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ABSTRACT

Particle filters are well known in statistics. They have a long tradition in the framework of ensemble data

assimilation (EDA) as well as Markov chain Monte Carlo (MCMC) methods. A key challenge today is to

employ such methods in a high-dimensional environment, since the naïve application of the classical particle

filter usually leads to filter divergence or filter collapse when applied within the very high dimension of many

practical assimilation problems (known as the curse of dimensionality). The goal of this work is to develop a

localized adaptive particle filter (LAPF), which follows closely the idea of the classical MCMC or bootstrap-

type particle filter, but overcomes the problems of collapse and divergence based on localization in the spirit

of the local ensemble transformKalman filter (LETKF) and adaptivity with an adaptiveGaussian resampling

or rejuvenation scheme in ensemble space. The particle filter has been implemented in the data assimilation

system for the global forecast model ICON at Deutscher Wetterdienst (DWD). We carry out simulations

over a period of 1 month with a global horizontal resolution of 52 km and 90 layers. With four variables

analyzed per grid point, this leads to 6.63 106 degrees of freedom. The LAPF can be run stably and shows a

reasonable performance. We compare its scores to the operational setup of the ICON LETKF.

1. Introduction

Data assimilation is concerned with the use of observa-

tions in combination with a numerical model to determine

the state of a dynamical system. In the framework of

weather forecasting, data assimilation has a long history,

ranging from the early works of Bjerknes (1904) and

Richardson (1922) to modern ensemble data assimilation

systems (cf. Bauer et al. 2015). Data assimilation links the

model world with reality, usually by using a wide range of

observational data to correct the development of the dy-

namical system step by step through an assimilation cycle

and, thus, providing initial conditions for forecasting.

For an introduction into data assimilation methods,

we refer to Kalnay (2003), Evensen (2009), Anderson

andMoore (2012), van Leeuwen et al. (2015), Reich and

Cotter (2015), and Nakamura and Potthast (2015). The

history of data assimilation methods used within an op-

erational framework started with optimal interpolation

from the 1960s to the 1990s. Variational methods such

as three-dimensional variational assimilation (3D-VAR)

have been employed operationally since about 1990, with

four-dimensional variational assimilation (4D-VAR) since

approximately 2000.Variationalmethods have the strength

to calculate a best estimate for either one time slice

(3D-VAR) or over some temporal window (4D-VAR).

Ensemble data assimilation development started in the

mid-1990s, with operational use since about 2010.

The ensemble Kalman filter (EnKF) was developed by

Evensen (1994; see also Evensen and van Leeuwen 2000;

Evensen 2009). The idea was applied to global numerical

weather prediction by Houtekamer and Mitchell (1998,

2001, 2005) and Houtekamer et al. (2005). In the area of

geophysical data assimilation, Burgers et al. (1998) de-

veloped the theoretical basis of the EnKFmethods based

on perturbations of the observations. Whitaker and

Hamill (2002) proposed the alternative approach, called

the ensemble square root filter (EnSRF). It does not use

randomly perturbed observations, but formulates a de-

terministic calculation of the posterior ensemble.

Further variants of ensemble filters include, for example,

the singular evolutive extended Kalman filter (SEEKF;

Pham et al. 1998), the ensemble adjustment Kalman filter

(EAKF; Anderson 2001), and the ensemble transform

Kalman filter (ETKF; Bishop et al. 2001). Localization

is a key ingredient of the ensemble Kalman filter

(Houtekamer and Mitchell 1998; denoted as data
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selection with a cutoff radius), the work by Brusdal et al.

(2003), the local ensembleKalmanfilter (LEKF;Ott et al.

2004), and the local ensemble transform Kalman filter

(LETKF; Hunt et al. 2007), where all locally available

observations are assimilated in one step. Various other

forms of explicit filters are developed (e.g., the GIGG

filter; Bishop 2016). For an overview of ensemble-based

data assimilation methods, we refer to Vetra-Carvalho

et al. (2018).

Important current research topics on ensembleKalman

filters are covariance localization and inflation (see van

Leeuwen 2003b; Miyoshi et al. 2007; Miyoshi and Sato

2007; Campbell et al. 2010; Greybush et al. 2011; Janjić

et al. 2011; Periáñez et al. 2014). Localization for particle

filters has been described by, for example, Bengtsson

et al. (2003) and van Leeuwen (2003a). Flow-adaptive

localization has been described by Bishop and Hodyss

(2007, 2009a,b) and Anderson (2007a); multiscale locali-

zation by Miyoshi and Kondo (2013); and flow-adaptive

inflation by Anderson (2007b, 2009), Li et al. (2009), and

Miyoshi (2011). The investigation of large ensembles has

been carried out by, for example, Miyoshi et al. (2014).

Leaving the Gaussian regime, for which ensemble

Kalman filters are best, particle filters take into account

the full nonlinearity of both the model dynamics and

observation operators in applications, leading to strongly

non-Gaussian distributions on all temporal and spatial

scales. Particle filters have a long history in stochastic

modeling, where they have been used since the 1960s

under the name of iterative Markov chain Monte Carlo

(MCMC) methods (Bain and Crisan 2009; Crisan and

Rozovskii 2011). The idea is to sample some probability

distribution, where the number of samples reflects the

local strength of the probability density, their weights are

adapted using observations, and then resampling is

carried out. Several particle filter methods have been

formulated and tested for small-dimensional problems,

ranging from early work by Gordon et al. (1993) to the

review of van Leeuwen (2009). More recently, Ades and

van Leeuwen (2013, 2015) have adapted their equivalent-

weights particle filter (EWPF) to high-dimensional sys-

tems using a simple relaxation technique and a proposal

to ensure equal weights for the particles. Zhu et al. (2016)

have further improved the EWPF to their implicit equal

weights particle filter (IEWPF). Further, Gaussian mix-

ture models have been developed, based on the estima-

tion of the model error probability distribution by a set of

Gaussians (see Hoteit et al. 2008; Stordal et al. 2011 for a

hybrid method of a Gaussian mixture and the particle

filter). Frei and Künsch (2013) develop a hybrid method

for an EnKF and a particle filter. For a recent review, we

refer to van Leeuwen (2009) and Reich and Cotter (2015;

cf. Nakamura and Potthast 2015).

It is well known that in a high-dimensional frame-

work, particle filters suffer from so-called filter collapse

or filter divergence under the curse of dimensionality (cf.

van Leeuwen 2010; Snyder et al. 2008, 2015; Bickel et al.

2008). This means that usually, only very few or just one

of the ensemble members carry all the weight in the as-

similation step. This immediately destroys the diversity of

the ensemble and leads to useless behavior when applied

in an iterative way. Different ideas have been developed

to overcome filter collapse: for example, guiding the

particles to the right places in the high-dimensional space

(van Leeuwen 2010). Also, using localization for particle

filters has become popular (see, e.g., Reich and Cotter

2015; Poterjoy and Anderson 2016). Only recently,

Robert et al. (2018) and Poterjoy (2016) started to ap-

ply particle filters in an operational environment for a

large-scale operational global weathermodel. Robert et al.

(2018) employ the data assimilation coding environment

of Deutscher Wetterdienst (DWD) working with the

convection-permitting COSMO Model. To avoid filter

divergence, they combine the particle filter step with an

ensemble Kalman filter step. Poterjoy (2016) works in a

convective-scale framework in comparison to the global

setup; he also employs localization as a core ingredient of

his localized particle filter (see also Poterjoy et al. 2017).

Here, our goal is to develop a localized adaptive

particle filter (LAPF) for global atmospheric data as-

similation to fit into the framework of a global opera-

tional weather prediction model. We want to show that

with appropriate adaptation, the classical particle filter

can be a stable and useful approach in a large-scale op-

erational framework.

Our reference is the implementation of the LETKF

(Hunt et al. 2007) for the Icosahedral Nonhydrostatic

(ICON) model. This has been operational at DWD since

20 January 2015. The ICON-LETKF provides initial con-

ditions for the global ensemble prediction system (ICON-

EPS) and feeds the dynamic covariance matrix of DWD’s

ensemble–variational data assimilation system (EnVAR).

The basic ingredients of the LAPF will be described in

detail in sections 3b–f. Section 3b describes the classical

particle filter; section 3c describes the projection onto en-

semble space to calculate the particle weights; section 3d

describes a classical resampling step; section 3e describes

spread control by optimal spread estimation; and sec-

tion 3f describes a Gaussian rejuvenation or resampling

step, carried out by modulated global draws around each

particle after the first classical resampling step.

Further, in section 3a, we describe 1) the set of ob-

servation operators that are included in our assimilation

tests, 2) the LETKF reference implementation, 3) the

localization in observation space, 4) multiplicative in-

flation and relaxation to prior perturbation (RTPP), 5)
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the assimilation grid and interpolation, 6) additive co-

variance inflation, and 7) the incremental analysis up-

date; all these components are important parts of

the system.

Adaptive Gaussian rejuvenation in combination with

optimal spread estimation acts as spread control for the

ensemble, such that filter collapse or filter divergence can

be avoided. It ensures the stability of the particle filter, in

the sense that the ensemble spread stays in a feasible

range, the filter does not crash, and its core task to syn-

chronize the system to real observations works. The en-

semble space projection helps to keep the ensemble

weights in a reasonable range. The careful treatment of

the rejuvenation by modulated global draws in ensemble

space around each ensemble member after resampling

keeps atmospheric fields intact for further integration.

By running the implementation for a test period of

1 month with a global horizontal resolution of 52 km,

90 vertical layers, and four variables analyzed per grid

point (i.e., with state space dimension of approximately

n 5 6.6 3 106), we demonstrate the feasibility of the

method. A comparison of scores with the operational

setup shows that the localized adaptive particle filter is

able to provide a reasonable atmospheric analysis in a

large-scale environment.

In section 2, we give an introduction into the ICON

model setup and the ensemble prediction system ICON-

EPS. Section 3 describes the localized adaptive particle

filter in ensemble space with Gaussian resampling and

spread control. The ensemble data assimilation (EDA)

suite of DWD includes different tools, in particular

multiplicative and additive covariance inflation, and

various stochastic schemes for generating spread in

surface fields. We survey our system and experimental

setup in section 4 and evaluate the assimilation cycle and

forecasts in detail in sections 4a and 4b, studying the

development of spread, bias, scores, and the stability of

the system. Finally, conclusions and further develop-

ment steps are discussed in section 5.

2. The ICON model and ICON-EPS

In this part, we briefly introduce the ICON model in

section 2a, the ICON-EPS in section 2b, and the pre-

operational experimental setup in section 2c.

a. The ICONmodel and deterministic forecast system

ICON is the operational global numerical weather

prediction (NWP) model of DWD. It is a joint project of

DWD and the Max Planck Institute for Meteorology

(MPI-M; Zängl et al. 2015). ICON is based on the prog-

nostic variables suggested by Gassmann and Herzog

[2008; for further information, see also Reinert et al.

(2018)], but instead of using the three-dimensional Lamb

transformation, it uses the two-dimensional version to

convert the nonlinear momentum advection into a

vector-invariant form (Zängl et al. 2015).

The model grid is based on an unstructured triangular

grid that is generated by successive refinement of a

spherical icosahedron, which consists of 20 equilateral

triangles with an edge length of about 7054km. These

triangles are subdivided (e.g., by bisection, trisection)

into smaller triangles, leading to a model grid with the

desired spatial resolution. The use of this icosahedral

grid provides a nearly homogeneous coverage of the

globe. After dividing the triangles, the operational grid

of the ICON model consists of 2 949 120 triangles on

each horizontal level. Each triangle has an average area

of 173 km2. This corresponds to the global horizontal

resolution of 13 km for the deterministic run. For the

operational setup, a two-way nested area over Europe

with 6.5-km horizontal resolution is included. The en-

sembles run with an operational horizontal resolution of

40 km, with a 20-km-resolution nest over Europe.

The scalar prognostic variables (e.g., temperature,

humidity) are located in the center of the triangles,

whereas the wind components are located at the edge

midpoints of the triangles. The most important prog-

nostic variables (e.g., wind, humidity, cloud water, cloud

ice, temperature, snow, precipitation) are calculated for

all grid cells on 90 terrain-following vertical model

levels, which range from the surface up to a height of

75 km, leading to 265 million grid points in the opera-

tional setup. Additional prognostic equations are solved

over land on seven soil levels for soil temperature and

soil water content. If snow is present, several snow var-

iables are also determined. Once per day (at 0000UTC),

the sea surface temperature (just over ice-free ocean) is

analyzed from observations and is kept constant during

the forecasts. For the sea ice fraction of the ice-covered

oceans, we proceed in the same way. However, ice

thickness and ice surface temperature are determined

by a simple sea ice model.

Beyond the adiabatic processes in the atmosphere

(horizontal and vertical transport processes), diabatic

processes (e.g., radiation, turbulence) play a major role

in NWP. Describing these small-scale processes is part

of the physics parameterization of ICON.

Within the operational workflow, we distinguish the data

assimilation cycle and the forecast mode. During the data

assimilation cycle, a 3-h forecast starting from the previous

analyses (the first guess) is blended with all observations

valid for a 3-h time window centered at the analysis date.

It is important to note that traditionally, the atmospheric

analysis calculates increments to four core variables (tem-

perature, humidity, and twowind components) at each grid
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point in its three-dimensional grid, with pressure

adapted according to the hydrostatic equation. The

model adapts further prognostic variables itself. Ad-

ditional two-dimensional fields that are also adapted

have been neglected in our variable counts. To obtain

an optimal initial state for the subsequent forecasts, we

calculate a variational analysis with a dynamic covariance

matrix, known as ensemble variational data assimilation

(EnVAR). In total, 70% of the covariance matrix is cal-

culated from the ensemble runs based on a LETKF.

Further, 30% of the covariance matrix is given by its

climatological part based on the NationalMeteorological

Center (NMC) method (Parrish and Derber 1992). The

EnVAR and the LETKF were made operational on

20 January 2016.

Based on the analyses for 0000 and 1200 UTC, ICON

provides a 180-h forecast in just 1-h wall-clock time. Fore-

casts over 120h are based on the analyses of the 0600 and

1800 UTC run, and the 30-h forecasts are based on the

0300, 0900, 1500, and 2100 UTC analyses.

b. The ICON-EPS

ICON-EPS has run preoperationally since January

2016, providing background error correlations for the

operational global EnVAR system of DWD, with op-

erational forecasts including all ensemble products since

17 January 2018. It also has provided boundary condi-

tions for the operational local-area kilometer-scale

ensemble data assimilation (KENDA; Schraff et al.

2016) and ensemble prediction systemCOSMO-DE-EPS

(Bouallègue et al. 2013) since March 2017.

The ICON-EPS initial conditions are provided by the

LETKF, which is part of the hybrid data assimilation

suite LETKF1EnVAR for the ICON model. The

ICON-EPS is run up to 180 h at 0000 and 1200 UTC, up

to 120h at 0600 and 1800 UTC, and up to 30h at the

3-hourly intervals in between, with the main purpose of

generating forecasts and ensemble boundary conditions

in the short range of up to 30-h lead time every 3 h.

c. Development environment, experimental setup,

and period

The main goal of our work is to investigate the feasi-

bility and performance of a stable particle filter for

global numerical weather prediction with the ICON

model in the above operational setup. For our experi-

mental test, we chose the period of 1–31 May 2016.

Since quality control is carried out based on the de-

terministic run, it is always part of experiments. Here,

for the development of the LAPF, we choose the

established 52-km experimental resolution for the en-

semble and 26km for the deterministic run. In standard

DWD experiments, EDA tests are usually run with the

operational ensemble size L5 40 members, which is also

our choice for the LAPF development. In this setup, we

study the performance and stability of the particle filter

in direct comparison to the LETKF-based operational

setup.

The development of the LAPF takes place in the data

assimilation coding environment of DWD. The suite

includes modules for snow analysis (SNOW) every 3 h,

sea surface temperature (SST) analysis, and soil mois-

ture analysis (SMA) once per day. The surface analysis

consists of separate modules in which, among others,

random perturbations are added to the ensemble mem-

bers. For our experiments, this part has been kept iden-

tical to the operational setup (cf. Reinert et al. 2018).

3. An LAPF with Gaussian resampling

In this section, we introduce the localized adaptive

particle filter with adaptive Gaussian resampling and

spread control. First, section 3a describes the opera-

tional LETKF implementation, which serves as a ref-

erence for comparison and whose core algorithm is

replaced by the LAPF algorithm. Section 3b presents

the classical particle filter basis of the method, as an

important first step, we describe the ensemble transform

version of this particle filter in section 3c. Then, we go

into details of classical resampling in section 3d and

describe the indicator for spread control in section 3e

and the adaptive Gaussian resampling or rejuvenation in

section 3f. We note that the adaptive Gaussian re-

juvenation is carried out on top of classical resampling

(i.e., this is an additional tool for spread control added to

the classical particle filter).

a. The operational LETKF implementation

In this section, we first briefly describe the operational

ensemble data assimilationmethod, its components, and

setup. For the LAPF implementation, the core LETKF

algorithm II is replaced by a particle filter step, keeping

the observation handling, quality control, and part of the

inflation and localization facilities unchanged.

1) OBSERVATION OPERATORS AND ANALYSIS

FREQUENCY

Observation operators are evaluated at 3-hourly in-

tervals in the cycled data assimilation code. Observation

types currently include TEMP, PILOT,1 SHIP, SYNOP,2

1TEMPs and PILOTs are particular weather balloonsmeasuring

profiles of, for example, temperature and humidity.
2 SYNOPs are the classical land-based weather stations mea-

suring, for example, temperature, humidity, and pressure.
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BUOY, wind profiler, aircraft, atmospheric motion

vector (AMV),3 radio occultations, scatterometer, and

satellite radiances. For further information about the

observation types, we refer to ECMWF (2014, p. 32).

Observational quality control (observation minus first-

guess check) and bias correction (for radiances and

individual aircrafts) are performed in the deterministic

data assimilation system. Bias-corrected observations

and quality control flags are then further passed to the

ensemble data assimilation system.

2) LETKF

The formulation of the LETKF at DWD is based on

the proposal of Hunt et al. (2007). The implementation is

shared with the regional KENDA system (Schraff et al.

2016) for the COSMO EPS. The ensemble Kalman filter

equations are solved in ensemble space (39 dimensions in

case of 40members). In principle, the Kalman gain matrix

uses the background error covariance matrix P
b in order

to determine the analysis increment of the ensemblemean

and the symmetric square root of the analysis ensemble

covariance matrix P
a. Practically, a weight matrix W is

derived, which is used for the construction of the analysis

ensemble as a linear combination of the forecast ensemble

members. Since the LAPF implementation directly imi-

tates the LETKF transform, we need to look into more

detail here. The operational LETKF system implements

Eqs. (20) and (21) of Hunt et al. (2007), that is,

wa
5 ~P

a(Yb)TR21(y0 2 yb) , (1)

for calculating the mean of the analysis ensemble and
~P
a given by

~P
a
5 [(L2 1)I1 (Yb)TR21

Y
b]21 , (2)

where we use the letter L for the number of ensemble

members and the notation wa for the linear coefficients

of the analysis mean, ~Pa denotes the L3L analysis co-

variance in the space of ensemble coefficients, R is the

observation error covariance matrix, y0 are the obser-

vations, yb is the mean of the model equivalents Hxb of

the observations, H is the observation operator, and Y
b

is the matrix of ensembles minus mean in observation

space. Equation (2) in model space leads to Eqs. (22)

and (23) of Hunt et al. (2007):

xa 5 xb 1X
bwa , (3)

P
a
5X

b~P
a(Xb)T , (4)

where xa is the analysis mean, and X
b is the matrix of

ensemble minus its mean. The analysis ensemble is cal-

culated as in (24) of Hunt et al. (2007). We obtain

X
a
5X

b
W (5)

using

W5 [(L2 1)~Pa]1/2 , (6)

with the symmetric square root denoted by the 1/2

power of the symmetric matrix ~P
a. We note that a der-

ivation of this algorithm with its links to classical inverse

problems theory can also be found in Nakamura and

Potthast (2015, chapter 5).

3) LOCALIZATION ON R

Localization is performed by calculating independent

analyses (weight matricesW) at each analysis grid point

using only the observations in the vicinity of that loca-

tion. The observations are weighted smoothly in de-

pendence on their distance to that point, according to a

localization function chosen as the fifth-order poly-

nomial described by Gaspari and Cohn (1999), which is

similar to a Gaussian but has compact support. We use a

horizontal localization length scale of 300km and a

vertical length scale varying from 0.3 [given in ln(p)] at

the surface to 0.8 at the model top (75 km). The length

scales are defined following Daley (1993), using the

second derivative of the localization function c at its

origin: l5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

21/[=2c(0)]

q

. For a Gaussian, this coincides

with the standard deviation of the distribution. For-

mally, the inverse of the observation error covariance

matrix R [in (2), respectively (6)] is weighted by a

pointwise multiplication with the function defined by

Gaspari and Cohn, such that observations that are lo-

cated at a larger distance from the current analysis grid

point receive less weight when calculating the analysis.

Therefore, this procedure is often denoted as localiza-

tion on R.

4) MULTIPLICATIVE INFLATION AND RTPP

The analysis ensemble spread is adjusted by multi-

plicative inflation with a factor ranging from 0.9 to 1.5,

based on an online estimate of spread and ensemble-

mean root-mean-square error (RMSE) in observation

space, following Houtekamer et al. (2005). The inflation

factor is estimated locally based on the statistics on ob-

servation minus first-guess differences, as described in

section 3e, and theWmatrices are adjusted respectively.

In addition, an RTPP is applied following Whitaker and

Hamill (2012), with a rate of 0.75. The latter preserves a3Calculated from subsequent satellite images.
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reasonable situation-dependent spread–skill relation-

ship in the analysis cycle.

5) ASSIMILATION GRID AND INTERPOLATION

Tapering the observations with a smooth function and

taking the symmetric square root in the LETKF algo-

rithm ensures that the weight matrices only change on

scales on the order of (or larger than) the localization

length scale. For this reason, it is sufficient to derive the

weight matrices W on a coarser analysis grid G (e.g.,

Yang et al. 2009), with spacing on the order of this

prescribed length scale. Afterward, the W are in-

terpolated to the model grid, and the final analyses are

derived by taking linear combinations of the forecast

ensemble members according to the interpolated weight

matrices.

6) ADDITIVE COVARIANCE INFLATION

To account for model errors, additive random per-

turbations consistent with 25% of the amplitude of

the climatological B matrix used in the deterministic

EnVAR assimilation system are added to the analysis

ensemble members. In addition, the SST is perturbed

by random perturbations of 1K, which are a linear

combination of perturbations with spatial correlation

length scales of 100 and 1000 km and a time scale of

1 day.

7) INCREMENTAL ANALYSIS UPDATE

The analysis increments applied by the cycled data

assimilation system, as well as the stochastic pertur-

bations, introduce imbalances and spinup effects,

which are diminished by using an incremental analysis

update (IAU) scheme (see Bloom et al. 1996). The

combined analysis increments from the LETKF, in-

flation schemes, and additive perturbations are added

to the model trajectory, dispensing them over a time

interval of 3 h, symmetrically adjusted around the

analysis date.

b. The classical particle filter

The concept of the LAPF is chosen to be as parallel as

possible to the ensemble transform Kalman filter de-

scribed in sections 3a(1)–(7) above. Here, we basically

replace the analysis step 2 by the steps described in

sections 3b–f.

Let us recall the stochastic notation and background

of the particle filter (following Nakamura and Potthast

2015), where xk 2 R
n denotes model states of dimension

n, and yk 2 R
m is the vector ofm observations at time tk.

Bayesian data assimilation starts with some prior dis-

tribution. The analysis step employs observations to

derive an analysis distribution. This analysis distribution

is propagated to the next time step, where it acts as

a prior distribution for the subsequent assimilation

step. For our implementation, we consider the anal-

ysis distribution p(a)(x) for time t0 as initial state. Then,

the analysis distribution is propagated in time by a

short-range ensemble forecast, from tk21 to tk, to get

the first-guess distribution p
(b)
k (x). Afterward, the

Bayes formula

p(xjy
k
)5

p
(b)
k (x)p(y

k
jx)

p(y
k
)

, x 2 R
n, y

k
2 R

m ,

is employed to calculate the new analysis distribution

p
(a)
k (x) :5p(xjy

k
)5 cp(y

k
jx)p

(b)
k (x) , x 2 R

n , (7)

where c is a normalization constant so that

ð

R
n

p
(a)
k (x) dx5 1. (8)

The classical particle filter uses an ensemble x(l) of

states, which represents the prior probability distribu-

tion p
(b)
k at time tk in the form of d functions. Alterna-

tively, particles are considered as draws from this prior

distribution, and in the case of L particles, they each

carry a weight of 1/L. To carry out the analysis step at

time tk, weights are calculated by

w
k,‘

:5 cp(y
k
jx(l)), ‘5 1, . . . ,L , (9)

for the particles x(l) corresponding to (7), where c is a

normalization constant. We note that sometimes we

use the normalization to L for easier discussion (i.e.,

�‘51,...,Lwk,‘ 5L). Then, for the prior each particle car-

ries the weight 1.

c. Projection onto ensemble space

In the following, we drop the explicit declaration of the

time index k andwrite yo for the observations yk at time tk.

As seen from (1), the LETKF is based on the

projection of the observation onto ensemble space.

For brevity, we use Y for Y
b. We note that the or-

thogonal projection of the observation difference

yo 2 yb onto the ensemble space fYw :w 2 R
Lg with

respect to the scalar product weighted by R21 in R
m is

given by

P(yo 2 yb)5Y(YT
R

21
Y)21YT

R
21(yo 2 yb) . (10)

Compare, for example, lemma 3.2.3 of Nakamura

and Potthast (2015) using the adjoint Y*5Y
T
R

21
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based on the weighted scalar product in R
m and

the Euclidean scalar product in the space R
L

of ensemble coefficients.4 The corresponding par-

ticle filter weights (9) at time tk based on this

projection are given by its ensemble transform

projection:

w
k,‘ :5 ce21/2[P(yo2Hx(‘))]TR21[P(yo2Hx(‘))], ‘5 1, . . . ,L ,

(11)

with normalization constant c. AbbreviatingA :5 Y
T
R

21
Y

and C :5 A21
Y
T
R

21(yo 2 yb), we first note

yo2Hx(‘) 5 yo2(yb 1Ye
‘
)5 (yo 2 yb)2Ye

‘
,

‘5 1, . . . ,L , (12)

and

P(yo 2Hx(‘))5YA21
Y
T
R

21[(yo 2 yb)2Ye
‘
]

5Y(C2 e
‘
) , ‘5 1, . . . ,L , (13)

where e‘ is the standard unit vector, which is 1 in its ‘th

component and zero otherwise. Now, the exponent of

(11) is transformed into

[P(yo 2Hx(‘))]TR21P(yo 2Hx(‘))5 [C2 e
‘
]TA[C2 e

‘
],

‘5 1, . . . ,L , (14)

leading to

w
k,‘

5 ce21/2[C2e
‘
]TA[C2e

‘
], ‘5 1, . . . ,L . (15)

The classical weight (9) is known to lead to filter di-

vergence in high-dimensional spaces. Here, the ensem-

ble transform and the projection P onto ensemble space

lead to a significant reduction of the dimensionality. The

observation vector y 2 R
m is mapped onto the vector

A21
Y
T
R

21(yo 2 yb) in the space R
L with ensemble size

L. The weights (11) now penalize the distance of the

ensemble members e‘, ‘5 1, . . . , L in R
L to the pro-

jection C of the observations onto ensemble space. The

histograms in Fig. 1 show the result of this projection

step, which, in combination with adaptive Gaussian re-

sampling and localization, leads to a feasible behavior of

the particle filter weights.

To evaluate the relationship between the classical

particle filter weights and the ensemble space particle

filter weights, we note

wclassical
k,‘ 5 ce21/2[(yo2Hx(‘))]TR21[(yo2Hx(‘))]

5 ce21/2f P1(I2P)½ �(yo2Hx(‘))TR21f P1(I2P)½ �(yo2Hx(‘))g

5 ce21/2[P(yo2Hx(‘))]TR21[P(yo2Hx(‘))]e21/2[(I2P)(yo2Hx(‘))]TR21[(I2P)(yo2Hx(‘))]

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

5~c

, (16)

where we use the orthogonality of the projection P with

respect to the scalar product with weight R21 such that

the mixed terms of P with I2P vanish. The second

exponential factor in the last line of (16) is equal to a

constant ~c for all ‘5 1, . . . , L since we have

(I2P)(yo 2Hx(‘))5 (I2P)(yo 2 yb 1Ye
‘
)

5 (I2P)(yo 2 yb)2(I2P)Ye
‘

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

50

.

(17)

If the ensemble space spans only a small part of the

full state space, the constant ~c can be very small,

so the ensemble transformation effectively removes

a very small but uniform factor from the ensemble

weights.

After the determination of the weights [(15)], the

classical resampling (section 3d) is carried out. Then,

the spread control (section 3e) will be prepared.

Subsequently, the adaptive Gaussian resampling step

(section 3f) will be executed.

d. Classical resampling

The LAPF carries out a classical resampling step based

on (15), suggested already by Gordon et al. (1993). For

resampling, accumulated weights wac‘, ‘5 1, . . . , L, are

defined by

w
ac0

5 0 , w
ac

‘

5w
ac

‘21
1w

k,‘
, ‘5 1, . . . ,L , (18)

where now we employ normalization to the total weight

of L. Then, similar to Doucet et al. (2001; see also

Elsheikh et al. 2014; Crisan and Rozovskii 2011), we

4This is readily obtained from hz,Ywi
R
21 5 hz, R21

Ywi5

hYT
R

21z, wi5 hY*z, wi, where h �, �i denotes an inner product and

where z 2 R
m and w 2 R

L. See Nakamura and Potthast (2015) for a

detailed introduction.
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draw r‘ ;U([0, 1]), ‘5 1, . . . , L, set R‘ 5 ‘2 11 r‘, and

define the transform matrix for the particles by

W
^

i,‘
5

(

1, if R
‘
2 w

ac
‘21
,w

ac
‘

� i

,

0 , otherwise,
(19)

i, ‘5 1, . . . , L with W
^

2 R
L3L, where (s, t] denotes the

interval of values s,h# t. This is carried out for each

analysis grid point p 2 G ; for brevity, however, we use

W
^

instead of W
^

(p).

e. Spread control

In ensemble data assimilation systems, the spread of

the ensemble evolves as a result of model dynamics,

model errors (represented by additive perturbations or

multiplicative inflation), and active observations5 and

thus relies on a correct specification of model and ob-

servational errors. As it is very difficult to properly es-

timate and model these errors, the spread of the

ensemble is adjusted. In the operational LETKF, an

adaptive inflation factor r is estimated, based on statistics

of observations minus first guess (cf. Desroziers et al.

2005; Li et al. 2009). For this purpose, we use adaptive

Gaussian resampling with parameters based on the esti-

mate of r in the LAPF. It is derived from the observation

minus background (o2 b) statistics, the current ensemble

spread, and the assumed observation error. Its de-

termination is based on

d
o2b

5 yo 2H(xb)5 yo 2H(xt)1H(xt)2H(xb)

’ e
o
2He

b , (20)

with the true background state xt, the background state

xb, the linearization H of H, the vector of observation

errors eo, and the vector of background errors eb. Then, if

the observation errors and background errors are un-

correlated, we obtain

E[d
o2b

dT
o2b]5E[eo(eo)T]1HE[eb(eb)T]HT (21)

(see Desroziers et al. 2005). To estimate the inflation

factor, we substitute the expectation values of the back-

ground and observation errors with the actual ensemble

covariance matrix P
b multiplied by the inflation factor

r and the nominal covariance of observation error R,

respectively: E[eb(eb)T]’ rP
b and E[eo(eo)T]’R, result-

ing in

FIG. 1. Global histograms of the number of particles with weights above 1 (when the total weight is given by the number of particles L)

for three dates and three levels: (top) 0300 UTC 20May, (middle) 1200 UTC 25May, and (bottom) 2100 UTC 31May 2016 at levels (left)

100, (center) 500, and (right) 1000 hPa. The x axis shows the number of particles (Np) with weight larger than 1, and the y axis shows the

percentage of analysis grid points with these numbers.

5Active observations are those that passed the quality control.
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E[d
o2b

dT
o2b]’R1 rHP

b
H

T . (22)

Now, by taking the trace Tr(A)5�
m

j51ajj of thematrices on

both sides, using Tr(A1 ~A)5Tr(A)1Tr( ~A), Tr(r ~A)5

rTr( ~A), and Tr(yyT)5Tr(yTy), the inflation factor r is

estimated by

r5
E[dT

o2bdo2b
]2Tr(R)

Tr(HPb
H

T)
, (23)

following Desroziers et al. (2005) and Li et al. (2009).

Equation (23) computes a scalar inflation factor r based

on a set of observations and the corresponding ensemble

spread in observation space. It is carried out locally as a

localized ensemble data assimilationmethod is employed;

that is, we calculate

r(p)5
dT
o2bdo2b

2 r2

q2
(24)

at each point p 2 G with the local innovation vector

do2b, the observation error r2 5Tr(R), and the local

estimate q2 :5 Tr(HPb
H

T) of the background error co-

variance in observation space. The factor r(p) is the es-

timate for the local variance inflation at the analysis point

p in the LETKF.

Because of the localization procedure, the number of

observations used in this method may be small, and the

estimated value of rmay be based on limited statistics. To

make the estimate more robust, we first limit r by lower

and upper bounds of 0.9 and 1.5 and afterward perform a

temporal smoothing.Aweighting factora5 0:05 is chosen

to combine the ~rk estimated by (24) in the current cycle k

and the rk21 used in the previous analysis cycle (3h in the

past) to get the rk to be applied in the current cycle k:

r
k
5a~r

k
1 (12a)r

k21
, k5 1, 2, 3, . . . . (25)

In the LETKF, r is used at each analysis grid point to

calculate the filter transformation matrix Winfl by

W
infl

(p)5
ffiffiffiffiffiffiffiffiffi

r(p)
p

W(p) , p 2 G , (26)

where W is the transform matrix defined in (6). For the

localized adaptive particle filter, pure multiplicative in-

flation is not appropriate, since it would just inflate the

distribution of the remaining duplicate ensemble mem-

bers. Instead, we apply the Gaussian resampling based

on (23) and (24), as described below.

f. Gaussian resampling or rejuvenation

The LAPF first calculates the ensemble weights

according to the ensemble space projection (15) and

the resampling (19) at each of the analysis points

p 2 G . Usually, this resampling leads to part of the

total number of particles only getting the majority of

the weights. Often, a rejuvenation step [see Doucet

et al. 2001; van Leeuwen et al. 2015, Eq. (2.39)] is

carried out around each of the remaining particles

(i.e., new particles are generated based on a pseudo-

random draw in ensemble space). We note that this

rejuvenation can be considered as classical resampling

from some posterior represented by a superposition of

Gaussian functions in the spirit of classical MCMC

methods (Nakamura and Potthast 2015, chapters 4

and 5).

In our implementation of the LAPF, we draw

from a Gaussian distribution around each remaining

particle in ensemble space, used with appropri-

ate multiplicity as constructed by W
^

in (19). Using

a Gaussian with mean given by the column vector

W
^

‘ of W
^

and with a covariance matrix s2
I 2 R

L3L,

this leads to a draw from a distribution in physi-

cal space with mean given by the ensemble fx(‘),

‘5 1, . . . , Lg and the rescaled ensemble covariance

matrix s2
P
b.

1) GLOBAL REJUVENATION

A pseudorandom matrix N 2 R
L3L with each ele-

ment draw from a Gaussian distribution with mean

zero and covariance 1 is chosen globally to ensure

the best possible continuity of the meteorological

variables in physical space. Since resampling is

global, without modulating the random matrix N,

the resulting perturbations would be scaled super-

positions of the original ensemble members, keeping

linear balances completely and nonlinear balances

to some degree. However, adaptivity of the pseu-

dorandom draws turns out to be crucial to avoid

filter divergence and filter collapse. Only after

adapting the spread of the rejuvenation or resam-

pling carefully as follows did the filter start to

be stable.

2) ADAPTIVITY

For the adaptive resampling step, the size of the draw

(given by N) is modulated by applying a scalar pertur-

bation factor s for each analysis grid point. Scaling

of the draw around each member at time tk is carried

out by

W(p)5W
^

(p)1N3s[r
k
(p)] . (27)

The specification of the factor s is based on the inflation

parameter rk estimated in (25):
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s(r) :5

8

>>>>>><

>>>>>>:

c
0
, r, r(0) ,

c
0
1 (c

1
2 c

0
)3

r2 r(0)

r(1)2r(0)
, r(0) # r# r(1)

c
1
, r. r(1) ,

(28)

where elementary tuning tests lead to the values c0 5

0:02, c1 5 0:2, r(0) 5 1:0, and r(1) 5 1:4 (which might

not be an optimal choice). The function continu-

ously depends on r with s5 c0 if r% r0 and s5 c1
if rS r1.

We summarize that we always perturb each of the

remaining members of the filter after the classical

resampling step by a Gaussian with standard deviation

of at least c0 and at most c1. The scaling is a continuous

function of the input parameters of our estimator of

r (i.e., it depends continuously on space, on the obser-

vations, and on the ensemble members). The only dis-

continuities can occur when thematrixW
^

in dependence

of the spatial point p itself is discontinuous according

to a change in the weights resulting from the classical

resampling procedure.

3) NUMBER OF SURVIVING PARTICLES

We remark that the adaptive Gaussian rejuvenation

ensures that with probability one, the analysis ensemble

consists of L distinct particles. However, in the first

classical resampling step, the number of distinct parti-

cles can be significantly smaller with the limiting case

where only one particle gains all the weight, such that

FIG. 2. Examples for transformation matrices W of the LAPF after Gaussian resampling. We show W at one

analysis grid point [608N, 908E (Siberia)], at levels of (from left to right and top to bottom) 100, 500, 750, and

1000 hPa for 0000 UTC 26 May 2016. The x axis shows the analysis ensemble index, and the y axis shows the first-

guess ensemble index.
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after resampling and before rejuvenation, we have L

identical copies of this particle in a given localization

point. It is, of course, highly interesting to study the

statistics of how many particles remain at each analysis

grid point and in what way the ensemble projection (11)

helps the filter to stay away from collapse.

In Fig. 1, for three dates close to the end of the ex-

perimental period, we show some histograms of the

number of particles at each analysis grid point surviving

the first resampling step (i.e., those particles with

weights wk,l $ 1 before rejuvenation when normalizing

the total weight to L). The results show that at 100 hPa

FIG. 3. Observation minus ensemble mean first-guess statistics in the 3-hourly assimilation cycle for the period 8–31 May 2016 in the

global domain: (left) ME, (middle) RMSE, and (right) SD. (top) Upper-air temperature (K); (bottom) relative humidity (0, . . . , 1). Solid

lines indicate the reference (LETKF), and dashed lines indicate the experiment (LAPF).
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(high level with few data; left column), mainly five to 20

particles obtain most of the weight. There are consid-

erably fewer cases where 20 to 40 particles survive the

classical resampling step.

In the midtroposphere (500 hPa; middle column) it

can clearly be seen that the first date (0300 UTC 20May

2016) and the third date (2100UTC 31May 2016) show a

quite similar distribution. The number of cases with one

up to 30 particles with weight larger than one is very

similar. For the second date (second row; 1200 UTC

25 May 2016), there are only a few cases with more than

20 surviving particles. This is probably due to the larger

amount of synoptic data at 1200UTC, compared to 0300

and 2100 UTC.

The result for the bottom level (1000hPa; right col-

umn) differs from the other two levels. In all these

subfigures, there exists one peak at one to five particles.

For the first and the third rows, there is also a peak at 30

particles. The first peak might be due to model biases in

the boundary layer in combination with a high number

of observations.

A high number of observations leads to a small number

of particles surviving the classical resampling, which is the

well-known filter divergence phenomenon. We remark,

however, that due to the ensemble transform and pro-

jection step of section 3b, this divergence only occurs in a

part of the localization boxes. Further, adaptive Gaussian

rejuvenation in ensemble space guarantees the calcula-

tion of L distinct analysis ensemble members with a

controlled spread and distribution.

4) EXAMPLES

Examples for the matrixW from (27) are displayed in

Fig. 2. The W matrices show how the analysis ensemble

is constructed from the first-guess ensemble. Entries

close to one indicate that an analysis ensemble member

is sampled from the respective first-guess member. In

general, some first-guess members lead to multiple

FIG. 4. Spread at model level 64 (;500 hPa) for 0000 UTC 31 May 2016. Differences for (a) upper-air temper-

ature (K) and (b) specific humidity (kg kg21) between LETKF and LAPF. Fields for upper-air temperature in

(c) LAPF and (d) LETKF. Fields for specific humidity in (e) LAPF and (f) LETKF.
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analysis members, whereas others are dismissed totally

(only entries close to zero in that row). The deviations

from zero or one are consequences of the Gaussian

resampling step.

In the first case (top left; in the lower stratosphere with

few observations), the analysis members are sampled

from a large number of first-guess particles. Going far-

ther to the ground, fewer first-guess particles are se-

lected, but are replicated multiple times due to their

large weight. This is caused by the larger number of

observations farther down in the atmosphere putting

more constraints on the prior distribution.

It may also be noted that in Fig. 2a, the strength of the

Gaussian resampling is weak so that entries remain close

to zero or one. In the subsequent figures, the estimated

inflation factor is larger so that final weights almost fill

the range in between 20.5 and 1.

4. Numerical tests in the operational framework

and results

Here, we present tests of the localized adaptive par-

ticle filter for the global ICON model for a typical

experimental setup and for a time period of 1 month.

In particular, we investigate the assimilation cycle and

forecast scores in some detail, diagnosing the develop-

ment of spread, bias, scores, and the stability of the system.

We start with evaluating the assimilation cycle of the

LAPF experiment in section 3a. As reference, we use the

LETKF implementation that is operational at DWD.

With the help of spread control, the LAPF provides

reasonable results and is stable over the full experimental

period. In section 3b, we investigate the quality of fore-

cast runs and compare it to the performance of the system

in the operational setup.

a. Assimilation cycle

For the experimental diagnostics, a spinup period of

1 week is excluded from the observationminus first-guess

statistics, as bias-correction algorithms and ensemble

spread have to adapt to the new method.

We first investigate upper-air observation minus first-

guess (obs 2 fg) statistics based on radiosonde obser-

vations (TEMP). Some selection of results is displayed

in Fig. 3, in particular bias (ME), RMSE, and standard

deviation (SD) for 3-h forecasts (first guesses), gener-

ated by the reference (LETKF) and the particle filter

(LAPF). These statistics are based on observations that

passed the quality control (i.e., that were actually used in

the assimilation). Figure 3 visualizes statistics for the

global domain and for the time period 8–31 May 2016.

The results show that the root-mean-square error and

standard deviation of the current LAPF are about 10%–

15% worse than those of the LETKF. They also show

that the system is functioning and shows comparable

features to the LETKF-based statistics. The LAPF

shows better results for upper-air temperature than for

relative humidity. For the bias, the results for relative

humidity determined by the LAPF are slightly better

than the results of the LETKF (in the sense that they are

closer to zero). The values of RMSE and SD in the

vertical column show similar shapes, but with higher

values for LAPF. Overall, this first implementation of

the LAPF scheme, where we were not yet able to carry

FIG. 5. Time series of the first-guess ensemble spread at ICON level 64 (;500 hPa) averaged globally. (left)

Spread for upper-air temperature (K); (right) specific humidity (kg kg21). (top) Mean, (middle) minimum, and

(bottom) maximum of the spread (red solid line 5 LETKF, blue dashed line 5 LAPF).
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out the time-consuming full tuning, which is usually done

for an operational system, shows a very reasonable be-

havior in comparison to the LETKF.

Since filter collapse and filter divergence are of high

interest, we next investigate the behavior of corresponding

diagnostics, investigating spread behavior and the number

of surviving particles in each resampling step. Figure 4

shows the spread averaged over all ensemble members for

0000 UTC 31 May 2016 (i.e., at the end of the first month

of cycling). Displayed is the spread at ICON level 64

(approximately 500hPa) for upper-air temperature and

specific humidity. In this context, spread is the pointwise

variance of the ICON-EPS.

d The left panels in the second and third rows show the

fields for the LAPF; the right panels show those for

the LETKF. In the first row, the differences of the

spread between LETKF and LAPF are displayed

for upper-air temperature in Fig. 4a and specific

humidity spread in Fig. 4b. It can clearly be seen that

the structures are similar, but the spread for both

variables is higher for the LETKF (sT 5 0:6653K and

sq 5 0:0003 kg kg21) than for the LAPF (sT 5 0:5037K

and sq 5 0:0002 kg kg21).
d The main structures of the spread of LAPF and

LETKF show similar physical features. The differ-

ences between the two filters are more random and

linked to the stochastic parts of the methods.
d The regions with the maximum spread are also the

placeswhere theLAPF and theLETKFdiffermost.One

example of this is the temperature over Madagascar.

Here, the spread of the LETKF is much larger than that

of the LAPF. Also, the vortex over western Siberia

shows a big difference between the two filters.
d For the specific humidity, the biggest differences are

situated in the tropics, where humidity values are

large. The spread difference plot clearly resembles

the patterns of the spread in specific humidity itself.

FIG. 6. The global statistics of forecasts against observations for the period of 2–24May 2016. (left to right) CRPS, SD, RMSE, andME.

(top) Statistics for upper-air temperature (K); (bottom) relative humidity (0, . . . , 1). The solid line indicates the reference (LETKF), and

the dashed line indicates the experiment (LAPF). Colors indicate different lead times (from 24 to 144 h).
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It indicates that the differences between LAPF and

LETKF are often situated at the borders of the big

vortices. The largest differences are situated, for

example, in the region around the west coast of

Mexico,where theLAPFhas amaximumbut theLETKF

does not.

For studying the development of the spread and the

stability of the filter, time series from 1 to 31 May 2016

for both filters are plotted in Fig. 5. The spread starts

from zero and needs a couple of days to settle, be-

cause we started all members from the same state du-

plicated L5 40 times. The first row shows the mean of

the spread for upper-air temperature and specific hu-

midity, calculated at each point in time and for

one horizontal level of the atmospheric grid. For both

quantities, the LAPF shows lower values for mean

spread than the LETKF. The same holds for the min-

imum value of the spread. However, the maximum

values of the spread of the LETKF and the LAPF show

quite similar values.

b. Forecast verification

Forecasts were run twice a day at 0000 and 1200 UTC.

In Figs. 6 and 7, a verification of temperature, relative

humidity, and wind components compared to radio-

sonde observations is shown: continuous ranked prob-

ability score (CRPS), SD, RMSE, andME for lead times

of 24, 48, 72, 96, 120, and 144 h for the forecasts based on

the LETKF and the LAPF analyses. The determination

of SD, RMSE, and ME is based on the ensemble mean.

At this stage, the results show that in the current de-

velopment stage, the LAPF does not outperform the

LETKF. However, the shapes of CRPS, SD, and RMSE

are comparable, indicating that the LAPF is stable and

has a reasonable behavior. The humidity bias of the LAPF

is reduced in comparison to the LETKF at all heights

above 850hPa. It is consistent with theory and im-

plementation that the particle filter does not draw the

model fields to the observations as strongly as the

LETKF, a distance that is maintained throughout all

forecast lead times and explains the behavior of the scores.

FIG. 7. As in Fig. 6, but for (top) u component and (bottom) y component of wind m s21.
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5. Conclusions

Standard algorithms for data assimilation used for large-

scale atmospheric analysis in operational centers include

the ensemble Kalman filter and 4D-VAR. These data

assimilation methods are either inherently or practically

based on the assumption that the underlying distribution is

Gaussian. If the ensemble distribution is not Gaussian,

these methods are not optimal. In the case of non-

Gaussianity, more general Bayesian methods such as the

particle filter have been proposed. The core idea of the

particle filter is to realize the Bayesian approach giving a

weight to each particle, depending on its distance to the

observations. The adaptation of particles is carried out in

different ways: by resampling, nudging particles toward

someproposal distribution, or optimal transport processes.

Classical particle filters in high-dimensional dynamical

systems suffer from filter divergence or filter collapse due

to the curse of dimensionality. In this work, we have de-

veloped and implemented a localized adaptive particle filter

(LAPF) in ensemble spacewith spread control andGaussian

resampling or rejuvenation. With the help of modulated

rejuvenation, we prevent the filter divergence aswell as filter

collapse. It has been implemented for global atmospheric

data assimilation to fit into the framework of the global

operational weather prediction model ICON of DWD.

The LAPF was tested over a period of 1 month with 40

ensemblemembers, a global horizontal resolution of 52km,

and 90 vertical layers in an operational setup with slightly

reduced resolution. A comparison of the scores with those

of the operational system of DWD (with some modest re-

duction of resolution) shown in section 4 demonstrates that

the localized adaptive particle filter is able to provide rea-

sonable atmospheric analysis in a large-scale environment.

We have shown that for this first attempt, the RMSE

quality of forecasts based on the LAPF is 10%–15%

behind the forecast quality of the LETKF for forecasts up

to several days (cf. Figs. 6 and 7), and BIAS is partly

improved, in particular for humidity. Altogether, for the

assimilation cycle and forecasts, the LAPF shows prom-

ising results (Fig. 3). Furthermore, we are able to dem-

onstrate the stability of the LAPF over a period of

1month (cf. Figs. 4 and 5) and show that atmospheric data

assimilation within an operational modeling environment

is possible based on a localized adaptive particle filter

approach.
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