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Summary: In population-based cancer studies, it is often interesting to compare cancer survival between different

populations. However, in such studies, the exact causes of death are often unavailable or unreliable. Net survival

methods were developed to overcome this difficulty. Net survival is the survival that would be observed if the disease

under study were the only possible cause of death. The Pohar-Perme estimator (PPE) is a non-parametric consistent

estimator of net survival. In this paper, we present a log-rank-type test for comparing net survival functions (as

estimated by PPE) between several groups. We put the test within the counting process framework to introduce

the inverse probability weighting procedure as required by the PPE. We built a stratified version to control for

categorical covariates that affect the outcome. We performed simulation studies to evaluate the performance of this

test and worked an application on real data.
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1. Introduction

Net survival, the survival associated with the excess mortality hazard, is the survival that

would be observed in a hypothetical world where the disease of interest would be the only

possible cause of death. The observed survival, which is more frequently used, is the result

of two main survival components: one related to death from the disease and another to

death from all other causes (Estève et al., 1990; Perme, Stare, and Estève, 2012). On the

one hand, the observed survival does not distinguish between death from the disease of

interest (or excess mortality) and death from other causes. On the other hand, net survival

evaluates the burden of the disease independently of the general-population mortality; i.e.,

the mortality from other causes as given by life tables. In cancer research, the idea of cancer

net survival is the study of the proportion of deaths due directly or indirectly to cancer. This

epidemiological indicator is routinely estimated by cancer registries and population-based

studies such as the EUROCARE program (De Angelis et al., 2014), the US SEER program

(Howlader et al., 2011), or the CONCORD program (Allemani et al., 2015). It is crucial

for comparisons between different populations (Perme et al., 2012; Danieli et al., 2012). For

instance, in comparing the patterns of care between countries, it is essential to take into

account the general-population mortality because of its impact on the observed survival.

In population-based studies, the exact causes of death are often unavailable and, when

available, often difficult to link to a given disease (Berkson and Gage, 1950). Net survival

methods were developed to overcome this difficulty (Estève et al., 1990). Historically, several

non-parametric estimators have been proposed to estimate net survival (Ederer and Heise,

1959; Ederer, Axtell, and Cutler, 1961; Hakulinen, 1982). Nevertheless, in 2012, Perme et al.

(2012) considered that, in most cases, these estimators do not estimate net survival. These

authors proposed then a non-parametric estimator that corrects Ederer II estimator (Ederer

and Heise, 1959) now known to be biased because of informative censoring. For instance, the
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excess mortality and mortality from other causes are both age-dependent; this leads to an

informative censoring. Perme et al. used population mortality to weight and correct for the

subjects who leave the sample due to deaths from other causes. Later, Danieli et al. (2012)

showed by simulation that the Pohar-Perme estimator (PPE) is a consistent non-parametric

estimator of net survival that may be preferred to other non-parametric estimators. The PPE

estimates a hypothetical quantity that allows comparisons between populations. However,

to the best of our knowledge, comparing distributions of net survival over a given period in

the non-parametric framework is not possible yet; only a comparison between two estimates

at a given time t is currently possible with a classical Z-test. Besides, in the parametric

framework, the comparison of net survival between two groups or more may use a likelihood

ratio test in the context of a multivariate excess mortality model (see e.g., Remontet et al.,

2007), but this requires a complex model building strategy.

In this paper, we propose a log-rank-type test to compare distributions of net survival as

estimated by the PPE between two groups or more over a defined follow-up period. This

choice was made for several reasons. First, the log-rank test (Mantel, 1966; Peto and Peto,

1972) is very commonly used to compare distributions of observed survival between at

least two groups. Second, the log-rank test uses the cumulative hazard function and can

be represented with stochastic processes (Aalen, Borgan, and Gjessing, 2008; Fleming and

Harrington, 2011; Andersen, Borgan, Gill, and Keiding, 1993). Finally, because the PPE is

written with stochastic processes on the cumulative hazard scale, the log-rank test allows an

easy introduction of the weights of the PPE into the corresponding counting processes.

In Section 2, we present the way of building the proposed log-rank-type test and, in Section 3,

the stratified version of this test. Section 4 presents a simulation study where we investigated

the performance of this test. Section 5 provides an application to colorectal cancer data. We

conclude this paper with a brief discussion.
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2. A log-rank-type test for k > 2 groups

The proposed test compares the distributions of net survival (as estimated by the PPE)

(Perme et al., 2012) between k > 2 groups over a defined follow-up period. We assume

that the observations concern nh patients from h groups, with h ∈ [[1; k]] and k > 2. Let

n =
k
∑

h=1

nh denote the total number of patients. We assume also that (Fleming, Harrington,

and O’Sullivan, 1987)

∀h ∈ [[1; k]], lim
n→∞

nh

n
= αh;αh ∈ ]0; 1[ .

Under these assumptions: lim
n→∞

min
h

nh = ∞.

2.1 Notations and model

We consider that Th,i, the time to death of each patient i in group h, is the minimum of two

distinct times: TPh,i
due to the “population hazard” and TEh,i

due to the “excess hazard”.

Let Ch,i be the censoring time and Uh,i = min(Th,i, Ch,i) the follow-up time of patient i.

δ̃h,i denotes the failure indicator equal to 1 when the true failure time Th,i is observed and

0 when patient i is censored (the use of ∼ avoids a possible confusion with the notation of

Kronecker delta). Each patient i in a group h has covariates denoted by vector Xh,i. Dh,i

is a sub-vector of Xh,i that describes all the demographic covariates such that Xh,i \Dh,i

and TPh,i
are independent. Besides, we adopt the same set of assumptions as in Perme et al.

(2012):

a) (TPh,i
, TEh,i

, Ch,i,Xh,i)h,i are mutually independent;

b) (TPh,i
, TEh,i

, Ch,i,Xh,i)i have the same distribution;

c) TEh,i
and TPh,i

are conditionally independent given Xh,i; (1)

d) censoring times Ch,i are independent of pair (Th,i,Xh,i).

Further, we assume that the censoring process is non-informative; i.e., SC,h(t) := P (Ch,i > t)

(∀i ∈ [[1;n]], ∀h ∈ [[1; k]]). The observed data are given by (Uh,i, δ̃h,i,Xh,i)h,i for each pa-
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tient i in group h. The conditional net survival function of TEh,i
that corresponds to each

patient i of group h is denoted by S̃E,h,i(t) = P (TEh,i
> t | Xh,i). The corresponding

conditional cumulative excess hazard is denoted by Λ̃E,h,i. In the same way, we can define

the conditional population all-cause survival as S̃P,h,i(t) = P (TPh,i
> t | Xh,i) which equals

P (TPh,i
> t | Dh,i) because Xh,i \ Dh,i and TPh,i

are assumed to be independent. The

corresponding conditional population all-cause cumulative hazard is denoted by Λ̃P,h,i. We

use life tables to calculate the conditional population all-cause hazard functions according to

individual demographic covariates such as age, sex, and year of diagnosis that can be found

in Dh,i. We assume that these life tables describe adequately the all-cause death rates in the

study population (Perme et al., 2012). Further, for each group h, the net survival function is

defined as SE,h(t) = E(S̃E,h,1(t)); thus, we have SE,h(t) = P (TEh,1
> t). Let ΛE,h denote the

corresponding cumulative excess hazard. In the same way, we define the population all-cause

survival by SP,h(t) = P (TPh,1
> t) and the corresponding population all-cause cumulative

hazard by ΛP,h. Note that λ̃E,h,i, λ̃P,h,i, λE,h, and λP,h denote the instantaneous hazards

related to Λ̃E,h,i, Λ̃P,h,i, ΛE,h, and ΛP,h, respectively. From assumption (1.c), it follows that

the conditional observed mortality hazard is the sum of the conditional population mortality

hazard plus the conditional excess mortality hazard: λ̃P,h,i(t) + λ̃E,h,i(t).

Besides, we use the following additional assumptions to prove the asymptotic χ2 distribution

of our test statistic under the null hypothesis:

a)

∫ T

0

SE,h(s)λ
2

E,h(s)ds < ∞;

b) ∀h ∈ [[1; k]], E(
1

S̃P,h,1(T )3
) < ∞; (2)

c) ∀h ∈ [[1; k]], E(

∫ T

0

λ̃P,h,1(s)
2ds

S̃P,h,1(s)3
) < ∞;

where T is a constant that represents the maximum follow-up time. Note that these assump-

tions require that T be not too long vs. TP or TE. For instance, (2.a) is not satisfied if TE < T

(a.s.) and (2.b) is not satisfied if TP < T (a.s.).
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2.2 The log-rank-type statistic

The usual log-rank test compares k cumulative observed hazard functions over [0, T ], where

[0, T ] denotes the period of observation. The k-sample log-rank test is a test for the null

hypothesis (H0) : ∀t ∈ [0, T ] , Λ1(t) = . . . = Λk(t) where k > 2 is the number of groups

to compare and Λh (h ∈ [[1; k]]) the cumulative observed hazard. Using counting process

representations (see e.g., Andersen et al., 1993), the log-rank test is based on the following

statistic

Zh(T ) =

∫ T

0

1(Y.(s) > 0)dNh(s)−

∫ T

0

1(Y.(s) > 0)
Yh(s)

Y.(s)
dN.(s),

where h ∈ [[1; k]], Nh,i(s) = 1(Th,i 6 s, Th,i 6 Ch,i) = 1(Uh,i 6 s, δ̃h,i = 1),

Yh,i(s) = 1(Th,i > s, Ch,i > s), Nh(s) =

nh
∑

i=1

Nh,i(s), Yh(s) =

nh
∑

i=1

Yh,i(s), Y.(s) =

k
∑

h=1

Yh(s)

and N.(s) =
k
∑

h=1

Nh(s) for k > 2. Zh(T ) represents the difference between the number of

observed deaths in group h and the corresponding expected values.

Here, our goal is to test the null hypothesis

(H0) : ∀t ∈ [0, T ] , ΛE,1(t) = . . . = ΛE,k(t)

where k > 2. More precisely, we want to compare k cumulative excess hazard functions

over this period using PPE (Perme et al., 2012). The PPE, Λ̂E,h, is a consistent estimator of

ΛE,h. It corrects Ederer II estimator for the subjects who leave the sample due to deaths from

other causes using the inverse probability weighting procedure (Robins, 1993). The weights

are the survival probabilities of death from other causes that are applied to the counting

and the at-risk processes. More precisely, we have dNw
h,i(s) =

dNh,i(s)

S̃P,h,i(s)
, Y w

h,i(s) =
Yh,i(s)

S̃P,h,i(s)
,

Nw
h (s) =

nh
∑

i=1

Nw
h,i(s), and Y w

h (s) =

nh
∑

i=1

Y w
h,i(s) for h ∈ [[1; k]] and k > 2. The PPE is given

by

∀k > 2, ∀h ∈ [[1; k]], Λ̂E,h(t) =

∫ t

0

dNw
h (s)

Y w
h (s)

−

∫ t

0

∑nh

i=1
Y w
h,i(s)λ̃P,h,i(s)ds

Y w
h (s)

.
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To build our log-rank-type test, we first have to consider another stochastic process related to

the expected number of deaths from cancer NE,h(s) =

nh
∑

i=1

NE,h,i(s) where NE,h,i(s) is given

by Nh,i(s) −
∫ s

0
Yh,i(u)λ̃P,h,i(u)du for each patient i and each group h ∈ [[1; k]]. Second, we

use the same weighting procedure as in the PPE. The expected weighted number of deaths

from cancer is then defined by Nw
E,h(s) =

nh
∑

i=1

Nw
E,h,i(s) with dNw

E,h,i(s) =
dNE,h,i(s)

S̃P,h,i(s)
. For

all h ∈ [[1; k]], we now consider the statistic

Zw
h (T ) =

∫ T

0

1(Y w
. (s) > 0)dNw

E,h(s)−

∫ T

0

1(Y w
. (s) > 0)

Y w
h (s)

Y w
. (s)

dNw
E,.(s), (3)

where Y w
. (s) =

k
∑

h=1

Y w
h (s) and dNw

E,.(s) =
k
∑

h=1

dNw
E,h(s) for k > 2.

Note that when k = 2, Zw
1
(T ) is given by

∫ T

0

1(Y w
. (s) > 0)dNw

E,1(s)−

∫ T

0

1(Y w
. (s) > 0)

Y w
1
(s)

Y w
1
(s) + Y w

2
(s)

(

dNw
E,1(s) + dNw

E,2(s)
)

=

∫ T

0

1(Y w
. (s) > 0)

(

Y w
2
(s)

Y w
1
(s) + Y w

2
(s)

dNw
E,1(s)−

Y w
1
(s)

Y w
1
(s) + Y w

2
(s)

dNw
E,2(s)

)

.

The proposed test may be considered as a “log-rank-type test” because of the similarity

between the two tests. For h ∈ [[1; k]],
dNw

E,h(s)

Y w
h (s)

is a consistent estimator of the instantaneous

excess hazard at time s, λE,h(s) (Perme et al., 2012). It serves the same purpose as
dNh(s)

Yh(s)

which is a consistent estimator of the observed instantaneous hazard at time s, λh(s).

2.3 Estimate of the variance of Zw
h under the null hypothesis

We used the martingale theory to estimate the variance of statistic Zw
h (T ) under the null

hypothesis. We started by examining the case where TEh
and Xh are independent for each

h ∈ [[1; k]]; i.e., we assumed homogeneity in each group. This strong assumption is usually

made when studying the usual log-rank test (see e.g., Andersen et al., 1993). In practice,

this assumption is frequently violated; for example, when death from cancer is related to a

given sex. Then TE and X are dependent. We will deal with this general case by building a

stratified test we present in the next section.

Consistently with the idea of calculating the estimate of the variance of the PPE (Perme
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et al., 2012), we introduce

Mh,i(s)
def
= Nh,i(s)−

∫ s

0

Yh,i(u)
(

λ̃P,h,i(u) + λE,h(u)
)

du

= NE,h,i(s)−

∫ s

0

Yh,i(u)λE,h(u)du.

Mh,i(s) is a local square integrable martingale with respect to the filtration

Fs = σ (Xh,i, 1(Uh,i 6 u, Uh,i = Th,i) : 0 6 u 6 s; h ∈ [[1; k]]; 1 6 i 6 nh). Its predictable

variation process 〈Mh,i〉 is given by
∫ s

0
Yh,i(u)

(

λ̃P,h,i(u) + λE,h(u)
)

du. Note that S̃P,h,i is

(F0)−measurable so that we can define

dMw
h (s)

def
=

nh
∑

i=1

dMh,i(s)

S̃P,h,i(s)
= dNw

E,h(s)− Y w
h (s)λE,h(s)ds, (4)

and Mw
h (s) is a local square integrable martingale with respect to (Fs)s.

Let ΛE and λE denote ΛE,h and λE,h under the null hypothesis (∀h ∈ [[1; k]]). Then we have

dNw
E,.(s) =

k
∑

h=1

dNw
E,h(s) =

k
∑

h=1

dMw
h (s) + λE(s)

k
∑

h=1

Y w
h (s)ds. (5)

Introducing (4) and (5) in formula (3), we obtain under the null hypothesis

Zw
h (T ) =

k
∑

l=1

∫ T

0

1(Y w
. (s) > 0)

(

δhl −
Y w
h (s)

Y w
. (s)

)

dMw
l (s),

δhl being the Kronecker delta. For all h ∈ [[1; k]], Zw
h are local square integrable martingales

with respect to (Fs)s. We have E〈Zw
h 〉(T ) < ∞ since ∀h ∈ [[1; k]]

E〈Zw
h 〉(T ) 6

k
∑

l=1

nlE

{

∫ T

0

SC,l,1(s)SE(s)

S̃P,l,1

(

λ̃P,l,1(s) + λE(s)
)

ds

}

< ∞ (see Web Appendix

A). So, the Zw
h are square integrable over [0, T ].

Because the first and second order moments of the Zw
h exist, we have

cov
(

Zw
h (T ), Z

w
j (T )

)

= E[Zw
h , Z

w
j ](T ),

[Zw
h , Z

w
j ](T ) =

k
∑

l=1











∫ T

0

1(Y w
. (s) > 0)

(

δhl −
Y w
h (s)

Y w
. (s)

)(

δjl −
Y w
j (s)

Y w
. (s)

) nl
∑

i=1

dNl,i(s)
(

S̃P,l,i(s)
)2











.
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Note that, when k = 2, we have

[Zw
1
, Zw

1
](T ) =

∫ T

0

1(Y w
. (s) > 0)











(

Y w
2
(s)

Y w
1
(s) + Y w

2
(s)

)2 n1
∑

i=1

dN1,i(s)
(

S̃P,1,i(s)
)2

+

(

Y w
1
(s)

Y w
1
(s) + Y w

2
(s)

)

2 n2
∑

i=1

dN2,i(s)
(

S̃P,2,i(s)
)

2











.

2.4 The test statistic

Following closely the usual log-rank test (Andersen et al., 1993) and knowing that
k
∑

h=1

Zw
h (T ) = 0, we propose to test the null hypothesis with the following statistic

Uw(T ) = Z
w
0
(T )tΣ̂2,w

0
(T )−1

Z
w
0
(T ), (6)

where Z
w
0
(T ) =

(

Zw
1
(T ), . . . , Zw

k−1
(T )
)t

and Σ̂
2,w
0

is the matrix of general term

σ̂2,w
h,j (T ) =

k
∑

l=1











∫ T

0

1(Y w
. (s) > 0)

(

δhl −
Y w
h (s)

Y w
. (s)

)(

δjl −
Y w
j (s)

Y w
. (s)

) nl
∑

i=1

dNl,i(s)
(

S̃P,l,i(s)
)2











for (h, j) ∈ [[1; k − 1]]2.

Under assumptions (2), we can show that, under the null hypothesis, Uw(T ) ∼ χ2(k − 1)

when n −→ ∞ (see proof in Web Appendix B).

3. Stratified version of the test

To estimate the variance of Zw
h under the null hypothesis, we made the strong assumption

of independence between TE and X. Now we look at the general case where TE and X

can be dependent. We define a partition of the covariate space by (I1, . . . , Im) and assume

that P (TEh
> t | Xh) =

m
∑

s=1

P (TEh
> t | Xh ∈ Is). 1 (Xh ∈ Is), where Xh denotes the

set of covariates in group h. The (Is)16s6m are called strata of one or more covariate. For

example, when death from cancer is related to a given sex, we may consider two strata (men

and women). Thus, we assume homogeneity within each stratum but allow heterogeneity

between strata. We define ΛE,h,s as the cumulative excess hazard that corresponds to the
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net survival function SE,h,s(t) = P (TEh
> t | Xh ∈ Is).

We want to test (H0): ∀t ∈ [0, T ] , ∀s ∈ [[1;m]], ΛE,1,s(t) = . . . = ΛE,k,s(t).

We define Y w
.,s(u) =

k
∑

h=1

Y w
h,s(u) with Y w

h,s(u) =

nh
∑

i=1

Yh,i(u)

S̃P,h,i(u)
1(Xh,i ∈ Is). In the same way,

we define dNw
E,.,s(u) =

k
∑

h=1

dNw
E,h,s(u). According to Andersen et al. (1993), we define the

statistics

Zw
h,s(T ) =

∫ T

0

1(Y w
.,s(u) > 0)dNw

E,h,s(u)−

∫ T

0

1(Y w
.,s(u) > 0)

Y w
h,s(u)

Y w
.,s(u)

dNw
E,.,s(u), (7)

and

σ̂2,w
h,j,s(T ) =

k
∑

l=1

{

∫ T

0

1(Y w
.,s(u) > 0)

(

δhl −
Y w
h,s(u)

Y w
.,s(u)

)(

δjl −
Y w
j,s(u)

Y w
.,s(u)

)

×

nl
∑

i=1

dNl,i(u)
(

S̃P,l,i(u)
)2
1(Xl,i ∈ Is)











. (8)

We denote for s ∈ [[1;m]] the vectors and matrices with elements given by (7) and (8) by Z
w
s

and Σ̂
2,w

s . Then we will test the null hypothesis with the statistic
(

m
∑

s=1

Z
w
s,0

(T )

)t

.

(

m
∑

s=1

Σ̂
2,w

s,0 (T )

)

−1

.

(

m
∑

s=1

Z
w
s,0

(T )

)

,

which, under the null hypothesis, has an asymptotic χ2 distribution with (k − 1) degrees

of freedom. Note that, for s ∈ [[1;m]], Zw
s,0

(T ) =
(

Zw
1,s(T ), . . . , Z

w
k−1,s(T )

)t
and Σ̂

2,w

s,0 is the

same matrix as Σ̂
2,w

s without the last row and the last column.

4. Simulations

We evaluated the performance of the proposed log-rank-type test by simulation studies in

cases where TE and X are independent with k = 2 or 3 and where TE and X are dependent

with k = 2.

4.1 Data generation and simulation design

For each patient i, we generated independently covariates sex, age, and G, which represents

the groups (G had k = 2 or k = 3 levels). Covariate sex was generated from a binomial
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distribution with P (man) = P (woman) = 1/2. Covariate G was generated to study balanced

cases (i.e., P (G = 0) = P (G = 1) with k = 2 or P (G = 0) = P (G = 1) = P (G = 2)

with k = 3) or unbalanced cases only (i.e., P (G = 0) = 1/4 and P (G = 1) = 3/4 with

k = 2). Because TP depends on age, we studied 3 scenarios: 1) we generated covariate age

to represent approximately the empirical distribution of ages of colon cancer patients in the

French registries (25 percent aged 40-64 years, 35 percent aged 65-74 years, and 40 percent

aged 75 years and over); 2) we studied a young population using a uniform distribution

between ages 30 and 40; and 3) we studied an old population using a uniform distribution

between ages 65 and 80.

Danieli et al. (2012) have shown that the multivariable modeling estimator, which is based

on the multivariable additive excess hazard model, is a consistent parametric estimator of net

survival after adjustment on demographic covariates. Thus, we generated survival times from

this model. In its classical additive form (Estève et al., 1990), the observed hazard related

to the individual time to death Ti is defined as the sum of the instantaneous conditional

population all-cause death hazard and disease excess hazard, λ̃P,i and λ̃E,i. For this, Ti

was generated as follows: first, for each patient i, the time to death due to the population

hazard, TPi
, was obtained from the 2004 American life table, survexp.us, stratified by

Di = (agei, sexi), as provided by survival package in R software (Therneau, 2015). Second,

for each patient i, the time to death from cancer, TEi
, was obtained from λ̃E,i modeled with

the standard approach (see e.g., Giorgi et al., 2003) and using the inverse transformation

method. More precisely, λ̃E,i(t) = f(t). exp

(

βsex1(sexi = man) +
k−1
∑

l=1

βG,l1(Gi = l)

)

where

βsex and βG,l are the log hazard ratios (HR) of the covariates. The baseline hazard function f

was modeled with a generalized Weibull distribution (Belot et al., 2010) as t 7−→
κρκtκ−1

1 +
(ρt)κ

α
with ρ = 0.5, α = 0.2 and κ = 2. The distributions of net survival in the groups defined

by the levels of G vary when the effects of G on the excess mortality vary. More precisely,
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the null hypothesis is true when the HR(s) of G equals 1. Conversely, the farther the HR

is from 1, the more different are the groups in terms of net survival and the farther we

move away from the null hypothesis. When k was equal to 2, the HR of G belonged to

{0.7; 0.8; 0.9; 1; 1.2; 1.4; 1.6}. When k was equal to 3, the HRs of G, (HR1, HR2), belonged

to {(1, 0.7); (1, 1); (1, 1.2); (1, 1.4); (1, 1.6); (0.9, 1.2); (0.8, 1.4); (0.7, 1.6)}. In studying the case

where TE and X are independent, we did not introduce effects of age and sex on the excess

mortality (assumption of homogeneity). Conversely, in studying the case where TE andX are

dependent, we set the HR of sex to 2 and 3 and chose to assume independence with respect

to age. The higher the HR of sex is, the more different are the distributions of the time to

death from cancer between men and women in a given group h. Finally, individual censoring

times Ci were generated from a uniform distribution U [0; b] where the upper boundary b was

selected to obtain approximately 0% or 30% overall censoring levels. Then, each individual’s

observable time to death was Ti = min(TPi
, TEi

) whereas each individual’s observed time

to death was Ui = min(TPi
, TEi

, Ci). All subjects still at risk at 5 years were censored.

Moreover, we defined an individual’s hypothetical time to death as the minimum of two

values: the time to death due to the excess mortality and the time to censoring. According

to this time, we obtained another vital status that corresponds to a hypothetical world where

cancer would be the only cause of death. Thus, we could compare our test with the usual log-

rank test applied on “hypothetical data” and consider the latter test as the gold standard.

This is possible only within a simulation framework. We note here that even if cause-specific

data were available for our simulations, no direct gold standard for our log-rank-type test

could be used in the “real world” because the real world is that of competing risks; thus,

still subject to informative censoring.

Each simulation run consisted of 2000 independent samples. Each of them contained 1000

patients.
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4.2 Simulation results

The results obtained without censoring were roughly equivalent to those obtained with 30%

censoring, except regarding power. Actually, the power decreased as the censoring level

increased. Here, we show only the results related to a 30% censoring level (Tables 1, 2

and 3).

In the comparisons between two groups, the estimation of the type I error of our log-rank-

type test was good. In Table 1, at a 5% significance level, the confidence intervals of type

I error estimations contain the nominal level of 5% for our test and the usual log-rank test

applied on hypothetical data. In comparison with the usual log-rank test, our test performed

well in terms of power (Table 1). In the second scenario where the patients are young, the

results of both tests were nearly the same. In the first and third scenarios where the patients

are old (75% of the patients were more than 65 in the first scenario), our test showed a loss

of power.

[Table 1 about here.]

As expected, whatever the scenario, both tests were more powerful when the number of

patients increased from 500 to 2000 (results not shown) and both tests lost power when the

cases were unbalanced (Web Table A).

In the comparisons between three groups, the estimation of the type I error was close to

the nominal level of 5% (Table 2). Table 2 shows that, with the first scenario, our test was

less powerful than the usual log-rank test with hypothetical data, especially when the three

distributions of net survival were not far away from each other ((HR1, HR2) = (1, 0.7) or

(0.9, 1.2)). In the other cases, both tests were equally powerful. In addition, as seen above,

our test had a power close to that of the usual log-rank test when the patients were young

but showed a loss of power in scenarios 1 and 3 (Web Table B).

[Table 2 about here.]
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In the comparisons between the results of the stratified vs. the non-stratified version of

our test, in the case of two groups with dependence between TE and sex, the latter showed

less power (Table 3). The farther βsex was from 0, the greater was the loss of power. More

interestingly, as shown in Table 3, when the conditional distributions of TE were the most

different (HRsex = 3), the type I error was estimated at 2.95% (95% Confidence Interval

(CI) = [2.21; 3.69]) with the non-stratified version vs. 4.60% (95%CI = [3.68; 5.52]) with

the stratified version. However, when HRsex was equal to 2, the corresponding type I errors

were 4.80% (95%CI = [3.86; 5.74]) vs. 5.45% (95%CI = [4.46; 6.44]). Thus, the stratified

log-rank-type test is better used when the stratum variable has an important impact on net

survival.

[Table 3 about here.]

5. Application

For illustration, we used an application of our test to survival data on 10,108 patients

with colorectal cancer diagnosed in 1998. These data stem from 17 cancer registries of the

Surveillance, Epidemiology, and End Results (SEER) Program (2006) in the United States.

From this cohort, we excluded 816 patients who had no surgical procedure of the primary

site, 2 patients in whom the use of a surgical procedure was not certain, and 167 patients

with in situ tumors. Patient follow-up was restricted to the first five years after diagnosis

and the censoring set at five years in still-alive patients. These exclusions left 9,123 patients

for analysis. The covariates used were: age at diagnosis, sex, ethnicity (black or white), and

cancer stage at diagnosis (stages I to IV according to the stage classification of the American

Joint Committee on Cancer used by SEER registries (SEER Program: comparative staging

guide for cancer, 1993)). This dataset is described in Web Table C.

We used the American life tables provided by R software survexp.usr. These are stratified
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by age, sex, ethnicity, and calendar year, from 1998 to 2003. All the analyses were carried

out with R (R Core Team, 2014). The code and the .RData files are available upon request.

We used our test to compare the net survival distributions between Black and White patients

as stratified on cancer stage (I to IV), which is known to have an important effect on cancer

net survival. Moreover, in the net survival framework, age is a strong prognostic factor

in several types of cancer (Bossard et al., 2007). We considered three age groups: adult

patients (20-69 years), old patients (70-79 years), and very old patients (> 80 years). These

stratifications led to 12 strata. Figure 1 shows the impact of age and, most importantly,

the impact of stage on net survival. First, the use of the non-stratified version of our test

gave a test statistic equal to 19.95 (p-value = 7.9 × 10−6). Second, running the test

with stratification on cancer stage, the test statistic was 5.42 (p-value = 0.0199). The

low proportion of Black patients with low cancer stages (47% in stages I-II vs. 56% for

White patients) suggested delayed diagnoses; however, after correction for this, the impact

of ethnicity on death from cancer remained significant and higher in Black than in White

patients. Third, running our test with stratification on age, the test statistic was 23.62

(p-value = 1.2 × 10−6). Whatever the age group, the differences in net survival between

Black and White patients were greater considering age strata than stage strata (data not

shown). Finally, running the test stratified on both age and cancer stage, the test statistic was

9.92 (p-value = 0.0016). Thus, not stratifying on stage overestimated the differences between

the net survival distributions of Black and White patients whereas not stratifying on age

underestimated these differences. Stratifying on both age and cancer stage provided “true”

differences vs. differences first distorted by group heterogeneity. Using the usual stratified

log-rank test on observed survival led to a test statistic equal to 19.5. Thus, the use of net

survival instead of observed survival allowed the removal of the confounding effect of age on
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observed survival.

[Figure 1 about here.]

6. Discussion

The proposed test compares distributions of net survival as estimated by the Pohar-Perme

estimator (Perme et al., 2012). The simulation study showed that the estimation of the type

I error is correct. Our test performed well in terms of power despite some loss of power in case

of elderly patient: this is because elderly patients have higher expected mortality rates than

young patients (i.e., are more at risk of death from other causes). In elderly populations, the

loss of information induces a higher variability in the estimates of net survival.

The stratified version is useful when dealing with covariates that exert strong impacts on

net survival; that is, when one or several covariates have different distributions in the groups

under comparison (see e.g., Aalen et al., 2008, p. 110-111). The decision to use the stratified

version should be based on epidemiological considerations depending on the covariates under

study. The application on real data showed that part of the difference in cancer net survival

between Black and White patients is due to differences in cancer stages.

In the test design, we adopted the set of assumptions of Perme et al. (2012). In particular, the

model assumed that two latent times defined on the same individual are dependent only via

measured covariates (assumption (1.c)). In practice, this may fail in the case of unmeasured

covariates (e.g., deprivation). In addition, we made assumptions (2) to prove the asymptotic

distribution of the statistic under the null hypothesis. These are reasonable assumptions

on the follow-up time because, according to these assumptions, the maximum follow-up T

should be small in comparison with TP given D or TE .

One possible limitation of our work is that we studied only simulations favorable to our
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test. Indeed, the usual log-rank test is optimal under the assumption of proportional hazard

rates but performs poorly when this assumption is not met (Qiu and Sheng, 2008). Several

approaches have been proposed to deal with this problem (see e.g., Fleming et al., 1980;

Mantel and Stablein, 1988 ; Breslow, Edler, and Berger, 1984; Qiu and Sheng, 2008). Actually,

further studies are needed to adapt our test to one of these procedures. In addition, the

formula we propose was developed with a continuous underlying process (without ties). In

our application, there were 46% of ties between event times because only survivals in months

were available from SEER. We studied the impact of the use of a non-tie-corrected version

of our test by using simulations that rounded the survival times to obtain 38%, 45%, and

54% of ties. To compare the percentages of rejection of the null hypothesis, the test was run

on the same dataset with and without ties: this led to a maximum difference of 2% (results

not shown). Thus, with such percentages of ties in the simulated settings, using a version

of the test not corrected for ties had hardly any impact. However a tie-corrected estimator

adapted from the one presented by Andersen et al. (1993) may be of interest.

Another option to compare distributions of net survival is to use regression modeling. We

compared our proposed test with the likelihood ratio test from the multivariate excess

mortality model using simulated datasets (both presented in section 4.1). We assumed a

perfectly defined excess mortality model; i.e., with adjustment on G and sex (whenever

necessary) with proportional effects (results not shown). In terms of power, the greatest

difference between the percentages of rejection of the null hypothesis by the two tests at

the 5% level of significance was 3.15% in favor of the likelihood ratio test. However, with a

generated and well-mastered dataset, and with the proposed test, we did not have to deal

with a model-building strategy (see e.g., Wynant and Abrahamowicz, 2014). Thus, our non-

parametric test should be preferred for its simplicity.

Because our test compares favorably with the usual log-rank test on hypothetical data (as
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shown in the simulation study), it may help cancer registries in comparing net survival from

cancer between countries or areas. In addition, it may be applied to other chronic diseases

in which the concept of net survival may be used. As already performed by Schoenfeld

(1981) on the usual log-rank test, it would be interesting to determine the distribution of the

proposed test statistic under the alternative hypothesis. By deriving Schoenfeld’s formula, we

may obtain the sample size that provides the minimal detectable difference. The equivalence

between the usual log-rank test and the score test from a Cox model is well known. Another

perspective would be to investigate whether such a relationship could exist in the net survival

setting. Introducing in a Cox model time-dependent weights that correspond to the ones used

in the Pohar-Perme estimator could be an interesting approach.

Supplementary Materials

Web Appendices and Tables referenced in Sections 2.3, 2.4, 4.2 and 5 are available with this

paper at the Biometrics website on Wiley Online Library.
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Figure 1. Net survival estimated by the Pohar-Perme estimator according to cancer stage
and age groups in White (dotted line) and Black (solid line) patients. When the excess
hazard is close to 0 and/or when the number of subjects at risk is low, the variability of the
Pohar-Perme estimator can cause non-monotonic net survival curves.
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Table 1

Comparison between two groups: percentage of rejection of the null hypothesis at the 5% level of significance with
2000 simulations of 1000 patients. The age distribution is specific to each scenario: Scenario 1: 25% aged [40− 64],

35% aged [65− 74], and 40% aged [75− 85]; Scenario 2: 30 6 age 6 40 (uniform); Scenario 3: 65 6 age 6 80
(uniform).

HRa Percentage of rejection (95%CI)

Proposed test
Usual log-rank test on
hypothetical data

Scenario 1: balanced caseb

0.7 81.50 (79.80;83.20) 93.05 (91.94;94.16)
0.8 44.85 (42.67;47.03) 59.85 (57.70;62.00)
0.9 15.55 (13.96;17.14) 20.35 (18.59;22.11)
1 5.20 (4.23;6.17) 5.30 (4.32;6.28)
1.2 35.95 (33.85;38.05) 46.70 (44.51;48.89)
1.4 88.30 (86.89;89.71) 95.05 (94.10;96.00)
1.6 99.50 (99.19;99.81) 100 (99.81;100)

Scenario 2: balanced caseb

0.7 91.80 (90.60;93.00) 92.20 (91.02;93.38)
0.8 56.90 (54.73;59.07) 57.60 (55.43;59.77)
0.9 18.15 (16.46;19.84) 18.25 (16.56;19.94)
1 4.15 (3.28;5.02) 4.35 (3.46;5.24)
1.2 47.80 (45.61;49.99) 48.45 (46.26;50.64)
1.4 94.90 (93.94;95.86) 95.30 (94.37;96.23)
1.6 99.90 (99.64;99.97) 99.90 (99.64;99.97)

Scenario 3: balanced caseb

0.7 82.20 (80.52;83.88) 92.00 (90.81;93.19)
0.8 47.85 (45.66;50.04) 58.75 (56.59;60.91)
0.9 13.85 (12.34;15.36) 17.10 (15.45;18.75)
1 5.35 (4.36;6.34) 4.30 (3.41;5.19)
1.2 39.20 (37.06;41.34) 48.75 (46.56;50.94)
1.4 88.20 (86.79;89.61) 95.25 (94.32;96.18)
1.6 99.10 (98.69;99.51) 99.85 (99.56;99.95)

a: Hazard Ratio of the level of G to the excess mortality used in data generation, where G
is the covariate that represents the group.
b: Balanced cases correspond to cases where the groups are similar in size with
P (G = 0) = P (G = 1).
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Table 2

Comparison between three groups: percentage of rejection of the null hypothesis at the 5% level of significance with
2000 simulations of 1000 patients. The age distribution is that of Scenario 1 (25% aged [40− 64], 35% aged

[65− 74], and 40% aged [75− 85]).

(HR1, HR2)
a Percentage of rejection (95%CI)

Proposed test
Usual log-rank test on
hypothetical data

Scenario 1: balanced caseb

(1, 0.7) 66.75 (64.69;68.81) 82.90 (81.25;84.55)
(1, 1) 5.10 (4.14;6.06) 4.95 (4.00;5.90)
(1, 1.2) 26.20 (24.27;28.13) 35.80 (33.70;37.90)
(1, 1.4) 74.65 (72.74;76.56) 87.35 (85.89;88.81)
(1, 1.6) 97.20 (96.48;97.92) 99.70 (99.46;99.94)
(0.9, 1.2) 42.40 (40.23;44.57) 58.20 (56.04;60.36)
(0.8, 1.4) 96.10 (95.25;96.95) 98.90 (98.44;99.36)
(0.7, 1.6) 100 (99.81;100) 100 (99.81;100)

a: Hazard Ratios of the levels of G to the excess mortality used in data generation, where G
is the covariate that represents the group.
b: Balanced cases correspond to the cases where the groups are similar in size with
P (G = 0) = P (G = 1) = P (G = 2).
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Table 3

Comparison of between two groups: percentage of rejection of the null hypothesis at the 5% level of significance with
2000 simulations of 1000 patients when sex has an impact on the excess mortality in the data generation. The age

distribution is that of Scenario 1 (25% aged [40 − 64], 35% aged [65 − 74], and 40% aged [75− 85]).

HRa Percentage of rejection (95%CI)

Proposed test, stratified Proposed test, non-stratified

Scenario 1: HRsex = 2
0.7 90.60 (89.32;91.88) 88.55 (87.15;89.95)
0.8 57.90 (55.74;60.06) 53.25 (51.06;55.44)
0.9 18.00 (16.32;19.68) 16.40 (14.78;18.02)
1 5.45 (4.46;6.44) 4.80 (3.86;5.74)
1.2 46.50 (44.31;48.69) 43.50 (41.33;45.67)
1.4 95.00 (94.04;95.96) 93.35 (92.26;94.44)
1.6 99.90 (99.64;99.97) 99.85 (99.56;99.95)

Scenario 1: HRsex = 3
0.7 93.70 (92.74;94.76) 88.30 (86.89;89.71)
0.8 61.80 (59.67;63.93) 51.25 (49.06;53.44)
0.9 18.25 (16.56;19.94) 14.15 (12.62;15.68)
1 4.60 (3.68;5.52) 2.95 (2.21;3.69)
1.2 50.30 (48.11;52.49) 40.90 (38.75;43.05)
1.4 95.35 (94.43;96.27) 91.40 (90.17;92.63)
1.6 100 (99.81;100) 99.90 (99.64;99.97)

a: Hazard Ratios of the levels of G to the excess mortality used in data generation, where G
is the covariate that represents the group.


