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Abstract This paper describes a simple, causally deterministic model of quantum
measurement based on an amplitude threshold detection scheme. Surprisingly, it is
found to reproduce many phenomena normally thought to be uniquely quantum in
nature. To model an N-dimensional pure state, the model uses N complex random
variables given by a scaled version of the wave vector with additive complex noise.
Measurements are defined by threshold crossings of the individual components, condi-
tioned on single-component threshold crossings. The resulting detection probabilities
match or approximate those predicted by quantum mechanics according to the Born
rule. Nevertheless, quantum phenomena such as entanglement, contextuality, and vio-
lations of Bell’s inequality under local measurements are all shown to be exhibited
by the model, thereby demonstrating that such phenomena are not without classical
analogs.
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1 Introduction

Quantum mechanics exhibits many peculiar and surprising phenomena. Indetermin-
ism, wave/particle duality, entanglement, contextuality, and nonlocality are just a few
of the more salient examples. Past attempts to provide a realistic local and determin-
istic interpretation of quantum phenomena have been frustrated by the many “no go”
theorems ruling out various classes of hidden variable theories [1,2]. Most notable
among these are the Kochen—Specker theorem [3], which rules out non-contextual
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hidden variable models, and Bell’s theorem [4], which addresses local hidden variable
models. This paper offers a simple mathematical model that exhibits many of these
distinctly quantum phenomena, thereby demonstrating that they are not uniquely quan-
tum in nature. Indeed, many apparently quantum phenomena have found analogs in
classical mechanics and even social science [5,6]. Although rather simple in its present
form, it is hoped that this model may form the basis of a more sophisticated phys-
ical theory. Such a model may also help to elucidate whether an epistemic or ontic
interpretation of the quantum state is more appropriate [7,8].

The proposed model can be described succinctly as a complex random vector a for
which measurements consist of threshold crossings of component magnitudes. The
specific form is that of a fixed “classical” signal plus a random “quantum” noise term,
defined as follows. Suppose we wish to model a given “design” state vector |¢) in an
N-dimensional Hilbert space. The components in some standard basis are given by

o ;= (n|y)forn =1,..., N. The aforementioned random vector a is then defined
to be

a:=sa+w, (D
where ¢ = [y, ..., otN]T € CV is the normalized signal and s > 0 is the signal

amplitude. Normalization is in the usual sense that

N

loell> := > o> =1 @)

n=1

Theterm w = [wy, ..., w N]T is defined as a complex random noise vector whose
joint distribution will be specified later. Either w or @ may be construed as the “hidden
variable” whose specific realization determines the outcome of a measurement.

The physical motivation for this model stems from early work in stochastic elec-
trodynamics (SED) [9]. In SED, quantum phenomena are hypothesized to arise from
classical interactions of matter with a real, albeit stochastic, background electromag-
netic field corresponding to the (virtual) vacuum field of quantum electrodynamics.
Stochastic optics (SO), a natural extension of SED, attempts to use this same hypoth-
esis to explain phenomena in quantum optics [10]. In the view of SO, the underlying
reality corresponding to a quantum state |i) is a real (as opposed to virtual) elec-
tromagnetic field (e.g., a plane wave of a particular mode), what one might call the
“signal” that the experimenter prepares, plus a stochastic background component cor-
responding to what one might call the “noise” of the vacuum field. From this viewpoint,
one may interpret @ as giving the amplitudes and phases of the N modes of a classical
electromagnetic field.

While providing an intuitively appealing and qualitatively accurate description of
many quantum optical phenomena, SO has also made predictions at variance with
experiment [11,12]. More relevant this paper, however, is its lack of deterministic
outcomes. In SO, detector probabilities are determined semiclassically as a function
of mode intensity. Given a particular realization, only the probability of a detection is
specified, not the outcome. In the model proposed here, we shall recover determinism
by defining detections as amplitude threshold crossings. Thus, given a threshold y > 0,
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we shall say that a measurement in the standard basis results in outcome # if and only
if |a,| > y and |a,y| < y for all i’ # n. Instances of a for which there are no
threshold crossings are rejected as “non-detections.” Likewise, instances of more then
one threshold crossing are rejected through post-selection.

The restriction to single-detection events may seem artificial, but it corresponds
to what is commonly done in the laboratory. In quantum optics, for example, single
photon production rates can be quite small [13]. Multiple detections are even rarer,
and dark counts may occur even when there is no signal (corresponding to s = 0
in the present model). In such experiments, one often works in the so-called “coin-
cidence basis,” in which a detected and heralding photon are coincidently observed.
This corresponds operationally to the aforementioned post-selection procedure. As
will be shown later, this conditioning is key to reproducing many important quantum
phenomena [14].

A final point to be defined in the model regards unitary transformations and mea-
surements in other bases. In the proposed model, a unitary operator U which transforms
|Y) to U |¢) similarly transforms a to Ua for a given realization of a. Thus, if we
measure an observable for which U is a diagonalizing unitary matrix of eigenvectors,
then U'a is used in place of @ to determine the measurement outcome. Since one
may, in this manner, unambiguously determine the outcome that would have been
obtained had a different observable been chosen, it follows that the model is not only
deterministic but counterfactually definite [15]. As we shall see, this property plays a
key role in understanding contextuality and quantum nonlocality.

Interestingly, a similar threshold-based quantum measurement scheme has recently
been developed by Khrennikov [16], who uses a model of a complex, vector-valued
stochastic process {¢(¢t) : t € R}. This process is assumed to be zero-mean and
have a covariance of E[¢; (s)*¢;(t)] = B; j«/m 8(s — t). Detections are made when
the amplitude of the process, suitably time averaged, falls above some threshold &;.
The average time between such threshold crossings (or “clicks”) for component i is
found to be 7; = B;;/&;. Thus, the fraction of all clicks that are from component
i is B;;/Tr(B), which is interpreted as a probability. This choice of normalization
is equivalent to conditioning on single-detection events. Incorporating a background
field and properly calibrating the threshold even allows violations of Bell’s inequality
[17]. Since classical fields are used, the model is manifestly local. It is, however,
nonobjective: the values of observables cannot be assigned in advance.

The outline of the paper is as follows. A mathematical description of the detection
probabilities, with some simple examples, is given in Sect. 2. This description is
extended in Sect. 3 to the case of probabilities conditioned on single-detection events,
wherein the Born rule is recovered under certain limiting conditions. The measurement
model description is completed in Sect. 4 with a discusion of unitary transformations.
A key result there is that, for certain choices of noise models, the Born rule is preserved
under unitary transformations. Using this result, it is shown that certain quantum states
can be deduced empirically using quantum state tomography. Quantum contextuality
is studied in Sect. 5 using the example of the Mermin—Peres magic square. There, it
is shown that, by conditioning on single-detection events, one is able to reproduce
all quantum phenomena yet remain deterministic. The question of entanglement is
taken up in Sect. 6. It is shown that the proposed model is empirically equivalent
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to a Bell state, as may be inferred through quantum state tomography. Furthermore,
it is shown that, by conditioning on single-detection events, this model is capable of
producing violations of Bell’s inequality in both simultaneous and space-like separated
measurements.

2 Detection Probabilities

Given a vector & corresponding to a design state ), let P, (e, y) denote the proba-
bility (given by the distribution of w, the signal amplitude s, and the threshold y) that
a single threshold crossing of component n occurs. Similarly, let Py(e, ) denote the
probability that no threshold crossing occurs. Specifically,

Pa@.v) = Prlanl > 7. lay| <y V' #n] 3)

and
Poe,y) i=Piflail < v ... lavl < v]. *

The probability of obtaining more than one detection will be denoted Py (¢, y); thus,

N
Poo(et,y) := 1= Pola, y) = D_ Palet, ) . )

n=1

The condition of having at most one detection, i.e. Px (e, ¥) = 0, can be achieved
asymptotically by choosing a sufficiently large threshold, since the probability of
multiple detections will tend to zero in such a limit. It is possible, however, and may
be of some utility, to achieve this condition explicitly. This may be done quite easily by
normalizing the noise vector to some fixed value. Specifically, we have the following
theorem.

Theorem 1 Suppose the noise is bounded (||w| < o almost surely for some o >
0), the detection threshold is sufficiently high (y > o), and the signal strength is
sufficiently low (s < (v/2 — 1) ). Then a detection occurs for at most one value of n.

Proof Suppose |a,| > y and |a,/| > y forsomen # n’. Then lal? = |an?+lay > >
2y% > 202,50 |a| > «/50.But,bythetriangleinequality, lse+w| < s|al+|w] <
(V2 —1)o + 0,50 |la|| < v/20. We thus arrive at a contradiction and conclude that
two or more detections cannot occur. O

2.1 Simple Two-Dimensional Example

Suppose N = 2 and |y) = |1), so that e = [1, 0]T. Let w = 0¢’?[0 1]T, where 6
is uniformly distributed on the interval [0, 277). Thus, we have the random complex

amplitude vector
s
‘- (aew) . ©)
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Now note that, for y = o and s > o, we have Py(a, ) = 0, Pi(et,y) = 1,
Pr(a, y) = 0, and Pxo (e, y) = 0. This mimics the behavior of a single photon in a
definite state (polarization and wave vector mode).

1

Suppose instead that the design quantum state is given by |{) = 7 [I1) +12)] and

let w = (0//2)€'[1, —117, where again 6 is uniformly distributed on the interval

[0, 277). We now have
1 [s+oe?
=7 () "

Note that |a;|? = %Is +oe?)? = %(s2 + 024250 cosf) while |az|> = %(s2 +o2—
250 cos 0). Because the noise terms are correlated via the common variable 6, we see
that |a1 | is large when |as | is small and vice versa. In particular, as s approaches o from
above, we see that Py(a, y) =0, Pi(a, y) — %, Py(o,y) — %, and Py (o, y) — 0.

The probability of two simultaneous detections goes to zero in this case. Instead, a
single detection occurs for either component with equal probability. This mimics the
“particle-like” behavior observed in single-photon experiments. Note that Egs. (6) and
(7) are related to one another via a Hadamard transform, representing the action of a
beamsplitter. This provides a physical picture relating Egs. (6) and (7). That noise may
contribute to (or, indeed, be necessary for) signal detection is a phenomenon similar
to stochastic resonance [18].

Although this is a two-dimensional model, one may consider it to be four-
dimensional by taking [ai, a2, a3, as] = [a1, s + 0€?, s — oe'?, as]"/+/2 and
lai| = |aa| < o. This may be construed as an entangled state of, say, a single photon
with the vacuum state. Thus, even in this very simple example, we find evidence of
quantum entanglement in what may be considered a classical model.

2.2 Another Two-Dimensional Example

Suppose again that N = 2 and [¢) = |1), so « = [1, O]T. Now, however, let
w = o[e? cosB, e?2sin6]T, where ¢1, ¢ are uniformly distributed on the interval
[0,27) and 6 has the probability density function sin(20) over the interval [0, %].
This corresponds to a uniform distribution over the Bloch sphere. Adding the signal,
we have the random complex amplitude vector

i1
v (s +oe cos@) . ®)

oe®sind

Note that, for y = o and s = (v/2 = D)o, we have P (e, y) > 0, Po(et, y) =0
and, by Theorem 1, Px (e, y) = 0. Conditioned on there being a detection, then, the
outcome will always be n = 1, but there is a nonzero probability of missed detections.

Suppose now the design quantum state is given by |{) = %H 1) +12)] and let w

be as before. We now have

0 5/V/2+ el cos ©)
T \s/V240e?2sing)
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Since cosf and sin 6 have the same distribution, P (e, y) = P>(e, y) > 0. Con-
ditioned on there being a detection, then, it is equally likely tobe n = 1 or n = 2.
Furthermore, since Ps (e, y) = 0, by Theorem 1, simultaneous detections cannot
occur, although the possibility remains of there being no detections at all.

Although it is not obvious, the stochastic models of Egs. (8) and (9) are related
by a Hadamard transform as well. Furthermore, it can be shown that w has the same
distribution as oz/ ||z||, where z is a standard complex Gaussian random vector (i.e.,
with mean vector E[z] = 0 and covariance matrix E[zz"] = I, where I is the identity
and E[-] represents an expectation). Indeed, from this very fact one can show that the
two equations are so related.

This example was first introduced by Marshall and Santos [19] in the context of
SO to explain certain quantum optics effects, such as the wave/particle duality of
light, photon antibunching, and experimental tests of Bell’s inequality. In their inter-
pretation, a is the transverse electric field of a classical plane wave and w repre-
sents the component of that field due the zeropoint vacuum. The present model dif-
fers from that of Ref. [19] in that they assumed a detection probability of the form
P, (e, y) o« max(0, 2E[|an|2] — y). Here, we assume only that the detection proba-
bilities are determined by the frequency of threshold-crossing events.

3 Conditional Detections

Theorem 1 shows that, under suitable conditions, P (e, y) = O for all «. A similar
result may effectively be obtained by simply increasing the threshold. This has the
reciprocal effect of reducing the number of single detections, of course, but we may
then condition (or post-select) on just these events. Let us, then, define the conditional
probability p, («, y) that a single detection of n occurs as follows:

Py(et, y)
i 10
P = )+t Pr@y) ()

A key result is the following theorem.

Theorem 2 If a is such that all nonzero components are equal in magnitude, then
pnla,y) — |0(n|2 asy — oo foralln =1,..., N (ie., the Born rule holds asymp-
totically), provided that the statistical distribution of w has the following properties:

1. The components of w are identically distributed.

2. Py(ae,y) >0foralle, y,andn =1,..., N.

3. Whenever s > 0 and || < ||, the ratio Py, (e, y)/ Pr (e, y) tends to zero as
y — o0.

Proof Without loss of generality, suppose oy # O for k = 1,..., K, where 1 <
K < N. Since the components are equal in magnitude, o = e'% //K for some
Or € [0, 2).Fork, k' < K,weseethat Py(et, y) = Py (e, y), by symmetry, since |ag|
has the same distribution as |1/ VK- wy | and wy has the same distribution as wy’. (Note
that independence is not needed, only identicality.) Similarly, Py, (¢, y) = P,y (e, y)
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for m, m’ > K. Now consider the conditional probability py(e, y), which may be
written

(. y) = Pete, )
’ KPi(a,y) + (N — K)Py (e, y)
1

= . 1D
K + (N - K)Pm(av J/)/Pk(a? )/)

As y — oo, we see that p (e, y) — 1/K and, similarly, p,, (e, y) — 0, in accor-
dance with the Born rule. O

The class of possible distributions for w satisfying Theorem 2 is quite general.
In particular, it includes the case of independent and identically distributed Gaussian
noise (i.e., w = 0z). A proof is given in the appendix.

The theorem may be modified to apply to cases in which the noise is bounded. In
particular, we have the following.

Theorem 3 If « is such that all nonzero components have an equal magnitude of
1/3/K for some K > 0, then, provided y < \/s2/K + o2, we have p,(et, v) = |otn|?
foralln =1,..., N (ie., the Born rule holds exactly), provided that the statistical
distribution of w has the following properties:

1. The components of w are identically distributed.
2. Pu(@.y) > 0ify < /lsanl + o>

3. Py, y) =0ify = /Isa,|? + o2

Proof The proof proceeds initially as for Theorem 2, with Pi(e, ) > 0 and

P, (a,y) = 0,providedo <y < /s2/K + o2.1tis then clear that p; (e, y) = 1/K,
while p,, (e, y) = 0. O

Property 3 of Theorem 3 is satisfied by any w such that ||w|| < o. Properties 1 and
2 would be satisfied, for example, by w = oz/ ||z|| with y = o and s = W2 = 1o.

Although limited in scope with respect to the applicable values of &, Theorems 2 and
3 cover a broad range of interesting quantum states, including the standard basis states
and several maximally entangled states, such as the Bell states, to be discussed later, and
Greenberger—Horne—Zeilinger (GHZ) states [20]. Furthermore, even under conditions
that do not satisfy the theorem assumptions, approximate quantitative agreement with
the Born rule is nevertheless achieved. In the following sections, it will be shown that
this allows us to reproduce many interesting phenomena that are otherwise thought to
have no classical interpretation.

4 Unitary Transformations

A quantum state |v) is transformed to the state U |v) via a unitary operator U repre-
senting the dynamics of the system, say, or an act of measurement in a particular basis.
Representing the state by the complex amplitude vector a, we may perform a similar
transform to the vector Ua. The question at hand now is whether Ua is a faithful
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statistical representation of U |1/). To begin to answer that question, we consider the
following.

Lemma 1 Ifw = oz is a complex Gaussian random vector with mean 0 and covari-
ance 0>1 and U is a unitary matrix, then Uw has the same distribution as w.

Proof Since Uw is a linear transformation of w, it is also a complex Gaussian random
vector, defined uniquely by its mean and covariance. By linearity, the meanis E[Uw] =
UE[w] = 0 and the covariance is E[Uw(Uw)T] = UE[ww U = ¢21. O

Corollary 1 If w = oz/ ||zl and U is a unitary matrix, then Uw has the same
distribution as w.

Proof NotethatUw = oUz/ ||z]| = oUz/ ||Uz]||. Since U z has the same distribution
as z, the same is also true of Uw and w. O

We are now ready to introduce the main result of this section, regarding the rela-
tionship between Ua and U [).

Theorem 4 Let U be any unitary matrix. If @ = so + w and either w = oz or
w = oz/ ||zll, then the detection probabilities for Ua are given by P,(Ua, y) for
nelol,...,N, oo

Proof The result follows directly from Lemma 1, Corollary 1, and the linearity of U.
O

An important consequence of Theorem 4 is that, if the Born rule holds for all & in
the standard basis, then it holds for measurements in any basis, since they are related
solely by a unitary transformation. In a more restrictive sense, if the Born rule holds
for only a subset of all possible states and the unitary transform used to produce that
particular measurement keeps the state within that subset, then the Born rule still
applies for the new measurement basis.

To perform a measurement of an observable represented by a matrix A, we identify
an associated unitary matrix U such that U TAU = A = diag([r1, ..., An]) is diag-
onal. Let A : CV — R be an associated random variable (i.e., measurable function)
on the Borel subsets of CV such that, given a complex amplitude vector a, the out-
come of the measurement is A(a), which we define as follows [21]. Given a € CN,
if (UTa),| > y and |(UTa),/| < y for all n’ # n, then we say that A(a) = Ap;
otherwise, A(a) is left undefined.

4.1 Example of Measurements in Orthogonal Bases

Using the example of Eq. (8), let us consider measurements of the Pauli spin operators
I,X,Y,and Z, where

01 0 —i 10
x=(15) v=(0%) 2= (62) (12)
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A corresponding set of unitary matrices for diagonalizing X, Y, Z are H, V, I,

respectively, where
I (11 L (11
= 500) =50 o

Note that H is the Hadamard matrix, representing the action of a beamsplitter. The
matrix V may be interpreted similarly, albeit with a different phase convention.

For definiteness, suppose y =0 = 1,5 = V2 =1, and w is drawn from z/ 1zl
Specifically, supposed w = [0.2197 — 0.7169i, —0.5290 + 0.3974i]" is a particular
realization. This choice of values allows us to use Theorem 1, so that we are guaranteed
that at most one threshold-crossing event occurs. To measure Z, say, we (trivially)
apply I to a and examine the component magnitudes. In this case, |a;| = 0.9570 and
laz| = 0.6616, so, as it turns out, there is no detection and, hence, no measurement
outcome. In other words, Z(a) is, in this case, undefined.

Now suppose instead that we have w = [0.5186 +0.3818i, —0.6876 +0.3354/]".
In this case, |a;| = 1.0079 and |az| = 0.7650, so there is a single detection indicating
that Z(a) = +1. (Indeed, this is the only possible outcome, given that there is a
detection.) If a measurement of X had been performed, we would have applied the
unitary transformation H' = H to a to obtain Ha = [0.1734 + 0.5072i, 1.1458 +
0.0328i], so |[(Ha){| = 0.5360, |(Ha);| = 1.1463, and the outcome X (a) = —1
would have been obtained. To measure ¥, we would apply V7 to a and obtain V'a =
[0.8968 + 0.7561i, 0.4224 — 0.2162i]7. Thus, |(VTa);| = 1.1730 and |(V'a),| =
0.4745, so Y(a) = +1. In each case the measurement outcome is uniquely and
counterfactually determined by a.

4.2 Quantum State Inference

Now consider computing the expectation values of X, Y, and Z, conditioned on a single
detection, when « is one of [1, O]T, [0, I]T, or %[1, l]T. Note that the application

of the corresponding unitary transformations H, V7, and I will transform « into a
vector such that, again, each component is either zero or of the same magnitude. For
example, if o = [0, 1], then Vi = JLE[—i, +i]7. Provided that w = o0'z/||z|| and

0 <y < +/s2/2 4 o2, the results of Theorem 3 will then hold and the conditional
probabilities will match those of the Born rule. Consequently, the observed expectation
values will be E[X] = (Y| X |¥), E[Y] = (¢ | Y |¥), and E[Z] = (V| Z | ).

Now, any two-dimensional operator can be written as a linear combination of 7, X,
Y, and Z. In particular, the quantum state operator p may be written as

[ +Tr(pX)X + Tr(pY)Y + Tr(pZ)Z
p= :
2

(14)

Any quantum state, pure or mixed, may be written in this manner. For a pure state
p = |¥) (¥, soTr(pA) = (Y| A |¢). Statistically, this corresponds to the expectation
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value E[A]. Let us therefore define the inferred quantum state operator

I +E[X]X +E[Y]Y +E[Z]Z

> 15)

5=
By using sample means to estimate the expectation values, the above expression allows
a method for empirically deducing the quantum state from measurement, a process
known as quantum state tomography (QST) [22,23]. As might be inferred from QST,
then, the classical random vector a is statistically equivalent to the quantum state [/),
since p = p for these three choices of «.

QST is not the whole story, though. It has been noted that QST is inadequate to
uniquely identify the underlying quantum state [24], and this example illustrates that
fact. Consider a measurement of the operators B = F(X £ Z)/ V2, which are
diagonalized by

V241 271
Wi=[ V&E VaEE) (16)
4+48 ENE

so that WlBi W4 = diag([—1, +1]). In this case, we find that for « = [1, O]T, say,
p1(a, y) = 0.7048 and pr (e, y) =~ 0.2952. So, E(B+) ~ —0.4096, but Tr(pB+) =
-1/ V2 ~ —0.7071. Thus, even though the inferred quantum state is correct, the
model does not predict exactly the right statistics for all observables. This example
underscores the difficulty in verifying, empirically, that a given quantum state has,
indeed, been correctly prepared.

4.3 Projective Subspace Measurements

If the observable to be measured is not resolvable into a nondegenerate eigenvector
basis, then we must define its measurement more generally as a set of projections onto
two or more subspaces within the larger Hilbert space. Let 1y, ..., [Ty be such a set
of projections, where M < N and IT; + - - - + 13y = [ is the identity. To perform a
measurement, we project the vector a, representing a particular realization, onto this
set. A detection of projection m is said to occur if ||[1,,a| > y while ||IT,a| < y for
all n # m. If I1,, = |m) (m|, this reduces to the previous definition of measurement.

For example, suppose ¢ = [0, 1, 1, 01" /+/2 represents an entangled state. Let
IT; = |1) (1] + |2) (2| and TI; = |3) (3| + |4) (4| be the two projections. We then
find that [Tyl = |wi® + |(s/v/2) + wal* and [Taal?* = |(s/v/2) + w3|* +
|w4|2. By symmetry, we see that the probability Pr[||TT1a| > y, ||[TT,a| < y]equals
Pr[||TTa|| > vy, ||[IT1a] < y]; thus, a single detection is equally likely for either
event. Conditioned on the actual occurrence of a single detection, we find that the
two outcomes are perfectly anticorrelated, with each outcome having a probability of
one-half.

Projective subspace measurements may be used to describe spacially separated
measurements. Given Iy, I, and a as defined above, let [T a be the portion associated
with particle 1 and ITa that of particle 2. We may measure an observable X, say, on
particle 1 by applying H to the projected state [1;a and observing if one of the two
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resulting component amplitudes exceeds the detection threshold. A similar procedure
may be applied to particle 2, independent of particle 1. This approach will later be used
in Sect. 6.2 to provide a classical analog to experimental tests of quantum nonlocality.

5 Quantum Contextuality

Quantum contextuality refers to the apparent dependence of measurement outcomes
on what other, compatible, measurements one happens to choose to perform. It is
closely connected to quantum nonlocality [25] and is believed to be important in the
efficacy of certain quantum computing algorithms [26]. Recently, it has also been the
subject of several experimental tests [27-29]. The concept is perhaps best understood
in terms of the following example.

Suppose we have a set of nine operators, arranged in a square as follows:

Xl 18X X®X
I®RY YQI Yy
XQY Y®X ZQ®Z

These operators constitute the famous Mermin—Peres “magic square” [30]. Using the
fact that the Pauli matrices are involutions and that XY = i Z, it is readily verified that
the product of the three operators in each row as well as that in the first two columns,
is I ® I. For the third column, however, we note that (X ® X)(Y ® Y)(Z ® Z)
=—-I®I.

According to the Kochen—Specker theorem, it is impossible to replace each of the
nine observables with a definite value of either +1 or —1 (their two eigenvalues) in a
consistent manner such that these same product relations hold. (This is readily proven
or can be verified directly by simply trying all 2° possible assignments.) From the
perspective of quantum mechanics, this may seem odd: Since the three operators in
each row and column are mutually commuting, they may be measured simultaneously.
From the aforementioned product relations, the product of outcomes for each row
measurement, and for the first two column measures, will always be +1, while that of
the third column will always be —1. So, measurement reveals definite values that are
consistent with the product relations, but no consistent assignment can be made across
the square. Furthermore, this result holds independently of the prepared quantum state,
or even of whether it is pure or mixed.

As pointed out in [31], the resolution of this paradox lies in the fact that, accord-
ing to quantum mechanics, different probability measures apply to the six different
choices of measurement bases. From a deterministic or hidden-variable perspective,
one interpretation of this fact would be that the physical process of measurement
induces a dynamical change in the hidden variable state such that the resulting post-
measurement distribution is changed.

An alternate, and perhaps simpler, interpretation is possible if one considers mea-
surement to be the threshold detection process considered here. In that case, the six
post-measurement probability distributions are just the conditional probabilities, given
that a single detection (for each observable) has occurred. It remains, then, to verify
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that this scheme does, in fact, work. To that end, it may be insightful to illustrate these
properties explicitly via numerical simulations.

5.1 Monte Carlo Verification

A Monte Carlo scheme was devised to verify numerically that the detector model
satisfies the properties of the magic square. For each Monte Carlo run, a random
quantum state of the form « = z/||z||, with N = 4, was drawn. Next, a random
realization of M = 220 = 1048576 independent noise vectors of the form w =
oz/ |z|l, with o = 1, was drawn. From this, a set of M complex amplitude vectors of
the form a = s + w, with s = («/E — 1)o, was created.

For each of the M realizations of a, six measurements were performed, corre-
sponding to the three rows and three columns of the magic square. For each of the
six measurements, a common unitary matrix U was constructed that diagonalizes all
three observables. The quantity @’ = U'a was then computed. For example, in the
case of Row 1, it suffices to use Ugr; = H ® H, while for Row 2 Uy = V® V
diagonalizes the observables. For Columns 1 and 2 we may use Uc; = H ® V and
Ucy =V ® H, respectively.

In the case of Column 3, where the three observables are X ® X, ¥ ® Y,
and Z ® Z, the construction of Uc3 is not as straightforward. Each is diag-
onalized by U = H ® H, V ® V, and I ® I, respectively; however, none
of these will diagonalize all three. Rearranging the columns of U to produce
U =[UGHUGC DUG2) UG 3)], where U(:, n) is the n™ column, produces
an alternate unitary matrix which also diagonalizes X ® X. Finally, applying
a second transformation yields Uc3 = U’(I ® H), which diagonalizes with
respect to ¥ ® ¥ and Z ® Z as well. A similar procedure is required for Row
3.

In summary, the following unitary matrices were used for the rows

Uni=HQ®H (17a)
Upp=VQ®V (17b)

10 10

I fO0—i 0 —i
Uns="51lo-10 1 (17¢)

i 0 —i 0

and columns

Ui =H®V (18a)
Un=V®H (18b)

10 1 0

1 J0o-1 0 —1
Ues="751o-10 1 (18¢c)

10 -10
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If exactly one component of a’ fell above the threshold y = o, then a detection was
deemed to have occurred and the observable was assigned the value of the correspond-
ing eigenvalue (either +1 or —1). If there was no detection, then no measurement was
reported. By Theorem 3, we do not expect more than one component of a’ to fall
above the threshold. Thus, for each of the six sets of observables, there were K < M
reported triple values [g1 (my), g2(my), g3(my)], fork =1,..., K, and an index (of
length K) of which of the M realizations resulted in a detection. These indices will
be denoted R1, R, R3 for the three rows and Cy, C», C3 for the three columns.

According to the Kochen—Specker theorem, we expect

(RiINRNR)NCINCaNC3) =@ . (19)

Furthermore, we expect that, say, for all m € C3 (i.e., for all detections when Column
3 is measured)

g1(m) g2(m) g3(m) = -1, (20)

while for all m € R
g1(m) ga(m) g3(m) = +1. (21)

We expect the latter result to hold for R», R3, C1, and C; as well. A total of 216 — 65536
Monte Carlo runs were performed, each with a different random quantum state, and the
above properties were examined. In all, cases, the required conditions were satisfied
exactly.

As aspecificexample, consider the realizationa = [—0.31514-0.5498i, —0.9092+
0.1208i, —0.0581 — 0.5120i, 0.4560 — 0.3460i]". For this case, a measurement
of Row 1 yields (—1,1,—1), Row 2 (1,1,1), Row 3 (-1, 1, —1), Column 1
(—1,1,—1),and Column 2 (1, 1, 1). For Column 3, however, there are no detections,
asa = U&a = [0.09964-0.1441i, 0.6840+0.2766i, —0.5453+0.6334i, 0.6018 —
0.4475i]T, and, hence, no measurement outcome. So, a is contained in all index sets
except C3, in accordance with the Kochen—Specker theorem.

5.2 Understanding the Magic Square

Let us consider these results more deeply. Each of the six unitary transformations
diagonalizes the three observables in the corresponding row or column. For Row 3,
this means

Uy (X ® Y)Ugs = diag([+1, +1, —1, —1]) (22a)
Ul (Y ® X)Ugs = diag([+1, —1, —1, +1]) (22b)
Upy(Z ® Z)Ugs = diag([+1, —1, +1, —11) (22¢)
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while, for Column 3, we have

UlL(X ® X)Ucs = diag([+1, +1, —1, —1]) (23a)
Uly(Y ® Y)Ucs = diag([—1, +1, +1, —1]) (23b)
Ul(Z ® Z)Ucs = diag([+1, —1, +1, —1]) (23c)

Suppose we measure Row 3 and obtain an outcome of +1 for Z® Z. Since measure-
ment outcomes are based on amplitude threshold crossings, and we have conditioned
on single-detection events, we know that, for a’ = U};Sa, either |a}| > y or|aj| > y.
The outcomes for the other two observables, X ® Y and ¥ ® X, could then be either
+1, 41 (f |a}| > y) or =1, —1 (f |a}| > y), respectively. The outcome of, say,
X ® Y therefore uniquely determines the outcome of the other, and the product of
all three is thereby guaranteed to be +1. Had we instead measured —1 for Z ® Z, a
similar outcome would have been obtained.

Now suppose, using the same value of @, we had measured Column 3 instead. It
is possible that there are no detections, but we may suppose that there is one. Let us
suppose further that the outcome of measuring Z ® Z is +1 as well. This means that,
fora” = U23a, either |a}| > y or |aj| > y. For the other two observables, X ® X
and Y ® Y, the possible outcomes are 41, —1 (if [a}| > y) and —1, +1 (if |a5| > y),
respectively. Again, the outcome of one observable, either X ® X or Y ® Y, uniquely
determines the outcome of the other, and, in either case, the product of all three is —1.
Measuring —1 for Z ® Z would, of course, have led to a similar outcome.

6 Entanglement

A quantum state |Y) € H = H; ® H»>, where H; and H; are Hilbert spaces and H
is their tensor product space, is said to be entangled (with respect to H| and Hy) if
there do not exist substates |y1) € H; and |y) € Ho such that [¢) = |¥1) ® |¥»).
A state which is not entangled is said to be separable.

This is a mathematical definition concerning properties of vector spaces which,
taken at face value, suggests that there are plenty of classical systems that are entan-
gled. For example, the acoustic field of a general, coupled mode solution to sound
propagation in the ocean is, in this sense, an entangled state (though perhaps non-
separable would be a more accurate description). The term classical entanglement
has been suggested to describe certain (classical) coherent optical states that exhibit
properties similar to that of entangled quantum systems [32—-34], though the lack of
actual statistical outcomes makes this association somewhat dubious. Classical entan-
glement, as it is construed in these works, refers only to nonseparability. In the context
of quantum mechanics, and in keeping with its original use by E. Schrédinger, entan-
glement connotes statistical correlations [35].

In what follows, we will consider statistical manifestations of entanglement arising
from the proposed detector-based model. Given an entangled (i.e., non-separable)
design state [y) and corresponding random vector a, we would like to know whether
the latter is entangled, and in what sense. Rather than appeal to vector space properties,
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we look instead to an equivalence of statistical predictions. In particular, we will
examine the statistics of “detector clicks” for various observables.

A bit of notation may help. Let |1) = [1, 0] and |}) = [0, 1]7 denote the eigen-
vectors of Z, with eigenvalues +1 and —1, respectively. These may be interpreted
as orthogonal polarizations of a single photon. The states |1) and || ) may also be
viewed as the qubit states |0) and |1), respectively, in the computational basis [36].
If H1 = H> = span{|1), [{)}, then H = H; ® H> is spanned by the following
(separable) orthonormal basis states

M=maem =111, R2)=MeN) =1t
B=NeMm=N1, =Nl =N

This four-dimensional (i.e., two-qubit) space is the one we will investigate.

6.1 Bell States

The Bell states are a set of four maximally entangled states that also form an ortho-
normal basis for our four-dimensional Hilbert space, H. They are given by

1 1

l¢1) = 7 D)+, g2) = 7 (1)) + ]
1 1
lp3) = 7 U1 =, lp4) = 7 ) =M1
Suppose [¢) = |¢2), so the component vector in the standard basis is & =

[0, 1, 1, 0]T /+/2. Now consider the 16 Hermitian matrices composed of pair-wise ten-
sor products of the four Pauli matrices I, X, Y,and Z;i.e, IQI, IQX, ..., ZQ Z.1tis
readily verified that the Hilbert-Schmidt inner product between any two different pairs
is zero, as this property holds for the Pauli matrices themselves. Between themselves,
they take on the value 4. Hence these operators, when suitably normalized, form a
tomographically complete quorum set, which may be used to deduce the quantum
state from their expectation values using QST.

Going further, one finds that the application of each member of the quorum on «
results in a vector that, like ¢, has components that are either zero or of equal magni-
tude. With suitable choices of s, y, and w, then, Theorem 1 or 3 holds, depending upon
the choice of distribution for w, and the distribution of detected outcomes follows the
Born rule. Consequently, the expectation values of the random variables correspond-
ing to each observable match the quantum predictions exactly (in the case of Theorem
3) or asymptotically (in the case of Theorem 1). Tomographically, then, the random
vector a = sa + w is equivalent to the entangled state |i). It is straightforward to
show that a similar result holds for the other three Bell states.

For example, let s = (ﬁ — Do,y =0 > 0,and w = oz/ ||z||. Now suppose
we measure Z on both the first (left) particle and second (right) particle.. For the first
particle, we will obtain either a projection onto the subspace Span{|11) , [1])}, if the
resultis 41, or Span{|| 1), | )}, if the result is —1. On the other hand, for the second
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particle we will obtain a projection onto either the subspace Span{|11), || 1)}, if one
measures +1, or Span{|1]), [{|)}, if one measures —1. Of course, it is also possible
that neither measurement yields a detection, but let us suppose that they both do.
Since the random amplitudes of outcomes |11) and ||| ) are |a;| < o and |a4| < o,
respectively, these outcomes will never occur. Furthermore, since E[|az|] = E[|as|],
the outcomes |1,) and || 1) will be equally likely. Since, by Theorem 3, no more than
one detection is possible, we conclude that, if we obtain |1) (i.e., +1) for particle 1,
then we must obtain ||, ) (i.e., —1) for particle 2, and vice versa. The detected outcomes
are thus perfectly anti-correlated, as one might expect for an entangled pair.

Of course, this doesn’t work for every observable. Consider the Hermitian matrix
I ® B4, which is diagonalized by the unitary matrix / ® W.. For [{) = |¢2), the
quantum probabilities | (n| (I ® W) |¢)|%, for n = 1,...,4, are approximately
0.0732, 0.4268, 0.4268, 0.0732. The conditional detection probabilities are found
numerically to be approximately 0.0364, 0.4608, 0.4641, 0.0388, with an uncertainty
of about 0.004. Though similar, these values are only an approximation to the quantum
predictions.

6.2 Violations of Bell’s Inequality

Another hallmark of entanglement is the possibility of violating Bell’s inequality.
More precisely, the CHSH inequality is given by [37]

Sg = |[E[AB]+E[AB']| + [E[A'B] —E[A'B']| <2, (24)

where A, A’, B, B’ are random variables bounded by unity and E[ - ] is the expectation
with respect to some probability measure P. It is important to note that, in order for
this inequality to hold, the same probability measure P is used for all four expectation
values. Thus,

E[AB] =/A(a)B(a)dP(a) (25a)
E[AB'] =/A(a)B’(a)dP(a) (25b)
E[A’B] =/A’(a)B(a)dP(a) (25¢)
E[A'B’] =/A’(a)B’(a)dP(a) (25d)

The analogous expressions for quantum mechanics replace E[AB], say, with
(AB) = (Y| AB |¢) for a fixed quantum state |v/). In particular, if |¢) is the Bell
state |¢2), and the four observables are

A=Z®I, B=—-1®X+2)/V2
A=X®I, B =+I1QX-2)/V2
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then
Sq = [(AB) +(AB')| +|(A'B) - (A'B')| = 2V2.. (26)

How can we reconcile this result with the CHSH inequality? As we have noted, the
theorem applies to expectations that are with respect to the same probability measure.
If the probability measures differ for each pair of observables, then the inequality
need no longer hold. Now, in the model proposed here, expectations are with respect
to conditional probability distributions, conditioned, that is, on single detections. Let
these be denoted E|[AB], Ex[AB’], E3[A’B], and E4[A’ B’]. This means that Bell’s
theorem does not apply and violations of the inequality are possible. It remains to ask
whether

Sp = |Ei[AB] + E2[AB']| + |Es[A'B] — E4[A'B]| (27)

can ever be greater than 2.

A numerical study was performed to investigate this possibility. As before, arandom
realization of M = 220 independent noise vectors of the form w = oz/ ||z|, with
o = 1, was drawn. Using « = [0, 1, 1, O]T, a set of M complex-valued vectors of
the form a = sa + w, with s = («/5 — 1)o, was created. A detection threshold of
y = o was used.

To this set the Hermitian conjugates of the unitary matrices Uy = I @ W4, Uy =
I@W_,Us = H® W,,and Uy = H ® W_ were applied separately to a for the
observables AB, AB’, A’B, and A’ B', respectively. For each of the four measurements,
the diagonalized matrix of eigenvalues is

Ul (AB)U; = diag([—1, +1, +1, —1]) (282)
Uy (AB)U, = diag([+1, —1, —1, +1]) (28b)
UJ(A'B)Us = diag([—1, +1, +1, —1]) (28¢)
Uj(A'B")Us = diag([+1, —1, —1, +1]) (28d)

Of the M realizations of a, typically only about 5 % resulted in a detection, though
it was a different 5 % for each of the four observables. (This should not be confused
with the detector efficiency, which is a measure of coincidence rates and no meaning
in this context.) Let I; denote the set of values of a, a subset of all M realizations, that
resulted in a detection for the observable AB. Define I, I3, and I4 similarly for AB’,
A’B, and A’B’, respectively. Furthermore, let /;; denote the subset of I; for which
the j th component exceeded the threshold. Note that I;1, I;2, I;3, and I;4 are mutually
exclusive, and their union is /;. Finally, let n;; denote the cardinality of /;; and n; the
cardinality of [;.

The results of the numerical simulation are summarized in Table 1. From these
results we deduce mean values of E{[AB] = 0.8497, E;[AB’] = 0.8440, E3[A’B] =
—0.8486, and E4[A’ B’] = 0.8481, each with an uncertainty of about 0.004, computed
as 1/,/n;. Combining these results, we find

Sp = 3.39 £ 0.016, (29)
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Table 1 Results of a numerical simulation to test violations of Bell’s inequality using w = oz/ ||z||

Observable nil nin ni3 ni4 n; Mean

AB 2,166 27,439 27,633 2,308 59,546 0.8497
AB’ 27,311 2,358 2,272 27,435 59,376 0.8440
A’'B 27,236 2,239 2,232 27,357 59,064 —0.8486
A'B’ 27,415 2,241 2,252 27,252 59,160 0.8481

About 5 % of the M = 220 realizations resulted in a single detection

Table 2 Results of a numerical simulation to test violations of Bell’s inequality using w = oz. About
0.25 % of the M = 220 realizations resulted in a single detection

Observable nj1 nin n;3 ni4 n; Mean

AB 250 1,075 1,091 225 2,641 0.6403
AB’ 1,062 246 216 1,104 2,628 0.6484
A'B 1,036 228 193 1,091 2,548 —0.6695
A'B’ 1,079 202 222 1,093 2,596 0.6733

where the uncertainties of the four correlations were added to arrive at the final uncer-
tainty in Sp. This is clearly greater than 2 and, in fact, greater than the Tsirelson
bound of 24/2 = 2.8284, which is an upper bound on quantum violations of the
CHSH inequality.
A similar numerical study was performed using w = oz, witho = 1, s = o, and
y = 30. Theresults of this study are summarized in Table 2, from which we deduce the
following mean values: E;[AB] = 0.6403, E,[AB’] = 0.6484, E3[A’ B] = —0.6695,
and E4[A’B’] = 0.6733, each with an uncertainty of about 0.02. Combining these
results, we find
Sp =2.63£0.08 . (30)

Although the correlations are not as strong, we do find again that Bell’s inequality is
violated.

These results demonstrate that a (classical) deterministic model can violate Bell’s
inequality. Such violations are made possible by the fact that the model is contextual,
and this contextuality is, in turn, a consequence of our conditioning on single-detection
events. In some cases, these violations can be larger than those predicted by quantum
mechanics. This is so despite the fact that the Born rule is not perfectly reproduced
for all observables concerned.

6.3 Local Realism

The notion that quantum mechanics is at odds with local realism first arose in the
context of the Einstein—Podolsky—Rosen (EPR) paradox [38] and later by Bohm in
terms of discrete states [39]. This paradox was recast by Bell [4] into an inequality
that, he concluded, no local realistic theory could violate. A variation of this inequality
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was first tested by Clauser[40] and, in a later landmark experiment, by Aspect [41],
with results in agreement with quantum predictions. This is generally regarded as
conclusive evidence that quantum mechanics, and hence nature, is fundamentally
nonlocal, despite the fact that it has been known for some time that violations of
Bell’s inequality are possible under the so-called detection loophole [42—44]. The
analysis of the previous section reconfirms this through a specific example, but it
did not address local realism, as the two observables were effectively measured as
one. Although recent experiments, with detector efficiencies over 70 %, claim to have
closed the detection loophole for photons, these results do not address violations of
Bell’s inequality but, rather, a little-known inequality due to Eberhard used to test local
realism while accounting for detector inefficiencies [45—47].

Let us, then, consider an alternate scheme whereby the two observables are mea-
sured separately and independently. This corresponds to the usual sense of local realism
in the context of Bell’s inequality, namely, that the choice of A or A" and its outcome
are not influenced by (nor do they influence) the choice of B or B” and its outcome. As
is common in such discussions, we will describe this situation in terms of two familiar
actors.

Suppose Alice and Bob, who live in different cities, both receive a letter upon
which is written a particular realization, say, s +w = [—0.165 + 0.2046i, 0.8316 +
0.6696i, 0.5690—0.2230i, 0.2321—0.1111i]7, of the Bell statea = [0, 1, 1, 0T /+/2
withs = (v2 — 1o, w = oz/|zll, and 0 = 1. Ata previously agreed upon time
they each select a measurement to perform on it. Alice chooses either A = Z ® I or
A’ = X®I, while Bob chooses either B = —I®(X+Z)/\/§or B = I®(X—Z)/ﬁ.
The choice and outcome are written down but not shared until later.

These measurements are performed, not by a device, but by simple pencil-and-
paper calculations whereby Alice multiplies sa + w by either (I ® /), to measure
A, or (H ® I)T, to measure A’, thereby obtaining the result @ or a’, respectively.
Using a detection threshold y = o, she determines the result of the measurement
for, say, A by noting if either |a;|> + |a2|*> > 2, in which case she writes “417, or
la3|? + |as|® > 2, in which case she writes “—1”. This is so because

(I®])TA(I®I)=diag([+1,+1,—1,—l]). 3D

If neither is the case, or if both are true, she simply writes “NaN” (Not a Number).
The same procedure is followed when measuring A’, since

(H® D'A'(H ® I) = diag([+1, +1, —1, —1]) . (32)

Bob proceeds in much the same manner as Alice, multiplying s + w by either
I® W+)T, to measure B, or (I ® W_)", to measure B’ and denoting the respective
results b and b’. To determine the outcome of measuring, say, B, Bob examines whether

|b2|? + |bs|* > 2, in which case he writes “+17, or |b1|? + |b3|> > 2, in which
case he writes “—1”. This is so because

(I ® W) BUI @ Wy) = diag([—1, +1, -1, +1]) . (33)
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To measure B’, Bob examines whether |b] 12 + |b’3|2 > 2, in which case he writes
“+17, or |B5|? + |b,]|? > 2, in which case he writes “—17, since

TW)'BUW.)= diag([+1, —1,+1, —1]) . (34)

Like Alice, if there are no threshold crossings, or two threshold crossings, he simply
writes “NaN” for the outcome.

Suppose Alice chooses to measure A. In this case, @ = s« + w and she finds that
lai]? + |as]? = 1.209 > y2 while |a3|? + |as|? = 0.4397 < 32, so she writes down
“+1.” Suppose further that Bob independently chooses to measure B and thereby
computes b = [0.1658 4 0.4453i, 0.8314 + 0.5403i, 0.6145 — 0.2485i, —0.0033 —
0.0173i]". Since |by|? + |b4|> = 0.9836 < y2 and |b1|? + |b3]® = 0.6651 < y2,
he records “NaN” — no valid outcome was obtained. Had Bob chosen to measure B’
instead, he would have found &' = [0.7052 + 0.6969i, 0.4707 + 0.0672i, 0.4322 —
0.1880i, —0.4369+0.1635:1". In that case, since |b}|* + |b}|* = 0.4436 <= y2 and
b} 1>+ |b}]? = 1.2051 > 2, he would have recorded “+1” instead of “NaN” for the
outcome.

Now suppose Alice and Bob play this game many, many times. For each instance
of sa + w they record which measurement they performed and whether they obtained
“4+1,” “—1,” or “NaN” as an outcome. When the game is over, they compare notes.
All items on the list in which either Alice or Bob recorded “NaN are struck out. Next,
the results are grouped into four categories, corresponding to the four measurement
combinations. Finally, the correlation is computed for each group.

A numerical study was performed along these lines, with M = 220 realizations of
so + w for each of the four measurement choices. In each case, about 30 % of the
M realizations resulted in a single detection for either Alice or Bob, and about 10 %
of the M realizations resulted in a single coincidence detection. This corresponded to
a detector efficiency of about n = 0.33 (the ratio of coincident to single detections),
which is comparable to that of a good quantum optics experiment.

Table 3 summarizes the results of this study. For example, the number of times Alice
obtained 1 (41) and Bob obtained | (—1) when she measured A and he measured B
was 12069. The total number of coincidences for this pair of observables was 118251,
resulting in a mean correlation of E{[AB] = 0.5833. Computing these four mean
correlations allows us to compute Sp, which was found to be

Sp = 2.3405 £ 0.004 . (35)

This result is, of course, larger than 2 and, so, violates Bell’s inequality. As before,
this was made possible by the fact that not all measurements resulted in a single
coincidence detection for both Alice and Bob. This example, however, shows that
local measurements made within a fully deterministic (i.e., classical) model can still
violate Bell’s inequality.

Interestingly, the violation is not as large as was found in Sect. 6.2. It seems, there-
fore that separated measurements have weaker correlations than joint measurements.
Furthermore, if one uses w = z instead of w = z/||z||, as was done above, no violation
is observed. Introducing correlations in the initial noise term therefore seems to have

@ Springer



Found Phys (2014) 44:1059-1084 1079

Table 3 Results of a numerical simulation to test violations of Bell’s inequality under the local measure-
ments

Alice Bob o ol I 1 N Total Mean

A B 46,523 12,069 12,402 46,924 118,251 0.5833
A B’ 46,633 12,171 12,372 46,819 118,196 0.5830
A B 12,226 46,674 46,795 12,119 117,935 —0.5861
Al B’ 46,622 12,129 12,091 46,738 117,580 0.5880

About 10 % of the M = 220 realizations resulted in a single coincidence detection

the effect of strengthening the correlations in the measured outcomes. This suggests
that a different choice of noise distribution could lead to a higher efficiency and an
even larger violation.

7 Conclusion

This paper introduces a simple deterministic model of quantum systems and quantum
measurement that is capable of reproducing many phenomena typically regarded as
having no classical analogue. The model associates a given pure quantum state | ) with
a complex random vector a that is composed of a scaled version of the state’s complex
components, s&, and an additive complex noise term w. Although not addressed here,
mixed states may be modeled similarly using an ensemble of pure states.

A measurement is taken to be a single-threshold-crossing event (|a, | > y, |a,/| <y
for all n’ # n); all other events are ignored. Taking the noise to be either a vector
of independent complex Gaussians (w = oz) or its normalized counterpart (w =
oz/ |zl), it was shown that, for suitable choices of s and y relative to o, the Born
rule is recovered for states that are such that the components are either zero or equal
in magnitude.

Measurements in other bases are performed by applying the corresponding uni-
tary transformation to the vector a. Using these properties, one can use quantum
state tomography to deduce the equivalent quantum state from the statistics of single-
detection events. Partial measurements over a complete set of projection operators are
defined similarly, with the amplitude of the projection onto each subspace being used
for threshold detection. In the case that the projections are formed from a complete
orthonormal basis, this reduces to the above prescription for full measurements.

This model has been shown to be capable of reproducing several aspects of quan-
tum contextuality and entanglement, including local violations of Bell’s inequality.
Common among these varied phenomena is the dependence of the underlying statis-
tics on different, noncommuting sets of observables. This dependence has previously
been known to give rise to contextuality. Here, this contextuality arises from the fact
that we have conditioned on single-threshold-crossing events for our definition of
measurement.

Although this model does exhibit many of the more interesting features of quantum
phenomena, it is by no means complete. The Born rule is reproduced exactly in only
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a limited set of quantum states and is elsewhere only an approximation. Bounded
Gaussian noise models appear to work better that unbounded ones, although both are
capable of reproducing quantum phenomena.

While something of a mathematical contrivance, it is hoped that this model may
form the basis of a more physical theory of quantum measurement. Further extensions
of this work would include improving the noise model and associating the random
complex vector to a particular physical model of some classical system, such as a
stochastic electromagnetic field varying over space and time. Similarly, the artifice of
a threshold detector is but a crude representation of light-matter interactions, which
should be modeled in greater detail for a full physical theory. Proceeding in this manner,
one might hope that better agreement over a broader set of quantum phenomena may
be achieved.
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Appendix

Theorem 5 Suppose the components of w = oz are independent and identically
distributed complex Gaussian random variables with zero mean and variance o> > 0.
Then |sa,,| < |say| implies

P, (a,
im M - (36)
y—oo Pr(ee, y)
Proof From the assumed distribution of w, it follows that |a; /o |?, ..., |ay /o |* are
independent, non-central xz—distributed random variables, each with two degrees of

freedom and noncentrality parameter A; = |sa; /o’|* fori =1,..., N.
Let F;(y) = Pr[|a;| < y] = Pr[|a; /o|*> < (y/o)?] denote the cumulative distrib-
ution function for the i component and note that

Fi(y)=1-01(/Ai, v/o), 37)

where Q1(a, b) is the Marcum Q-function [48],
o0 (2 2 2
0i(a, b) =/ x e W2 ax) dx (38)
b

and Iy is the modified Bessel function of order 0. Note that Q(a,0) = 1 and
Qi(a,b) < 1forb > 0.
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In the special case a = 0, corresponding to s¢; = 0, we note that
010.h) = e¥/2 (39)

Thus, for sa; = 0,
2 2
Fi(y)=1—¢ 7 /@ (40)

For sa; # 0O there is no closed-form solution for F;. As we are interested in the
large-y limit, however, we may consider the behavior of Qi(a, b) for large b. In
this regime, and for a # 0, the modified Bessel function in the integrand may be
approximated as [49]

ax

Ip(ax) = 3 . 41
Tax
In this approximation, the Marcum Q-function becomes
l o0 2 2
Qi(a, b) ~ «/F/b Vx e T gy (42)
a

This still does not admit a closed-form solution, but it may be bounded. Define the
lower and upper bounding functions

1 o0
Ofa.b) == /b 2 43)
Uig. by -— 1 * ~(—a)*/24 44
Qi (a,b): Nerrh) xe X 44)
a

and note that, for b sufficiently large,

07 (a,b) < Qi(a,b) < 0{(a,b) . (45)

These two integrals do admit closed-form solutions, which are of the form

0L (a, b) = L et (b_a) (46)
Vaa V2
—(b—a)*/2 _
0Y(a,b) = eﬁ n %erfc (%) (47)

where erfc is the complementary error function. The function erfc itself has the fol-
lowing asymptotic form:

42
ex

erfc(x) ~
X

for large x . (48)
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Thus,
QL(a b) ~ ﬂ (49)
e V2malb — a)
—(b-a)?/2 —(b—a)?/2
e a e
0Y(a,b) ~ (50)

V2ma * 21 b-ua

From this result, we can see that Q1 (a, b) ~ e_(b_“)z/ 2 for large b. Thus, for large y,

2
Fi(y) ~ 1 —exp [— (/0 = Vi) /2} : (51)

Now consider P, («, ), the probability that |a,| > y is the only threshold crossing.
Since the random variables ay, . .., ay are independent, it may be written in terms of
F;i(y) as simply

Py, y) =[1-FEWI[]F) . (52)
i#n
Now suppose |say, | < |sa| and consider the ratio Py, (y)/ Px(y) for y > 0. This will
be given by
Pp(a,y) 1= Fu(y) Fi(y)
Pe(a,y) 1= F(y) Fuly)

For large y, the ratio Fy(y)/F,;,(y) is approximately unity and may be ignored. The
remaining factors may be written in terms of Eq. (51), so that

(53)

Pu(a,y) _ <P [— (v/o - M)Z/z]
Pe(a,y)  exp [_ (v/o — m2/2]

= expl—(Vax — Vam)y /ol (54)
which tends to zero as y — oo, since Ay = |sag|? > |stm |2 = Ap. O
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