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ABSTRACT. We give a randomized algorithm that sorts 
on an N node network with constant valence in 
O(log N) time. More particularly the algorithm 
sorts N items on .an N node cube-connected cycles 
graph and for some constant k for all large enough 

it terminates within k~ log N time with prob- 
ability at least 1 -N -~. 

I. Introduction 

This paper is concerned with the problem of 
sorting N items in parallel on a fixed-connection 
graph G having N nodes labeled {0,1,...,N-I} 
and constant valence. Each node initially contains 
one key. The set X of all N keys is assumed to 
have a total ordering <. The network sorts by 
routing each key x 6 X to node j = rank(x) where 
rank(x) is defined as I{x' 6 xlx < x}I This can 
be viewed as a distributed packet routing problem. 
Each x E X is considered to be an atomic packet 
that has to be routed from its initial node to the 
node corresponding to its rank. Both the rank 
computation and the packet routing have to be real- 
ized in a completely distributed manner. 

We assume that each node contains a single 
sequential processor with local storage for 
O(log N) packets. The processors are regarded as 
synchronous for the purpose of step counting, but 
the algorithm itself does not require it. In a unit 
time interval a processor may transmit one of its 
packets along a departing edge and perform some 
elementary operation such as a comparison. The pro- 
cessors are capable of generating random bits of in- 
formation and hence running randomized algorithms in 
the sense of Rabin [i0] and Solovay and Strassen 
[12]. 
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Clearly the routing required to sort may 
require time at least the diameter of the graph. 
If G has constant valenc6 then the diameter is 
at least ~(log N). Hence the O(log N) time 
bound for our algorithm is asymptotically optimal. 
In this paper we restrict ourselves to demonstrating 
that this bound is achievable in principle and do 
not pursue the issue of the magnitude of the con- 
stant multipliers. We note, however, that it is 
within a large class of algorithms that is experi- 
mentally testable in the sense of [14]. 

The main components of the algorithm are the 
splitter directed routing procedure SDR and the 
splitter finding procedure SF which itself uses 
SDR. They are described and analyzed in Sections 5 
and 7, respectively. 

A summary of the algorithm for sorting on the 
n-dimensional cube-connected cycles network (CCC) 
of Preparata and Vuillemin [9] is as follows. Note 
that the number of nodes is N = n2 n and hence 
n < log N. (Logarithms are assumed to have base 2 
throughout this paper.) 

Step A: Call SF(~). This finds a set of 2n/n 6 
elements called "splitters" that divide X, 
when regarded as an ordered set, into 
roughly equal intervals. 

Step B: Route each packet to a random node and call 
SDR(I) with the splitters found in Step A. 
This will route the keys belonging to each 
interval to the 6 log n dimensional sub- 
cube corresponding to it. In this way an 
approximate sort is achieved, but the keys 
are not spread completely uniformly around 
the network. 

Step C: Compute the rank of each key. 

Step D: Route each packet to the node corresponding 
to its rank. 

The O(log N) behavior of each of the four 
steps A-D will be established respectively as 
follows: Theorem A (Section 7), Theorem B (Section 
5), Algorithm C (Section 6) and Theorem D (Section 
3). We note that Theorem B is invoked in Step B 
with n-~ =6 logn, which is sufficient for the 
O(log N) bound. The following then follows 
immediately. 

Main theorem. There is a randomized algorithm that 
for some k and all n and all sufficiently large 
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sorts on an n-dimensional CCC network, and 
terminates within kan steps with probability 
greater than i-2 -an. 

Previous algorithms for sorting N keys on 
constant valence fixed connection networks of N 
processors require time ~(log N) 2. The bitonic 
sorter of Batcher [3] achieves this bound on such 
networks as the CCC [9]. 

For less realistic models of parallel computa- 
tion faster algorithms have been known. For exampl~ 
J. ~Tiedermann observed several years ago that the 
Ouicksort of Hoare [6] takes time O(log N) with 
high likelihood on a parallel decision tree model. 
Reischuk [ii] has a related result for a parallel 
random access model. 

Our current algorithm follows the randomized 
routing ideas introduced in [14]. It can be viewed 
as a partially successful attempt at reducing the 
sorting problem to the apparently simpler problem 
of routing. In the analysis the critical path 
technique developed by Aleliunas [i] and Upfal [13] 
for analyzing routing in constant valence graphs 
plays an important part. 

2. NETWORK DEFINITIONS 

~e define various constant valence networks 
derived from the n-dimensional binary hypercube. 
Consider some fixed n ~ i. Let the node set be 

V = {(w,i) lw6 {0,i} n, i6 {0 ..... n-l}} 

which has cardinality N = n2 n. For each a 6 V let 
address(a) =w and stage(a) = i if a= (w,i). Let 
w[i] be the i-th bit of w. Let w' =EXT(w,i) be 
identical to w except that w' [i] #w[i]. Also 
let w be the integer of which w is the binary 
representation. 

We call an edge from node a to node b 
internal if address(a) = address(b) and external 
if address(b) =EXT(address(a),stage(a) + 1 mod n). 
It is forward if stage(b) = stage(a) + imodn, 
static if stage(b) = stage(a), and reverse if 
stage(b) = stage(a) - 1 mod n. The CCC network 
of Preparata and Vuillemin [9] has no--~ne set V 
and exactly all forward internal edges, reverse 
internal edges and static external edges. For 
each of description this paper will assume a net- 
work more~similar to that of Upfal [13] which we 
call CCCn. It contains node set V and all 
forward and reverse internal edges and all forward 
and reverse external edges. Clearly any algorithm 
for CCC~ can be simulated on CCC n with at most 
a factor of two time increase. Finally, we defin~ 
CCC~ to be the network obtained by taking a CCC n 
and removing all edges that join pairs of nodes with 
respective stages 0 and n-l. The significance of 
CCC~ is that numerous copies of it can be found in 
CCC~ if n>m. In particular, for any Wl, w 2 
such that lwll ÷ lw21 =n-m the subgraph of CCC~ 
spanned by the nodes {(WlWW2,i) lw6 {0,i} m and 
lWlI~ i< lw~I +m} is isomorphic to eccl. 

Note that CCCn, CCC~ and CCC~ are all 
naturally related to the n-dimensional hypercube H n. 

Intuitively, for each wE {0,1} n the set of nodes 
{a6Vladdress(a) =w} can be considered to be a 
'~supernode" of H n. Each such supernode of H n 
is connected by external edges to n other super- 
nodes {b 6 Vladdress(b ) = EXT(w,i) for i=0,1, .... 
n-l} 

For any m let {0,i} <m> be the set of 
binary strings of length not more than m-l. We 
define a subdivision of the node set V that i~- 
dexes the subsets by binary strings from {0,i} n+3 
For each w6 {0,i} n let V[w] = {b6Vladdress(b)= 
and stage(b) = 0}. For each w6 {0,i} <n> let 
V[w] = {bEvIw is a prefix of address(b) and 
rwl = stage(b)}. Thus V[l] is the see of nodes 
of stage zero where l is the empty string. Let 
root v[w] of V[w] be the node with address 
wO n- w] and stage lwl . Note that for lwl ~n-l, 
v[w] has a departing forward internal edge 
entering v[w0] and a departing forward external 
edge entering v[wl]. 

3. PACKET ROUTING ON THE CCC + 
n 

This section briefly describes the probabil- 
istic packet routing algorithm of Valiant and 
Brebner [15] as applied to the CCC~ by Upfal [13! 

We require that each node a 6 V contain for 
each departing edge e a queue Qe for the packet 
that are to be transmitted across edge e. Each 
node also contains its address and stage posted as 
local variables. 

Let X be the set of cN packets to be 
routed, where each packet x 6 X is initially at a 
given node I x 6 V and we wish x to be routed to 
given destination node Dx6 V. The algorithm has 
two phases: 

A. (Random Routing) Route x from I x to a 
node R x 6 V with random address. 

B. (Fixed Destination Routing) Route x from 
R to D . x x 

The random routing of x in Phase A is 
accomplished by repeating for n stages the trans- 
mission of x across a randomly chosen departing 
forward edge (i.e., transmit x across the forwar~ 
internal edge or forward external edge with equal 
probability). Phase B repeats for n stages the 
following: if x is currently at node a ~ D x 
with j = stage(a) + 1 and address(a) [j] = 
address(Dx) [j] , then x is transmitted across the 
forward internal edge departing v and otherwise 
x is transmitted across the forward external edge 
departing v. This takes the packets to nodes witl 
the correct addresses. Finally, the packets are 
pipelined to the nodes with correct stage by travel 
sing internal edges. 

we have not yet specified the management of 
the queues of packets at each node. Suppose the 
priority of packet x 6 X is assigned to be the 
number of stages of phases A and B so far accom- 
plished, and we allow packet x to be transmitted 
from each node a6V only after all packets of 
lower priority have been transmitted from a. Let 
TA, T B be the total exaction times of phases A 
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and B respectively. The techniques of Aleliunas
[ll and Upfal 1131  show the following under assump-
tion that there are initially c packets at each node.

Theorem D. For some c>l
lYarge  a

for all  sufficiently

Prob(TA> ccm) ( Nsa, and Prob(TB>cCm)  <N-o.

We note that since the first phase sends
packets to random addresses the probability that,
at its completion, there are more than clan  packets
at any one node or c2c.n  packets at any address,
can be similarly bounded by N-c  (for suitable
constants l cl and ~2).

:: . SOilE  COI:BIf~IATORI/?L  IDEIITITIES

We shall use the following inequalities. Let
exp denote exponentiation of Euler's constant e.

Fact 4.1. For all x>O  (l+x-'jx<e  and

(l-x-l)x<.-l. Since for all large enough x

(l+~-')~(l+  (4x)-l)<e<  (1+~-')~(1+(2x)-') , it

follows that (l-x-1)-x<e(1+4(5(x-l))-1) and

(1 + x-l) --x < e-l cl+  (2x)-l).

Let B h,N,p) be the probability that in N
independent Bernoulli trials with probability p
of snccess  there are at least m successes.

Fact 4.2. (Chernoff [41)

B(m,N,p)  < (:r (c)N-m

< exp(-m-Np)  i f  m>Npe2.

Fact 4.3. ([Zl) I f  m=Np(l+B) where
O<B<l then

B(m,N,p)  < exp(-a2Np/2)  .

Fact 4.4. (Hoeffding [7])  If we have N inde-
pendent Poisson trials with respective probabilities
pl' . . ..PN where cpi=Np  and if n>Np+l  is an
integer then the probability of at least m
successes is at most B h,N,p) .

Fact 4.5. ([51, p. 18)  if ~=o(N~'~)  then- -

N0n = (1+0(l)) $ exp(-n2/2N)  .

Fact 4.6. Suppose xca, x< X< A are all functions
of n such that Xx=0(A) and X=O(A~/~). Let
x=aP+G, X=APjG  where P= (X+x)/(A+a),
G = o (;P) and G=o(AP). Then for all large enough
n

(z) ($qzj 6 (l+o(l))exp(-G2./5aP)  .

Proof.  Applying Fact 4.5 gives

A0X = (1+0(l)) $ exp(-X2/2A)

and

.2

(A+a)X+X
(x+x)! exp(-(X2  + 2xX+x2)/2A).

Using Xx=0(A) and applying Stirling's formula to
X!, (x+x)  ! and x! gives

Substituting x=aP+G  and X=AP-G ( o r
x=aP-G and X=AP+G) and using Fact 4.1 gives
the claimed bound. 0

We shall denote by w(l) any function that
tends to infinity  asL n+m. VJe  shall assume that
ratios take integral values whenever this is con-
venient and otherwise insubstantial.

5 . SPLITTER DIRECTED ROUTING

Let X be a set of CN keys that are totally
ordered by the relation <. We assume that each
key XEX is initially located at a random node
in V[Xl chosen independently of any other key in
x- Ix). Suppose that we are given a set of
splitters CCX  of size
each splitter7

ICI =2’-  1. We index

WE CO,l)<R'
~[w] EC by a distinct binary string

of length less than R. Let <*
denote the ordering defined as follows: For all
w,u,vE  {O,l}<R'  wOu<* w<* wlv.  We require that
for al.:. wl,w2E  10,l}<R>  a[wll  < 0[w21  iff wl <.w2.
We assume that a copy of each splitter 5[wl  i s
already available in each node of VLWI.

Let X[x] =X where A is the empty string.
Initially we assume that the keys of X(X] are
located at v[X],  that is the nodes of V having
stage zero. The splitter directed routing is
executed in R temporally overlapping stages
i=O,l,...,R-1. For each WE {O,l}i  the set of
keys X[w] are all eventually routed through
V[Wl. The splitter 0 [WI partitions X [wl  -U[wl
into disjoint subsets

X[wOl = {XEX[Wl  IX<U[WlI

and
X[Wl] = CXE X[wl lO[Wl  <  XI

which are subsequently routed through V[wOl  and
VFW11 respectively.

Suppose that a key xE XLwl is located at a
node aEV[wl with address ww' and stage i.
Let B be the first bit of the address suffix w'.
Then x is transmitted from node a across the
departing forward internal edge if B- (O[wl <x),
and x is transmitted across the departing forward
external edge otherwise. Thus if x <  0 [WI then
X is transmitted to a node with address prefix
wo, and if U[Wl <x then x is transmitted to a
node with prefix wl.

Note that at any one time distinct keys may
be at distinct stages. When all the keys have
completed stage R-l the keys x-c are partitioned
into 2Q  disjoint subsets of the form X [WI where
WE {O,llQ, and the keys X[wl are then at addresses
prefixed by w. The sets X[Wl are thus uniquely
defined by the choice of 1. The following follows



directly from the assumption that o [w I] < U[w2] if 
w I <° w2: 

Lemma 5.1. For any w I, w 2 £ {0,i} £ if w I <. w 2 

then x I < x 2 for all x I 6 X[w I] and x 2 6 X[w2]. 

Also, since each packet is assumed initially to 
be at a random node and since the above described 
splitter directed routing (SDR) procedure does not 
modify the last n-Z bits in the address of a 
packet, we can deduce that: 

Lemma 5.2. For each wE{0,i} £ and each x6x[w] 
SDR takes x to a random node in v[w] chosen 
independently of any other packet. 

The lemma above can be used to speed up the 
overall algorithm by avoiding repeated randomization. 
We shall not invoke it, however, as it does not 
change the asymptotic runtime. 

The SDR procedure can be-viewed as a generali- 
zation of Phase B of the routing procedure described 
in Section 3. It routes packets from random source 
nodes to specified destinations such that the numbe T 
of packets destined for each region is about the 
same. The analysis used in the proof is an exten- 
sion of the techniques introduced by Aleliunas [i] 
and Upfal [13] for establishing good bounds for 
such constant degree graphs as the CCC and d-way 
shuffle. 

Theorem 8. Suppose we have a network ccc~ with a 
set x of cn2 n packets and a set ~ of 2£-1 
splitters where n >£ >n/2 such that for all 
w£{O,l} £ Ix[w]l ~2cn2 n-~. Suppose that all the 
remaining packets are at independently chosen random 
nodes of V[I]. If T is the total time for execu- 
tion of SDR then for some c 2, k>0, for all n, 
c>l and all sufficiently large a 

Prob(T > c2cC~n) <2 -can +exp(-k.2n-£)-22~n 

Proof. First we observe that since the packets are 
randomly distributed initially, the probability that 
some a 6 V[I] initially contains more than 

2 c(~+l)n keys is less than 2 -c(~+l)n if a>e . 
This follows immediately from Fact 4.2. 

Let ~ = ~ + i. To each packet we assign a 
random integer from the set l,...,Sn as its 
priority. Each packet has probability (Sn) -I 
independently of being assigned any particular such 
number. In SDR we will insist that no key be for- 
warded from a node before all keys of higher prior- 
ity that ever visit it have been forwarded. [In 
practice we simply forward the packets currently 
at any node in order of their priority. This will 
be at least as fast, clearly, as the hypothesized 
algorithm that prophesies about future arrivals.] 

For each node a and priority z 6 {i .... ,Sn} 
let task T = (a,~) be the job of forwarding all 
keys of priority ~ that ever visit node a. Let 
a delay be any pair of tasks (%I,T2) = ((a,Z),(b,p)) 
where either a = b and Q = Z + 1 or (a,b) is an 
edge of the network and k = z. The two cases 
correspond to the two ways in which the execution 
of a task T 2 may depend on the completion of task 
T I. In the first case T 2 has to wait for packets 

of lower priority to be processed at its node. In 
the second case T 2 has to wait for the arrival of 
a packet from an adjacent node. 

Let a delay sequence D be a sequence of 
delays (%0,TI), (Tl,Y2) .... (Td_2,Td_l),(Yd_l,Td). 

Note that d ~£ + ~n since in each delay in any 
such sequence either the stage of the node increases 
by one or the priority increases by one. Since 
there are just two possible forward edges of trans- 
mission and just one way of increasing the priority, 
the total number of delay sequences starting at any 
one node is at most 3 £+~n. Hence their total number 

is at most 2n.3 £+~n~25n+2~n 

Let T(D) be the number of time units (i.e., 
packet transmissions) involved in D (i.e., in 
Y0,TI,...,Yd). It remains to prove that for some 
c 4 for all D and all sufficiently large c and 

Prob(T(D) > c4can) <2 -3e~n-6n 

for then the probability that the worst sequence 
suffers that much delay is at most 

2-3can-6n.22an+5n <2-an-n 

This is proved under the assumption that there are 
at most c(~+l)n packets initially at any node. 
Since, as has been observed, this event is equally 
unlikely the result follows. 

To establish the time bound on T(D) consider 
any particular D and let %j = (a,~) where 
stage(a) =i be a task in D. Let Pj be the set 
of keys that have nonzero probability of being 
routed through Tj (i.e., if their priority and 
initial position are suitably chosen) but would 
then certainly depart from D at Tj. Departure 
from D is forced either because (Tj,Tj+I) = 
((a,~),(a,~+l)) (since the priority of a packet 
cannot change) or because (Y Tj+ I) = ((a,~), 3' 
(b,~+l)) but (a,b) is not the edge along which 
the packet leaves node a. Note that in the latter 
case the i-th bit of the destination address of 
packets that depart from D at T. is different 
from those that depart at later polnts. It is 
easily dedeuced that once the priorities are fixed, 
the sets PI,P2,...Pj,...Pd are pairwise disjoint. 

Now Pj is just the union of X[w] for various 
w 6 {0,i} £ such that w and a agree in the first 
i bits. By the assumption about the size of X[w] 
it follows that IPjl ~2cn2 n-i. 

Let Rj be the set of keys that have nonzero 
probability of being routed through Yj once the 
priorities have been decided. Since the priorities 
are determined by Bernoulli trials with probability 
(~n) -I, Fact 4.2 can be used to give the following 
bound 

Prob(IRjl >4cn2n-i(Sn)-l) ~exp(_k.2 n-£) 

for an appropriate constant k > 0. The second term 
in the theorem follows from multiplying the above 
bound by the number of choices of D and j. 
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Finally, let Kj be the actual set of keys 
that do depart from D at Tj because both the 
priority and the initial positions were appropriately 
chosen. For each such packet the initial position 
must agree with a in the last n-i bits. Hence 
Kj is determined by Rj Bernoulli trials each with 
probability 2 i-n of success. Hence assuming 
]Rj ] <4cn2 n-i(~n)-I for each j we have Bernoulli 
trials with expectation ~<4c/8. To upper bound 

d 
IKjl 

j = l  

we a p p e a l  t o  H o e f f d i n g ' s  T h e o r e m  ( F a c t  4 . 4 ) .  We 
h a v e  a t  m o s t  cn2  n t r i a l s  w i t h  mean  a t  m o s t  
(4c/13) (,~+Bn) ~<5cn i f  B ) 4 .  U s i n g  F a c t  4 . 2  i t  
f o l l o w s  t h a t  

-c3cC~n 
Prob(~IKjl > c3c~n) <2 (i) 

if c3<~ > 5e 2. 

Finally, we have to consider the case of 
packets being involved in more than one task of D. 
This can be done by considering any fixed assign- 
ment of keys to departure points in D and con- 
sidering the probabilities of repeated earlier in- 
volvement in D. If a key was involved in D at 
Yj then the probability of a previous involvement 
at Yj-i is at most one half independent of subse- 
quent involvements. Hence if a key was involved in 
D at Yj then the probability of t previous in- 
volvements (i.e., with Yj-I'''''Tj-I) is at most 
2 -t. It follows that 

Prob(T(D) />K+s and ~IKjI=K) ~<2-S-Prob(~lKj I~)K). 

(2) 

From (i) and (2) it follows that if c3a> 5e 2. 

l-c3c~n 
Prob(T(D) />2c3can) <2 Q 

6. DETERMINISTIC SORTING AND RANKING 

We use as subroutines some known deterministic 
algorithms. A crucial step in splitter finding is 
sorting a sparse subset of elements. For this we can 
use the algorithm of Nassimi and Sahni [8]. 

Theorem NS. For ~,~ e > 0 N l-e keys can be sorted 
on a ccc n when N =n2 n in tim~ O(n). 

Step C of the overall algorithm determines the 
rank of every element given that it is "almost" 
sorted. Suppose that for some v we have that all 
elements are in nodes at stage i and for all 
Wl<'W2, lWll = [w21 =i the keys in V[w I] are 
smaller than the keys in V[w2]. If i =n then we 
have a complete sort except that the elements may 
not be uniformly distributed among the stage 0 nodes. 
In this situation the rank of each key can be deter- 
mined by first sorting the keys at each node locally. 
The global rank computation is performed on the 
binary tree that has these nodes as leaves and con- 
sists of all forward internal edges, and just those 
forward external edges along which some address bit 
changes from 8 to i. The number of keys in each 
subcube can be determined recursively by sending 

these sums from the leaves toward the root and 
accumulating at each internal tree node. Finally 
in a r~verse information flow from the root to the 
leaves, the range of the ranks in each subcube can 
be determined, and hence the ranks of the individual 
keys. This all takes O(n) parallel transfers of 
tokens that contain only binary numbers of O(n) 
digits. 

In Step C of the actual algorithm we start 
with only a partial sort (i.e., for all w I <" w 2 
with [Wll = lw21 =n-s where s =61og2n, for all 
x6V[Wl] and y 6V[w2], x <y). To find ranks in 
this situation we determine the rank range for each 
X[Wl], sort each X[Wl], and finally deduce the 
rank of each element. The determination of the 
rank ranges and final rank is as described in the 
above paragraph. With overwhelming probability 
each X[w I] will have at most 2n2 s packets. For 
sorting X[w I] we assign a separate CCC~ to it 
where t = s + log n - log s. At least if t divides 
n, one can find n2n/(t22) disjoint copies of CCC~ 
in CCC~. The packets are routed to their 
appropriate copy of CCC~ (Theorem D) and then 
sorted there by some o(n) method such as•Batcher's 
(see Preparata and Vuillemin [9]) which takes 
O(log n) 2. The above described algorithm for 
ranking the elements given a partial sort will be 
called A~orithm C. 

7- SFLITTER FINDING 

We describe a procedure SF that given a CCC~ 
with c packets at each node finds a subset U 
of 2n/n 6 packets called "splitters" that divide 
the ordered sequence of the cn2 n total packets 
into intervals that are, with large probability, 
• th 2 ~6+I all of length smaller an ~,~ . The procedure 
is recursive, nested recursive calls corresponding 
to nested subcubes. At the i-th level of recursion 
the splitters ~ound divide the ordered sequence 
into 2n(l-i/21) roughly equal intervals. The 
subcubes at the i-th level are CCC~ where r = n/21 
[i =0, .... log n - log(2~•logn)]. At the i-th level 
a fraction of about 2 -l of the packets are con- 
sidered "active". The choice of splitters at lower 
levels is restricted to these active elements. In 
this way the average density of active packets in 
each CCC~ is kept a constant c independent of 
the cube size. This is necessary for the recursive 
procedure to succeed. Any integer greater than or 
equal to six suffices as a value of 6. 

The set U of all splitters found in a run of 
SF[I] will be used in Step B of the overall sorting 
procedure. 

The procedure SF applied to the subcube with 
root (w,n-m), where lwl =n-m, is as follows. 
When the procedure is called initially with w = l 
all the packets are considered active. 

Procedure SF(w) 

(i) Let Y[w] be the active packets in V[w]. 
For each X 6Y [w] route x to a random node in 
v[w] 

(2) For each Wl, lWll =m/2 +2 logn, choose 
at random an active element from V[WWl]. Sort this 
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set S* of n22 m/2 chosen elements using Theorem 
NS. Route the j-th largest to the address that is 
the binary representation of w + j2m/2/n2. Let S 
the newly created set of splitters be the packets 
at addresses w + j2m/2 for j = i,... ,2 m/2 - i. If 
the splitter is found at address ww I and Wl=W21W 3 
where w 3 60" then the splitter is denoted by 
o[ww 2] and routed deterministically to every node 
in V [ww 2 ] . 

(3) For each x6Y[w] -S decide according to 
a Bernoulli trial with probability one half whether 
it is to remain active. Let the active subset of 
Y [w] be Z [w] . 

(4) Apply SDR with the newly found splitters 
to Z [w]. 

(5) For each w' with I w' I =m/2 let Y[ww'] 
be the subset of Z[w] routed to subcube V[ww'] 
by (4). For each such w' call in parallel SF(ww') 
for Y[ww'] as active elements, unless m=26 logn. 

We have seen that SDR for CCC r takes time 
O(r) with overwhelming probability. Theorem A will 
establish that if SF is run, with the recursive 
calls of SF being allowed to be asynchronous, then 
the overall algorithm runs in time O(n) with large 
probability. The main fact which has to be 
established (Theorem 7.2) is that with overwhelming 
probability, at every call of SDR the hypotheses of 
Theorem B are satisfied. We leave it to the reader 
to verify that all the other operations performed 
in a call of SF(w) with lwl =n-m can be achieved 
deterministically, by pipelining if necessary, in 
time O(m) . 

First we need a technical lemma: 
% 

kemma 7. |. Given an ordered set h T suppose that a 
set s* of n22 m/2 elements are then chosen from T 
at random and s* is then sorted. Let s c s* be 
the subset of elements having positians n2?2n 2, 
... (2m/2-1)n 2 in the ordered set. 

Suppose t o ..... t~+] is the longest ordered 
subsequence of T suc~ that t0,tf+l£S but 
t I ..... tf ~s. Then 

(i) Prob(f > (l+n-i/3)]Tl/2m/2) = N-~(1) 

(ii) Prob(f < (1-n -1/3) IT]/2 m/2) = N -~(I) 

Suppose that a subset y c_ T- S is chosen by per.- 
forming independent Bernoulli trials with probability 
1/2. Let Y0 ..... Yh+l be the longest ordered sub- 
sequence of Y U s such that Yo'Yh+I £ S but 
Yl ..... Yh £S. Then 

(iii) Prob(h > (l~2n -$/3) ]Yl/(2.2m/2)) = N -L0(1) 

(iv) Prob(h < (l-2n -1/3) IYl/(2°2m/2)) = N -03(I) 

These claims assume that n42 m/2 = o ( IT 1 ) and 
n22m/2 = o( IT 12/3). 
Proof. All choices of S* are equally likely. To 
prove (i) and (ii) consider any sequence to,... ,tf+ 1 

with f = (i ±n -I/3)" ITl/2 m/2. Then the probability 
that of the n22 m/2 members of S* exactly n 2 lie 
in the above range and the rest outside is 

n22m/ _n21\n21! \n 2m/21 
Applying Fact 4.~ with A= ITJ-f, a=f, X=n22 m/2 

2 2 n5/3 -n , x = n gives G = and an upper bound of 

exp (-n4/3/6) 

provided n42m/2 =o(ITl) and n22m/2=o(]T12/3). 
This establishes (i) and (ii) since there are at 
most 2 n choices of t 0, tf+ 1 and f, 
respectively. 

To show (iii) and (iv) it is sufficient to 
prove that in a sequence of (i +n -I/3) I Tl/2m/2 
ordered elements of T the probability that the 
number of elements chosen to be in Y is outside 
the range (i +-2n -I/3) ITl/2"2m/2 is negligible. 
In fact Lemma 4.3 upper bounds this probability by 

exp (-n -2/3 I TI/(4"2 m/2) ) 

which is bounded above by exp(-n 4/3) if 

2m/2-n2 =o(T). [] 

Theorem 7.2. In a run of SF(I) the probability 
of each of the following events for each recursive 
call of SF(w) is bounded above by N -L°(1) 
provided m>~121og n. 

(a) Step (ii) fails because v[ww I] has no 
active packets. 

(b) In the call SDR for subcube w with 
lwl =n-m, it happens that Iz[w]l >2cm2 m or 
Iz [w] I < cm2m/2" 

(c) In the call SF for subcube w with 
lwl =n-2m two neighboring splitters are created 
that in the total ordering of the cn2 n elements 
have more than 2cn2 m elements between them. 

Since in a 2n~n of SF[I] there are at most 3N 
such events altogether the probability that any 
such event ever occurs in a run is therefore also 
bounded bb' N'oJ (i) . 

Proof. The proof proceeds by induction on the 
depth of recursion. We assume that the Theorem 
holds down to the current level of recursion and 
argue that the probability of "going wrong" at the 
current call is less than N -~0(I) . 

(a) Since the active elements Y[w] have been 
sent to random nodes in V[w] the probability that 
all of at least cm2m/2 elements miss V[WWl] is 
at most 

cm2m/2 (i - i/(2m/2n 2) ) 

By Fact 4.1 this is bounded above by 

exp (-cm2m/2/(2n 2) ) = N-~ (i) 

if m ~> 121og n. 

(b) We assume inductively that in the call of 
SDR at the i-th level of recursion the set of active 
elements denoted again by T in the subcube corres- 
ponding to w is in the range (i +2n-I/3)icn2m-i. 
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Then by Lemma 7.1 (iii) the probability that the 
number of active elements in a subcube at the 
(i+l)-st level call is in the range (i ± 2n -I/3) 

27m/2-2-i times this quantity, which is 

(i ±2n-i/3)i+icn2 m/2-(i+l) is bounded by N -W(1) 

(c) We assume inductively that in the call of 
SDR at the i-th level of recursion the set T of 
elements in the corresponding subcube had size at 
most (i + n-i/3)icn2 m (where m = n/2i). Applying 
Lemma 7.1 (i) gives that, at the next level of 
recursion, the probability of a subcube havihg 
more than (i + n-i/3)2 -m/2 times as many packets 
is bounded above by N -~(I) . D 

Theorem A. For all c~l there £s a c 5 such 
that for all sufficiently large 8 if SF(1) is 
run on ccc~ with c packets per node then 

Prob(T > cc58n) <N -c~ . 

Proof. In a run of SF a critical path is a sequence 
of nested calls of SF(h), SF(Wl) , SF(WlW2) , 
...SF(wlw2...'w i) .... where lwjl =n2-J. The deter- 
ministic components of each take time proportional 
to [wil. When summed for i = 1 ..... log n- 
log(121og n) this gives an upper bound of O(n) 
as required. Hence it remains only to analyze the 
cumulative probabilistic effects of such a chain 
of calls of SDR. Note that these calls are 
probabilistically independent. 

Theorems B and 7.2(b) say that for sufficiently 
large ~ a call of SDR on the subcube with address 

exceeds runtime 2cc2an/2i with prefix Wl-..w i 
probability less than 

2-c~n/2i + 2 -~(n6) 

Hence it exceeds runtime 2cc2n/21 +2c(~-i)c2n/21 = 

2cc2n/21 • t i (say) with probability less than 

-ti/(3c 2 ) 
2 

Hence the probability that such a sequence of nested 
calls takes time more than c2n + t is less than 

-ti/(3c 2) -t/(3c 2) 
E ~ 2 ~ E 2 

~t.=t i Zt.=t l 1 

~< 2-c (a-l)n/3+° (n) 

if t =2c2c(~-i)n. The result follows for ~ =a/2 
for a > 6 with c 5 = 4c 2. 

In conclusion we note that Theorem 7.2(c) 
ensures that the hypotheses of Theorem B hold when 
Step B of the overall algorithm is invoked. In 
other words, when SDR is called with the 2n/n 6 
splitters found in Step A then the number of ele- 
ments destined for each 61og n dimensional sub- 
cube is never more than twice the average. 

In the unlikely event that Step (ii) of SF 
fails in any call of SF the sorting algorithm is 
restarted from the beginning. 

Acknowledgment. We are grateful to G.H. Gonnet for 
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paper. 
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