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for Cellular Communications
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Abstract—The design of handoff algorithms for cellular com-
munication systemsbased on mobile signal-strength measure-
ments is considered. The design problem is posed as an opti-
mization to obtain the best tradeoff betweenthe expectechum-
ber of service failures and expectednumber of handoffs where
a service failure is defined to be the event that the signal
strength falls below a level required for satisfactory service to
the subscriber. Based on dynamic programming arguments, an
optimal solution is obtained, which, though impractical, can be
usedas a benchmark in the comparison of suboptimal schemes.
A simple locally optimal handoff algorithm is derived from the
optimal solution. Like the standard hysteresis algorithm, the
locally optimal algorithm is characterized by a single threshold.
A systematic method for the comparison of various handoff
algorithms that are akin to the receiveroperating characteristic
(ROC) curves of radar detectionis presented.Simulation results
showthat the locally optimal algorithm outperforms the hystere-
sis algorithm, especiallyin situations where accurate prediction
of signal strength is possible. A straightforward technique for
adapting the locally optimal algorithm to changing environments
is suggestedThat natural adaptability is the algorithm'’s principle
advantage over current approaches.

Index Terms— Handoff, handover, land mobile radio cellular
systems.

I. INTRODUCTION

HANDOFF in cellular communicationis the process
whereby a mobile subscribercommunicatingwith one
basestationis switchedto anotherbasestationduring a call.
The design of reliable handof algorithmsis crucial to the
operationof a cellularcommunicatiorsystemandis especially
important in microcellular systems,where the mobile may
traverseseveralcells during a call.
Handof decisionscan be basedon measurementssuch
as the signal strength,bit error rate, and estimateddistance
from basestations.In many systemsgspeciallymicrocellular

independenfrom signal-strengthmeasurementghen it can
be usedto improve handof decisionsderived from signal-
strengthmeasurements.

We focus on handof algorithmsbasedon signal-strength
measurementgonsiderthe problemof designingan optimal
handof algorithmfor a mobile moving betweenneighboring
cells. Many criteria for determiningthe efficacy of a handof
algorithm are discussedn the literature [3]-[7] and may be
usedfor optimal design.Theseinclude:

1) a measureof call quality, such as the receivedsignal

strengthfrom the operativebasestation;

the total numberof handofs on a trajectory between
neighboringcells;

the numberof unnecessanhandoffs i.e., those made
in situations,wherethe currentbasestationwould have
continuedto give satisfactoryperformance;

the numberof bad handoffs i.e., thosemadeto a base
station whosesignal strengthis below the satisfactory
performancelevel;

the delay in making a handof, which is sometimes
definedto be the distanceof the erossoverpoint from

the cell boundary.

Consideringhesecriteria, we canseethatlimiting the num-
berof handofs betweenrcells [item 2)], while keepingthe call
quality high [item 1)] will generallyeliminatethosehandofs
that do not enhancecall quality. In a systemthat balances
items1) and2), separateonsideratiorof unnecessargndbad
handofs [items 3) and 4)] is not required.Concerningdelay
[item 5)], it canbe arguedthatdelayin handof is undesirable
only insofar as it impacts call quality. However, delay in
handof cancreateuplink interferenceto othermobilesin the
system,which resultsin a network cost we do not consider
in our analysist We limit our attention,therefore to the first

2)

3)

4)

5)

systemssignalstrengthmay be the only reliablemeasurement two criteria: call quality and total numberof handofs, but,

that can be used[2]. Some measurementsuch as bit error
rate are (eitherexplicitly or implicitly) functionsof the signal
strength.If locationinformationaboutthe mobile is available
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1We restrict our attentionto criteria basedon degradatiorof the current
channel.Handof decisionscanalsobe basedon networkcriteria [1].

clearly, theseare conflicting criteria—improvedcall quality
canusually be obtainedonly at the expenseof anincreasen
the numberof handofs. Thus, a tradeof mustbe made.

The standardapproachto effecting a tradeof betweencall
quality and (expected)the number of handofs has been
through an ad hoc algorithm basedon signal-strengthhys-
teresis The implicit measureof call quality usedis simply
the (average)value of the receivedsignal strengthfrom the
operativebasestation. The hysteresisalgorithm is designed
so that handof is madewhen the (averaged)signal strength

2The crossovelpoint is that point on the trajectoryat which the probability
of beingconnectedo the new basestationis equalto that of beingconnected
to the old basestation[8].
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(in decibels)from the new basestationexceedghat from the
currentbasestationby a hysteresidevel.

A drawbackof signal-strengthysteresisalgorithmsis that
they allow unnecessarhandofs in regions, where signals
from both stationsare strong [8]. One approachto prevent
such handofs has beento extendthe hysteresisalgorithm
so that a handof is not madein situationswhere the signal
strengthfrom the current basestation is adequat€[9], i.e.,
larger than some level neededfor satisfactoryperformance.
Our approachis to designan optimal algorithm basedon a
measureof call quality that incorporatesthis conceptof an
adequatesignal strength.We use a binary-valuedmeasureof
call quality. Call quality is goodor bad,dependingon whether
the signal strengthis above or below a fixed threshold. It
not difficult to identify such a threshold above which the
subscribewill havesatisfactoryperformancebutbelowwhich
the distortionbecomesiunacceptableThis is especiallytrue in
digital systemswherethe thresholdlevel could representhe
point at which reliable error correctionis no longer possible.
We refer to the eventthat the signal strengthfalls below the
thresholdas a servicefailure.

Thus,in our definition,an optimal handof algorithmis one
that gives the besttradeof betweenthe expectedhumbef of
servicefailures and expectednumberof handofs on a given
mobile trajectory. The tradeof problemcan be posedin two
ways: a variationaland Bayesformulation. We establishthat
the solutionsto the variationaland Bayesformulationshave
the samestructure(which is akin to the detectiontheoryresult
that the Neyman—Pearsoand Bayestestsare both likelihood
ratio tests[10]).

The Bayesformulation of the handof problemis amenable
to dynamicprogramming(DP) argumentsWe posethe prob-
lem as a finite-horizor® DP problem and obtain the optimal
solution through a set of recursiveequations.That optimal
solutionis complicatedandnonstationaryandit requiresprior
knowledgeof the mobile’sexacttrajectory.Howeverasimple,
locally optimalalgorithmcanbe derivedfrom the DP solution.
The locally optimal algorithmis a thresholdalgorithm (as is
the signal-strengthhysteresisalgorithm), but it is not prone
to unnecessarjandofs. Furthermore,t can be designedto
be independenof the location of the mobile. We study this
locally optimal algorithmin detail.

The rest of this paperis organizedas follows. In Section
II, we set up the handof problem as an optimum tradeof
problem.In Sectionlll, we presenthe DP solution.In Section
IV, we discussthe locally optimal algorithm design.Section
V providesdetailed numericalresultscomparingthe locally
optimalalgorithmto existingalgorithms.The comparisongre
doneon thebasisof thetradeof betweernthe expectechumber
of servicefailuresandhandofs. A discussioron adaptingthe
locally optimaltestto changingenvironmentss alsoincluded.
Conclusionsare presentedn SectionVI.

3 Occurrenceof servicefailure doesnot imply that the call is dropped
becauseve assumethat the thresholdlevel below which a servicefailure is
declaredmay be greaterthanthe level below which the call is lost.

4We assumea discrete-timemodelfor the signal-strengthmeasurements.

5Thisis in contrastwith formulationsof [11] and[12] thatemployinfinite-
horizondiscounted-cosinodels.
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Fig. 1. A possiblemobile trajectory.

Il. PRELIMINARIES

We assumehat only two basestations,say B(*) and B(?),
areinvolvedin the handof, i.e., we consideronly thatportion
of the trajectory on which the signals receivedfrom base
stations B and B@ are the strongest.Without loss of
generality,assumethat the mobile is moving on a trajectory
going from cell 1 to cell 2, moving away from B and
approachingB®. Let d(9 denotethe distanceof the mobile
to BY, ¢ = 1, 2 (seeFig. 1).

We assumethat the mobile measureghe signal strength
from each base station and sends sampled values to the
operativebasestation.Furthermorein ouranalysiswe assume
thathandof decisionsarebasedsolelyonthesemeasurements.
However, the analysisis easily extendedto the case,where
handof decisionsare also basedon signal-strengttmeasure-
mentsmadeat the basestations.

The measuredsignal strengthhas three componentspath
loss, which decayswith distancefrom the basestation,large-
scalefluctuationgshadowfading), andsmall-scaldluctuations
(multipath fading. We assumethat the received signal is
passedhrougha low-passfilter to averageout the small-scale
fluctuations.The reasonfor the averagings two-fold. First, it
is impracticalto designhandof algorithmsthatrespondo the
small-scaléfluctuations.Second thesefluctuationsare gener-
ally compensatetbr by diversity combiningandinterleaving.

We assumehat the signal strengthis measuredn decibels
relative to somereferencepower level. (A convenientrefer-
encelevel, usedin SectionV, is the minimum signal strength
required for satisfactory performance.)The signal strength
X @ receivedfrom baseB(® at distanced®) (after low-pass
filtering) can be written as

XDy = = nlog d? + 20Dy dB, i=1,2.

Parameters: and n accountfor path loss, 1+ dependson
transmittecpowerat the basestation,andy is the path-lossex-
ponent.Theterm Z(%) is the shadowfading componentwhich
is accuratelymodeled(in decibels)asa zero-mearstationary
Gaussiamandomprocesg13]. This modelis referredto asthe
lognormal fading model. For spatialdependencewe assume
a first-orderautoregressivéAR) structure which implies that
the autocorrelatiorfunction of Z(* is given by
19

E[ZO(d)ZD(d+ 6)] = 02 exp <—d—0>
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whered, is the correlationdistanceand o2 is the varianceof

the shadowfadingproces$. This AR modelhasbeenproposed sion functions¢ = (¢1, ¢o, « -+

by Gudmundson[14] on the basis of experimentalresults.
The spatial correlationis assumedto be isotropic, i.e., the
correlationof the fading processat two locationsdepend®nly
on the distancebetweenthe two locations.Furthermore the
processesZ(!) and Z(?) areindependent.

Samplesf the signal-strengthimeasurementarerelayedto
the operativebasestation. Let the samplingtime be ¢, and
assumethat the mobile is moving at a constantvelocity wv.
Then, with a slight abuseof notation, we get the following
discrete-timemodelfor the receivedsignal strength:

X,Ei) =pu—nlog dg) + Z,gi) QD

where 4" is the distanceto basestation B() at the kth
samplinginstantand zZ{") is kth sampleof Z(. The values
dg) are,in generalnotequallyspacedbut dueto theisotropic
natureof the fading processgonsecutivesamplef Z(*) have
thesamecorrelationif speeds fixed. If speedanddirectionare
constant,the processZ,EZ) is a zero-meanGaussiardiscrete-
time AR processwith autocorrelatiorfunction

D i t5| |md5|
B[220 10 exp [=1VE1) 2 52 o (17
(Zy Zyim] =0 exp A o° exp A

2 _|m|
whered, = ut, is the samplingdistanceand ¢ = ¢=%:/d0 is

=g a

the correlation coefficientof the discrete-timefading process.

Supposéhereareatotal of n timestepsk =1, 2, ---, non
the portion of the mobile’s trajectory that involves B(Y) and
B®), Let B, denotethe index of the operativebasestation
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An optimal handof algorithm (policy) is the set of deci-
, $n—1), Which providesthe
besttradeof betweenthe E[Ngr] and E[Ny]. This optimum
tradeof problemcan be posedin two ways:

1) variationalformulation

m(gn E[/Vu] subjectto E[Nsr] < o 2)
where « is a control parameter;
2) Bayesformulation
m(gn cE[Nu] + E[Nsr] 3)

wherec > 0 is a tradeof parameter.

Thiskind of tradeof commonlyarisesin detectionproblems
[10], [15], where the solution to the variational problem is
usually also a Bayes solution for an appropriatelychosen
tradeof parameterTheoreml of Sectionlll showsthat the
sameis true for the handof problem.Hence,we canfind the
optimumtradeof curve(E[Ny]|, E[Nsr|) for bothproblemsby
solving the Bayesproblemfor variousvaluesof ¢. Parameter
¢ may be interpretedas the relative cost of handofs versus
service failures. This interpretationis especially useful for
adaptingthe handof algorithmto changingenvironmentsas
we shall seein SectionV. We focus now on the solution to
the Bayesproblem.

Ill. DYNAMIC PROGRAMMING SOLUTION

Dynamicprogrammingallows optimizationof the total cost
along a statetrajectory of a discrete-timedynamicalsystem
that hasa stepwiseadditive-costcriterion and, conditionedon

at time % (i.e., B, = ¢ when the mobile is communicating the state, stepwiseindependent-noisstatistics (see [16], p.

with B®) and B; denotethe other basestation.A handof
decisionis madeduring eachsamplinginterval. The decision

10). Here,we castthe handof problemin that form.
For the handof problem, the state S;. at time & consists

U, attime k canbebasedon all signal-strengtimeasurements of the triple (X;EI), X;E2)7 By,). From (1) andthe definition of

up to time k. The decisionvariable U}, takeson two values.
If U, = 1, a handof is maderesultingin By, = Bj. If
Uy = 0, no handof is madeand By, = Bj. Let I, denote
all theinformationavailablefor decisionmakingttime k&, then
Ui = ¢r(Ix), where¢y, is the decisionfunction at time £.
Handof algorithm design involves choosingthe handof
decision functions ¢, at timesk = 1,2,---,n — 1. Let
A denotethe minimum level of signal strengthrequiredfor
satisfactoryservice’ Furthermorelet Nsr and Ny denotethe
total numberof servicefailuresand numberof handofs from
time one to n, respectively.Then
E[Nsr] =E kz ﬂ{X]EBwQ}]
Lk=1

n

=Y PPV < A}

k=1
and
fn—1 n—1
E[Nu] =E| ) n{bykzl}] => P{Ux=1}
Lk=1 k=1

where Loy is the indicator function.

6 parameters, 7, do, ando could,in general be differentfor the signals
from the two basestations.

7 If the interferencelevels for the two basestationsare not the same,A
will be differentfor the signals X (1) and X(2),

B, we get the following updateequationfor Sy

'X(l)
B4l
Sk+1 = X,gzl = f(Sk, Uy, W)
L Br41
(X = log i), +nlog di + WY
= X,EQ) —n log d;f_i)_l + 7 log dg) + Wk@
Billy, =0y + Bylqu,=1

where W,gi) = Z,Eﬂzl - Z,Ei) is the changein the fading
processand W, = [W,gl), Wk@]. The update equation
Sk+1 = f(Sk, Uy, W}) constitutesa discrete-timedynamical
modelfor our system(with exogenousnput W, and control
input Uy,).

Given the first-order AR model for processes{Z,El)} and
{Z ,EQ)}, thenoisevariablesi¥,, havetherequiredindependence
structure. In particular, it is easy to show that Wk(jzl is
independenbf {Wl(i), R W,gi)}, given Sy.

Finally, the costcriterion asdefinedin (3) is additive over
time. In particular,if we define

91(Sk, Up) = clqp, =1y + H{X£3k><A}, 1<k<n (4
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and
gn(Sn) =1

then a Bayesoptimal handof algorithm minimizes

{xiF <Al

n—1

Sp)l + Z E [9x(Sk, Ur)].

k=1

E [g.(

Remarkl: The cost structurein (4) does not take into
accountthe possibility that the call may be terminatedat
some time & betweenone and n. If p is the termination
(hangup)probability[11] for eachtime stepandif a geometric
distribution is assumedor the call duration,then eachcost
term g, should be multiplied by (1 — p)*. Thus, if a good
estimateof p is available,it caneasilybeincorporatednto the
coststructurewithoutanyfundamentathangesn theanalysis.

The DP solution is obtainedrecursively as follows. Let
the expectedcost-to-goat time £ (due to all the decisions
up to time k) be denotedby J,. Due to the conditionally
independenthoisestatistics,J;. is a function only of the state
Si. The expectedcost of the Bayesoptimal handof policy
overtheentiretrajectoryis simply J1 (S ), andoptimalhandof
decisionfunctions are obtainedby solving the following set
of recursiveequationg(see[16] for an explanationof the DP
technique):

Jo(XP,XP B,) =1 (5)

{(XP <Ay

X(Q)

n—1>L

In— (XT(Ll)17 Bn—l)

= énln Evvn_1|sn_1 [gn(Sn) + gn—l(Sn—h Un—l)]

n—1

H{Xi&; U }—i-mln[P{X(Bn DPIND SN
+ P ”‘1) <A xP-0y ©)
andfor k=n—-2,n-3, .-, 1
WD, X2, By
Igln Ew,isi (Jra1(Skt1) + gr(Sk, Ur)) = {X(Bk><A}

X2 B X, xPy,

By | xM, xP)).

+ min (E{Jx41( 15-1—)17
+ E{ D (X0 X2, )
Note that for each %, the optimum decision function ¢
dependsonly on the state S; and not on any past signal-

strengthmeasurement§ heseoptimumdecisionfunctionsare
describedby

P{X(Bn 1) <A|X( n— 1)}+
bn_l_O

>
P X (Bu-1) o A | x(Br-1)
o S PG <AL TS

andfor k =1,2,..-

B 1
B/ (Y,

Up=0
> B 1
+c Uk<=1 E{JIE+§)(XIE4—)17

®)

,n—2

X3 10, X2

XP01xP, xPy. 9
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The decisionfunctions (¢%, ¢35, ---, ¢%_;) describedin (8)
and (9) constitutea Bayesoptimal handof algorithm ¢* for
tradeof parameterc. The following theorem,whoseproof is
givenin the Appendix,addressethe solutionto thevariational
formulation of (2).

Theoem1: An optimal handof algorithm for the varia-
tional formulation is a Bayes solution for an appropriately
chosenvalue of the tradeof parameterc.

The DP equationscan be solvednumericallyto obtainthe
optimumhandof policy ¢*, however the solutioncanbe quite
complexand nonstationary Furthermore the computationof
¢* relieson prior knowledgeof the trajectoryof the mobile.
Theseconsiderationgmply thatthe DP solutionis impractical.
Thetradeof curvefor the DP solutioncan,however peusedas
atheoreticabenchmarkn the comparisorof othersuboptimal
algorithms.In the next section,we discussthe designof a
simple stationarylocally optimal handof algorithm that is
basedon the DP solution.

IV. LocALLY OPTIMAL ALGORITHM

Solutions (8) and (9) correctly indicate that the globally
optimal strategyat a particularlocation dependson the future
trajectory. That unreasonableequirementsuggeststhat the
problem should be reformulated specifically to ignore the
future trajectory. A locally optimal solution to the Bayes
problem may be obtainedby restricting the trajectory under
consideratiorto the pointsk andk + 1. Thatis, we ignorethe
consequencesf a handof decisionat time % at timesbeyond
k + 2 andbasethe decisionon all availableinformationup to
time k. Restricting(8) and (9) to n = 2 yields decisionrules
¢ that selectthe besttradeof betweenthe costof a handof
and the probability that X,Ef’i*l) falls below A, given the
information I;,. Hence,the locally optimal decisionfunction

lo at time & hasthe structure

Up=0

(Bp) > By
V<Alny+e < PGY

P{XS <A | L}, (@10)
The local criterion givesrise to a solutionthat usesonly local
information.

Remark2: Supposewe accountfor possiblecall termina-
tion in the designof the locally optimal test by multiplying
eachcost function g, by the discountfactor (1 — p)*. The
only modificationthat resultsin the locally optimal decision
function ¢ is that the parameter is replacedby c(1 — p).
The structureof ¢! remainsunchangedFurthermorejf p is
small, ¢ is virtually unafectedby the discountfactor.

For the lognormal fading model that we have assumed,
the conditionaldistribution of X 41 given X(z) is Gaussian,
hence the probabilitiesin (10) are entlrely determlned)y the
conditional meansand variances

(9)
k+1

E[X,, [ 1] =aX” + (1 - a) i — nlog (11)
)
Var[ X | I] = (1 - a?)o?. (12)
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a) hysteresis

b) locally optimum
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¢) hysteresis with threshold

A
signal strength, x®
[

A
other signal strength, X7

Fig. 2. Decisionregionsbasedon the predictedsignal strengthX (B) of the currentstationand the other station X (B“) | respectively for three different
handof strategiesDecisionin favor of handof is madewhen the signal strengthslie inside the shadedarea.

Note thatthe conditionalvariancedoesnot dependon location
information. Furthermore,if the sampling rate is high, the
argumentof the log function in (11) is closeto one, which
implies the conditional meanis also approximatelyindepen-
dent of location information. However, with d() and df}rl
unknown, we are, in practice, forced to use the best avail-

able estimateof (11), denotedX "), basedon the available

k+10
information ;. The resultlngtest</)10 is describedby
¢ (BL) Uy =0 PG
ov1—a? Up=1 ov1—a?
where Q(z) = 1/v2r [ exp(—2?/2) dz. The correlation
parametere = exp (vt,/dy) is speeddependentand, in

practice,it canbe determinedrom velocity estimatesSeveral
authorstreatthe problemof estimatingstatisticsof the fading
environment[17]—-[20], and the algorithm suggestedy (13)

can clearly accommodat®n-line estimatesof v, dy, ando.

This adaptationis discussedurtherin SectionV.

Fig. 2 shows the decision regions of the conventional
hysteresisalgorithm, locally optimum test, and hysteresis-
thresholdalgorithm presentedby Zhang and Holtzman [9].
Comparingthe hysteresigestandthelocally optimumtest,we
seethe locally optimum test can avoid unnecessaryiandofs
in situations where both signal strengthsare above A. In
systemsdesignedto producevery few servicefailures, i.e.,
thosewith large fade mamgins, this could resultin a significant
savingin the numberof handofs. The locally optimum test
also avoids bad handofs when both signals are below A.
However,in systemswith large fade magins, that situation
occursvery rarely.

An ad hoc schemehat emulateghe behaviorof the locally
optimum testis the hysteresis-thresholdlgorithm [9], which

performsthe usualhysteresiﬂestX(BC)z X®) 4 h, butonly
after first verifying that X(3) < ¢ with a suitably chosen
threshold.In SectionV, we seethat the performanceof a
locally optimum test can be closely approximatedby the
hysteresis-thresholtist, but the advantagen doing so is not

specific simulation parametersvere:

D =2000 m stationdistance;

@ =105 stationstrength;

n =30 path-lossexponent;

02 =25 fading processvariance;
dy, =2,5 andl0 m samplingdistances;

do =30 m correlationdistance;

A =0dB thresholdof servicefailure.

Thesevaluesare consistentwith [9] and[14] and together
yield a mediansignal strengthof 15 dB (with respectto A)
at the midpoint betweenstations. At a sampling period of

= 0.5 s,thesamplingdistance®f 2,5, and10m correspond
to speedsf 14.4, 36, and 72 km/h.

50000 realizationswere usedto estimatethe performance
of eachstrategyat eachparametersetting. The samesignal-
strength predictor X ,Eﬁ)rl = X,EZ) was used in comparing
decision strategies. The Bayes optimal solution was con-
structedby quantizingthe decisionregions(akin to Fig. 2) for
¢;. and calculatingthe expectationsn (5)—(7) by numerical
integration.

Fig. 3 comparesthe performanceof the locally optimum
handof algorithmwith that of straightforwardhysteresisand
hysteresis-thresholdests in terms of the tradeof between
the number of handofs and service failures. Comparedto
the simple hysteresigest, the locally optimum and threshold
strategiesconsistentlyachievefewer service failures for the
same number of handofs. The locally optimum test has,
effectively, the same performanceas the best of threshold
tests.More precisely,the numberof servicefailures for the
locally optimumtestcanslightly exceedhatof the hysteresis-
threshold test, but, by varying a single parametere, the
locally optimum performancecurve appearsto trace close
to the minimum miny, ; E[Nsr] of all thresholdtests. We
have no strategyto constructthe bestperformancecurve for
all hysteresis-threshok#sts. However,experimentatiorshows
thatthe besthysteresis-thresholéstsemploysmall hysteresis
values(suchasO, 1, and 2 dB usedin the figure) to which

clear.Unlike thelocally optimumtest,the hysteresis-threshold their performanceas somewhatinsensitive.

testrequirestwo designparameter@ndis not easily adapted
to changingenvironments.
V. NUMERICAL RESULTS

We simulatea scenarioin which the mobile traverseshe
line leading a distance D from station 1 to station 2. The

Fig. 4 comparesperformanceof the locally optimumdeci-
sionrule atthreesamplingdistancesorrespondingdo different
speeds.Due to spatial correlation, short-samplingdistances
allow bettersignal-strengtipredictionand,thus,betterhandof
decisionsand fewer servicefailures. Dashedlines show how
the operatingpoint changesf the tradeof parameteremains
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10

T T T

|*=+=hysteresis (h)
—— locally optimum {c) i
- - threshold (t; h = 0,1,2 dB)
I+ DP solution (c) i

10 SITRIEY (EE

-,
~.

average number of service failures

50000 tria\é oV < 0.06:8 v=72km/h 10 meter sampling :a=0.717 vér=25
1 L 1 | 1 1

0 1 2 3 4 5 6 7
average number of handoffs

Fig. 3. PerformanceomparisonWe comparethetradeof betweerhandofs
andservicefailuresfor threestrategiedo eachotherandto the bestachievable
(dynamicprogrammingsolution).Eachcurveis parameterizethy the variable
in parenthesiswith a single parameterthe locally optimum testfollows the
bestperformancehatis achievableusingtwo parametehysteresis-threshold
tests.

10° . . . .

tradeoff parameter (c )
----- 3.5e-01
.4.0e-02
' 456-03
5.1e-04
D.7€-05

average number of service failures

10

6
average number of handoffs

Fig. 4. Tradeof curveparametrizationPerformancef the locally optimum
test is shown at sampling distancescorrespondingto mobile speedsl14.4,
36, and 72 km/h (assumingts = 0.5 s). Dashedlines connectpoints of the
equaltradeof parameterUnlabeledradeof valuesarespacedogarithmically
betweenindicated values.

fixed, while the cellular environment(e.g.,speed)changesin
making (13) adaptive we may clearly useon-line estimateof
the shadowfadingvarianceandsignal-strengtttorrelation but
is it also necessaryo adaptthe tradeof parameterc? Fig. 4
showsthat if the tradeof parameteremainsfixed, then the
“knee” of the operatingcurveat slow speeddransformsearly
to the kneeof the curve at high speedsThus, an acceptable
testcanbe had by choosinga fixed value for the tradeof pa-
rameter.This comparedavorablywith approacheso adaptive
hysteresigeststhat requireseparateanalysisat eachspeedin
orderto determinethe optimal hysteresisvalue [17].

Fig. 5 showsperformancecurvesof the simple hysteresis
testas a function of samplingdistance.Note, in comparison
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10

10

average number of service failures

-
o

10
average number of handoffs

Fig. 5. The hysteresisalgorithm doesnot adaptto speed.Performanceof
the hysteresistest is shown at sampling distancescorrespondingo mobile
speedsl4.4, 36, and 72 km/h (assumingt; = 0.5 s). Comparedwith the
locally optimal test(Fig. 4), the achievableperformanceof hysteresidestsis
relatively unchangedat different mobile speeds.

to Fig. 4, that hysteresisperformancecurves are relatively
unchangedat different samplingdistancesA speed-adaptive
rule could ideally move the operatingpoint to any point on
the particularcurve specifiedby the currentmobile speedBut
evenwith sucha rule, hysteresigestscannotreachthe same
pointsin the (E[Ni], E[Vsr]) planeasthelocally optimaltest
can. Hysteresistests cannottake advantageof the increased
predictability of the signal strengthat slow speeds.

VI.

We introduceda new call-quality criterionto balanceagainst
the numberof handofs in designingan optimal handof strat-
egyandshowedthatthe Bayesandvariationalformulationsof
theresultingoptimizationareequivalent.The optimal decision
rules may be found by dynamic programming,but are too
costly to implementand dependon prior knowledgeof the
trajectory of the mobile.

A locally optimal solutiongivesriseto a hysteresigestthat
comparegprobabilitiesratherthansignalstrengthsThislocally
optimal testnaturally hasthe propertyof preventinghandofs
when the signal from the operative base station is strong
and allowing handofs when that signalis weak. The locally
optimumtestcomparedavorablyin performancewith simple
hysteresistestsand is competitive with hysteresis-threshold
tests.For the locally optimumstrategy it is immediatelyclear
how to incorporateon-line parameterestimatesto obtain an
algorithm that respondsto changesin the propagationenvi-
ronment. This natural adaptabilityis the principle advantage
of the locally optimal handof testover currentapproaches.

CONCLUSIONS

APPENDIX

Proof of Theoem1: Let .J(¢,c) denotethe Bayescost
for a handof policy ¢, i.e.,

J(¢,c) = cE[Nul(¢) + E[Nsr](4)
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where E[Ny| and E[Nsr] are written explicitly as functions
of ¢. The Bayesoptimal solution ¢* hasa cost.J*(c) thatis
given by

J*(c) = m(gn J(¢, c) = J(d7,0).

The following lemmagives an importantpropertyof J*(c).

Lemmal: J*(c) is a concavecontinuousfunction of ¢ on
(0, 00).

Proof: The Bayes optimal solution is obtained recur-
sively from (5) to (9). In particular, J*(¢) = J1(S1). In
the following, we write the cost-to-gofunctionsexplicitly as
functionsof ¢, i.e., Ji(Sk, ©).

The function Jx(Sy, ¢) is trivially a concavefunction of
¢. Now, supposeJy+1(Sk+1,¢) is a concavefunction of c.
Then,from (6), it follows that J;.(S%, ¢) is a concavefunction
of ¢ as well since J,(Sk, ) is expressedas the sum of a
constantand the minimum of two concavefunctions of c.
Thus, by induction, J1(51, ¢) = J*(¢) is also a concave
(hencecontinuous)function of ¢ on (0, o).

Now, for any fixed policy ¢, the Bayescost J(¢, ¢) is
a straightline as a function of ¢ with slope E[Nu|(¢) and
interceptE[Nsr|(¢). Furthermorethis line mustlie abovethe
concavecurve J*(c). Theline correspondingo the variational
solution ¢, is onethat hasan interceptlessthan or equalto
« andthe minimum possibleslope.It is clearthat sucha line
mustpassthrougha point (or points)on curve J*(¢). Let the
ordinateof onesuchpoint be ¢,. Then,the Bayessolutionfor
¢ IS a solutionto the variational problem.
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