) # 0. We obtain
* = - -

(47) Tk,s f(x) 0 for |[x] R r, sgp rj,

~ ~ 2 ,2 . -s

where Tk,s(t) = uI(t) (t -Ak) . 1 € 5 < me, My o=

multiplicity of Ak as a root of ;1.

On the other hand

(48) (-1)%(8422)% (1, *f) = u.*f = 0 in B(O,R-r,)
x k,s 1 ’ 17

therefore, T *f is real analytic, and hence

k,s
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(49) T *f = 0 in B(O,R-r1).

as before. It is at this point we have to be more careful to
prove the correct version of Proposition 2. It will be replaced

by the following:

~

Lemma 13 Let A = {Ak} = set of distinct zeros of Mo then
o
A= U A.,, where the Aj are finite and mutually disjoint
j=0

sets. There is also a positive integer g such that for any

P, 0 < p < ® we can write

(50) o = vV o+ u1* s ,
where VP, Sp are radial distributions satisfying

(51) supp vpi E(O,r1) and

(52) supp Sp<: B(O, Max(r1,p)-r1).

Furthermore,

ao
(53) v = 1 AN,
P j=0 P,
L]
a convergent series in Eo(Rn), each vp 3 a finite linear
’
combination of the distributions T s A €A., 1 < 8 <nm (if
k,s k 3 k
m_ ? 1 then one denotes by Aqvp o not only a finite linear
’
combination of A% T e A € A but also of
k,s k o
T , AT veeo, 8970 )
o,m o,m o,m
o o o
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Once this lemma has been proved, the proof of Theorem 12 is
achieved the same way as it was done in Proposition 4 and we note

that the hypotheses imply 2r. < R.

1

Pioof of Lemma 13 The proof of this lemma proceeds as in

Proposition 2 by interpolating the values of ;p on the variety

~

of zeros of u1 (counted with multiplicities). We have to
repeat with due care the procedure used in [13}, ([15), [18]) since
we need the precise statement (51), (52), and (53).

First we note that as in [5, lemma 4] (cf. also [11, p.
50)), the condition of hyperbolicity and the minimum modulus
theorem allow us to construct a family of a Jordan quadrilaterals

r k € Z symmetric with respect to the real axis and enjoying

kl

the following properties:

(54) for some d > 0 the horizontal sides lie on the curves
Imz = 1+ log(d+|Rez]),

and the vertical sides are arcs of circles.

(55) 0 € int T which is symmetric with respect to the origin
(i.e. if 2z €T then -z €T also).
o o

(56) for k # 0, T X is the symmetric of rk with respect to

the origin.
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(57) for 3 # k, int Fg N int Fk = P, furthermore, for some

positive number a we have that if 2z ¢ Fj,

dist(z,Fk) > (a+|z|)_a for any k # j.
(58) for some positive constant b we have:
. b
diam rj < b(1+]|z])
and
b
length I, < b (1+lz])",
for any 2z € int Pj, any Jj.

(59) there is a constant ¢ > 0 such that for any 3j, and any

z € Fj we have
%, (22| > (exl2z)7°,

and this inequality is valid even for those 2z such that

dist(z,Fj) < 1/2 (a+|z|)'-a (the same a as in (57))
@0
(60) A c U (int T.).
(61) for some d > 0: if 3 > 1, z ¢ Tyo then [2] > j/a.

(62) A A int T , A, = A (int T, N int T .). 3 > 1.
o o 3j J =3

XXX



For the sake of definiteness we will index the points in A so

0, and, for k » 1, either Re A, > 0 or Rel =

that Ao K X

and Im Ak > 0, and, finally, A-k = -Ak.

Now consider the even entire function

2q

(63) £(t) = t 371(t),

for q a positive integer to be chosen conveniently later on.

We note that if t ¢ int ry U int I, then

(64) o (6 - . [ cp(s) ds L cp(s) ds
3j 2¥i T f(s) s-t 2wi T f(s) s-t
J -]
(where we disregard the second term if 3j = 0) is an even

function which is a linear combination of terms of the form

2 .2, -8 .
(t —Ak) , for Ak € Aj and 1 < s < m. if k > 1,
1 < s £ m + 29 if k = 0. Hence ¢j can be defined as a
rational function throughout @& and the function f(t) ¢j(t)
an even entire function. We want to show now that q can be

chosen so that
(65) glt) =} £(t) ¢5(t)
o~ 1
is in Eo(Rn) and the series converges in the topology of
~ n
E (R7).
In fact, we have that for |Im t]| < log(d-o-'Retl)~ there is

some N > 0 such that

XXXI



(66) 15, ()] < ceo) i+t HN

and also

(67) 1% ()] < c_(1+]eh V.
1 o

Therefore, for some N1 > 0 sufficiently large, if

dist(t, int Fj U int F_j) > 1 we have by (66), (59) and (58),
that with respect to an arbitrary point =z ¢ Y;?_Fj, which we
can take it to be the point in the positive real axis closest to
the origin,

N
|¢j(t)| < (N1+|z|) 21722 < const. j 2

by (61) {(just take 2g > N1 + 2). Therefore, under the same

condition on t we have

r1'Imt|

(68) lece) o ee)] < c 57201+ e M

Using the condition (58) on the diameter of Fj and (67), this

estimate remains valid throughout ¢, after possibly increasing

C

t
, M. This shows that the v € E (Rn) defined by
1 [e] o

vp(t) = g(t)

satisfies (51). It is also clear that the distributions vp j
’

such that t2q Vp 3 = f(t) ¢j(t) have the properties required
r
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defined by

-2 N’ ~ 2
(o -6)(t) (o (t)-1)/t
rj rj

P (t) = ¢
J

are hyperbolic.,. The hypothesis on r1/r2 guarantees these two
entire functions have no common zeros. Theorem 13 shows now that
the distribution Au is zero in B(O,R).

Remark As mentioned in [20]), Delsarte proved this theorem in R".
He also showed that Ho is finite and H3 = {1}. Hence, at least
for dimension 3, any pair of distinct positive value £y, T,
would work in the above corollary.

The several other results in [20} can now be carried over to
the local case without difficulty. It remains as an open
question for the moment the elimination of the invertibility
condition on Uy s which could probably be done following the
Euclidean summation method of [6]. More interesting, in our view,
is to try to extend this theorem to non-compact symmetric spaces
of rank 1 or even to the Euclidean group thus obtaining a 1local
version of the Pompeiu problem considered in [9].

As an example of this let us mention the following

corollary of Theorem 13,
1

Corollary 15 Let R > 'n a, if £ € Lloc(B(o'R)) has zero
integral over any n-cube of side a contained in B(O,R), then
f = 0 AeC,

Proof Following the ideas from [9]) we see we can consider all

radial distributiong ¥ whose Fourier tranforms are of the form
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(69) J (kZ)T(kZ) dk = wu(Z)

X
Oo(n) 0

where O is the cube [-a/2,a/21"™ and T 4is a distribution of

compact support in the ball B(0,e), € + /n a < R. Then, for any

such wu, cv(Suppu) E(O,r), and f will satisfy the

equations:
u * f =0 in B(O,R-r).

Bince this set of distributions generates the same closed ideal
in E'(Rn) as those are considered in [9, p. 602], then their
Fourier tranforms have no‘common zeros [9, section 9). It only
remains to find a distribution that plays the role of u1 in

Theorem 13. The easiest one is obtained when

2n
)
Xo

sz...axz
1 n

An easy computation shows that in this case, for

2n
H., = average over O{(u) of 3 X., We have
1 2 70
X eea0X
1 n
~ _ (n/2)+1 -
(70) u1(t) = const. t J3n_2(/n at/2)
2
which is clearly hyperbolic. (For n = 2, this can be obtained

from Sonine second finite integral [19, pP.376].)
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