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Using the k-nearest neighbor (kNN) algorithm in the supervised learning method to detect anomalies can get more accurate
results. However, when using kNN algorithm to detect anomaly, it is inefficient at finding k neighbors from large-scale log data; at
the same time, log data are imbalanced in quantity, so it is a challenge to select proper k neighbors for different data distributions.
In this paper, we propose a log-based anomaly detection method with efficient selection of neighbors and automatic selection of k
neighbors. First, we propose a neighbor search method based on minhash andMVP-tree.(eminhash algorithm is used to group
similar logs into the same bucket, and MVP-tree model is built for samples in each bucket. In this way, we can reduce the effort of
distance calculation and the number of neighbor samples that need to be compared, so as to improve the efficiency of finding
neighbors. In the process of selecting k neighbors, we propose an automatic method based on the Silhouette Coefficient, which can
select proper k neighbors to improve the accuracy of anomaly detection. Our method is verified on six different types of log data to
prove its universality and feasibility.

1. Introduction

Modern systems are developing to large scale, either by
scaling out to complex systems built on thousands of
commodity machines (e.g., Spark) or by scaling up to su-
percomputers with thousands of processors (e.g., Blue Gene/
L). (ese systems are becoming the core part of IT industry;
the occurrence of failure and its influence on system per-
formance and operation cost have become a very important
concern in the research field. Complex software and systems
often include more bugs and are difficult to understand and
analyze. Besides, as time goes on, quality of these systems is
aging. (ese problems will cause the collapse of the software
or system downtime. For large-scale computer systems, such
as supercomputers, unexpected downtime will cause much
cost, so operators should find and fix the causes of
downtime.
Logs are typically used by developers or operators to

ensure the reliability of the software or system, and the
software or system can provide logs with the status of its
components and the various events that occur at runtime.

(ese logs contain valuable information to support anomaly
detection activities, and they are collected at different levels
of detail. Analyzing and interpreting a large amount of log
data that does not always conform to a standardized
structure constitute a daunting task. As the scale increases,
distributed systems can generate logs as a collection of huge
volume of messages from several components [1]. For ex-
ample, the supercomputer Spirit with thousands of pro-
cessors can produce 1TB log data per day. (e size and
diversity of such logs can be much more in other application
domains such as the Internet of (ings [2]. If a problem
occurs, it is very time-consuming for operators to find
system problems through manually examining a great
amount of log messages. (erefore, it is not feasible to ef-
fectively detect anomalies by applying manual or traditional
analysis techniques on such large-scale log data.
A large number of anomaly detection methods based on

machine learning technologies have been studied in [3].
Experiments show that supervised learning methods are
generally superior to unsupervised learning methods in
terms of the three evaluation indicators of accuracy, recall,
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and F measure [4]. (erefore, supervised learning method is
a good choice. All too often, log lines record the behavior of
the system, including normal system behavior and abnormal
system behavior. (ere are some differences between logs
that record normal behavior (normal logs) and the ones that
record abnormal behavior (abnormal logs). Also, the
number of abnormal logs is usually much less than the
number of normal logs, which we will discuss in Section 2.
Based on the above characteristics, we can treat the ab-
normal logs as outliers. (us, using outlier detection
methods in machine learning algorithm is an effective way to
detect anomalies from large-scale log data. In most of the
outlier detection methods, k-nearest neighbor (kNN) al-
gorithm is a supervised learning method which can achieve
higher accuracy.(erefore, we detect anomalies with a kNN-
based method, which computes distances between logs and
gets the small portion of logs that are far away from the
majorities, that is, outliers.
However, when kNN algorithm is applied to anomaly

detection on large-scale heterogeneous log data, some
characteristics of logs will affect the kNN efficiency, of which
the following two points are prominent:

(1) Log data has the characteristics of large scale. kNN
algorithm needs to calculate distances between the
sample to be detected and samples in the training set
to obtain neighbor samples, and then the effort of
calculating distances will be large, resulting in low
anomaly detection efficiency.

(2) Log data has the characteristics of quantity imbal-
ance. (e proper k neighbors corresponding to
different data distributions\ are different, so it is not
appropriates to use a fixed k value for neighbor
selection on all log data. We will discuss the details in
Section 2.2.

According to the above problems, we propose a log-
based anomaly detection method with efficient neighbor
selection and automatic k neighbor selection. (e main
contributions of this paper are as follows:

(1) Aimed at the large scale of log data, a neighbor search
method based on minhash and MVP-tree is pro-
posed, which reduces the effort of calculating dis-
tances, reduces the number of neighbor samples that
need to be compared, and improves the neighbor
search efficiency of anomaly detection based on kNN
algorithm

(2) Aimed at the quantity imbalance of log data, an
automatic k neighbor selection method based on
Silhouette Coefficient is proposed, which selects
appropriate k neighbors for data with different
distributions, thereby improving the accuracy of
anomaly detection

(3) Aiming to verify the universality and feasibility of
our method, we set up experiments on six log
datasets generated by different types of systems

In the rest of this paper, Section 2 describes the back-
ground and motivation of our method. (e detail of the

proposed method is elaborated in Section 3. We evaluate our
method and report the results in Section 4. (e advantages
and disadvantages of this paper are discussed in Section 5.
Section 6 reviews the related work. Finally, conclusions and
future work are provided in Section 7.

2. Background and Motivation

2.1. Why Can Minhash-Based Method Improve the Efficiency
of kNN-Based Anomaly Detection?

2.1.1. Reduction of Effort for Distance Calculation. In kNN-
based anomaly detection, we need to calculate distances
between the sample to be detected and the training set
samples; then these distances are sorted, and the nearest k
samples are selected as k neighbors. Due to the large size of
the log data, the step of calculating and sorting distances will
take much time. Minhash algorithm can group similar logs
into the same bucket through hash functions. When
searching for neighbors, we only need to calculate distances
between the sample to be detected and the samples in the
same bucket, thereby greatly reducing the number of
samples that need to be calculated. (us, minhash-based
method can reduce the effort of calculating distances.

2.1.2. Reduction of Dimension of Log Vectors. A commonly
used method for converting log data into vector is Bag-of-
Words (BoW) model. Words in the data are stored into
word bag without repetition. (e dimension of the vector is
equal to the size of word bag, and the number at position i in
the vector indicates the frequency of word bag’s ith word in
this log line. However, because of the large scale of word
types in log data, vector dimension will be too high, which
will occupy a very large space, making the storage of logs a
problem, let alone calculating the similarity between logs.
Table 1 shows the number of word types corresponding to
different sizes of data in the six datasets. Data shown in the
table is the remaining word types after we filtered out un-
wanted words (such as time stamp, log number, and other
parameters). Obviously, if a log line is converted into a
vector according to these word types, dimension of the
vector will be very high, which will seriously affect the ef-
ficiency of anomaly detection. For such a data representa-
tion, it is necessary to reduce the dimension, and minhash
algorithm can exactly do this.
Minhash algorithm uses the Jaccard similarity to cal-

culate the similarity between logs. (is method converts
each log line into a vector, in which the ith element rep-
resents the feature we extracted from ith frequency matrix.
We use different hash functions to get different word orders;
each word order corresponds to a word frequency matrix.
(us, the vector dimension is equal to the number of fre-
quency matrixes. We can change the word order to get many
frequency matrixes, but it must be smaller than the vector
dimension when using the BoW model (in our experiment,
30 frequency matrixes were generated). (e vector dimen-
sion when using the BoWmodel is the number of word types
in logs.
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2.2. Why Is It Necessary to Select Proper k Neighbors
Automatically? In kNN algorithm, selecting a proper k is
very important. As shown in Figure 1, there are three cat-
egories of samples: A, B, and x. (e x in the middle is the
sample to be detected, and the other samples are neighbors
of x. When we set k� 11, we select 11 nearest neighbors for
sample x, in which 4 samples are labeled as A and 7 samples
labeled as B. At this time, sample x is classified as B. When we
set k� 19, then 19 nearest neighbor samples of x contain 10
samples A and 9 samples B. (erefore, x is classified as A.
In the log data, there are differences between the number

of normal logs and the number of abnormal logs, but this
difference is also different in different datasets. It is not
appropriate to use a uniform fixed k value in all log datasets.
(erefore, it is necessary to automatically select appropriate
k neighbors for data samples with different distributions.

2.3. Why Can Silhouette Coefficient Be Used to Select k
Neighbors? Silhouette Coefficient, which was first proposed
by Rousseeuw [5], is an evaluation method for the effec-
tiveness of clustering. It combines cohesion and separation,
where cohesion indicates the average distance between
sample i and samples in the same cluster, and separation
indicates the average distance from sample i to all samples in
the nearest cluster. (en the Silhouette Coefficient defines a
calculation method, and its value is in the range [− 1, 1]
(more details are provided in Section 3.2). If the Silhouette
Coefficient of i is close to 1, this means that the cohesion and
separation of sample i are better; that is, sample i is similar to
the samples in the same cluster, and the classification is
correct.
(e idea behind the nearest neighbor selection in kNN

algorithm is similar to Silhouette Coefficient. If more
samples have the same type as the sample to be detected in its
k neighbors, it is more likely to be correctly classified.
(erefore, we propose a k neighbor selection method based
on the Silhouette Coefficient, so that the selected k neighbors
belong to the same category as much as possible, thereby
improving the accuracy of anomaly detection. More details
are described in Section 3.2.

3. Our Method

(is paper proposes a log-based anomaly detection method
with efficient neighbor selection and automatic k neighbor

selection, which mainly includes three parts. (e overall
framework is shown in Figure 2. (1)(e first part is neighbor
searching based on minhash and MVP-tree. We use the
minhash algorithm to group similar logs into a bucket and
then build an MVP-tree for samples in each bucket. (2) (e
second part is automatic selection for k neighbors. We select
neighbors from the MVP-tree and store them into the spare
neighbor sample set. Based on the Silhouette Coefficient, we
define a neighbor evaluation method, which is used to judge
whether the sample in the spare neighbor sample set is
helpful to improve the accuracy of classification. If the
sample can meet the condition, we store it into the actual
neighbor sample set. (e final actual neighbor sample set is
the proper k neighbors for anomaly detection. (3) (e third
part is anomaly detection. Finally, to detect anomalies, we
calculate the average distance between samples of each
category in the actual neighbor sample set and the sample to
be detected.

3.1. Neighbor Searching Based on Minhash and MVP-Tree.
Minhash [5, 6] is a scheme devised by Broder for efficiently
estimating the similarity of two sets of items. Specifically, it
estimates the Jaccard similarity of two sets, which is one of
the most common and effective similarity metrics. (ere-
fore, the nearest neighbor search method based on minhash
and MVP-tree mainly includes three steps: (1) using min-
hash algorithm to convert log data into vectors; (2) using
Jaccard similarity measure to calculate the similarity be-
tween logs and grouping samples with high similarity into a
bucket; (3) constructing MVP-tree model for each bucket of
log data.

3.1.1. Vectorization of Log Data. We convert logs into a form
suitable for Jaccard similarity calculation, that is, the word
frequency matrix. Logs are parsed into words according to
the space. As shown in Figure 3, the four log lines are parsed
as: “QuorumPeer[myid�1]/0:0:0:0:0:0:0:0:2181:Follower@
118, -, Got, zxid, 0x100000001, expected, 0x1, 0x100001547,
0x, NIOServerCxn.Factory:0.0.0. 0/0.0.0.0:2181:

A

A

A

A

A

A

A
A

A

A

X

B

B
B

B

B

B

B

B

B

Figure 1: (e influence of different k values on classification
results.

Table 1: Word types corresponding to data of different sizes in
different datasets.

Log sets

Word types corresponding to different
sizes of data

1M 100M 1G

Liberty 9112 436777 2368053
BGL 10904 845629 4592728
(underbird 13444 264629 1165458
Spirit 8631 454437 3055695
HDFS 4538 211080 2459515
Zookeeper 5590 53094 53094
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NIOServerCnxnFactory@197, Accepted, socket, connection,
from, /10.10.34. 40:49497, CommitProcessor:3:NIO-
ServerCnxn@1001, Closed, for, client, /10.10.34. 29:44549,
which, had, sessionid, 0x34f4a63146b0046.” Among these
words, the ones contain numbers have a high probability of
indicating variables, such as “0x100000001 and
0x34f4a63146 b0046.” Some variables are different in each
log line. We delete these words that our method does not
need, and the filtered words are stored in the word bag; they
are [“Got,” “zxid,” “expected,” “Accepted,” “socket,” “con-
nection,” “from,” “Closed,” “client,” “which,” “had,”
“sessioned”].
Next, we count the frequency of each word in the word

bag appearing in each log line. As shown in Figure 4, we
convert the log line into a vector [0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1], which indicates that, for the log line in Figure 4, the
frequency of each word in the word bag is 0, 0, 0, 0, 1, 1, 1, 0,
1, 1, 1, 1, 1.
According to the above method, we convert each log line

into word frequency vectors. All log vectors form a sparse
M∗N word frequency matrix.M represents the number of
all words in the word bag. N represents the number of log
lines. Element in the matrix represents the frequency ofmth
(m ∈ [0,M]) word in the nth log line (n ∈ [0, N]).
In the obtained word frequency matrix, we extract the

position corresponding to the first nonzero frequency word
in each column, and this position is the feature for the log
line corresponding to this column. (at being said, for each
log line, we can extract a feature from a frequency matrix.
When we change the word order in the matrix, we will get a
new matrix, from which each log data can get a new feature.
We choose Hn hash functions to adjust the word orders,
such as h((3x + 1)mod5), where x represents the original

position of the word. Each hash function is used 10 times;
then we will get 10∗Hn kinds of word orders, corre-
sponding to 10∗Hn kinds of word frequency matrixes, and
each log line can get 10∗Hn features. (ese features form a
log vector, so the vector dimension of the log line is also
10∗Hn.
As shown in Figure 5, we use hash function to disrupt

word orders in the word bag four times and get four word
orders corresponding to (a)–(d), respectively. According to
the way we obtain features, Log 1 can be converted into a
vector [0, 3, 2, 2], because, in these four frequency matrixes,
the first nonzero word corresponding to Log 1 corresponds
to positions 0, 3, 2, and 2, respectively. Similarly, vectors of
Log 2, Log 3, and Log 4 are [0, 0, 0, 0], [0, 2, 0, 1], and [4, 0, 1,
1].

3.1.2. Similarity Calculation and Grouping. We use the
Jaccard measure to calculate the similarity between logs, as
shown in (1). In the original formula of Jaccard similarity,
|s∩p| and |s∪p| represent the intersection and union of sets
s and p. When we use it for log vector similarity, we define
|s∩p| as the number of same elements at the same position
in vectors of logs and logp, and |s∪p| represents the vector
dimensions of log s and log p. J(s, p) represents the Jaccard
similarity of log s and log p. If there are more same elements
at the same position of s and p, there are more same features
extracted frommatrixes withmultiple transformations; thus,
the two log lines are more similar. We set a similarity
threshold and group logs whose Jaccard values greater than
this threshold into the same bucket:

J(s, p) �
|s∩p|
|s∩p|. (1)

Anomaly detection

Neighbor searching based on minhash and MVP-tree

Automatically selection for k neighbors

Log buckets group
by JaccardLog data

Hash function

Hash function

Frequency
matrix

Log vectors to be
detected

kNN

kNN
Anomalies

Spare neighbor sample set

Actual neighbor sample set

Silhouette
Coefficient

MVP-tree

Constructing
tree model

Searching for the nearest neighbor
Log data to be

detected

Log vectors
GroupingFeature extracting

Figure 2: (e influence of different k values on classification results.

“Got”, “zxid”, “expected”, “Accepted”, “socket”, “connection”, “from”, “Closed”, “client”, “which”, “had”,“sessionid”]

[QuorumPeer[myid=1]/0:0:0:0:0:0:0:0:2181:Follower@118] - Got zxid 0x100000001 expected 0x1
[QuorumPeer[myid=1]/0:0:0:0:0:0:0:0:2181:Follower@118] - Got zxid 0x100001547 expected 0x
[NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxnFactory@197] - Accepted socket connection from /10.10.34.40:49497
[CommitProcessor:3:NIOServerCnxn@1001] - Closed socket connection for client /10.10.34.29:44549 which had sessionid 0x34f4a63146b0046

Get word bag

Figure 3: Example of log parsing.
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3.1.3. Construction of MVP-Tree Model. Due to the large
scale of the log data, the number of samples mapped into the
same bucket is still large. Aiming at this characteristic of log
data, we use themulti-Vantage Point tree (MVP-tree), which
is an improvement of Vantage Point tree (VP-tree), to build
a tree structure model for each bucket.
VP-tree is an index structure in metric space based on

distance. It is a static binary distance tree based on a con-
tinuous distance function. Its construction and search al-
gorithms are very intuitive. (e basic idea is to use binary
search for distance-only information in multidimensional
metric space, and feature space is divided by using the
distance information between the points of the target point
set of the feature space and Vantage Point. (e construction
complexity of VP-tree is O(nlogn), and the search com-
plexity can ideally reach O(logn) [7]. MVP-tree reduces the
effort of distance calculations by increasing the number of

Vantage Points and increasing the node output capacity.(e
construction complexity of MVP-tree isO(nlogmn), which is
O(nlog2n) higher than VP-tree, and the search complexity is
less than O(n) even in the worst case.
Suppose that a bucket contains n log samples, denoted by

S � s1, s2, . . . , sn{ }, and the Jaccard similarity function be-
tween them is J(si, sj)(i ∈ [1, n], j ∈ [1, n]); p is used to store
the precalculated similarity value, k is the maximum output
capacity of the leaf node, and the variable level is used to
record the number of Vantage Points from the root node to
the current child node. (e initial value of k is 1. (e
construction algorithm of MVP-tree is shown in Algo-
rithm 1. (e neighbor searching algorithm of MVP-tree is
shown in Algorithm 2.
In these two algorithms, the metric space distance

function d(si, sj) � 1/J(si, sj). In Algorithm 2, the sample
with the smallest distance from the sample to be detected
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Figure 5: Example of four different word orders.

[0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1]

[NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@1001] - Closed socket connection for client /10.10.34.12:50177 which had sessionid 0x34edfaa9c22002e 

Vectorization

Figure 4: Example of log vectorization.
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Sdetected is searched; that is, the similarity between this sample
and Sdetected is the largest. We search the nearest neighbors
for Sdetected according to the above method, store these
neighbors into a spare neighbor set, and then search for the
next nearest neighbor.

3.2. Automatic Selection for k Neighbors. For kNN-based
anomaly detection, k proper neighbors need to be selected
for the sample to be detected. If most samples in k-nearest
neighbors have the same category as the sample to be de-
tected, the sample to be detected will be correctly classified.
We say that such neighbor samples can have a positive
impact on detection results. (erefore, k does not need to be
very large, but k neighbor samples need to be as similar as
possible. Because there is no prior knowledge, directly
specifying the value of k is a challenge. At the same time, the
exhaustive method is not desirable due to the excessive time
overhead. (erefore, this paper proposes a method for
automatically selecting k neighbors based on Silhouette
Coefficient.
Assuming that the bucket of the sample to be detected

contains m samples, the range of k is [1, m]. We define a
spare neighbor set Spare_Neighbor to store the samples in
the bucket and an actual neighbor set Actual_Neighbor,

which contains a neighbor samples that can be finally used
for anomaly detection. We search the nearest neighbor for
the sample to be detected S and store it into Actual_-
Neighbor; then it is deleted from Spare_Neighbor. (us, in
the initial state, Spare_Neighbor containsm − 1 samples, and
Actual_Neighbor contains one sample. Assume that the
spare neighbor set is Spare_Neighbor � SN1, SN2, . . . , SNb{ }
and the actual neighbor set is Actual_Neighbor �
AN1,AN2, . . . ,ANa{ }, a + b<m. We search the next nearest
neighbor for the sample to be detected S from Spar-
e_Neighbor, and it is recorded as Snear. We calculate the
Silhouette Coefficient of Snear as follows:

in J Snear( ) � ∑
a
i�1 J ANi, Snear( )

a
,

out J Snear( ) � ∑
b
j�1 J SNj, Snear( )

b
,

SC Snear( ) � outJ Snear( ) − inJ Snear( )
max outJ Snear( ), inJ Snear( )( ),

(2)

where J(ANi, Snear) is the Jaccard similarity between sample
ANi and Snear; J(SNj, Snear) is the Jaccard similarity between
sample SNj and Snear; in J(Snear) is the average similarity

Require: Log set with n samples S � s1, s2, . . . , sn{ }, metric space distance function d(si, sj), the precalculated similarity value p,
the maximum output capacity of the leaf node k, the number of Vantage Points from the root node to the current child node
level� 1
Ensure: MVP-Tree

(1) function BUILDTREE (S, d, p, k, level)
(2) if |S| � 0 then return
(3) else if |S|≤ k + 2 then
(4) Select an object sv1 randomly from S as the first point
(5) Compute D1 � d(si, sv1) | si ∈ S, i≠ v1{ }
(6) sv2 � max(D1), as another Vantage Point
(7) Compute D2 � d(sj, sv2) | sj ∈ S, j≠ v2{ }
(8) return
(9) else
(10) Select an object sv1 randomly from S as the first point
(11) Compute D1 � d(si, sv1) | si ∈ S, i≠ v1{ }
(12) if level≤p then
(13) Store si, PATH[level] � d(si, sv1)
(14) end if
(15) Sort D1, M�Median of D1
(16) Define SS1 � si | d(si, sv1)<M, si ∈ S, si ≠ sv1{ }, SS2 � sj | d(sj, sv1)≥M, sj ∈ S{ }
(17) Select an object sv2 randomly from SS2 as the first point
(18) Compute D2 � d(sj, sv2) | sj ∈ S, j≠ v2{ }
(19) if level≤p then
(20) Store sj, PATH[level] � d(sj, sv2)
(21) end if
(22) Compute Ds1 � d(sj, sv2) | sj ∈ SS1{ }, Ds2 � d(sj, sv2) | sj ∈ SS2{ }
(23) Sort Ds1 and Ds2, M1 �Median of SS1, M2 �Median of SS2, level+ � 2
(24) goto (16) for recursion
(25) end if
(26) return result
(27) end function

ALGORITHM 1: (e construction algorithm of MVP-tree.
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between sample Snear and a samples in Actual_Neighbor;
out J(Snear) is the average similarity between sample Snear
and b samples in Spare_Neighbor; max(out J(Snear),
in J(Snear)) is the larger value between out J(Snear) and
in J(Snear); and SC(Snear) is the Silhouette Coefficient of
sample Snear.
We convert (2) into a more intuitive form, as shown in

(3). (e similarity between data in the same cluster is larger,
and the similarity between different clusters is smaller. If
sample Snear is more similar to cluster Actual_Neighbor,
then in J(Snear) is larger than out J(Snear), and SC(Snear) is
less than 0. It is highly possible that the category of Snear is
consistent with that of most samples in Actual_Neighbor;
otherwise, when in J(Snear) is less than out J(Snear), SC(Snear)
is greater than 0, which means that the category of Snear and
that of most samples in Actual_Neighbor are likely to be
different:

SC Snear( ) �

1 −
inJ Snear( )
outJ Snear( ), in J Snear( )< out J Snear( )

0, in J Snear( ) � out J Snear( )

outJ Snear( )
inJ Snear( ) − 1, in J Snear( )> out J Snear( )







.

(3)

(e value of k cannot be too small; we need to find as
many neighbor samples with positive impact as possible.
As the number of samples in Actual_Neighbor increases,
the average distance between sample Snear searched from
Spare_Neighbor and samples in Actual_Neighbor will
become smaller. (erefore, if the Silhouette Coefficient of

Require: (e sample to be detected Sdetected, the distance threshold r
Ensure: (e nearest sample Snear

(1) function QueryTree (Sdetected, r)
(2) Compute d(Sdetected, sv1), d(Sdetected, sv2)
(3) if d(Sdetected, sv1)≥ r then return sv1
(4) end if
(5) if d(Sdetected, sv2)≥ r then return sv2
(6) end if
(7) For the leaf tree nodes, goto (8), for the intermediate tree nodes, goto (16)
(8) for i � 1⟶ n do
(9) if d(Sdetected, sv1) − r≤d(si, sv1)≤d(Sdetected, sv1) + r and d(Sdetected, sv2) − r≤d(si, sv2)≤d(Sdetected, sv2) + r then
(10) if PATH[i] − r≤ si, PATH[i]≤PATH[i] + r then
(11) if d(Sdetected, si)≤ r then return si
(12) end if
(13) end if
(14) end if
(15) end for
(16) if level≤p then
(17) PATH[level]] � d(Sdetected, sv1)
(18) end if
(19) if level<p then
(20) PATH[level + 1] � d(Sdetected, sv2)
(21) end if
(22) if d(Sdetected, sv1) − r≤M then
(23) if d(Sdetected, sv2) − r≤M1 then
(24) level+ � 2, goto (23) for recursion
(25) end if
(26) if d(Sdetected, sv2) + r≥M1 then
(27) level+ � 2, goto (26) for recursion
(28) end if
(29) end if
(30) if d(Sdetected, sv1) + r≥M then
(31) if d(Sdetected, sv2) − r≤M2 then
(32) level+ � 2, goto (31) for recursion
(33) end if
(34) if d(Sdetected, sv2) + r≥M2 then
(35) level+ � 2, goto (34) for recursion
(36) end if
(37) end if
(38) end function

ALGORITHM 2: (e neighbor searching algorithm of MVP-tree.
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Snear is less than 0, we think that Snear can have a positive
impact on anomaly detection. We remove Snear from
Spare_Neighbor and store it into Actual_Neighbor, which
is denoted as ANa+1. (en the next nearest neighbor
sample is searched from Spare_Neighbor, which is
denoted as Snear; otherwise, when the Silhouette Coefficient
of Snear is greater than 0, it means that Snear is not similar to
samples in Actual_Neighbor. At this point, we stop
searching for neighbors and set the optimal k value to the
number of samples in Actual_Neighbor. (e strategy of
automatic selection for k neighbors is shown in
Algorithm 3.
Instead of using a fixed k value, we choose the appro-

priate k for log data with different distributions through the
method described above. In this way, we can get as many
neighbor samples as possible, which are consistent with the
same type of samples to be detected, thereby improving the
accuracy of the anomaly detection.

3.3.AnomalyDetection. We use the final neighbors in actual
neighbor set Actual_Neighbor to classify the sample to be
detected. In our method, logs can be divided into two
categories, that is, normal logs and abnormal logs. Abnormal
logs are negative samples, while the rest are positive ones. In
k neighbor samples, the positive sample set is

P � Sp1, Sp2, . . . , Spm{ }, and the negative sample set is
F � Sf1, Sf2, . . . , Sfn{ }, where 0≤m≤ k, 0≤ n≤ k,m + n � k.

(e average similarity for the two types of samples is

calculated, as shown in (4) and (5), where Aver − sim(S, P)
is the average similarity for the m positive samples and
Aver − sim(S, F) is the average similarity for the n negative
samples:

Aver − sim(S, P) �
∑mi�1 J S, Spi( )

m
, (4)

Aver − sim(S, F) �
∑nj�1 J S, Sfj( )

n
. (5)

We compare the values of Aver− sim (S, P) and Aver− sim
(S, F). If Aver − sim(S, P)≥Aver − sim(S, F), we mark
sample S as normal; otherwise, we mark it as abnormal. (e
strategy of anomaly detection is shown in Algorithm 4.

4. Experiment and Analysis

4.1. Log Data. We used six different types of log data to
evaluate our method: Liberty, Blue Gene/L (BGL), (un-
derbird, Spirit, HDFS, and Zookeeper.(ese logs have a total
of 90GB and contain 314,647,599 anomalies, as shown in
Table 2. Liberty is a server application system, BGL and
(underbird are supercomputers, Spirit is an operating
system, and HDFS and Zookeeper are distributed systems.
(e Liberty, (underbird, and Spirit systems are installed in
the Sandia National Laboratory (SNL) in NewMexico, USA,
and the BGL is installed at the Lawrence Livermore National
Laboratory (LLNL) in California.

Require: (e sample to be detected S, m samples in the bucket of sample S, an actual neighbor set containing a(a ∈ [1, m])
neighbor samples that can be finally used for anomaly detection Actual_Neighbor � AN1,AN2, . . . ,ANa{ } and the initial value
of a is 1, a spare sample set containing the remaining b(b ∈ [1, m]) samples in the bucket Spare_Neighbor � SN1, SN2, . . . , SNb{ }
and the initial value of b is m − 1, a+ b�m, the distance threshold r
Ensure: (e final selected neighbors Actual_Neighbor

(1) function Auto − k(S,m, Spare_Neighbor,Actual_Neighbor)
(2) Snear � QueryTree(S, r)
(3) for i � 1⟶ a do
(4) in J(Snear)+ � J(ANi, Snear)
(5) end for
(6) for j� 1⟶ b do
(7) out J(Snear)+ � J(SNj, Snear)
(8) end for
(9) SC(Snear) � (out J(Snear) − in J(Snear))/(max(out J(Snear), in J(Snear)))
(10) if SC(Snear)< 0 then
(11) if SNp � Snear(p ∈ [1, b]) then
(12) a+� 1
(13) ANa � SNp
(14) delete SNp from Spare_Neighbor
(15) b − � 1
(16) goto (2)
(17) end if
(18) else
(19) return Actual_Neighbor
(20) end if
(21) end function

ALGORITHM 3: (e strategy of automatic selection for k neighbors.
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4.2. Research Questions. To evaluate our method, we
designed experiments to address the following three research
questions:
RQ1: Canminhash andMVP-tree based neighbor search

method improve the efficiency of neighbor search in kNN
algorithm?
When using kNN-based log anomaly detection, there are

many factors that affect the efficiency of neighbor searching,
three of which are the vector dimension of the log data, the
effort of distance calculation, and the number of samples
that need to be compared when searching neighbors.
(erefore, we design experiments for the above three aspects
and study whether our method can improve the efficiency of
neighbor searching in kNN algorithm. Besides, the overall
searching time is also compared.

(1) Reduction in vector dimension. Generally speaking, it
is a common method to convert log data into vectors
by extracting features according to word frequency,
while minhash algorithm extracts features based on
word frequency matrix. We get different sizes of
sample sets from the six datasets used in this paper and
use minhash algorithm in each dataset, respectively, to
obtain the vector dimension. We compare the result
with the dimension of word frequency vecto, and
study whether the dimension of log vectors obtained
with minhash algorithm is reduced.

(2) Reduction in the effort of distance calculation. We
calculate the number of samples in the biggest bucket
after each dataset is divided by hash functions and
study how much effort of distance calculation is
reduced by our neighbor search method.

(3) Reduction in the number of samples to be compared.
We calculate the average and maximum number of
nodes that need to be compared when we search the
nearest neighbor from MVP-tree model, and com-
pare the results with the number of samples that need
to be compared in the traditional kNN algorithm;
then we can study whether the number of samples
that need to be compared can be reduced by our
MVP-tree based method.

(4) Reduction in the overall searching time. We select
sample sets with different sizes from six datasets and
use the original neighbor search method and our
nearest neighbor search method. (e overall time
required by the two methods is compared to analyze
whether the neighbor search method in this paper
can improve the efficiency of neighbor searching.

RQ2: Can the k neighbors selected in this paper improve
the accuracy of kNN algorithm?
We first use a fixed k value for anomaly detection; then

the k value automatically selected with our method is used

Require: (e sample to be detected S. An actual neighbor set containing k(a ∈ [1, m]) neighbor samples for sample S
Actual_Neighbor � AN1,AN2, . . . ,ANk{ }. A positive sample set containing m normal samples in Actual_Neighbor
P � Sp1, Sp2, . . . , Spm{ }. A negative sample set containing n abnormal samples in Actual_Neighbor
F � Sf1, Sf2, . . . , Sfn{ }.m + n � k,m ∈ [1, k], n ∈ [[1, tk]
Ensure: (e label of S

(1) function ANOMALYDETECTION (P, F, m, n)
(2) for i � 1⟶ m do
(3) Aver − sim(S, P)+ � J(S, Spi)
(4) end for
(5) for j� 1⟶ n do
(6) Aver − sim(S, F)+ � J(S, Sfi)
(7) end for
(8) if Aver − sim(S, P)+ � J(S, Spi)≥Aver − sim(S, F)+ � J(S, Sfi) then
(9) return normal
(10) else
(11) return abnormal
(12) end if
(21) end function

ALGORITHM 4: (e strategy of anomaly detection.

Table 2: Log data.

Systems Size Log lines Number of anomalies System type

Liberty 29.5G 266991013 191,839,098 Server application system
BGL 1.207G 4747963 949024 Supercomputer
(underbird 27.367G 211212192 43,087,287 Supercomputer
Spirit 30.28G 272298969 78360273 Operating system
HDFS 1.58G 11175629 362793 Distributed system
Zookeeper 10.4M 74380 49124 Distributed system
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for anomaly detection. Accuracy of the anomaly detection
corresponding to the two values is compared to study
whether the k neighbors selected in this paper can improve
the accuracy of kNN algorithm. (e fixed k value was de-
termined through several experiments, and the details are
shown in Section 4.3.
RQ3: Is our anomaly detection method superior to other

homologous anomaly detection methods?
As described in Section 3, the log-based anomaly de-

tection method proposed in this paper is based on kNN
algorithm, which is an outlier detection method in machine
learning. We design experiments, respectively compare the
method we proposed with other outlier detection methods
and methods without outlier detection, and analyze the
results. Reference [6] uses a clustering algorithm to sort the
log sequences, which is an outlier detection method and the
same as our method. (e methods in [8, 9] are not outlier
detection methods; [8] uses an anomaly detection method
based on finite state automaton and [9] uses the information
entropy of log messages for identifying exceptions.
We use these four methods for anomaly detection on six

datasets, and the detection results are compared from three
aspects: accuracy, recall, and Fmeasure.(en we analyze the
advantages and disadvantages of these four methods and
study whether the method proposed in this paper is superior
to the other three methods.

4.3. Experimental Design and Results. In this section, we
analyze the results of the above three research questions. For
the six datasets used in the paper, we divide each dataset into
a training set and a test set, respectively, each of which is half
of the overall dataset.
RQ1: Canminhash andMVP-tree based neighbor search

method improve the efficiency of neighbor search in kNN
algorithm?

4.3.1. Reduction in Vector Dimension. Table 3 shows the
dimension of log vectors based on the BoW model and the
log vector dimension based on the minhash algorithm. BoW
model extracts the word frequency feature, and the vector
dimension is equal to the number of word types in log data.
Results in Table 3 represent the number of word types after
filtering out the unnecessary words (the words with num-
bers) in the training set.
In the minhash-based neighbor search method, di-

mension of the log vector is the same as the number of word
frequency matrixes obtained by changing the word orders.
We select 3 hash functions, such as h((3x+ 1)mod5), where x
represents the original position of the word. For example,
data in the first row of the original matrix is changed to the
fourth row in the new matrix after transformation with
h((3x+ 1)mod5). We use each hash function to transform
the matrix 10 times and get 30 matrixes in total. Each log line
extracts a feature from eachmatrix. Finally, the dimension of
log vector based on minhash algorithm is 30, which is
smaller than most of the dimensions with BoW method.
(erefore, the minhash algorithm can tremendously reduce
the dimension of log vectors.

4.3.2. Reduction in the Effort of Distance Calculation. We
use the minhash algorithm to group similar logs in the
training set into the same bucket, and the number of
samples in different buckets is different. Table 4 shows the
average and maximum number of samples in the bucket
for six datasets. In the traditional kNN algorithm, we
need to calculate distances between the sample to be
detected and all samples in the training set. In our ex-
periments, the training set is set to 50% of the overall
data; then the effort for traditional method is equal to 50%
of the overall data.
As shown in Table 4, the number of samples in the

maximum bucket of BGL data is the largest among the six
datasets, which is still much smaller than the effort with
traditional kNN algorithm. (erefore, the minhash-based
neighbor searching method can greatly reduce the effort of
distance calculation.

4.3.3. Reduction in the Number of Samples to Be Compared.
Table 5 shows the number of nodes we need to compare
when searching for the nearest neighbor set fromMVP-tree.
For each sample to be detected, the number of samples to be
compared is different, so results in the table represent the
average numbers of the samples to be compared.
Traditional kNN algorithm needs to compare distances

between the sample to be detected and all training set
samples, and then the nearest one is selected. (erefore, the
number of samples to be compared for the traditional kNN
algorithm is the size of training set, which is 50% of the total
dataset.
Obviously, compared with the traditional kNN, our

nearest neighbor search method reduces the number of
samples to be compared. Our method builds a tree model for
samples which are similar to the sample to be detected and
then compares the nodes from top to bottom. In this process,
we do not need to compare all the nodes. (erefore, our
method greatly reduces the number of samples to be
compared when searching for the nearest neighbor.

4.3.4. Reduction in the Overall Searching Time. Table 6
shows the time cost of the proposed method and the tra-
ditional kNN method when searching for the nearest
neighbor under different dimensions and different sizes of
data sample sets. Intuitively, no matter which method is
used, our method or the kNN algorithm, when the data size
is fixed, the smaller the dimension of the data, the shorter the
search time of the nearest neighbor; when the dimension of
the data is fixed, the smaller the number of data samples, the
shorter the search time.
When dimension and data size are equal, our method is

much more efficient than the traditional kNN algorithm.
For example, when the vector dimension is 100 and the
data size is 1G, the search time of our method is generally
within 30 s, while it is about 2-3 minutes with the tradi-
tional kNN algorithm; when the dimension is increased to
300, it will take nearly 8 minutes to search neighbors for
1 G Spirit dataset.
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Experiments show that our method based on minhash
and MVP-tree can improve the searching time.
RQ2: Can the k neighbors selected in this paper improve

the accuracy of kNN algorithm?
We use several different k values on some small

datasets, and the results show that when k is set to 5,
we can achieve better results. (erefore, in our experi-
ments, the fixed k value is set as 5. Our method selects
different k for datasets with different distributions, each
dataset is divided into different buckets, and the data

distribution in these buckets is also different, so the best
k corresponding to each bucket is also different.
(erefore, we will not show the automatically selected k
value here.
We use a Silhouette Coefficient–based method to select k

neighbors automatically. Figure 6 shows the accuracy
comparison between the automatically selected k neighbors
and the fixed k. We selected three datasets, Liberty, BGL, and
HDFS, for anomaly detection, because the types of these
three datasets are different. Liberty is a server application

Table 3: Dimension comparison with BoW and minhash.

Systems Size Log lines Number of anomalies System type

Liberty 29.5G 266991013 191,839,098 Server application system
BGL 1.207G 4747963 949024 Supercomputer
(underbird 27.367G 211212192 43,087,287 Supercomputer
Spirit 30.28G 272298969 78360273 Operating system
HDFS 1.58G 11175629 362793 Distributed system
Zookeeper 10.4M 74380 49124 Distributed system

Table 4: Comparison of the effort of distance calculation.

Datasets
Size Log lines

Effort of distance calculation with traditional kNN
Average samples in buckets Maximum samples in buckets

Liberty 29.5 G 266991013 191,839,098
BGL 1.207G 4747963 949024
(underbird 27.367G 211212192 43,087,287
Spirit 30.28G 272298969 78360273
HDFS 1.58G 11175629 362793
Zookeeper 10.4M 74380 49124

Table 5: Comparison of the number of samples to be compared.

Datasets Number of samples to be compared with traditional kNN Number of samples to be compared with MVP-tree

Liberty 133,495,506 205
BGL 2,373,981 2603
(underbird 105,606,096 479
Spirit 136,149,484 205
HDFS 5,587,814 141
Zookeeper 37,190 1730

Table 6: Comparison of the overall searching time(s).

Dimension 30 100 300 100

Data size 1G 10M 100M 1G

Liberty
Our method 12.38 27.34 35.02 0.281 2.243 27.34

Traditional kNN 78.39 171.98 336.36 2.63 21.05 171.98

BGL
Our method 11.09 21.52 33.42 0.279 2.546 21.52

Traditional kNN 35.01 103.35 198.46 1.68 13.18 103.35

(underbird
Our method 13.71 28.25 29.34 0.273 2.037 28.25

Traditional kNN 114.68 236.26 440.97 3.2 27.29 236.26

Spirit
Our method 12.63 30.28 34.58 0.254 1.899 30.28

Traditional kNN 112.21 247.79 463.87 3.14 27.33 247.79

HDFS
Our method 6.16 19.79 23.15 0.181 1.32 19.79

Traditional kNN 82.08 177.69 320.46 2.51 20.99 177.69

Zookeeper
Our method 8.01 17.49 21.76 0.224 1.68 17.49

Traditional kNN 86.29 197.25 366.99 2.79 23.5 197.25
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system, BGL is a supercomputer, and HDFS is a distributed
system.
Obviously, the method of automatically selecting k

neighbors can improve the accuracy of anomaly detection.
When the value of k is 5, the accuracy of anomaly detection
on the three datasets has been relatively high, in whichHDFS
even reaches 95.4%. However, our method can still improve
it to 99%.(e larger the log data, such as Liberty (29.5 G), the
higher the accuracy our method can improve.(is is because
when the size of the training set becomes larger, we can
choose proper k neighbors according to the distribution of
samples in the training set, which cannot be achieved by the
fixed value of 5.
We also count the number of normal logs and ab-

normal logs in Liberty, BGL, and HDFS datasets. In the
Liberty dataset, the number of normal logs is 46 times
that of abnormal logs. (e difference in Blue Gene/L
dataset is not so obvious, but the difference is still large;
the number of normal logs is 7.95 times the number of
abnormal logs. Among the three datasets, the difference
between the number of normal logs and abnormal logs is
the most. Correspondingly, the difference in accuracy
between the automatic k and fix k is the most, too. (us,
the results show that the k neighbors selected with our
method can improve the accuracy of kNN algorithm, and
the improvement is more effective on more uneven
datasets.
In conclusion, our method of automatically selected

neighbors can improve the accuracy of anomaly detection.
RQ3: Is our anomaly detection method superior to other

homologous anomaly detection methods?
We compare the method proposed in this paper with the

three methods that are, respectively, proposed in [6, 8, 9].
(e results of the comparison are shown in Figures 7–12.
As shown in Figure 7, we take logs generated by BGL as

an example; all of the four methods can be effectively used
for log-based anomaly detection.(emethod used in [6] can

achieve high recall rate (87%), but its accuracy and F
measure are relatively low. (is is because log vectors have
the characteristics of high dimension and sparsity, and it is
difficult for the log clustering method to separate abnormal
logs from normal logs accurately, which results in a large
number of false positives and a lower accuracy of anomaly
detection. At the same time, the hierarchical clustering al-
gorithm is an unsupervised learning method. When applied
to log detection, this method is less accurate than the su-
pervised learning method used in this paper. Our method
reduces the dimensions of log vectors, as discussed in RQ1.
(us, our method performs better in terms of accuracy and F
measure. (e method in [9] can achieve higher accuracy
(85.27%), but it is not higher than the method in this paper.
(e anomaly detection method it used is a finite state au-
tomaton, which is not the outlier detection method. kNN
algorithm used in this paper is an outlier detection method,
which is more prominent on the log data with uneven
distribution.
(e recall and F measure achieved using the method in

[9] are the lowest among the four methods. Information
entropy is used in [9] to detect anomalies of log messages,
which are estimated by the probability of terms appearing
in logs. In our method, we extract features from multiple
matrixes transformed with hash functions, which can
better reflect the log features than the word frequency
features, so higher recall and F measure can be achieved in
our method.
All the four methods perform better on two of the six

datasets, (underbird and BGL. (ese two log sets are
produced by the supercomputer with a simpler structure.
Although the accuracy of anomaly detection with the
method in [6] is relatively lower than that with the other
three methods, it is the highest (62.13%) on the Zookeeper
dataset. (e reason behind this is that the Zookeeper dataset
used in this paper is relatively small (only 10.4 M) and is
more suitable for handling clustering algorithms.
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Figure 6: Comparison of the accuracy of automatically selected k neighbors and fixed k value.
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Our results show that our kNN-based anomaly detection
method is effective for log-based anomaly detection and can
better demonstrate its superiority when dealing with het-
erogeneous data.

5. Discussion

5.1. Categories of the Abnormal Logs. (is paper only con-
siders detecting the log lines with abnormal messages, but the
abnormal logs are not classified. Usually, the abnormal logs
can be divided into several categories, such as hardware fault,
software fault, and network fault, and there are also some
differences in quantities and severity levels between each fault
category. From the perspective of severity levels, abnormal log
data can be classified into warning, error, failure, fatal, and so
on. (e log data can be analyzed from the perspective of
different categories of anomaly logs in the future work.

5.2. Limitation of Training Set Selection. In this paper, a
training set is randomly selected. Log data has the charac-
teristics of quantity imbalance, so the randomly selected
training set may also be unbalanced. Although our method
of automatically selecting k neighbors can alleviate the
impact of this imbalance on the accuracy of anomaly de-
tection, if we can improve the balance of training set, the
accuracy of log-based anomaly detection will be further
improved.

6. Related Work

Locality Sensitive Hashing (LSH) [10] is arguably the most
popular unsupervised hashing method and has been applied
to many problem domains, including information retrieval
and computer vision. Reference [11] has shown that there
exists a simple and general framework for solving the (r1,

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Accuracy

(%)

Recall F measure

Improved kNN-based method

Lin (2016)

Debnath (2018)

Oliner (2008)

Figure 7: Comprehensive comparison on BGL log set.
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r2)-near neighbor problem using only few LSH functions
and with a reduced word-RAM complexity matching the
number of lookups. Minhash algorithm used in our method
is an LSH algorithm with Jaccard similarity method, and we
combine it with MVP-tree to further improve the efficiency
of neighbor search. Reference [12] uses a minhash-based
method to obtain sublinear complexity in number of pat-
terns. (e (underbird, Windows, and Spark datasets used
by them are the largest datasets to be used for log parsing so
far. For most of the datasets, Delog fares almost two times
better in training time performance as compared to the
previous state-of-the-art. Moreover, the quality of patterns
generated by Delog is also consistently better than the

existing parsing algorithms. In our method, minhash is used
to improve the efficiency of anomaly detection rather than
log parsing. Because minhash can reduce the effort of dis-
tance calculation and the number of logs that need to be
compared, it can also improve the efficiency of anomaly
detection. Reference [13] proposes a relatively general way of
creating efficient Las Vegas versions of state-of-the-art high-
dimensional search data structures. It showed an optimal
algorithm for the nearest neighbor without false negatives
for Hamming space and Braun-Blanquet metric. (e model
mentioned in this method is for two data structures, one of
which is Jaccard similarity approximation search, and it is
the method used in this paper. (e authors in [14] proposes
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Figure 9: Comprehensive comparison on (underbird log set.
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an unsupervised anomaly detection method called ACE,
which is superior to existing methods designed without
taking into account the computational complexity of the
estimation process. (ey leverage advances in probabilistic
indexing and redesign a superfast statistical measure which
requires significantly lesser resources. At the core of the ACE
algorithm, there is a novel statistical estimator which is
derived from the sampling view of LSH. In our method,
minhash is used to improve the efficiency of kNN, where
kNN is a supervised learning method. Studies have shown
that supervised learning methods are generally more

accurate than unsupervised learning methods [4], so the
accuracy of anomaly detection combined with minhash and
kNN is higher.
A number of variations of the kNN-based approaches

have also been developed. Reference [15] proposes a
LMKNCN classifier that assigns to each query pattern a class
label with the nearest local centroid mean vector so as to
improve the classification performance. (e proposed
scheme not only takes into account the proximity and spatial
distribution of k neighbors, but also utilizes the local mean
vector of k neighbors from each class inmaking classification
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Figure 11: Comprehensive comparison on HDFS log set.
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Figure 12: Comprehensive comparison on Zookeeper log set.
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decision. Reference [16] utilizes sparse representation and
collaborative representation to design the effective nearest
neighbor classification. Guo et al. propose two locality
constrained representation-based k-nearest neighbor rules
with the purpose of further improving the kNN-based
classification performance. One is the weighted represen-
tation-based k-nearest neighbor rule (WRkNN), and the
other is the weighted local mean representation-based k-
nearest neighbor rule (WLMRkNN). In the linear combi-
nation of the class-specific k-local mean vectors, to represent
the test sample, the localities of k-local mean vectors per
class are considered as the weights to constrain the repre-
sentation coefficients of k-local mean vectors. Reference [17]
proposes a generalized mean distance-based kNN classifier,
which is called GMDkNN. In this classifier, the multi-
generalized mean distances and the nested generalized mean
of each class are introduced. (ey calculated the k-local
mean vectors per class, which can represent the local sample
distributions of each class.(e proposedmethod can employ
more nearest neighbors for the favorable classification and
has less sensitiveness to the values of k.
(ere are also many log-based anomaly detection

methods. Reference [6] uses a cluster-based method to
detect anomalies in logs. (ey take into account all the
features of the online service system logs and create vectors
that contain word messages from log message sequences,
in which the log message sequences are obtained from the
unique task ID. In the process of classification, different
events have different effects on problem identification, so
they assign weights to log messages and group similar log
sequences into the same category. Reference [18] adopts a
statistical approach to study how to scale up specification
mining and other log analysis algorithms for long and
complex logs. (e scalability issues with different algo-
rithms are addressed. Only a subset of the log data is
analyzed, and the validity of the results is also statistically
guaranteed simultaneously.
(ere are also many cases of log-based anomaly de-

tection without outlier detection methods. In [4], several
machine learning-based anomaly detection methods are
studied, including supervised learning methods and unsu-
pervised learning methods. Most of the supervised learning
methods are superior to the unsupervised ones in terms of
accuracy, recall rate, and F measure. In the supervised
learning method, SVM has higher efficiency, but the method
needs to adjust more parameters. However, kNN algorithm
only needs to estimate k value, and no training is needed,
which is more convenient to use.
Most research studies [3, 19–22] on log analysis and

anomaly detection with data mining and machine learning
technologies have focused on extracting useful information
(events, invariant, etc.) from logs. Since some log data may
not have these similar identifier fields, in this paper, we
group logs with high similarity and convert them to vectors
with a minhash-based method.
Other prior work on log-based anomaly detection fo-

cuses on detecting dependencies [23], anomalies [24], and
performance debugging [25, 26]. More sophisticated anal-
ysis has included the study of the statistical properties of

reported failure events to localize and predict faults [27] and
mining patterns from multiple log events [28].

7. Conclusion

In this paper, we propose a log-based anomaly detection
method with efficient neighbor searching and automatic
neighbor selection. Because supervised learning methods
can achieve higher accuracy in anomaly detection, we use
kNN algorithm for log-based anomaly detection. Due to the
large scale of log data, kNN algorithm has a low efficiency of
neighbor searching. (is paper proposes an efficient
neighbor search method, which combines minhash algo-
rithm and MVP-tree to reduce the effort of distance cal-
culation and the number of samples that need to be
compared, improving the neighbor search efficiency of
kNN-based anomaly detection. Since the quantity imbalance
of the log data will have a negative impact on the accuracy of
kNN algorithm, we propose a method for automatically
selecting k neighbors based on the Silhouette Coefficient,
which selects k neighbor samples that can have a positive
impact on the detection results. In order to verify the validity
and universality of our method, we performed experiments
on six log datasets with different types, and the results show
that our method can be effectively used for log-based
anomaly detection and improve the efficiency of anomaly
detection based on kNN algorithm. At the same time, the
accuracy of the anomaly detection is guaranteed.
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