
A LOGARITHMIC TIME SORT FOR LINEAR SIZE NETWORKS

John H. Reif* and Leslie G. Valiant

Aiken Computation Laboratory
Division of Applied Sciences

Harvard University, Ca~nbridge, Massachusetts

ABSTRACT. We give a randomized algorithm that sorts
on an N node network with constant valence in
O(log N) time. More particularly the algorithm
sorts N items on .an N node cube-connected cycles
graph and for some constant k for all large enough

it terminates within k~ log N time with prob-
ability at least 1 -N -~.

I. Introduction

This paper is concerned with the problem of
sorting N items in parallel on a fixed-connection
graph G having N nodes labeled {0,1,...,N-I}
and constant valence. Each node initially contains
one key. The set X of all N keys is assumed to
have a total ordering <. The network sorts by
routing each key x 6 X to node j = rank(x) where
rank(x) is defined as I{x' 6 xlx < x}I This can
be viewed as a distributed packet routing problem.
Each x E X is considered to be an atomic packet
that has to be routed from its initial node to the
node corresponding to its rank. Both the rank
computation and the packet routing have to be real-
ized in a completely distributed manner.

We assume that each node contains a single
sequential processor with local storage for
O(log N) packets. The processors are regarded as
synchronous for the purpose of step counting, but
the algorithm itself does not require it. In a unit
time interval a processor may transmit one of its
packets along a departing edge and perform some
elementary operation such as a comparison. The pro-
cessors are capable of generating random bits of in-
formation and hence running randomized algorithms in
the sense of Rabin [i0] and Solovay and Strassen
[12].

*This work was supported by the National Science
Foundation Grant NSF-MCS79-21024 and the Office
of Naval Research Contract N00014-80-C-0674.

Permission to copy without ~¢ all or part of this mart ial is wanted
provided that the copks are not made or distributed ~ r di~ct
comme~ial advantage, the ACM copyright notice and the titk of the
publication and i~ date appear, and notice is given that copying is by
permission of the Assocmtion ~ r Computing Machinery. To copy
otherwise, or to republish, ~ q u i ~ s a ~e and/or specific permission.

© 1983 ACM 0-89791-099-0/83/004/0010 $00.75

Clearly the routing required to sort may
require time at least the diameter of the graph.
If G has constant valenc6 then the diameter is
at least ~(log N). Hence the O(log N) time
bound for our algorithm is asymptotically optimal.
In this paper we restrict ourselves to demonstrating
that this bound is achievable in principle and do
not pursue the issue of the magnitude of the con-
stant multipliers. We note, however, that it is
within a large class of algorithms that is experi-
mentally testable in the sense of [14].

The main components of the algorithm are the
splitter directed routing procedure SDR and the
splitter finding procedure SF which itself uses
SDR. They are described and analyzed in Sections 5
and 7, respectively.

A summary of the algorithm for sorting on the
n-dimensional cube-connected cycles network (CCC)
of Preparata and Vuillemin [9] is as follows. Note
that the number of nodes is N = n2 n and hence
n < log N. (Logarithms are assumed to have base 2
throughout this paper.)

Step A: Call SF(~). This finds a set of 2n/n 6
elements called "splitters" that divide X,
when regarded as an ordered set, into
roughly equal intervals.

Step B: Route each packet to a random node and call
SDR(I) with the splitters found in Step A.
This will route the keys belonging to each
interval to the 6 log n dimensional sub-
cube corresponding to it. In this way an
approximate sort is achieved, but the keys
are not spread completely uniformly around
the network.

Step C: Compute the rank of each key.

Step D: Route each packet to the node corresponding
to its rank.

The O(log N) behavior of each of the four
steps A-D will be established respectively as
follows: Theorem A (Section 7), Theorem B (Section
5), Algorithm C (Section 6) and Theorem D (Section
3). We note that Theorem B is invoked in Step B
with n-~ =6 logn, which is sufficient for the
O(log N) bound. The following then follows
immediately.

Main theorem. There is a randomized algorithm that
for some k and all n and all sufficiently large

10

sorts on an n-dimensional CCC network, and
terminates within kan steps with probability
greater than i-2 -an.

Previous algorithms for sorting N keys on
constant valence fixed connection networks of N
processors require time ~(log N) 2. The bitonic
sorter of Batcher [3] achieves this bound on such
networks as the CCC [9].

For less realistic models of parallel computa-
tion faster algorithms have been known. For exampl~
J. ~Tiedermann observed several years ago that the
Ouicksort of Hoare [6] takes time O(log N) with
high likelihood on a parallel decision tree model.
Reischuk [ii] has a related result for a parallel
random access model.

Our current algorithm follows the randomized
routing ideas introduced in [14]. It can be viewed
as a partially successful attempt at reducing the
sorting problem to the apparently simpler problem
of routing. In the analysis the critical path
technique developed by Aleliunas [i] and Upfal [13]
for analyzing routing in constant valence graphs
plays an important part.

2. NETWORK DEFINITIONS

~e define various constant valence networks
derived from the n-dimensional binary hypercube.
Consider some fixed n ~ i. Let the node set be

V = {(w,i) lw6 {0,i} n, i6 {0 n-l}}

which has cardinality N = n2 n. For each a 6 V let
address(a) =w and stage(a) = i if a= (w,i). Let
w[i] be the i-th bit of w. Let w' =EXT(w,i) be
identical to w except that w' [i] #w[i]. Also
let w be the integer of which w is the binary
representation.

We call an edge from node a to node b
internal if address(a) = address(b) and external
if address(b) =EXT(address(a),stage(a) + 1 mod n).
It is forward if stage(b) = stage(a) + imodn,
static if stage(b) = stage(a), and reverse if
stage(b) = stage(a) - 1 mod n. The CCC network
of Preparata and Vuillemin [9] has no--~ne set V
and exactly all forward internal edges, reverse
internal edges and static external edges. For
each of description this paper will assume a net-
work more~similar to that of Upfal [13] which we
call CCCn. It contains node set V and all
forward and reverse internal edges and all forward
and reverse external edges. Clearly any algorithm
for CCC~ can be simulated on CCC n with at most
a factor of two time increase. Finally, we defin~
CCC~ to be the network obtained by taking a CCC n
and removing all edges that join pairs of nodes with
respective stages 0 and n-l. The significance of
CCC~ is that numerous copies of it can be found in
CCC~ if n>m. In particular, for any Wl, w 2
such that lwll ÷ lw21 =n-m the subgraph of CCC~
spanned by the nodes {(WlWW2,i) lw6 {0,i} m and
lWlI~ i< lw~I +m} is isomorphic to eccl.

Note that CCCn, CCC~ and CCC~ are all
naturally related to the n-dimensional hypercube H n.

Intuitively, for each wE {0,1} n the set of nodes
{a6Vladdress(a) =w} can be considered to be a
'~supernode" of H n. Each such supernode of H n
is connected by external edges to n other super-
nodes {b 6 Vladdress(b) = EXT(w,i) for i=0,1,
n-l}

For any m let {0,i} <m> be the set of
binary strings of length not more than m-l. We
define a subdivision of the node set V that i~-
dexes the subsets by binary strings from {0,i} n+3
For each w6 {0,i} n let V[w] = {b6Vladdress(b)=
and stage(b) = 0}. For each w6 {0,i} <n> let
V[w] = {bEvIw is a prefix of address(b) and
rwl = stage(b)}. Thus V[l] is the see of nodes
of stage zero where l is the empty string. Let
root v[w] of V[w] be the node with address
wO n- w] and stage lwl . Note that for lwl ~n-l,
v[w] has a departing forward internal edge
entering v[w0] and a departing forward external
edge entering v[wl].

3. PACKET ROUTING ON THE CCC +
n

This section briefly describes the probabil-
istic packet routing algorithm of Valiant and
Brebner [15] as applied to the CCC~ by Upfal [13!

We require that each node a 6 V contain for
each departing edge e a queue Qe for the packet
that are to be transmitted across edge e. Each
node also contains its address and stage posted as
local variables.

Let X be the set of cN packets to be
routed, where each packet x 6 X is initially at a
given node I x 6 V and we wish x to be routed to
given destination node Dx6 V. The algorithm has
two phases:

A. (Random Routing) Route x from I x to a
node R x 6 V with random address.

B. (Fixed Destination Routing) Route x from
R to D . x x

The random routing of x in Phase A is
accomplished by repeating for n stages the trans-
mission of x across a randomly chosen departing
forward edge (i.e., transmit x across the forwar~
internal edge or forward external edge with equal
probability). Phase B repeats for n stages the
following: if x is currently at node a ~ D x
with j = stage(a) + 1 and address(a) [j] =
address(Dx) [j] , then x is transmitted across the
forward internal edge departing v and otherwise
x is transmitted across the forward external edge
departing v. This takes the packets to nodes witl
the correct addresses. Finally, the packets are
pipelined to the nodes with correct stage by travel
sing internal edges.

we have not yet specified the management of
the queues of packets at each node. Suppose the
priority of packet x 6 X is assigned to be the
number of stages of phases A and B so far accom-
plished, and we allow packet x to be transmitted
from each node a6V only after all packets of
lower priority have been transmitted from a. Let
TA, T B be the total exaction times of phases A

Ii

and B respectively. The techniques of Aleliunas
[ll and Upfal 1131 show the following under assump-
tion that there are initially c packets at each node.

Theorem D. For some c>l
lYarge a

for all sufficiently

Prob(TA> ccm) (Nsa, and Prob(TB>cCm) <N-o.

We note that since the first phase sends
packets to random addresses the probability that,
at its completion, there are more than clan packets
at any one node or c2c.n packets at any address,
can be similarly bounded by N-c (for suitable
constants l cl and ~2).

:: . SOilE COI:BIf~IATORI/?L IDEIITITIES

We shall use the following inequalities. Let
exp denote exponentiation of Euler's constant e.

Fact 4.1. For all x>O (l+x-'jx<e and

(l-x-l)x<.-l. Since for all large enough x

(l+~-')~(l+ (4x)-l)<e< (1+~-')~(1+(2x)-') , it

follows that (l-x-1)-x<e(1+4(5(x-l))-1) and

(1 + x-l) --x < e-l cl+ (2x)-l).

Let B h,N,p) be the probability that in N
independent Bernoulli trials with probability p
of snccess there are at least m successes.

Fact 4.2. (Chernoff [41)

B(m,N,p) < (:r (c)N-m

< exp(-m-Np) i f m>Npe2.

Fact 4.3. ([Zl) I f m=Np(l+B) where
O<B<l then

B(m,N,p) < exp(-a2Np/2) .

Fact 4.4. (Hoeffding [7]) If we have N inde-
pendent Poisson trials with respective probabilities
pl'PN where cpi=Np and if n>Np+l is an
integer then the probability of at least m
successes is at most B h,N,p) .

Fact 4.5. ([51, p. 18) if ~=o(N~'~) then- -

N0n = (1+0(l)) $ exp(-n2/2N) .

Fact 4.6. Suppose xca, x< X< A are all functions
of n such that Xx=0(A) and X=O(A~/~). Let
x=aP+G, X=APjG where P= (X+x)/(A+a),
G = o (;P) and G=o(AP). Then for all large enough
n

(z) ($qzj 6 (l+o(l))exp(-G2./5aP) .

Proof. Applying Fact 4.5 gives

A0X = (1+0(l)) $ exp(-X2/2A)

and

.2

(A+a)X+X
(x+x)! exp(-(X2 + 2xX+x2)/2A).

Using Xx=0(A) and applying Stirling's formula to
X!, (x+x) ! and x! gives

Substituting x=aP+G and X=AP-G (o r
x=aP-G and X=AP+G) and using Fact 4.1 gives
the claimed bound. 0

We shall denote by w(l) any function that
tends to infinity asL n+m. VJe shall assume that
ratios take integral values whenever this is con-
venient and otherwise insubstantial.

5 . SPLITTER DIRECTED ROUTING

Let X be a set of CN keys that are totally
ordered by the relation <. We assume that each
key XEX is initially located at a random node
in V[Xl chosen independently of any other key in
x- Ix). Suppose that we are given a set of
splitters CCX of size
each splitter7

ICI =2’- 1. We index

WE CO,l)<R'
~[w] EC by a distinct binary string

of length less than R. Let <*
denote the ordering defined as follows: For all
w,u,vE {O,l}<R' wOu<* w<* wlv. We require that
for al.:. wl,w2E 10,l}<R> a[wll < 0[w21 iff wl <.w2.
We assume that a copy of each splitter 5[wl i s
already available in each node of VLWI.

Let X[x] =X where A is the empty string.
Initially we assume that the keys of X(X] are
located at v[X], that is the nodes of V having
stage zero. The splitter directed routing is
executed in R temporally overlapping stages
i=O,l,...,R-1. For each WE {O,l}i the set of
keys X[w] are all eventually routed through
V[Wl. The splitter 0 [WI partitions X [wl -U[wl
into disjoint subsets

X[wOl = {XEX[Wl IX<U[WlI

and
X[Wl] = CXE X[wl lO[Wl < XI

which are subsequently routed through V[wOl and
VFW11 respectively.

Suppose that a key xE XLwl is located at a
node aEV[wl with address ww' and stage i.
Let B be the first bit of the address suffix w'.
Then x is transmitted from node a across the
departing forward internal edge if B- (O[wl <x),
and x is transmitted across the departing forward
external edge otherwise. Thus if x < 0 [WI then
X is transmitted to a node with address prefix
wo, and if U[Wl <x then x is transmitted to a
node with prefix wl.

Note that at any one time distinct keys may
be at distinct stages. When all the keys have
completed stage R-l the keys x-c are partitioned
into 2Q disjoint subsets of the form X [WI where
WE {O,llQ, and the keys X[wl are then at addresses
prefixed by w. The sets X[Wl are thus uniquely
defined by the choice of 1. The following follows

directly from the assumption that o [w I] < U[w2] if
w I <° w2:

Lemma 5.1. For any w I, w 2 £ {0,i} £ if w I <. w 2

then x I < x 2 for all x I 6 X[w I] and x 2 6 X[w2].

Also, since each packet is assumed initially to
be at a random node and since the above described
splitter directed routing (SDR) procedure does not
modify the last n-Z bits in the address of a
packet, we can deduce that:

Lemma 5.2. For each wE{0,i} £ and each x6x[w]
SDR takes x to a random node in v[w] chosen
independently of any other packet.

The lemma above can be used to speed up the
overall algorithm by avoiding repeated randomization.
We shall not invoke it, however, as it does not
change the asymptotic runtime.

The SDR procedure can be-viewed as a generali-
zation of Phase B of the routing procedure described
in Section 3. It routes packets from random source
nodes to specified destinations such that the numbe T
of packets destined for each region is about the
same. The analysis used in the proof is an exten-
sion of the techniques introduced by Aleliunas [i]
and Upfal [13] for establishing good bounds for
such constant degree graphs as the CCC and d-way
shuffle.

Theorem 8. Suppose we have a network ccc~ with a
set x of cn2 n packets and a set ~ of 2£-1
splitters where n >£ >n/2 such that for all
w£{O,l} £ Ix[w]l ~2cn2 n-~. Suppose that all the
remaining packets are at independently chosen random
nodes of V[I]. If T is the total time for execu-
tion of SDR then for some c 2, k>0, for all n,
c>l and all sufficiently large a

Prob(T > c2cC~n) <2 -can +exp(-k.2n-£)-22~n

Proof. First we observe that since the packets are
randomly distributed initially, the probability that
some a 6 V[I] initially contains more than

2 c(~+l)n keys is less than 2 -c(~+l)n if a>e .
This follows immediately from Fact 4.2.

Let ~ = ~ + i. To each packet we assign a
random integer from the set l,...,Sn as its
priority. Each packet has probability (Sn) -I
independently of being assigned any particular such
number. In SDR we will insist that no key be for-
warded from a node before all keys of higher prior-
ity that ever visit it have been forwarded. [In
practice we simply forward the packets currently
at any node in order of their priority. This will
be at least as fast, clearly, as the hypothesized
algorithm that prophesies about future arrivals.]

For each node a and priority z 6 {i ,Sn}
let task T = (a,~) be the job of forwarding all
keys of priority ~ that ever visit node a. Let
a delay be any pair of tasks (%I,T2) = ((a,Z),(b,p))
where either a = b and Q = Z + 1 or (a,b) is an
edge of the network and k = z. The two cases
correspond to the two ways in which the execution
of a task T 2 may depend on the completion of task
T I. In the first case T 2 has to wait for packets

of lower priority to be processed at its node. In
the second case T 2 has to wait for the arrival of
a packet from an adjacent node.

Let a delay sequence D be a sequence of
delays (%0,TI), (Tl,Y2) (Td_2,Td_l),(Yd_l,Td).

Note that d ~£ + ~n since in each delay in any
such sequence either the stage of the node increases
by one or the priority increases by one. Since
there are just two possible forward edges of trans-
mission and just one way of increasing the priority,
the total number of delay sequences starting at any
one node is at most 3 £+~n. Hence their total number

is at most 2n.3 £+~n~25n+2~n

Let T(D) be the number of time units (i.e.,
packet transmissions) involved in D (i.e., in
Y0,TI,...,Yd). It remains to prove that for some
c 4 for all D and all sufficiently large c and

Prob(T(D) > c4can) <2 -3e~n-6n

for then the probability that the worst sequence
suffers that much delay is at most

2-3can-6n.22an+5n <2-an-n

This is proved under the assumption that there are
at most c(~+l)n packets initially at any node.
Since, as has been observed, this event is equally
unlikely the result follows.

To establish the time bound on T(D) consider
any particular D and let %j = (a,~) where
stage(a) =i be a task in D. Let Pj be the set
of keys that have nonzero probability of being
routed through Tj (i.e., if their priority and
initial position are suitably chosen) but would
then certainly depart from D at Tj. Departure
from D is forced either because (Tj,Tj+I) =
((a,~),(a,~+l)) (since the priority of a packet
cannot change) or because (Y Tj+ I) = ((a,~), 3'
(b,~+l)) but (a,b) is not the edge along which
the packet leaves node a. Note that in the latter
case the i-th bit of the destination address of
packets that depart from D at T. is different
from those that depart at later polnts. It is
easily dedeuced that once the priorities are fixed,
the sets PI,P2,...Pj,...Pd are pairwise disjoint.

Now Pj is just the union of X[w] for various
w 6 {0,i} £ such that w and a agree in the first
i bits. By the assumption about the size of X[w]
it follows that IPjl ~2cn2 n-i.

Let Rj be the set of keys that have nonzero
probability of being routed through Yj once the
priorities have been decided. Since the priorities
are determined by Bernoulli trials with probability
(~n) -I, Fact 4.2 can be used to give the following
bound

Prob(IRjl >4cn2n-i(Sn)-l) ~exp(_k.2 n-£)

for an appropriate constant k > 0. The second term
in the theorem follows from multiplying the above
bound by the number of choices of D and j.

13

Finally, let Kj be the actual set of keys
that do depart from D at Tj because both the
priority and the initial positions were appropriately
chosen. For each such packet the initial position
must agree with a in the last n-i bits. Hence
Kj is determined by Rj Bernoulli trials each with
probability 2 i-n of success. Hence assuming
]Rj] <4cn2 n-i(~n)-I for each j we have Bernoulli
trials with expectation ~<4c/8. To upper bound

d
IKjl

j = l

we a p p e a l t o H o e f f d i n g ' s T h e o r e m (F a c t 4 . 4) . We
h a v e a t m o s t cn2 n t r i a l s w i t h mean a t m o s t
(4c/13) (,~+Bn) ~<5cn i f B) 4 . U s i n g F a c t 4 . 2 i t
f o l l o w s t h a t

-c3cC~n
Prob(~IKjl > c3c~n) <2 (i)

if c3<~ > 5e 2.

Finally, we have to consider the case of
packets being involved in more than one task of D.
This can be done by considering any fixed assign-
ment of keys to departure points in D and con-
sidering the probabilities of repeated earlier in-
volvement in D. If a key was involved in D at
Yj then the probability of a previous involvement
at Yj-i is at most one half independent of subse-
quent involvements. Hence if a key was involved in
D at Yj then the probability of t previous in-
volvements (i.e., with Yj-I'''''Tj-I) is at most
2 -t. It follows that

Prob(T(D) />K+s and ~IKjI=K) ~<2-S-Prob(~lKj I~)K).

(2)

From (i) and (2) it follows that if c3a> 5e 2.

l-c3c~n
Prob(T(D) />2c3can) <2 Q

6. DETERMINISTIC SORTING AND RANKING

We use as subroutines some known deterministic
algorithms. A crucial step in splitter finding is
sorting a sparse subset of elements. For this we can
use the algorithm of Nassimi and Sahni [8].

Theorem NS. For ~,~ e > 0 N l-e keys can be sorted
on a ccc n when N =n2 n in tim~ O(n).

Step C of the overall algorithm determines the
rank of every element given that it is "almost"
sorted. Suppose that for some v we have that all
elements are in nodes at stage i and for all
Wl<'W2, lWll = [w21 =i the keys in V[w I] are
smaller than the keys in V[w2]. If i =n then we
have a complete sort except that the elements may
not be uniformly distributed among the stage 0 nodes.
In this situation the rank of each key can be deter-
mined by first sorting the keys at each node locally.
The global rank computation is performed on the
binary tree that has these nodes as leaves and con-
sists of all forward internal edges, and just those
forward external edges along which some address bit
changes from 8 to i. The number of keys in each
subcube can be determined recursively by sending

these sums from the leaves toward the root and
accumulating at each internal tree node. Finally
in a r~verse information flow from the root to the
leaves, the range of the ranks in each subcube can
be determined, and hence the ranks of the individual
keys. This all takes O(n) parallel transfers of
tokens that contain only binary numbers of O(n)
digits.

In Step C of the actual algorithm we start
with only a partial sort (i.e., for all w I <" w 2
with [Wll = lw21 =n-s where s =61og2n, for all
x6V[Wl] and y 6V[w2], x <y). To find ranks in
this situation we determine the rank range for each
X[Wl], sort each X[Wl], and finally deduce the
rank of each element. The determination of the
rank ranges and final rank is as described in the
above paragraph. With overwhelming probability
each X[w I] will have at most 2n2 s packets. For
sorting X[w I] we assign a separate CCC~ to it
where t = s + log n - log s. At least if t divides
n, one can find n2n/(t22) disjoint copies of CCC~
in CCC~. The packets are routed to their
appropriate copy of CCC~ (Theorem D) and then
sorted there by some o(n) method such as•Batcher's
(see Preparata and Vuillemin [9]) which takes
O(log n) 2. The above described algorithm for
ranking the elements given a partial sort will be
called A~orithm C.

7- SFLITTER FINDING

We describe a procedure SF that given a CCC~
with c packets at each node finds a subset U
of 2n/n 6 packets called "splitters" that divide
the ordered sequence of the cn2 n total packets
into intervals that are, with large probability,
• th 2 ~6+I all of length smaller an ~,~ . The procedure
is recursive, nested recursive calls corresponding
to nested subcubes. At the i-th level of recursion
the splitters ~ound divide the ordered sequence
into 2n(l-i/21) roughly equal intervals. The
subcubes at the i-th level are CCC~ where r = n/21
[i =0, log n - log(2~•logn)]. At the i-th level
a fraction of about 2 -l of the packets are con-
sidered "active". The choice of splitters at lower
levels is restricted to these active elements. In
this way the average density of active packets in
each CCC~ is kept a constant c independent of
the cube size. This is necessary for the recursive
procedure to succeed. Any integer greater than or
equal to six suffices as a value of 6.

The set U of all splitters found in a run of
SF[I] will be used in Step B of the overall sorting
procedure.

The procedure SF applied to the subcube with
root (w,n-m), where lwl =n-m, is as follows.
When the procedure is called initially with w = l
all the packets are considered active.

Procedure SF(w)

(i) Let Y[w] be the active packets in V[w].
For each X 6Y [w] route x to a random node in
v[w]

(2) For each Wl, lWll =m/2 +2 logn, choose
at random an active element from V[WWl]. Sort this

14

set S* of n22 m/2 chosen elements using Theorem
NS. Route the j-th largest to the address that is
the binary representation of w + j2m/2/n2. Let S
the newly created set of splitters be the packets
at addresses w + j2m/2 for j = i,... ,2 m/2 - i. If
the splitter is found at address ww I and Wl=W21W 3
where w 3 60" then the splitter is denoted by
o[ww 2] and routed deterministically to every node
in V [ww 2] .

(3) For each x6Y[w] -S decide according to
a Bernoulli trial with probability one half whether
it is to remain active. Let the active subset of
Y [w] be Z [w] .

(4) Apply SDR with the newly found splitters
to Z [w].

(5) For each w' with I w' I =m/2 let Y[ww']
be the subset of Z[w] routed to subcube V[ww']
by (4). For each such w' call in parallel SF(ww')
for Y[ww'] as active elements, unless m=26 logn.

We have seen that SDR for CCC r takes time
O(r) with overwhelming probability. Theorem A will
establish that if SF is run, with the recursive
calls of SF being allowed to be asynchronous, then
the overall algorithm runs in time O(n) with large
probability. The main fact which has to be
established (Theorem 7.2) is that with overwhelming
probability, at every call of SDR the hypotheses of
Theorem B are satisfied. We leave it to the reader
to verify that all the other operations performed
in a call of SF(w) with lwl =n-m can be achieved
deterministically, by pipelining if necessary, in
time O(m) .

First we need a technical lemma:
%

kemma 7. |. Given an ordered set h T suppose that a
set s* of n22 m/2 elements are then chosen from T
at random and s* is then sorted. Let s c s* be
the subset of elements having positians n2?2n 2,
... (2m/2-1)n 2 in the ordered set.

Suppose t o t~+] is the longest ordered
subsequence of T suc~ that t0,tf+l£S but
t I tf ~s. Then

(i) Prob(f > (l+n-i/3)]Tl/2m/2) = N-~(1)

(ii) Prob(f < (1-n -1/3) IT]/2 m/2) = N -~(I)

Suppose that a subset y c_ T- S is chosen by per.-
forming independent Bernoulli trials with probability
1/2. Let Y0 Yh+l be the longest ordered sub-
sequence of Y U s such that Yo'Yh+I £ S but
Yl Yh £S. Then

(iii) Prob(h > (l~2n -$/3)]Yl/(2.2m/2)) = N -L0(1)

(iv) Prob(h < (l-2n -1/3) IYl/(2°2m/2)) = N -03(I)

These claims assume that n42 m/2 = o (IT 1) and
n22m/2 = o(IT 12/3).
Proof. All choices of S* are equally likely. To
prove (i) and (ii) consider any sequence to,... ,tf+ 1

with f = (i ±n -I/3)" ITl/2 m/2. Then the probability
that of the n22 m/2 members of S* exactly n 2 lie
in the above range and the rest outside is

n22m/ _n21\n21! \n 2m/21
Applying Fact 4.~ with A= ITJ-f, a=f, X=n22 m/2

2 2 n5/3 -n , x = n gives G = and an upper bound of

exp (-n4/3/6)

provided n42m/2 =o(ITl) and n22m/2=o(]T12/3).
This establishes (i) and (ii) since there are at
most 2 n choices of t 0, tf+ 1 and f,
respectively.

To show (iii) and (iv) it is sufficient to
prove that in a sequence of (i +n -I/3) I Tl/2m/2
ordered elements of T the probability that the
number of elements chosen to be in Y is outside
the range (i +-2n -I/3) ITl/2"2m/2 is negligible.
In fact Lemma 4.3 upper bounds this probability by

exp (-n -2/3 I TI/(4"2 m/2))

which is bounded above by exp(-n 4/3) if

2m/2-n2 =o(T). []

Theorem 7.2. In a run of SF(I) the probability
of each of the following events for each recursive
call of SF(w) is bounded above by N -L°(1)
provided m>~121og n.

(a) Step (ii) fails because v[ww I] has no
active packets.

(b) In the call SDR for subcube w with
lwl =n-m, it happens that Iz[w]l >2cm2 m or
Iz [w] I < cm2m/2"

(c) In the call SF for subcube w with
lwl =n-2m two neighboring splitters are created
that in the total ordering of the cn2 n elements
have more than 2cn2 m elements between them.

Since in a 2n~n of SF[I] there are at most 3N
such events altogether the probability that any
such event ever occurs in a run is therefore also
bounded bb' N'oJ (i) .

Proof. The proof proceeds by induction on the
depth of recursion. We assume that the Theorem
holds down to the current level of recursion and
argue that the probability of "going wrong" at the
current call is less than N -~0(I) .

(a) Since the active elements Y[w] have been
sent to random nodes in V[w] the probability that
all of at least cm2m/2 elements miss V[WWl] is
at most

cm2m/2 (i - i/(2m/2n 2))

By Fact 4.1 this is bounded above by

exp (-cm2m/2/(2n 2)) = N-~ (i)

if m ~> 121og n.

(b) We assume inductively that in the call of
SDR at the i-th level of recursion the set of active
elements denoted again by T in the subcube corres-
ponding to w is in the range (i +2n-I/3)icn2m-i.

15

Then by Lemma 7.1 (iii) the probability that the
number of active elements in a subcube at the
(i+l)-st level call is in the range (i ± 2n -I/3)

27m/2-2-i times this quantity, which is

(i ±2n-i/3)i+icn2 m/2-(i+l) is bounded by N -W(1)

(c) We assume inductively that in the call of
SDR at the i-th level of recursion the set T of
elements in the corresponding subcube had size at
most (i + n-i/3)icn2 m (where m = n/2i). Applying
Lemma 7.1 (i) gives that, at the next level of
recursion, the probability of a subcube havihg
more than (i + n-i/3)2 -m/2 times as many packets
is bounded above by N -~(I) . D

Theorem A. For all c~l there £s a c 5 such
that for all sufficiently large 8 if SF(1) is
run on ccc~ with c packets per node then

Prob(T > cc58n) <N -c~ .

Proof. In a run of SF a critical path is a sequence
of nested calls of SF(h), SF(Wl) , SF(WlW2) ,
...SF(wlw2...'w i) where lwjl =n2-J. The deter-
ministic components of each take time proportional
to [wil. When summed for i = 1 log n-
log(121og n) this gives an upper bound of O(n)
as required. Hence it remains only to analyze the
cumulative probabilistic effects of such a chain
of calls of SDR. Note that these calls are
probabilistically independent.

Theorems B and 7.2(b) say that for sufficiently
large ~ a call of SDR on the subcube with address

exceeds runtime 2cc2an/2i with prefix Wl-..w i
probability less than

2-c~n/2i + 2 -~(n6)

Hence it exceeds runtime 2cc2n/21 +2c(~-i)c2n/21 =

2cc2n/21 • t i (say) with probability less than

-ti/(3c 2)
2

Hence the probability that such a sequence of nested
calls takes time more than c2n + t is less than

-ti/(3c 2) -t/(3c 2)
E ~ 2 ~ E 2

~t.=t i Zt.=t l 1

~< 2-c (a-l)n/3+° (n)

if t =2c2c(~-i)n. The result follows for ~ =a/2
for a > 6 with c 5 = 4c 2.

In conclusion we note that Theorem 7.2(c)
ensures that the hypotheses of Theorem B hold when
Step B of the overall algorithm is invoked. In
other words, when SDR is called with the 2n/n 6
splitters found in Step A then the number of ele-
ments destined for each 61og n dimensional sub-
cube is never more than twice the average.

In the unlikely event that Step (ii) of SF
fails in any call of SF the sorting algorithm is
restarted from the beginning.

Acknowledgment. We are grateful to G.H. Gonnet for
pointing out an error in an earlier version of this
paper.

8. REFERENCES

[i] R. Aleliunas. Randomized parallel communica-
tion. Proc. of ACM Symp. on Principles of
Distributed Computing, Ottawa, Canada (1982),
60-72.

[2] D. Angluin and L.G. Valiant. Fast probabilistic
algorithms for Hamiltonian circuits an~ mat-
chings. J. of Cor~p. and Syst. Sci. (1979),
155-193.

[3] K. Batcher. Sorting networks and their appli-
cations. AFIPS Spring Joint Comp. Conf. 32
(1968), 307-314.

[4] H. Chernoff. A measure of asymptotic effi-
ciency for tests of a hypothesis based on the
sum of observitions. Ann. of Math. Star. 23
(1952), 493-507.

[5] P. Erdos and J. Spencer. Probabilistio Method8
in Combinatorios. Academic Press (1974).

[6] C.A.R. Hoare. QUICKSORT. Computer J. 5(1),
(1962), 10-15.

[7] w. Hoeffding. On the distribution of the
number of successes in independent trials..
Ann.of Math. Star. 27 (1956), 713-721.

[8] D. Nassimi and S. 8ahni. Parallel permutation
algorithms and a new generalized connection
network. JACM 29:3 (1982), 642-667.

[9] F.P. Prelgarata and J. Vuillemin. The cube-
connected cycles: A versatile network for
parallel computation. CACM 24 (1981),300-310.

M.O. Rabin. Probabilistic algorithms. In
Algorithms mad Complexity. J.F. Traub (ed.) ,
Academic Press, New York, 1976.

R. Reischuk. A fast probabilistic parallel
sorting algorithm. Proc. of 22nd IEEE Symp.
on Foundations of Computer Science (1981),
212-219.

R. Solovay and V. Strassen. A fast Monte-Carlo
test for primality. SIA~I J. on Computing 6,
(1977), 84-85.

E. Upfal. Efficient schemes for parallel com-
munication. Proc. of ACM Symp. on Principles
of Distributed Computing, Ottawa, Canada
(1982), 55-59.

L.G. Valiant. A scheme for fast parallel
communication. SIAM J. on Computing 11:2
(1982), 350-361.

L.G. Valiant and G.J. Brebner. Universal
schemes for parallel communication. Proc. of
the Thirteenth Annual ACM Symposium on Theory
of Computing (1981), 263-277.

[i0]

[ii]

[12]

[13]

[14]

[15]

16

