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Abstract

Locally weighted regression allows to adjust the regression models to nearby data of a query example.
In this paper, a locally weighted regression method for the multi-target regression problem is proposed.
A novel way of weighting data based on a data gravitation-based approach is presented. The process
of weighting data does not need to decompose the multi-target data into several single-target problems.
This weighted regression method can be used with any multi-target regressor as a local method to provide
the target vector of a query example. The proposed method was assessed on the largest collection of
multi-target regression datasets publicly available. The experimental stage showed that the performance
of multi-target regressors can be significantly improved by means of fitting the models to local training
data.
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1. Introduction

In the last decade, multi-target regression has gained

the attention of the machine learning community,

due to the numerous real-world problems that con-

tain multi-target data. Particular applications involv-

ing multi-target regression include ecological mod-

eling 25, chemometrics 16, automatic control 17, de-

mography studies 38, energy efficiency 40, signal

processing 42 and more.

Multi-target regression concerns the task of pre-

dicting multiple continuous variables using a com-

mon set of input variables 4,38. Multi-target re-

gressors are commonly characterized by learning a

global model to fit all of the training data. However,

it is well known that the performance of a predictive

model is quite related to the number and quality of

training examples from which the model was con-

structed 43.

The overall performance of learning systems can be

significantly improved by a proper local adjustment

of their capacity (parameters of the learning algo-

rithms) 43,5. Vapnik & Bottou 44 proposed the theo-

retical framework on which locally weighted learn-
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ing is based; instead of fitting a model with all train-

ing examples, locally weighted learning methods fit

a model to nearby data. Locally weighted learning is

a form of lazy learning that aims to learn local mod-

els to fit the training data only in a region around

the location of a query point 2. Examples of lo-

cally weighted learning methods include k-Nearest

Neighbours (kNN) and Locally Weighted Regres-

sion methods.

Locally weighted regression allows to improve

the overall performance of regression methods by

adjusting the capacity of the models to the properties

of the training data in each area of the input space 29.

Locally weighted regression has been applied to nu-

merous areas among which figure numerical analy-

sis 26, sociology 49, economics 24, chemometrics 45,

computer graphics 30, robot learning and control 36.

Locally weighted regression has been widely

studied in single-target problems 29. However, to the

best of our knowledge, locally weighted regression

methods for multi-target regression problems have

not been studied yet. In this paper, an effective lo-

cal algorithm for multi-target regression, named as

Locally Weighted Regression based on Data Gravi-
tation (LWRDG), is presented. We propose a novel

way of weighting data based on a data gravitation

approach. Data gravitation approach comprises the

application of physic gravitation principles to re-

solve machine learning problems 32. LWRDG di-

rectly weights the multi-target data, i.e. it does

not decompose the multi-target problem into several

single-target ones. It can be used with any multi-

target regressor as a local method to provide the tar-

get vector of a query example.

To the best of our knowledge, this is the first at-

tempt to study the benefit of the locally weighted

regression to resolve multi-target regression prob-

lems in the machine learning area. Furthermore,

for the first time, a data gravitation-based approach

is applied to the locally weighted regression and

multi-target regression problems. The results con-

firmed that the overall performance of multi-target

regressors can be significantly improved by fitting

the models to local training data in a region around

the location of a query example.

An extensive experimental study was carried out

on a collection of 18 datasets. It is the largest collec-

tion of benchmark multi-target regression datasets

publicly available∗. The proposed locally weighted

learning method was assessed with the two most

relevant multi-target regressors presented in the re-

cent work Ref. 38. The experimental results were

validated using non-parametric tests, as proposed in

Ref. 9.

This paper is arranged as follows: Section 2 de-

scribes the multi-target regression problem, the most

relevant multi-target regressors that have appeared

in the literature, the basis of the locally weighted re-

gression and data gravitation approaches. Section

3 presents LWRDG algorithm. Section 4 describes

the experimental set-up and analyses the results. Fi-

nally, Section 5 provides some concluding remarks.

2. Preliminaries

In this section, the general definition of the multi-

target regression problem is presented. The most rel-

evant multi-target regression methods that have ap-

peared in the literature are briefly discussed. The ba-

sis of the locally weighted regression and data grav-

itation approaches are also portrayed.

2.1. Multi-target regression problem

Let us say S is a dataset containing couples (x,y)
where x∈X is an input vector and y∈Y is a target

vector. X is the input space†containing d input vari-

ables (X1,X2, . . . ,Xd), and Y is the output space‡

consisting of q target variables (Y1,Y2, . . . ,Yq). Let

us say xi is the input vector of the example i, and x�i
denotes the value of the �-th input variable. Let us

say yi represents the target vector of the example i,
and y�i represents the value of the �-th target variable.

Given the set S = {(x1,y1),(x2,y2), . . . ,(xn,yn)} of

n training examples, the goal in multi-target regres-

sion problems is to learn a predictive model that,

∗ http://mulan.sourceforge.net/datasets-mtr.html
† The domain of input variables can be continuous, discrete or mixed type.
‡ The domain of target variables is continuous.
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given an unseen input vector x, is able to predict a

target vector ŷ that best approximates the true target

vector y. 4,38

Up to date, a large number of methods have been

proposed to resolve multi-target regression prob-

lems. The taxonomy of multi-target regression al-

gorithms can be organised into two groups: prob-

lem transformation methods and algorithm adap-

tation methods 4. Problem transformation meth-

ods transform a multi-target regression problem into

several single-target regression problems. Then, for

each resulting single-target problem, a classical re-

gression method is executed, and finally, an aggre-

gation strategy is performed. On the other side, the

algorithm adaptation category comprises algorithms

that are designed to directly handle multi-target data,

i.e. they do not decompose a multi-target regression

problem into several single-target regression prob-

lems.

Hoerl & Kennard 20 proposed the first work,

as far as we know, regarding solve multi-target re-

gression problem by means of a problem transfor-

mation method. The authors used the well-known

one-versus-all baseline approach to perform a sep-

arate ridge regression for each individual target.

Motivated by the tight connection between multi-

target regression and multi-label classification prob-

lems, recent researches have been focused on ap-

plying some well-known problem transformations

methods, that have been widely used in multi-label

learning 14, to resolve multi-target regression prob-

lem. Spyromitros-Xioufis et al. 38 analysed how sev-

eral multi-label approaches, such as the binary rele-

vance, stacked generalization and classifier chains,

are straightforward of applying in multi-target re-

gression contexts. As for algorithm adaptation cat-

egory, a large number of methods have been pro-

posed, such as statistical methods 37, support vector

machines 42,17, kernel approaches 3, multi-target re-

gression trees 25, and rule-based methods 1.

Recently, Spyromitros-Xioufis et al. 38 con-

ducted an extensive comparison between several

state-of-the-art multi-target regressors. The authors

showed that Stacked Single-Target (SST) and En-
sembles of Regressor Chains (ERC) methods sig-

nificantly outperform the baseline approach, which

individually performs a single-target regressor for

each target variable. The authors concluded that a

superior performance can be attained by means of

modelling potential statistical relationships between

target variables. The results also showed that SST

and ERC methods attain a better performance than

several state-of-the-art multi-target regressors.

2.2. Locally weigthed regression

Locally weighted regression (LWR) attempts to fit

the training data only in a region around the location

of a query example. LWR is a type of lazy learn-

ing, therefore the processing of training data is often

postponed until the target value of a query example

needs to be predicted. LWR and kernel regression 31

are equivalent for data distributed on a regular grid

away from any boundary. However, LWR outper-

forms kernel regression in irregular data distribu-

tions 2. LWR has an optimal rate of convergence

in a minimax sense 39, and it has a high minimax

efficiency among all possible estimators 12. Hastie

& Loader 18 also demonstrated that LWR methods

may handle a wide range of data distributions, and it

can avoid boundary and cluster effects.

LWR depends on the distance function used to

recover the nearest neighbours of a given query ex-

ample. However, the distance function does not need

to satisfy the formal mathematical requirements for

a distance metric 2. LWR enables several ways to

use a distance function 2, for instance: (I) one dis-

tance function is used in all parts of the input space

(global distance function), (II) the parameters of a

distance function are set for each query example by

an optimization process (query-based local distance

function), or (III) each training example has a dis-

tance function and its corresponding parameter val-

ues (point-based local distance function).

In LWR, weighting functions and smoothing

parameters are also important issues. A weight-

ing function (a.k.a. kernel function) computes the

weight§that has a neighbour of a query example.

The maximum value of a weighting function should

be at zero distance, and the function should de-

§ The weight is considered the contribution of an individual point in a regression.
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cay smoothly as the distance increases. Exam-

ples of well-known weighting functions are Linear,

Epanechnikov, Tricube, Inverse and Gaussian. Re-

garding smoothing parameters, a bandwidth param-

eter (h) defines the scale or range over which gen-

eralisation is performed. There are several ways to

set the parameter h 2, for instance by a fixed band-

width selection, nearest neighbour bandwidth selec-

tion, global bandwidth selection, query-based local

bandwidth selection or point-based local bandwidth

selection. Cleveland & Loader 8 argued in favour

of nearest neighbour bandwidth selection approach

to fix the value of h; in this case, the parameter h is

equal to the distance to the k-th nearest example.

2.3. Data gravitation approach

Data gravitation approach comprises the application

of physic gravitation principles to resolve machine

learning problems. To the best of our knowledge,

Wright 48 was the first person in analysing cluster-

ing problems by mean of a gravitational approach.

Later, Endo & Iwata 11 proposed a dynamic clus-

tering algorithm which takes into account the global

and local information of data, and Gómez et al. 15

presented a clustering algorithm which considers ev-

ery example as an object in the input space.

As for classification tasks, several data

gravitation-based algorithms have been pro-

posed 32,7,46,33. Peng et al. 32 presented one of the

most complete work concerning data gravitation-

based classification. A set of data particles¶are con-

structed from the original dataset. Given a query

example, the gravitational force of each data parti-

cle to the example is computed. The gravitational

field for each class is calculated according to the

superposition principle, and the query example is

classified according to the class with the highest

gravitational field. Later, the method presented in

Ref. 32 has been extended and improved by several

methods proposed in Refs. 7, 33, 46.

Regarding regression tasks, to the best of our

knowledge, the data gravitation approach has not

been applied yet. We consider that the application

of data gravitation could be effective to tackle the

locally weighted regression in multi-target problem.

Data gravitation-based models have demonstrated to

be less sensitive in those cases where kNN methods

severely deteriorate their performance; kNN meth-

ods tend to deteriorate their predictive performance

on data with high dimensionality, non-separable

classes, or non-uniform distribution of examples per

classes 27. In this sense, Cano et al. 7 proposed

a data gravitation model that outperforms several

state-of-the-art kNN methods, and they also demon-

strated its efficacy in imbalanced data. On the other

hand, Reyes et al. 34 presented an effective data

gravitation-based algorithm to solve the multi-label

learning problem, a paradigm very close to multi-

target regression.

3. Locally weighted learning method based on
a data gravitation approach

A local regression can be applied to multi-target

regression problem by (I) performing a locally

weighted regression method for each target variable,

or (II) designing a weighting method that directly

handles the multi-target data. The main drawback

of the first approach lies in the high computational

cost in multi-target problems with a large number of

target variables. In this work, we focused on the sec-

ond approach; we designed a method for weighting

data that does not need to decompose a multi-target

problem into several single-target problems.

In this section, the basis of our proposal is pre-

sented. First, data gravitation-based concepts are

presented. Second, the steps followed by our locally

weighted learning method are explained.

Data gravitation-based model

As was discussed in Section 2.3, previous data

gravitation-based works intend to construct an ar-

tificial data unit (called data particle) from several

training examples. However, constructing artificial

data particles from several examples have shown

several disadvantages, leading to a significant degra-

dation in the effectiveness of data gravitation-based

methods 7,34. In this work, we followed the idea pro-

¶ Data particle is a kind of data unit constructed from several training examples. A data particle has a data centroid and a data mass.
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posed in Refs. 7, 34, where each training example is

considered as an atomic data particle.

Definition 1. Atomic data particle. An atomic data

particle is a data particle with a data mass equal to

1, i.e. the particle is formed by only one example.

The centroid and target vectors of an atomic data

particle are constituted by the original input and tar-

get vectors, respectively, of the corresponding ex-

ample. An atomic data particle i is represented as a

3-tuple (xi,yi,wi), where xi is its input vector (po-

sition of the particle in the input space X ), yi is its

target vector (position in the output space Y ), and wi
represents the numeric value of its neighbourhood-
weight.

To simplify, hereafter the term atomic data par-
ticle is simply referred as particle. The concept

of neighborhood-weight was firstly presented in

Ref. 34, where the estimation process of the parti-

cle weights was inspired in the well-known exten-

sion of the ReliefF algorithm for regression prob-

lems 35. In this work, we reformulated the concept

of neighbourhood-weight as follows:

Definition 2. Neighbourhood-weight of a particle.

The neighbourhood-weight of a particle i represents

the probability of encountering particles in its neigh-

bourhood with target vectors near the target vector

of i.
Before to explain how to compute the

neighbourhood-weight of a particle, we need to de-

fine some functions and probabilities. Given two

particles i and j, the distance between their cen-

troids is calculated as

dX (i, j) =

√
d

∑
�=1

δ (x�i ,x�j)2 (1)

δ (x�i ,x
�
j)=

⎧⎪⎪⎨⎪⎪⎩
1

0
|x�i−x�j|

max(X�)−min(X�)

discrete, x�i �= x�j
discrete, x�i = x�j
continuous ,

where x�i and x�j represent the value of the �-th in-

put variable for particles i and j, respectively, and

X� is the �-th input variable in X . The function

δ (x�i ,x�j) measures the difference in the �-th input

variable. The functions max(X�) and min(X�) re-

turn the maximum and minimum values of the �-th
input variable, respectively. The function dX is the

well-known Heterogeneous Euclidean Overlap Met-
ric (HEOM) 47.

Let us say Ni represents the k-nearest particles of

particle i in the input space X . The prior probabil-

ity that the k-nearest neighbours are far from i in the

input space X is computed as

P f arX
i =

∑ j∈Ni dX (i, j)
k

. (2)

On the other hand, given two particles i and j, the

distance between their target vectors is calculated as

dY (i, j) =

√
q

∑
�=1

(y�i − y�j)2, (3)

where y�i and y�j represent the value of the �-th target

variable for particles i and j, respectively. The prior

probability that the k-nearest neighbours are far from

i in the output space Y is computed as

P f arY
i =

∑ j∈Ni dY (i, j)
k

. (4)

The prior probability that the k-nearest neighbours

are far from i in the output space given that they are

far in the input space is computed as

P f arY | f arX
i =

∑ j∈Ni dY (i, j) ·dX (i, j)
k

. (5)

Given the probabilities defined above, we can for-

mulate the neighbourhood-weight of a particle i as

wi = PnearX |nearY
i −PnearX | f arY

i , (6)

where PnearX |nearY
i is the probability that nearest

particles are close in the input space given that they

are close in the output space, and PnearX | f arY
i is the

probability that nearest particles are close in the in-

put space given that they are far in the output space.

Using the Bayes Rule, the equation can be trans-

formed into

wi =
PnearY |nearX

i PnearX
i

PnearY
i

− (1−PnearY |nearX
i )PnearX

i

1−PnearY
i

.
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Finally, the equation can be transformed, so that

it contains the probabilities P f arX
i , P f arY

i and

P f arY | f arX
i , thus resulting in the equation

wi =
P f arY | f arX

i P f arX
i

P f arY
i

− (1−P f arY | f arX
i )P f arX

i

1−P f arY
i

. (7)

As last point, Eq. (8) defines the gravitational force

that a particle j exerts over a query example i (de-

noted as f j
i ).

f j
i =

w j

dX (i, j)2
(8)

This formulation of the gravitational force was pre-

viously used in Ref. 34. Note that a query example

is considered as an atomic data particle, therefore its

mass is equal to 1. The classic formula for gravita-

tional force ( f j
i = G mim j

r2 ) is modified. In our case,

the masses mi and m j are equal to 1, the gravitational

constant (G) and the distance between the two ob-

jects (r) are replaced by the neighbourhood-weight
of the particle j and the distance value dX (i, j), re-

spectively. The neighbourhood-weight of the parti-

cle j acts as a coefficient that strengthens or weakens

the gravitational force that the particle exerts over

the query example.

Next, our locally weighted learning method is

explained.

Locally weighted learning method

The steps followed by our locally weighted learn-

ing method are straightforward. The training
phase is summarized in these three steps: (I) con-

sider each training example i ∈ S as a particle,

where S is a given training set, (II) compute the

neighbourhood-weight of each particle i ∈ S, and

(III) the neighbourhood-weight values of the parti-

cles are normalized to [0,1] range.

On the other hand, the test phase is summarized

in these six steps: (I) given a query example i, the

k-nearest particles of i are retrieved, (II) the grav-

itational forces between the query example i and

each of the k-nearest particles are computed, (III)

a weight for each nearest particle is computed by

means of a kernel function using the gravitational

forces, (IV) a weighted training set is composed by

the k-nearest particles, (V) the weighted training set

is used to train a multi-target regressor, and (VI) the

induced model predicts the target vector of the query

example i.
We named this approach as Locally Weighted Re-

gression method based on a Data Gravitation model
(LWRDG). Algorithm 1 shows the pseudo-code of

the LWRDG method. LWRDG does not decom-

pose the multi-target regression problem into several

single-target problems, i.e. it directly handles the

multi-target data. It can be used with any existing

multi-target regression method as a local regressor

to predict the target vector of query examples.

In the training phase, LWRDG needs to retrieve

the k-nearest neighbours for each particle to com-

pute neighbourhood-weight values. However, if the

distance between each pair of training particles is

pre-calculated and an adequate data structure for the

searching process is employed, the computing of the

k-nearest neighbours for each particle can be per-

formed efficiently. Let us say fk is the cost func-

tion of searching the k-nearest neighbours of a parti-

cle. Therefore, in the training phase, LWRDG needs

O(n · fk) steps, where n is the number of original

training examples.

In the test phase, given a query example i,
LWRDG retrieves the k-nearest particles to i, cre-

ates a weighted training set composed by the k-

nearest particles, trains the multi-target regres-

sor with the new weighted training set, and fi-

nally, predicts the target vector of the query ex-

ample i. Let us say ftr(k,d,q) and fts(k,d,q) are

the cost functions of training and testing, respec-

tively, the multi-target regressor on a dataset with

k examples, d input variables and q target vari-

ables. Therefore, the time complexity of LWRDG

to predict the target vector of a query example is

O(max( fk, ftr(k,d,q), fts(k,d,q))).
Note that, for multi-target regressors with slow

training procedures, only k (k << n) examples are

considered for training the regressor, leading to a

notable improvement on the computational cost of

these regressors. However, it is worthy to consider

that this process is performed for each query exam-

ple, since LWRDG algorithm is a lazy method.
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Algorithm 1: LWRDG method.

Input: S→ training set of multi-target examples, Ts → test set of examples, k→ number of nearest neighbours, Φ→ multi-target regressor

1 begin
// Training phase

2 foreach i ∈ S do
3 Ni ← kNearestNeighbors (i,S,k);

4 wi ← nw (i, Ni); // Eq. (7);

5 end
6 normalizeNeighbourhoodWeights ();

// Test phase

7 foreach i ∈ Ts do
8 Ni ← kNearestNeighbors (i,S,k);

// Compute gravitational forces

9 foreach j ∈ Ni do
10 f j

i ← gf (i, j); // Eq. (8)

11 end
// Create a new training set

12 SN ← /0;

13 foreach j ∈ Ni do
// Rescale the forces by the bandwidth (h). h is equal to the maximum gravitational force.

14 f j
i ← 1− f j

i /h;

// Pass the force value through a kernel function

15 j.weight← kernel ( f j
i );

16 SN ← SN ∪ j;
17 end

// Train the multi-target regressor with the new weighted training set

18 train (Φ,SN );

// Predict the target vector of the query example

19 test (Φ,i);
20 end
21 end

4. Experimental study

This section presents a brief description of the multi-

target regression datasets used in the experimental

study, as well as describes how the effectiveness of

our proposal was assessed‖. Finally, an analysis of

the experimental results is depicted.

4.1. Multi-target regression datasets

In our experimental study, 18 multi-target regression

datasets were used. To date, these 18 datasets con-

stitute the largest collection of benchmark datasets

for studying the multi-target regression problem 38.

Table 1 shows some statistics of the benchmark

datasets. The datasets vary in size: from 49 up to

9803 examples, from 7 up to 576 input variables,

and from 2 up to 16 target variables.

Table 1. Statistics of the benchmark datasets (n: # of examples,

# of input variables (d), # of target variables (q).

Dataset Source n d q
andro Ref. 19 49 30 6

atp1d Ref. 38 337 411 6

atp7d Ref. 38 296 411 6

edm Ref. 23 154 16 2

enb Ref. 40 768 8 2

jura Ref. 16 359 15 3

oes10 Ref. 38 403 298 16

oes97 Ref. 38 334 263 16

osales Ref. 21 639 413 12

rf1 Ref. 38 9125 64 8

rf2 Ref. 38 9125 576 8

scm1d Ref. 38 9803 280 16

scm20d Ref. 38 8966 61 16

scpf Ref. 22 1137 23 3

sf1 Ref. 28 323 10 3

sf2 Ref. 28 1066 10 3

slump Ref. 50 103 7 3

wq Ref. 10 1060 16 14

‖ The algorithms and datasets are available to download at http://www.uco.es/grupos/kdis/kdiswiki/LWRDG.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 282–295
___________________________________________________________________________________________________________

288



4.2. Experimental setting

In this work, the average Relative Root Mean
Squared Error (aRRMSE) was employed to assess

the effectiveness of our proposal. This evaluation

measure has been commonly used to evaluate multi-

target regression methods 1,38. In all experiments, to

estimate the aRRMSE values a 10-fold cross valida-

tion was performed.

Let us say yi and ŷi are the vectors of the ac-

tual and predicted outputs for the example i, respec-

tively. Let us say y represents the average vector of

the actual outputs over training set. The aRRMSE

measure is computed as

aRRMSE =
1

q

q

∑
�=1

RRMSE(�) (9)

RRMSE(�) =

√
∑m

i=1(y
�
i − ŷ�i )2

∑m
i=1(y

�
i − y�)2

,

where m is the number of test examples, q is the

number of target variables, and RRMSE(�) repre-

sents the Relative Root Mean Squared Error for the

�-th target.

As was previously described in Section 2.1,

Spyromitros-Xioufis et al. 38 showed that SST and

ERC regressors are significantly better than sev-

eral state-of-the-art multi-target regressors. The au-

thors conducted all experiments in the same 18

datasets used in this work, and they also demon-

strated that these two multi-target regressors obtains

the best results by using bagged 6 regression trees

(BAG) as single-target base regressor (the predic-

tions of 100 trees were combined). Consequently, in

this work, our locally weighted learning algorithm

was assessed with SST and ERC regressors. Here-

after, we dubbed the combination of SST and ERC

methods with BAG as SST-BAG and ERC-BAG,

respectively. Also, we refer to the combination

of our proposal -LWRDG- with the SST-BAG and

ERC-BAG local regressors as LWRDG-SST-BAG

and LWRDG-ERC-BAG, respectively.

For the sake of fairness, for all lazy methods

involved in the comparisons conducted, the best

number of neighbours (k) was estimated via cross-

validation. All computational methods were imple-

mented in MULAN library 41. MULAN is a Java li-

brary which contains several algorithms, evaluation

methods and measures for multi-label learning, and

its functionality has been also expanded to support

multi-target regression.

4.3. Results and discussion

Next, the results obtained in the different parts of the

experimental study are presented and discussed.

4.3.1. Evaluating several kernel functions

The aim of this part of the experimental study was

to evaluate the impact of several kernel functions on

the overall performance of our proposal. LWRDG

was analysed with the following five kernel func-

tions:

• Linear: 1− v
• Epanechnikov: 3

4
(1− v2)

• Inverse: 1/(1+ v)
• Tricube: (1− v3)3

• Gaussian: e−v2

, where v is the value from which the weight of an

example/particle is computed.

Table 2 shows the results of LWRDG-SST-BAG

and LWRDG-ERC-BAG methods using the five ker-

nel functions. The best error values are highlighted

in bold typeface.

As a multiple comparison was conducted (every

combination of LWRDG with a kernel function is

considered as a different and independent method),

the Friedman’s test 13 was performed to evaluate

whether exist significant differences in the results.

The last row in Table 2 shows the average ranks

computed by Friedman’s test.

In both cases, i.e. studies with regards

to LWRDG-SST-BAG and LWRDG-ERC-BAG,

Friedman’s test did not detect significant differences

in the results at the significance level α = 0.05. This

means that, in average, our proposal had similar

performances independently of the kernel function

used. However, according to the average rankings

computed by Friedman’s test, the LWRDG method

obtained the lowest average ranks when using the
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Table 2. Results of LWRDG using different kernel functions.

Dataset Linear Epanechnikov Tricube Inverse Gauss

andro 0.470 0.475 0.472 0.475 0.478

atp1d 0.383 0.383 0.375 0.384 0.382

atp7d 0.526 0.532 0.523 0.540 0.537

edm 0.728 0.727 0.728 0.728 0.727
enb 0.133 0.132 0.132 0.138 0.137

jura 0.599 0.600 0.599 0.600 0.599
oes10 0.422 0.422 0.422 0.422 0.422
oes97 0.523 0.524 0.523 0.524 0.524

osales 0.741 0.748 0.746 0.747 0.748

rf1 0.171 0.171 0.171 0.171 0.171
rf2 0.319 0.357 0.312 0.318 0.322

scm1d 0.322 0.322 0.322 0.322 0.322
scm20d 0.348 0.349 0.348 0.349 0.349

scpf 0.795 0.788 0.793 0.785 0.787

sf1 1.069 1.061 1.073 0.972 0.983

sf2 0.985 0.978 0.989 0.981 0.984

slump 0.705 0.700 0.711 0.702 0.703

wq 0.913 0.913 0.912 0.914 0.914

Ave. rank 2.833 3.028 2.583 3.306 3.250

(a) Results of LWRDG-SST-BAG. The Friedman statistic, dis-

tributed according to χ2 with four degrees of freedom, is equal

to 2.578. The p-value computed by Friedman’s test is equal to

0.631. The Friedman’s test did not reject the null hypothesis at

a significance level α = 0.05.

Dataset Linear Epanechnikov Tricube Inverse Gauss

andro 0.412 0.421 0.443 0.445 0.438

atp1d 0.372 0.372 0.365 0.378 0.374

atp7d 0.500 0.515 0.495 0.525 0.518

edm 0.710 0.702 0.710 0.717 0.710

enb 0.107 0.110 0.104 0.120 0.118

jura 0.601 0.598 0.664 0.590 0.589
oes10 0.410 0.414 0.410 0.415 0.415

oes97 0.502 0.508 0.498 0.513 0.515

osales 0.713 0.733 0.728 0.731 0.743

rf1 0.155 0.155 0.163 0.172 0.170

rf2 0.454 0.492 0.461 0.476 0.469

scm1d 0.320 0.309 0.301 0.315 0.309

scm20d 0.329 0.336 0.329 0.339 0.340

scpf 0.822 0.810 0.881 0.789 0.788
sf1 1.731 1.754 1.784 1.067 1.127

sf2 1.298 1.286 1.287 1.062 1.082

slump 0.682 0.675 0.696 0.685 0.679

wq 0.913 0.910 0.923 0.910 0.910
Ave. rank 2.611 2.750 2.833 3.639 3.167

(b) Results of LWRDG-ERC-BAG. The Friedman statistic, dis-

tributed according to χ2 with four degrees of freedom, is equal

to 4.878. The p-value computed by Friedman’s test is equal to

0.300. The Friedman’s test did not reject the null hypothesis at

a significance level α = 0.05.

Linear, Tricube and Epanechnikov kernel functions.

These results are considered as good results, since

they shows the stability of our data gravitation-based

model, independently of the type of kernel function

used to compute the weights.

4.3.2. Comparing with a well-known approach for
weighting data

The aim of this part of the empirical study was to

analyse whether our data gravitation-based model

obtains superior performance than the basic ap-

proach for weighting data. The basic approach for

weighting data (dubbed as BWR) is directly based

on the distance values between a query example and

its k-nearest neighbours; these distance values are

used by the kernel functions to compute the respec-

tive weights. Consequently, two training examples

at the same distance of a query example will have

equal weights.

LWRDG and BWR methods were executed with

the five kernel functions used in the previous Sec-

tion 4.3.1. Tables 3 and 4 show the results using

SST-BAG and ERC-BAG as local regressors, re-

spectively. The best error values are highlighted in

bold typeface.

We conducted a Wilcoxon signed-ranks test to

determine whether LWRDG and BWR are statis-

tically different using the same kernel function, as

proposed by Demsar 9 for the statistical comparison

between two independent algorithms. The p-values

computed by Wilcoxon’s test are showed in the last

row of Tables 3 and 4.

The results showed that LWRDG significantly

outperformed to BWR method, independently of the

kernel function used in the weighting process. In all

cases, the Wilcoxon’s test rejected the null hypothe-

sis at a significance level α = 0.05. The results con-

firmed that our data gravitation-based model can at-

tain a superior performance in comparison with the

weighting process that only considers the distance

between examples.
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Table 3. Results of LWRDG-SST-BAG and BWR-SST-BAG
methods using different kernel functions.

Dataset
Linear Epanechnikov Tricube Inverse Gauss

LWRDG BWR LWRDG BWR LWRDG BWR LWRDG BWR LWRDG BWR

andro 0.470 0.483 0.475 0.487 0.472 0.499 0.475 0.512 0.478 0.509

atp1d 0.383 0.391 0.383 0.390 0.375 0.392 0.384 0.392 0.382 0.410

atp7d 0.526 0.534 0.532 0.539 0.523 0.533 0.540 0.541 0.537 0.552

edm 0.728 0.751 0.727 0.751 0.728 0.750 0.728 0.751 0.727 0.751

enb 0.133 0.139 0.132 0.134 0.132 0.133 0.138 0.138 0.137 0.135
jura 0.599 0.603 0.600 0.603 0.599 0.603 0.600 0.603 0.599 0.621

oes10 0.422 0.426 0.422 0.426 0.422 0.436 0.422 0.426 0.422 0.426

oes97 0.523 0.530 0.524 0.530 0.523 0.530 0.524 0.531 0.524 0.531

osales 0.741 0.748 0.748 0.753 0.746 0.767 0.747 0.750 0.748 0.770

rf1 0.171 0.183 0.171 0.176 0.171 0.184 0.171 0.176 0.171 0.176

rf2 0.319 0.328 0.357 0.372 0.312 0.328 0.318 0.320 0.322 0.328

scm1d 0.322 0.325 0.322 0.325 0.322 0.325 0.322 0.325 0.322 0.325

scm20d 0.348 0.357 0.349 0.358 0.348 0.357 0.349 0.359 0.349 0.359

scpf 0.795 0.810 0.788 0.795 0.793 0.800 0.785 0.789 0.787 0.792

sf1 1.069 1.134 1.061 1.033 1.073 1.092 0.972 0.973 0.983 0.992

sf2 0.985 0.976 0.978 0.978 0.989 0.970 0.979 0.984 0.984 0.984
slump 0.705 0.713 0.700 0.715 0.711 0.726 0.702 0.709 0.703 0.711

wq 0.913 0.935 0.913 0.913 0.912 0.939 0.914 0.924 0.914 0.920

p-value 0.001 0.002 0.001 0.000 0.000

Table 4. Results of LWRDG-ERC-BAG and BWR-ERC-BAG
methods using different kernel functions.

Dataset
Linear Epanechnikov Tricube Inverse Gauss

LWRDG BWR LWRDG BWR LWRDG BWR LWRDG BWR LWRDG BWR

andro 0.412 0.425 0.421 0.455 0.443 0.462 0.445 0.499 0.438 0.456

atp1d 0.372 0.374 0.372 0.380 0.365 0.374 0.378 0.385 0.374 0.391

atp7d 0.500 0.504 0.515 0.523 0.495 0.498 0.525 0.549 0.518 0.530

edm 0.710 0.733 0.702 0.729 0.710 0.746 0.717 0.734 0.710 0.728

enb 0.107 0.109 0.110 0.111 0.104 0.105 0.120 0.122 0.118 0.159

jura 0.601 0.633 0.598 0.621 0.664 0.670 0.590 0.592 0.589 0.598

oes10 0.410 0.423 0.414 0.417 0.410 0.412 0.415 0.434 0.415 0.418

oes97 0.502 0.514 0.508 0.532 0.498 0.503 0.513 0.519 0.515 0.527

osales 0.713 0.729 0.733 0.742 0.728 0.733 0.731 0.754 0.743 0.773

rf1 0.155 0.172 0.155 0.169 0.163 0.182 0.172 0.183 0.170 0.185

rf2 0.454 0.467 0.492 0.545 0.461 0.536 0.476 0.483 0.469 0.451
scm1d 0.320 0.332 0.309 0.311 0.301 0.304 0.315 0.315 0.309 0.315

scm20d 0.329 0.341 0.336 0.344 0.329 0.338 0.339 0.347 0.340 0.352

scpf 0.822 0.844 0.810 0.825 0.881 0.892 0.789 0.794 0.788 0.794

sf1 1.731 1.754 1.754 1.811 1.784 1.742 1.067 1.055 1.127 1.092
sf2 1.298 1.189 1.286 1.180 1.287 1.189 1.062 1.070 1.082 1.154

slump 0.682 0.699 0.675 0.683 0.696 0.716 0.685 0.687 0.679 0.683

wq 0.913 0.915 0.910 0.918 0.923 0.987 0.910 0.925 0.910 0.934

p-value 0.002 0.002 0.011 0.001 0.005

4.3.3. Comparing local multi-target regression
with global multi-target regression

The aim of this part of the experimental study was

to analyse if our locally weighted regression method

is able to outperform global multi-target regression

methods, such as the SST-BAG and ERC-BAG re-

gressors constructed with all training data. First,

we compared a LWRDG-SST-BAG method with

a SST-BAG regressor which was trained with all

training data (dubbed as SST-BAG-Global). Sec-
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Table 5. Comparing local multi-target regression with global
multi-target regression.

Dataset LWRDG-SST-BAG SST-BAG-Global

andro 0.470 0.603

atp1d 0.383 0.398

atp7d 0.526 0.561

edm 0.728 0.747

enb 0.133 0.145

jura 0.599 0.612

oes10 0.422 0.428

oes97 0.523 0.526

osales 0.741 0.751

rf1 0.171 0.197

rf2 0.319 0.123
scm1d 0.322 0.360

scm20d 0.348 0.493

scpf 0.795 0.830

sf1 1.069 1.141

sf2 0.985 1.112

slump 0.705 0.732

wq 0.913 0.917

p-value 0.002

(a) LWRDG-SST-BAG vs. SST-BAG-Global.

Dataset LWRDG-ERC-BAG ERC-BAG-Global

andro 0.412 0.596

atp1d 0.372 0.379

atp7d 0.500 0.534

edm 0.710 0.753

enb 0.107 0.128

jura 0.601 0.617

oes10 0.410 0.429

oes97 0.502 0.535

osales 0.713 0.735

rf1 0.155 0.131
rf2 0.454 0.159

scm1d 0.320 0.364

scm20d 0.329 0.498

scpf 0.822 0.834

sf1 1.731 1.520
sf2 1.298 1.354

slump 0.682 0.712

wq 0.913 0.924

p-value 0.032

(b) LWRDG-ERC-BAG vs. ERC-BAG-Global.

ond, we followed the same procedure, but a

ERC-BAG regressor was used as a local regressor

(LWRDG-ERC-BAG) and global regressor (dubbed

as ERC-BAG-Global). To conduct the experiment,

the Linear function was employed as kernel func-

tion ∗∗.

Table 5 shows the results of the experiment.

The best error values are highlighted in bold type-

face. We conducted a Wilcoxon’s test to com-

pare the results obtained by SST-BAG, respectively

ERC-BAG, as local and global regressor. The p-

values computed by Wilcoxon’s test are showed in

the last row of Table 5.

Wilcoxon’s test rejected the null hypotheses at a

significance level α = 0.05. It means that LWRDG

was able to construct local models that significantly

outperformed their global counterparts. The results

suggested that a superior performance in the reso-

lution of the multi-target regression problem can be

attained by fitting the models to local training data

in a region around the location of a query example.

4.3.4. Discussion

In this work, we used the HEOM distance function

to search the k-nearest neighbours of a query exam-

ple in the input space X . For future researches,

it would be interesting to analyse the behaviour of

our approach using other distance functions. In

the study, five kernel functions were analysed, and

we concluded that no exist clear evidence that the

choice of the weighting function is critical for our

approach. However, we observed that, in average,

the best values were obtained when using the Lin-
ear, Tricube and Epanechnikov kernel functions (see

Section 4.3.1).

The data gravitation-based model proposed was

superior to the basic approach for weighting data

that only considers the distance between a query

point and its nearest neighbours (see Section 4.3.2).

On the other hand, our model differs of traditional

data gravitation-based methods in that it uses the

concept of neighbourhood-weight to calculate gravi-

tational forces. This coefficient increases or reduces

the gravitational force of a particle over a query ex-

∗∗According to the results presented in Section 4.3.1, not significant differences were encountered when using a different kernel function.
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ample. Two particles that are located in the input

space at the same distance to a query point, but

with different neighbourhood-weights, will have (I)

different gravitational forces, (II) different weights

computed by means of the kernel function, and

therefore (III) different impacts in the final predic-

tion of the target vector of the query point.

The results confirmed that multi-target regres-

sion methods can be significantly improved by only

using local data around a query point (see Section

4.3.3). LWR methods do not have constraints re-

garding the regression method that can be used as a

local regressor; it is worthy to note that the perfor-

mance level of our proposal depends on the multi-

target regression method used as a local regressor.

Based on the results and the statistical analy-

sis conducted, we concluded that LWRDG method

performed well in the resolution of the multi-target

regression problem. The results also showed that

our proposal can attain good performance levels on

datasets with different properties.

5. Conclusions

In this work, a locally weighted learning algorithm

for multi-target regression, named LWRDG, was

proposed. LWRDG is based on the data gravitation

approach, and it directly handles the multi-target

data, i.e. it does not need to decompose a multi-

target problem into several single-target problems.

It considers each training example as an atomic data

particle, avoiding the problems that may arise in the

creation of artificial particles from various exam-

ples. It uses the neighborhood-weight concept that

is employed in the gravitational force calculation in-

stead of the particle’s mass. LWRDG can learn local

models by using any multi-target regression method

as a local regressor.

Our proposal was evaluated on 18 multi-target

regression datasets. The experimental study con-

firmed the benefits of LWR methods to resolve the

multi-target regression problem. The overall perfor-

mance of multi-target regressors can be improved by

fitting the models to training data only in a region

around the location of a query point. On the other

hand, the study showed the effectiveness of the data

gravitation approach for the weighting process, as

well as to conduct a LWR process on multi-target

regression contexts.

Future research will study other approximations

to adapt the data gravitation approach for resolv-

ing the multi-target regression problem. In this

paper, we have focused on directly weighting the

data. However, a promising research line is to study

the effect of weighting the training criterion of the

local model. Another interesting research line is

to perform feature weighting and feature selection

tasks into the local learning process. These tools

would enable to tackle the curse of dimensionality

in datasets with a large number of input variables.
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10. S. Džeroski, D. Demšar, and J. Grbovic. Predict-
ing chemical parameters of river water quality from
bioindicator data. Applied Intelligence, 13(1):7–17,
2000.

11. Y. Endo and H. Iwata. Dynamic clustering based on
universal gravitation model. In Modeling Decisions
for Artificial Intelligence, volume 3558 of LNCS,
pages 183–193. Springer Berlin Heidelberg, Tsukuba,
Japan, 2005.

12. J. Fan. Local linear regression smoothers and their
minimax efficiencies. Annals of statistics, 21:196–
216, 1993.

13. M. Friedman. A comparison of alternative tests of sig-
nificance for the problem of m rankings. The Annals
of Mathematical Statistics, 11:86–92, 1940.

14. E. Gibaja and S. Ventura. Multi-label learning:
a review of the state of the art and ongoing re-
search. WIREs Data Mining and Knowledge Discov-
ery, 4:411–444, 2014.

15. J. Gómez, D. Dasgupta, and O. Nasraoui. A new
gravitational clustering algorithm. In Proceedings of
the SIAM International Conference on Data Mining,
pages 83–94. Society for Industrial and Applied Math-
ematics., 2013.

16. P. Goovaerts. Geostatistics for natural resources eval-
uation. Oxford University Press on Demand, 1997.

17. Z. Han, Y. Liu, J. Zhao, and W. Wang. Real time pre-
diction for converter gas tank levels based on multi-
output least square support vector regressor. Control
Engineering Practice, 20(12):1400–1409, 2012.

18. T. Hastie and C. Loader. Local regression: Automatic
kernel carpentry. Statistical Science, 8(2):120–143,
1993.

19. E. V. Hatzikos, G. Tsoumakas, G. Tzanis, N. Bassil-
iades, and I. P. Vlahavas. An empirical study on sea
water quality prediction. Knowledge-Based Systems,
21(6):471–478, 2008.

20. A. E. Hoerl and R. W. Kennard. Ridge regression:
Biased estimation for nonorthogonal problems. Tech-
nometrics, 12(1):55–67., 1970.

21. Kaggle. Kaggle competition: Online product sales.
https://www.kaggle.com/c/online-sales. 2012.

22. Kaggle. Kaggle competition: See click predict fix.
https://www.kaggle.com/c/see-click-predict-fi. 2013.

23. A. Karalic and I. Bratko. First order regression. Ma-
chine Learning, 26(2-3):147–176, 1997.

24. P. B. Kenny and J. Durbin. Local trend estimation and
seasonal adjustment of economic and social time se-
ries. Journal of the Royal Statistical Society, Series A
145:1–41, 1982.
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