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Abstract
�

—The design of handoff algorithms for cellular com-
munication systems based on mobile signal-strength measure-
ments� is considered. The design problem is posed as an opti-
mization to obtain the best tradeoff between the expected� num-
ber
�

of service failures and expectednumber of handoffs,� where
a� service failur e is defined to be the event that the signal
str	 ength falls below a level required for satisfactory service to
the



subscriber. Basedon dynamic programming arguments, an
optimal� solution is obtained, which, though impractical, can be
used� as a benchmark in the comparison of suboptimal schemes.
A simple locally optimal handoff algorithm is derived fr om the
optimal� solution. Like the standard hysteresis algorithm, the
locally



optimal algorithm is characterized by a single thr eshold.
A systematic method for the comparison of various handoff
algorithms� that are akin to the receiveroperating characteristic
(ROC)
�

curves of radar detection is presented.Simulation results
show	 that the locally optimal algorithm outperforms the hystere-
sis	 algorithm, especially in situations where accurate prediction
of� signal strength is possible. A straightforward technique for
adapting� the locally optimal algorithm to changingenvironments
is suggested.That natural adaptability is the algorithm’s principle
advantage� over curr ent approaches.

Index
�

Terms— Handoff, handover, land mobile radio cellular
systems.	

I.
�

INTRODUCTION
�

A HANDOFF in cellular communicationis the process
whereby� a mobile� subscribercommunicating� with one

base
�

station is switchedto anotherbasestationduring a call.
The design of reliable handoff algorithms is crucial to the
operation� of a cellularcommunicationsystemandis especially
important
�

in microcellular systems,where the mobile may
traverse
�

severalcells during a call.
Handoff decisionscan be basedon measurements1 such�

as� the signal strength,bit error rate, and estimateddistance
from basestations.In manysystems,especiallymicrocellular
systems,� signalstrengthmaybetheonly reliablemeasurement
that
�

can be used[2]. Somemeasurementssuch as bit error
rate� are(eitherexplicitly or implicitly) functionsof the signal
strength.� If locationinformationaboutthe mobile is available
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�

e restrict our attentionto criteria basedon degradationof the current
channel.Handoff decisionscanalsobe basedon networkcriteria [1].

independent
�

from signal-strengthmeasurements,then it can
be
�

used to improve handoff decisionsderived from signal-
strength� measurements.

W
 

e focus on handoff algorithmsbasedon signal-strength
measurements.! Considerthe problemof designingan optimal
handof
"

f algorithm for a mobile moving betweenneighboring
cells.� Many criteria for determiningthe efficacy of a handoff
algorithm� are discussedin the literature [3]–[7] and may be
used# for optimal design.Theseinclude:

1) a measureof call quality, such as the receivedsignal
strength� from the operativebasestation;

2) the total numberof handoffs on a trajectory between
neighboringcells;

3)
$

the numberof unnecessary% handoffs,& i.e., those made
in
�

situations,wherethe currentbasestationwould have
continued� to give satisfactoryperformance;

4) the numberof bad
�

handoffs,& i.e., thosemadeto a base
station� whosesignal strengthis below the satisfactory
performance' level;

5)
(

the delay in making a handoff, which is sometimes
defined
)

to be the distanceof the cr* ossoverpoint2 from
+

the
�

cell boundary.

Considering
,

thesecriteria,we canseethatlimiting thenum-
ber
�

of handoffs betweencells [item 2)], while keepingthecall
quality- high [item 1)] will generallyeliminatethosehandoffs
that
�

do not enhancecall quality. In a systemthat balances
items
�

1) and2), separateconsiderationof unnecessaryandbad
handoffs [items 3) and 4)] is not required.Concerningdelay
[item 5)], it canbearguedthatdelayin handoff is undesirable
only� insofar as it impacts call quality. However, delay in
handof
"

f cancreateuplink interferenceto othermobilesin the
system,� which resultsin a network cost we do not consider
in
�

our analysis. W
 

e limit our attention,therefore,to the first
two
�

criteria: call quality and total numberof handoffs, but,
clearly,� theseare conflicting criteria—improvedcall quality
can� usuallybe obtainedonly at the expenseof an increasein
the
�

numberof handoffs. Thus,a tradeoff mustbe made.
The
.

standardapproachto effecting a tradeoff betweencall
quality- and (expected) the number of handoffs has been
through
�

an ad/ hoc algorithm� basedon signal-strengthhys-
0

ter1 esis. The implicit measureof call quality used is simply
the
�

(average)value of the receivedsignal strengthfrom the
operative� basestation. The hysteresisalgorithm is designed
so� that handoff is madewhen the (averaged)signal strength

2Thecrossoverpoint is thatpoint on the trajectoryat which theprobability
of beingconnectedto thenewbasestationis equalto thatof beingconnected
to
2

the old basestation[8].
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(in
3

decibels)from the new basestationexceedsthat from the
current� basestationby a hysteresislevel.

A
4

drawbackof signal-strengthhysteresisalgorithmsis that
they
�

allow unnecessaryhandoffs in regions, where signals
from
+

both stationsare strong [8]. One approachto prevent
such� handoffs has been to extend the hysteresisalgorithm
so� that a handoff is not madein situationswhere the signal
strength� from the current basestation is adequate[9], i.e.,
lar
5

ger than some level neededfor satisfactoryperformance.
Our
6

approachis to designan optimal algorithm basedon a
measure! of call quality that incorporatesthis conceptof an
adequate� signal strength.We usea binary-valuedmeasureof
call� quality.Call quality is goodor bad,dependingon whether
the
�

signal strength is above or below a fixed threshold.It
not7 difficult to identify such a threshold above which the
subscriber� will havesatisfactoryperformance,butbelowwhich
the
�

distortionbecomesunacceptable.This is especiallytrue in
digital
)

systems,wherethe thresholdlevel could representthe
point' at which reliableerror correctionis no longerpossible.
W
 

e refer to the eventthat the signal strengthfalls below the
threshold
�

as a service8 failure.3
9

Thus,in our definition,anoptimalhandoff algorithmis one
that
�

gives the besttradeoff betweenthe expectednumber4
:

of�
service� failures and expectednumberof handoffs on a given
mobile! trajectory.The tradeoff problemcan be posedin two
ways:� a variationaland Bayesformulation.We establishthat
the
�

solutionsto the variationaland Bayesformulationshave
the
�

samestructure(which is akin to thedetectiontheoryresult
that
�

the Neyman–PearsonandBayestestsareboth likelihood
ratio tests [10]).

The
.

Bayesformulationof the handoff problemis amenable
to
�

dynamic
;

programming(DP)
3

arguments.We posethe prob-
lem
5

as a finite-horizon5
<

DP problem and obtain the optimal
solution� through a set of recursiveequations.That optimal
solution� is complicatedandnonstationary,andit requiresprior
knowledgeof themobile’sexacttrajectory.However,asimple,
locally
=

optimalalgorithm� canbederivedfrom theDP solution.
The
.

locally optimal algorithm is a thresholdalgorithm (as is
the
�

signal-strengthhysteresisalgorithm), but it is not prone
to
�

unnecessaryhandoffs. Furthermore,it can be designedto
be
�

independentof the location of the mobile. We study this
locally
5

optimal algorithm in detail.
The rest of this paperis organizedas follows. In Section

II, we set up the handoff problem as an optimum tradeoff
problem.' In SectionIII, we presenttheDP solution.In Section
IV,
�

we discussthe locally optimal algorithm design.Section
V
>

providesdetailednumericalresultscomparingthe locally
optimal� algorithmto existingalgorithms.Thecomparisonsare
done
)

on thebasisof thetradeoff betweentheexpectednumber
of� servicefailuresandhandoffs. A discussionon adaptingthe
locally optimal testto changingenvironmentsis alsoincluded.
Conclusions
,

are presentedin SectionVI.

3
?

Occurrenceof service failure doesnot imply that the call is dropped
because
@

we assumethat the thresholdlevel below which a servicefailure is
declaredmay be greaterthanthe level below which the call is lost.

4W
�

e assumea discrete-timemodel for the signal-strengthmeasurements.
5
A
This is in contrastwith formulationsof [11] and[12] thatemployinfinite-

horizon
B

discounted-costmodels.

Fig. 1. A possiblemobile trajectory.

II.
�

PRELIMINARIES
C

W
 

e assumethat only two basestations,say and� ,&
are� involved in thehandoff, i.e., we consideronly thatportion
of� the trajectory on which the signals received from base
stations� and� are� the strongest.Without loss of
generality,D assumethat the mobile is moving on a trajectory
goingD from cell 1 to cell 2, moving away from and�
approaching� . Let denote

)
the distanceof the mobile

to
�

(see
3

Fig. 1).
W
 

e assumethat the mobile measuresthe signal strength
from
+

each base station and sends sampled values to the
operative� basestation.Furthermore,in ouranalysis,weassume
that
�

handoff decisionsarebasedsolelyon thesemeasurements.
However,
E

the analysisis easily extendedto the case,where
handoff decisionsare also basedon signal-strengthmeasure-
mentsmadeat the basestations.

The measuredsignal strengthhas three components:path
loss,
5

which decayswith distancefrom the basestation,large-
scale� fluctuations(shadow8 fading),

F
andsmall-scalefluctuations

(
3
multipath� fading).

F
We assumethat the received signal is

passed' througha low-passfilter to averageout thesmall-scale
fluctuations.
G

The reasonfor the averagingis two-fold. First, it
is impracticalto designhandoff algorithmsthat respondto the
small-scale� fluctuations.Second,thesefluctuationsaregener-
ally� compensatedfor by diversitycombiningandinterleaving.

W
 

e assumethat the signalstrengthis measuredin decibels
relative to somereferencepower level. (A convenientrefer-
enceH level, usedin SectionV, is the minimum signalstrength
required� for satisfactoryperformance.)The signal strength

received� from base at� distance (after
3

low-pass
filtering)
I

can be written as

dB
)

Parameters and� account� for path loss, depends
)

on
transmitted
�

powerat thebasestation,and is thepath-lossex-
ponent.' Theterm is

�
theshadowfadingcomponent,which

is
�

accuratelymodeled(in decibels)asa zero-meanstationary
Gaussian
J

randomprocess[13]. This modelis referredto asthe
lognormal
=

fading model.For spatialdependence,we assume
a� first-orderautoregressive(AR) structure,which implies that
the
�

autocorrelationfunction of is given by

E
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where� is
�

the corr* elationdistanceand� is
�

the varianceof
the
�

shadowfadingprocess.6
�

ThisAR modelhasbeenproposed
by
�

Gudmundson[14] on the basis of experimentalresults.
The
.

spatial correlation is assumedto be isotr
L

opic,& i.e., the
correlation� of thefadingprocessat two locationsdependsonly
on� the distancebetweenthe two locations.Furthermore,the
processes' and� are� independent.

Samples
M

of the signal-strengthmeasurementsarerelayedto
the
�

operativebasestation.Let the samplingtime be and�
assume� that the mobile is moving at a constantvelocity .
Then,
.

with a slight abuseof notation,we get the following
discrete-time
)

model for the receivedsignal strength:

(1)
3

where� is
�

the distanceto base station at� the th
�

sampling� instantand is th
�

sampleof . The values
are,� in general,not equallyspaced,but dueto theisotropic

nature7 of thefadingprocess,consecutivesamplesof have
"

the
�

samecorrelationif speedis fixed.If speedanddirectionare
constant,� the process is a zero-meanGaussiandiscrete-
time
�

AR processwith autocorrelationfunction

E
N

where� is the sampling8 distanceand� is
the
�

corr* elationcoefficientof� the discrete-timefading process.
Suppose
M

therearea total of time
�

steps on�
the
�

portion of the mobile’s trajectory that involves and�
. Let denote

)
the index of the operativebasestation

at� time (i.e.,
3

when� the mobile is communicating
with� )

F
and denote

)
the other basestation.A handoff

decision
)

is madeduring eachsamplinginterval. The decision
at� time can� bebasedon all signal-strengthmeasurements

up# to time . The decisionvariable takes
�

on two values.
If ,& a handoff is maderesulting in . If

,& no handoff is madeand . Let denote
)

all� theinformationavailablefor decisionmakingat time ,& then
,& where is the decisionfunction at time .

Handoff algorithm design involves choosingthe handoff
decision
)

functions at� times . Let
denote
)

the minimum level of signal strengthrequiredfor
satisfactory� service.7

O
Furthermore,
P

let and� denote
)

the
total
�

numberof servicefailuresandnumberof handoffs from
time
�

one to ,& respectively.Then

E E P

and�

E E P

where� is the indicator function.
6
Q

ParametersRTSVUWSTXZY\[ and ] could,in general,bedifferentfor thesignals
from the two basestations.

7
^

If the interferencelevels for the two basestationsare not the same, _
will be different for the signals `badcfe and gbhjilk .

An
4

optimal handoff algorithm (policy) is the set of deci-
sion� functions ,& which providesthe
best
�

tradeoff betweenthe E and� E . This optimum
tradeof
�

f problemcan be posedin two ways:

1) variational formulation

E subject� to E (2)
3

where� is a control parameter;
2) Bayesformulation

E E (3)
3

where� is
�

a tradeoff parameter.

Thiskind of tradeoff commonlyarisesin detectionproblems
[10], [15], where the solution to the variational problem is
usually# also a Bayes solution for an appropriatelychosen
tradeof
�

f parameter.Theorem1 of SectionIII showsthat the
same� is true for the handoff problem.Hence,we canfind the
optimum� tradeoff curve E E for bothproblemsby
solving� the Bayesproblemfor variousvaluesof . Parameter

may be interpretedas the relative cost of handoffs versus
service� failures. This interpretationis especiallyuseful for
adapting� the handoff algorithm to changingenvironmentsas
we� shall seein SectionV. We focus now on the solution to
the
�

Bayesproblem.

III.
�

DYNAMIC P
m

ROGRAMMING
C S

M
OLUTION

Dynamic
n

programmingallowsoptimizationof thetotal cost
along� a statetrajectory of a discrete-timedynamicalsystem
that
�

hasa stepwiseadditive-costcriterion and,conditionedon
the
�

state,stepwiseindependent-noisestatistics(see [16], p.
10). Here,we castthe handoff problemin that form.

For the handoff problem, the state at� time consists�

of� the triple . From (1) andthe definition of
,& we get the following updateequationfor :

where� is the changein the fading

process' and . The update equation
constitutes� a discrete-timedynamical

model! for our system(with exogenousinput and� control
input ).

F

Given
J

the first-order AR model for processes and�

,& thenoisevariables have
"

therequiredindependence
structure.� In particular, it is easy to show that is

independentof ,& given .
Finally,
P

the costcriterion asdefinedin (3) is additiveover
time.
�

In particular, if we define

(4)
3
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and�

then
�

a Bayesoptimal handoff algorithm minimizes

E
N

E

Remark
o

1: The
.

cost structure in (4) does not take into
account� the possibility that the call may be terminatedat
some� time between

�
one and . If is

�
the termination

(hangup)
3

probability[11] for eachtime stepandif a geometric
distribution
)

is assumedfor the call duration, then eachcost
term
�

should� be multiplied by . Thus, if a good
estimateH of is

�
available,it caneasilybeincorporatedinto the

cost� structurewithoutanyfundamentalchangesin theanalysis.
The DP solution is obtained recursively as follows. Let

the
�

expectedcost-to-goat time (due
3

to all the decisions
up# to time )

F
be denotedby . Due to the conditionally

independentnoisestatistics, is a function only of the state
. The expectedcost of the Bayesoptimal handoff policy

over� theentiretrajectoryis simply ,& andoptimalhandoff
decision
)

functionsare obtainedby solving the following set
of� recursiveequations(see[16] for an explanationof the DP
technique):
�

(5)
3

E

P

P (6)
3

and� for

E

E

E (7)
3

Note
p

that for each ,& the optimum decision function
depends
)

only on the state and� not on any past signal-
strength� measurements.Theseoptimumdecisionfunctionsare
described
)

by

P

P (8)
3

and� for

E
N

E (9)
3

The
.

decisionfunctions described
)

in (8)
and� (9) constitutea Bayesoptimal handoff algorithm for
tradeof
�

f parameter . The following theorem,whoseproof is
givenD in theAppendix,addressesthesolutionto thevariational
formulation
+

of (2).
Theorem1: An optimal handoff algorithm for the varia-

tional
�

formulation is a Bayes solution for an appropriately
chosen� value of the tradeoff parameter .

The DP equationscan be solvednumericallyto obtain the
optimum� handoff policy ,& however,thesolutioncanbequite
complex� and nonstationary.Furthermore,the computationof

relies on prior knowledgeof the trajectoryof the mobile.
Theseconsiderationsimply thattheDP solutionis impractical.
The
.

tradeoff curvefor theDPsolutioncan,however,beusedas
a� theoreticalbenchmarkin thecomparisonof othersuboptimal
algorithms.� In the next section,we discussthe designof a
simple� stationary locally optimal handoff algorithm that is
based
�

on the DP solution.

IV.
�

LOCALLY O
6

PTIMAL ALGORITHM

Solutions
M

(8) and (9) correctly indicate that the globally
optimal� strategyat a particularlocationdependson the future
trajectory.
�

That unreasonablerequirementsuggeststhat the
problem' should be reformulatedspecifically to ignore the
future trajectory. A locally optimal solution to the Bayes
problem' may be obtainedby restricting the trajectory under
consideration� to thepoints and� . That is, we ignorethe
consequences� of a handoff decisionat time at� timesbeyond

and� basethe decisionon all availableinformationup to
time
�

. Restricting(8) and(9) to yieldsq decisionrules
that
�

selectthe besttradeoff betweenthe costof a handoff
and� the probability that falls

+
below ,& given the

information . Hence,the locally optimal decisionfunction
at� time has

"
the structure

P P (10)
3

The local criteriongivesrise to a solutionthat usesonly local
information.
�

Remark
o

2: Suppose
M

we accountfor possiblecall termina-
tion
�

in the designof the locally optimal test by multiplying
eachH cost function by

�
the discount factor . The

only� modificationthat resultsin the locally optimal decision
function
+

is
�

that the parameter is
�

replacedby .
The structureof remainsunchanged.Furthermore,if is
small,� is

�
virtually unaffectedby the discountfactor.

For
P

the lognormal fading model that we have assumed,
the
�

conditionaldistribution of givenD is Gaussian,
hence,the probabilitiesin (10) areentirely determinedby the
conditional� meansand variances

E
N

(11)
3

Va
>

r (12)
3
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Fig. 2. Decisionregionsbasedon the predictedsignal strength rsbtjuwv
of the currentstationand the other station xybz|{ }

, respectively,for threedifferent
handof
B

f strategies.Decision in favor of handoff is madewhen the signal strengthslie inside the shadedarea.

Note
p

that theconditionalvariancedoesnot dependon location
information.
�

Furthermore,if the sampling rate is high, the
ar� gumentof the log function in (11) is close to one, which
implies
�

the conditionalmeanis also approximatelyindepen-
dent
)

of location information. However, with and�
unknown,# we are, in practice, forced to use the best avail-
able� estimateof (11), denoted ,& basedon the available
information . The resultingtest is describedby

(13)
3

where� . The correlation
parameter' is speed dependentand, in
practice,' it canbedeterminedfrom velocity estimates.Several
authors� treatthe problemof estimatingstatisticsof the fading
environmentH [17]–[20], and the algorithm suggestedby (13)
can� clearly accommodateon-line estimatesof and� .
This adaptationis discussedfurther in SectionV.

Fig.
P

2 shows the decision regions of the conventional
hysteresisalgorithm, locally optimum test, and hysteresis-
threshold
�

algorithm presentedby Zhang and Holtzman [9].
Comparing
,

thehysteresistestandthelocally optimumtest,we
see� the locally optimum test can avoid unnecessaryhandoffs
in situations where both signal strengthsare above . In
systems� designedto producevery few service failures, i.e.,
those
�

with largefademargins,this could resultin a significant
saving� in the numberof handoffs. The locally optimum test
also� avoids bad handoffs when both signals are below .
However,
E

in systemswith large fade margins, that situation
occurs� very rarely.

An
4

ad/ hocscheme� thatemulatesthebehaviorof the locally
optimum� test is the hysteresis-thresholdalgorithm [9], which

performs' the usualhysteresistest ,& but only
after� first verifying that with� a suitably chosen
threshold.
�

In Section V, we see that the performanceof a
locally optimum test can be closely approximatedby the
hysteresis-thresholdtest,but the advantagein doing so is not
clear.� Unlike thelocally optimumtest,thehysteresis-threshold
test
�

requirestwo designparametersand is not easilyadapted
to
�

changingenvironments.

V.
>

NUMERICAL
~ R

�
ESUL
�

TS

W
 

e simulatea scenarioin which the mobile traversesthe
line
5

leading a distance from
+

station 1 to station 2. The

specific� simulationparameterswere:

m! stationdistance;
station� strength;
path-loss' exponent;
fading processvariance;

and� m samplingdistances;
m correlationdistance;

dB
)

thresholdof servicefailure.

These
.

valuesareconsistentwith [9] and [14] and together
yieldq a mediansignal strengthof 15 dB (with respectto )

F

at� the midpoint betweenstations.At a sampling period of
s,� thesamplingdistancesof 2, 5, and10m correspond

to
�

speedsof 14.4, 36, and 72 km/h.
50
(

000 realizationswere usedto estimatethe performance
of� eachstrategyat eachparametersetting.The samesignal-
strength� predictor was� used in comparing
decision
)

strategies.The Bayes optimal solution was con-
structed� by quantizingthedecisionregions(akin to Fig. 2) for

and� calculatingthe expectationsin (5)–(7) by numerical
integration.

Fig. 3 comparesthe performanceof the locally optimum
handoff algorithm with that of straightforwardhysteresisand
hysteresis-threshold
"

tests in terms of the tradeoff between
the
�

number of handoffs and service failures. Comparedto
the
�

simple hysteresistest, the locally optimum and threshold
strategies� consistentlyachievefewer servicefailures for the
same� number of handoffs. The locally optimum test has,
efH fectively, the sameperformanceas the best of threshold
tests.
�

More precisely,the numberof servicefailures for the
locally
5

optimumtestcanslightly exceedthatof thehysteresis-
threshold
�

test, but, by varying a single parameter ,& the
locally
5

optimum performancecurve appearsto trace close
to
�

the minimum E of� all threshold tests. We
haveno strategyto constructthe bestperformancecurve for
all� hysteresis-thresholdtests.However,experimentationshows
that
�

thebesthysteresis-thresholdtestsemploysmallhysteresis
values� (suchas 0, 1, and 2 dB usedin the figure) to which
their
�

performanceis somewhatinsensitive.
Fig. 4 comparesperformanceof the locally optimumdeci-

sion� rule at threesamplingdistancescorrespondingto different
speeds.� Due to spatial correlation, short-samplingdistances
allow� bettersignal-strengthpredictionand,thus,betterhandoff
decisions
)

and fewer servicefailures.Dashedlines show how
the
�

operatingpoint changesif the tradeoff parameterremains
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Fig. 3. Performancecomparison.We comparethetradeoff betweenhandoffs
andservicefailuresfor threestrategiesto eachotherandto thebestachievable
(dynamicprogrammingsolution).Eachcurveis parameterizedby thevariable
in
�

parenthesis.With a singleparameter,the locally optimumtest follows the
best
@

performancethat is achievableusingtwo parameterhysteresis-threshold
tests.
2

Fig.
�

4. Tradeoff curveparametrization.Performanceof the locally optimum
test
2

is shown at sampling distancescorrespondingto mobile speeds14.4,
36, and72 km/h (assuming�������\� � s). Dashedlines connectpoints of the
equaltradeoff parameter.Unlabeledtradeoff valuesarespacedlogarithmically
between
@

indicatedvalues.

fixed, while the cellular environment(e.g.,speed)changes.In
making(13) adaptive,we mayclearlyuseon-lineestimatesof
the
�

shadowfadingvarianceandsignal-strengthcorrelation,but
is it also necessaryto adaptthe tradeoff parameter ? Fig. 4
shows� that if the tradeoff parameterremainsfixed, then the
“knee” of theoperatingcurveat slow speedstransformsnearly
to
�

the kneeof the curve at high speeds.Thus,an acceptable
test
�

canbe hadby choosinga fixed valuefor the tradeoff pa-
rameter.This comparesfavorablywith approachesto adaptive
hysteresisteststhat requireseparateanalysisat eachspeedin
order� to determinethe optimal hysteresisvalue [17].

Fig. 5 showsperformancecurvesof the simple hysteresis
test
�

as a function of samplingdistance.Note, in comparison

Fig. 5. The hysteresisalgorithm doesnot adaptto speed.Performanceof
the
2

hysteresistest is shown at samplingdistancescorrespondingto mobile
speeds14.4, 36, and 72 km/h (assuming��������� � s). Comparedwith the
locally optimal test(Fig. 4), the achievableperformanceof hysteresistestsis
relatively unchangedat different mobile speeds.

to
�

Fig. 4, that hysteresisperformancecurves are relatively
unchanged# at different samplingdistances.A speed-adaptive
rule could ideally move the operatingpoint to any point on
the
�

particularcurvespecifiedby thecurrentmobilespeed.But
evenH with sucha rule, hysteresistestscannotreachthe same
points' in the E E plane' asthelocally optimaltest
can.� Hysteresistestscannottake advantageof the increased
predictability' of the signal strengthat slow speeds.

VI.
>

CONCLUSIONS

W
 

e introducedanewcall-qualitycriterionto balanceagainst
the
�

numberof handoffs in designingan optimal handoff strat-
egyH andshowedthat theBayesandvariationalformulationsof
the
�

resultingoptimizationareequivalent.Theoptimaldecision
rules� may be found by dynamic programming,but are too
costly� to implementand dependon prior knowledgeof the
trajectory
�

of the mobile.
A
4

locally optimalsolutiongivesrise to a hysteresistestthat
compares� probabilitiesratherthansignalstrengths.This locally
optimal� testnaturallyhasthe propertyof preventinghandoffs
when� the signal from the operative base station is strong
and� allowing handoffs when that signal is weak.The locally
optimum� testcomparesfavorablyin performancewith simple
hysteresistests and is competitive with hysteresis-threshold
tests.
�

For the locally optimumstrategy,it is immediatelyclear
how
"

to incorporateon-line parameterestimatesto obtain an
algorithm� that respondsto changesin the propagationenvi-
ronment.� This naturaladaptabilityis the principle advantage
of� the locally optimal handoff testover currentapproaches.

APPENDIX
�

Proof of Theorem1: Let denote
)

the Bayescost
for
+

a handoff policy ,& i.e.,

E
N

E
N
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where� E and� E are� written explicitly as functions
of� . The Bayesoptimal solution hasa cost that

�
is

givenD by

The following lemmagivesan importantpropertyof .
Lemma
�

1: is
�

a concavecontinuousfunction of on�
.

Proof: The Bayes optimal solution is obtained recur-
sively� from (5) to (9). In particular, . In
the
�

following, we write the cost-to-gofunctionsexplicitly as
functions of ,& i.e., .

The
.

function is
�

trivially a concavefunction of
. Now, suppose is

�
a concavefunction of .

Then,
.

from (6), it follows that is a concavefunction
of� as� well since is expressedas the sum of a
constant� and the minimum of two concavefunctions of .
Thus,
.

by induction, is
�

also a concave
(hence
3

continuous)function of on� .
Now,
p

for any fixed policy ,& the Bayes cost is
�

a� straight line as a function of with� slope and�
intercept
�

. Furthermore,this line mustlie abovethe
concave� curve . Theline correspondingto thevariational
solution� is

�
one that hasan interceptlessthan or equalto

and� the minimum possibleslope.It is clearthat sucha line
mustpassthrougha point (or points)on curve . Let the
ordinate� of onesuchpoint be . Then,theBayessolutionfor

is a solution to the variationalproblem.
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