A LOGARITHMIC TIME SORT FOR LINEAR S1ZE NETWORKS

John H. Reif*

and Leslie G.

Valiant

Aiken Computation Laboratory
Division of Applied Sciences
Harvard University, Cambridge, Massachusetts

ABSTRACT. We give a randomized algorithm that sorts
on an N node network with constant valence in
O(log N) time. More particularly the algorithm
sorts N items on an N node cube-connected cycles

graph and for some constant k for all large enough
o it terminates within ka logN time with prob-
ability at least 1-N7O.

1. Introduction

This paper is concerned with the problem of
sorting N items in parallel on a fixed-connection
graph G having N nodes labeled {0,1,...,8-1}
and constant valence. Each node initially contains
one key. The set X of all N keys is assumed to
have a total ordering <. The network sorts by
routing each key x€X to node Jj =rank(x) where
rank(x) is defined as ]{x' €X|x' <x}|. This can
be viewed as a distributed packet routing problem.
Each x€X is considered to be an atomic packet
that has to be routed from its initial node to the
node corresponding to its rank. Both the rank
computation and the packet routing have to be real-
ized in a completely distributed manner.

We assume that each node contains a single
sequential processor with local storage for
0O{log N) packets. The processors are regarded as
synchronous for the purpose of step counting, but
the algorithm itself does not require it. In aunit
time interval a processor may transmit one of its
packets along a departing edge and perform some
elementary operation such as a comparison. The pro-
cessors are capable of generating random bits of in-
formation and hence running randomized algorithms in
the sense of Rabin [10] and Solovay and Strassen
[12].
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Clearly the routing required to sort may
require time at least the diameter of the graph.
If G has constant valence then the diameter is
at least §(log N). Hence the O0(log N) time
bound for our algorithm is asymptotically optimal.
In this paper we restrict ourselves to demonstrating
that this bound is achievable in principle and do
not pursue the issue of the magnitude of the con-
stant multipliers. We note, however, that it is
within a large class of algorithms that is experi-
mentally testable in the sense of [14].

The main components of the algorithm are the
splitter directed routing procedure SDR and the
splitter finding procedure SF which itself uses
SDR. They are described and analyzed in Sections 5
and 7, respectively.

A summary of the algorithm for sorting on the
n-dimensional cube-connected cycles network (CCC)
of Preparata and Vuillemin [9] is as follows. Note
that the number of nodes is N=n2" and hence
n<log N. (Logarithms are assumed to have base 2
throughout this paper.)

Step A: cCall SF(A). This finds a set of 2n/n6
elements called "splitters" that divide X,
when regarded as an ordered set, into
roughly equal intervals.

SteE B: Route each packet to a random node and call
SDR(A) with the splitters found in Step A.
This will route the keys belonging to each
interval to the 6 logn dimensional sub-
cube .corresponding to it. 1In this way an
approximate sort is achieved, but the keys
are not spread completely uniformly around
the network..

Step C: Compute the rank of each key.

Step D: Route each packet to the node corresponding
to its rank.

The O(log N) behavior of each of the four

steps A-D will be established respectively as
follows: Theorem A (Section 7), Theorem B (Section
5), Algorithm C (Section 6) and Theorem D (Section
3). We note that Theorem B is invoked in Step B
with n-2 =6 logn, which is sufficient for the
O(log N) bound. The following then follows
immediately.

Main Theorem. There is a randomized algorithm that
For some k and all n and all sufficiently large




o sorts on an n-dimensional CCC network, and
terminates within_kon steps with probability

greater than 1-2"9%,

Previous algorithms for sorting N keys on
constant valence fixed connection networks of N
processors require time §(log N)2. The bitonic
sorter of Batcher [3] achieves this bound on such
networks as the CccC [9].

For less realistic models of parallel computa-
tion faster algorithms have been known. For example,
J. Wiedermann observed several years ago that the
Ouicksort of Hoare [6] takes time O(log N) with
high likelihood on a parallel decision tree model.
Reischuk [11] has a related result for a parallel
random access model.

Our current algorithm follows the randomized
routing ideas introduced in [14]. It can be viewed
as a partially successful attempt at reducing the
sorting problem to the apparently simpler problem
of routing. In the analysis the critical path
technique developed by Aleliunas [1] and Upfal {[13]
for analyzing routing in constant valence graphs
plays an important part.

2. NETWORK DEFINITIONS

We define various constant valence networks
derived from the n-dimensional binary hypercube.
Consider some fixed n21l. Let the node set be

v = {{w,i)|w€ {0,1}", i€ {0,...,n-1}}

which has cardinality N=n2n. For each a€V let
address(a) =w and stage(a)=1 if a= (w,i). Let
w[i] be the i-th bit of w. Let w'=EX7(w,i) be
identical to w except that w'[i] #wl[i]l. Also

let w be the integer of which w
representation.

is the binary

We call an edge from node a to node b
internal if address(a) =address(b) and external
if address(b) = EXT(address(a),stage(a) +1 mod n).
It is forward if stage(b) =stage(a) + 1lmodn,
static if stage(b) =stage(a), and reverse if
stage(b) = stage(a) ~1 mod n. The CCC network
of Preparata and Vuillemin [9] has node set Vv
and exactly all forward internal edges, reverse
internal edges and static external edges. For
each of description this paper will assume a net-
work more similar to that of Upfal [13] which we
call CCC,. It contains node set V and all
forward and reverse internal edges and all forward
and reverse external edges. Clearly any algorithm
for CCCz can be simulated on ccey, with at most
a factor of two time increase. Finally, we defin
CCC*¥ to be the network obtained by taking a ceey,
and removing all edges that join pairs of nodes with
respective stages O and n-1. The significance of

CCCE is that numerous copies of it can be found in
CCC; if n>m. In particular, for any Wy, Wy
such that |wl —+|w2’==n—m the subgraph of ccc}

spanned by the nodes {(wlwwz,i)IWE {0,11™ and
|wl|< i_<|wl|+nﬂ is isomorphic to ceck.

Note that CCC,, CCC, and CCC are all
naturally related to the n-dimensional hypercube Hn.
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Intuitively, for each w€ {O,l}n the set of nodes
{a€V]address (a) =w} can be considered to be a
"supernode" of H,. Each such supernode of Hj

is connected by external edges to n other super-
nod?s {v € v]|address(b) = EXT(w,i) for i=0,1,...,
n-1;.

<m>

For any m let {0,1} be the set of
binary strings of length not more than m-1l. We
define a subdivision of the node set V that i§E+J
dexes the subsets by binary strings from {0,1}
For each w€ {0,1}n let v[w] = {b€V]|address(b):
and stage(b) =0}. For each wE€ {O,l}<n> let
Viwl = {b€V|w is a prefix of address(b) and
|w| = stage(b)}. Thus VIA] is the set of nodes
of stage zero where A is the empty string. Let

root [wl of V[w] be the node with address
won= Wl ang stage |w|. Note that for |w|<n-1,
v[w] has a departing forward internal edge

entering v[w0] &nd a departing forward external
edge entering vl[wl].

+

3. PACKET ROUTING ON THE CCCn
This section briefly describes the probabil-
istic packet routing algorithm of Valiant and
Brebner [15] as applied to the CCC} by Upfal [13!

We require that each node a€V contain for
each departing edge e a queue Q. for the packet
that are to be transmitted across edge e. Each
node also contains its address and stage posted as
local variables.

Let X Dbe the set of
routed, where each packet
given node

cN packets to be
x € X is initially at a
I,€V and we wish x to be routed to

given destination node D, €Vv. The algorithm has

two phases: -

A. (Random Routing) Route x from Iy to a
node Ry €V with random address.

B. (Fixed Destination Routing) Route x from
R to D_. .
X x

The random routing of x 1in Phase A is
accomplished by repeating for n stages the trans-
mission of x across a randomly chosen departing
forward edge (i.e., transmit x across the forward
internal edge or forward external edge with equal

probability). Phase B repeats for n stages the
following: if x is currently at node a7 Dy
with Jj=stage(a)+1 and address(a)l[j]=

address (Dy) [j], then x is transmitted across the
forward internal edge departing v and otherwise
x 1is transmitted across the forward external edge
departing v. This takes the packets to nodes witl
the correct addresses. Finally, the packets are
pipelined to the nodes with correct stage by trave:
sing internal edges.

We have not yet specified the management of
the queues of packets at each node. Suppose the
priority of packet x€X is assigned to be the
number of stages of phases A and B so far accom-
plished, and we allow packet x to be transmitted
from each node a€V only after all packets of
lower priority have been transmitted from a. Let

TA' TB be the total execution times of phases A



and B respectively. The techniques of Aleliunas
[1] and Upfal [13] show the followi ng under assunp-
tion that there are initially c packets at each node.

Theorem D.  For some c21 for all sufficiently
large «

Prob (T, > com) < N, and Prob (T, > can) < e,

W note that since the first
packets to random addresses the
at its conpletion, there are nmore than cjan packets
at any one node or c,0n packets at any address,
can be simlarly bounded by N"% (for suitable
constants .cp and cz).

phase sends
probability that,

L SOME COMBIMATORIAL IDENTITIES

W shall wuse the following inequalities. Let
exp denote exponentiation of Euler's constant e.

Fact 4.1. For all x>0 (1+x-l)x<e and
1-xNH*<e™t. since for all | arge enough x
e hXas @ ce< e hFa s 20l it

L ce@+a(5(x-1)"" and

ceta+ (2x)_l) .

follows that (1-x_

(L4xH™

Let B (m,N,p) be the probability that in N
i ndependent Bernoulli trials with probability p
of success there are at least m successes.

Fact 4.2. (Chernof f [4])
m N-m
Np N-Np
< (=
B(m,N,p) & (m) (N—m)
< exp(-m-Np) if m>Npe2.
Fact 43. ([2]) | f m=Np(l+p)where

0<B<1 then
B(m,N,p) € exp(-B°Np/2)

Fact 4.4. (Hoeffding [71) If we have N inde-
pendent Poisson trials with respective probabilities
Pys..-sPy Where Zp,=Np and if n2Np+1 is an
integer then the probability of at |east m
successes is at most B(m,N,p).

/3

Fact 45 ([5], p. 18) if n=o(N"/) then

n
N\ _ N 2
(n)— (L+o0(1)) o exp{(-n"/2N) .

Fact 4.6.
of n such that Xx=o(a)

Suppose x<a, x< X< A are all functions
and X=o(A2/3). Let

x=aP+G, X=AP+G where P= (X+x)/(A+a),
G=o0(ap) and G=o(AP), Then for all large enough
n

/1

@ (A) (a+A) 6 (L+0(1))exp(-G"/5ap) .

x+X
°roof. Applying Fact 4.5 gives

X
A 2
(x) = (L+o() 55 exp(-x“/2n)

and

X+x
A+a (a+a) 2 2
> -
(X+x)/ (L+0(1)) %) 1 exp (- (X" + 2xX+x")/28).

Using Xx=o(a) and formuila to

X!, (X+x)!

)G

applying Stirling's
and x! gives

AV (aV xex Vo o))
x| \X] \ara

Substituting x=ap+¢ and X=AP-G ( o r
x=aP-G and X=AP+G) and using Fact 4.1 gives
the clainmed bound. o]

We shall denote by w(l) any function that
tends to infinity as n-—®, We shall assune that
rati os take integral values whenever this is con-
venient and otherwise insubstantial.

5. SPLITTER DIRECTED ROUTING

Let X be a set of ¢N keys that are totally
ordered by the relation <, W assume that each
key x€X is initially located at a random node
in v[A] chosen independently of any other key in
x- {x}. Suppose that we are given a set of
splitters Icx of size |I]=2%-1. ve index
each splitter olw] EC by a distinct binary string
VE {0,1}<%> of length less than %. Let <=
denote the ordering defined as follows: For all
w,u,vE {0,119 you<e w<e wiv., Ve require that
for ali wy,wy€ {0,1}<% olwi) < olwy] iff wy <+ wpe
We assune that a copy of each splitter olwli s
al ready avail able in each node of VIw].

Let X[A] =X where X is the enpty string.
Initially we assume that the keys of X[A]l are
located at VvI[Al, that is the nodes of V having
stage zero. The splitter directed routing is
executed in & tenporally overlapping stages
i=0,1,...,2-1. For each w€ {0,1}* the set of
keys X[w] are all eventually routed through
viwl. The splitter olwl partitions X [w]-0lw]
into disjoint subsets

X[wol = {x€xX[wl |[x<olw]}

and

X[wl] = {x€ Xwl|olw] < x}
which are subsequently routed through VIw0] and
v(Iwl] respectively.

Suppose that a key x€ X[w] is located at a
node a€vViwl] wth address ww' and stage i.
Let B be the first bit of the address suffix w'.
Then x is transnmitted from node a across the
departing forward internal edge if BZ (0lw] <x),
and % is transmitted across the departing forward
external edge otherw se. Thus if =x<olw]l then
X is transnmitted to a node with address prefix
w0, and if oOlwl<x then x is transmtted to a
node with prefix w.

Note that at any one tinme distinct keys may
be at distinct stages. When all the keys have
conpleted stage RI the keys x-c are partitioned
into 2% disjoint subsets of the form X [w] where
VE {0,1}2, and the keys X[wl are then at addresses
prefixed by w. The sets Xiw] are thus uniquely
defined by the choice of I. The following follows



directly from the assumption that O[wll <0[w2] if

wl<'w2:
wl <e w2
for all Xy EX[wl] and x, €X[w2] .

Lemma 5.1. For any w,, w2€{0,l}2 if

then X <x,

Also, since each packet is assumed initially to
be at a random node and since the above described
splitter directed routing (SDR) procedure does not
modify the last n-% bits in the address of a
packet, we can deduce that:

Lemma 5.2. For each wE€ {0,1}JL and each x € X[w]
SDR takes x to a random node in Viwl chosen
independently of any other packet.

The lemma above can be used to speed up the
overall algorithm by avoiding repeated randomization.
We shall not invoke it, however, as it does not
change the asymptotic runtime.

The SDR procedure can be  viewed as a generali-
zation of Phase B of the routing procedure described
in Section 3. It routes packets from random source
nodes to specified destinations such that the number
of packets destined for each region is about the
same. The analysis used in the proof is an exten-
sion of the techniques introduced by Aleliunas [1]
and Upfal [13] for establishing good bounds for
such constant degree graphs as the CCC and d-way
shuffle.

Theorem B. Suppose we have a network ccck with a
set X of cn2® packets and a set I of 2%-1
splitters where n22 >n£2 such that for all
we{o, 1 |x(wl] <2en2®%.  Swpose that all the
remaining packets are at independently chosen random
nodes of VIXl. If T <is the total time for ezecu-

tion of SDR then for some c,, k>0, for all n,
c2l and all sufficiently large o
con L. .20n

Prob (T > c com) <2 exp(-k-2"7") -2

2

Proof. First we observe that since the packets are
randomly distributed initially, the probability that
some a€V[A] initially contains more than

c(0+1)n keys is less than 2-c{(®+l)n ;¢ a3>e2.
This follows immediately from Fact 4.2.

let B=a+1l. To each packet we assign a
random integer from the set 1,...,Bn as its
priority. Each packet has probability (Bn)~1

independently of being assigned any particular such
number. In SDR we will insist that no key be for-
warded from a node before all keys of higher prior-
ity that ever visit it have been forwarded. [In
practice we simply forward the packets currently

at any node in order of their priority. This will
be at least as fast, clearly, as the hypothesized
algorithm that prophesies about future arrivals.]

For each node a and priority TE€{1,...,Bn}
let task T=(a,%) be the job of forwarding all
keys of priority T that ever visit node a. Let
a delay be any pair of tasks (T1.72) = ((a,m), (b,p))
where either a=b and p=7m+1" or (a,b) is an
edge of the network and p=17. The two cases
correspond to the two ways in which the execution
of a task T2 may depend on the completion of task

Tl. In the first case T2 has to wait for packets
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of lower priority to be processed at its node. 1In
the second case T; has to wait for the arrival of
a packet from an adjacent node.

let a delay sequence D be a sequence of
delays (Tg,T1), (T3,Tp) e (Tg5,Tg-1){Tg-1,Tq}-

Note that d<f% +Bn since in each delay in any

such sequence either the stage of the node increases
by one or the priority increases by one. Since

there are just two possible forward edges of trans-
mission and just one way of increasing the priority,
the total number of delay sequences starting at any
one node is at most 3%*Bn, Hence their total number

2+ +2
is at most 27-3 &1<25n on

Let T(D) be the number of time units (i.e.,
packet transmissions) involved in D (i.e., in

TO,Tl,...,Td). It remains to prove that for some
¢4 for all D and all sufficiently large ¢ and
a,

Prob (T (D) > ¢, con) <2—3c0m—6n

4

for then the probability that the worst seqguence
suffers that much delay is at most

-0n-n

—3can—6n_ 2

P 20n+5n <

2
This is proved under the assumption that there are
at most c(a+l)n packets initially at any node.
Since, as has been observed, this event is equally
unlikely the result follows.

To establish the time bound on T(D) consider
any particular D and let T4 = (a,%) where
stage(a) =i Dbe a task in D.  Let Pj be the set

of keys that have nonzero probability of being
routed through T4 (i.e., if their priority and
initial position are suitably chosen) but would
then certainly depart from D at T:. Departure
from D is forced either because (T4,Tj4+1) =
((a,m),(a,m1)) (since the priority of a packet
cannot change) or because (Tj,Tj+1) = ((a,m),
(b,m+1)) but (a,b) 1is not the edge along which
the packet leaves node a. Note that in the latter
case the i-th bit of the destination address of
packets that depart from D at T4 1is different
from those that depart at later points. It is
easily dedeuced that once the priorities are fixed,

the sets Pl’P2""Pj""Pd are pairwise disjoint.
Now_ P: 1is just the union of X[w] for various

w 6{0,1}2 such that w and a agree in the first

i bits. By the assumption about the size of X[w]

it follows that IPj[ <2cn2h71,

Let Rj be the set of keys that have nonzero
probability of being routed through T3 once the
priorities have been decided. Since the priorities
are determined by Bernoulli trials with probability
(Bn)‘l, Fact 4.2 can be used to give the following
bound

%

1) Cexp(-k-277%)

Prob([Rj| >4cn2”7 (Bn) T

for an appropriate constant k >0. The second term
in the theorem follows from multiplying the above
bound by the number of choices of D and j.



Finally, let Kj be the actual set of keys

that do depart from D at Ty because both the
priority and the initial positions were appropriately
chosen. For each such packet the initial position
must agree with a in the last n-i bits. Hence

Ky is determined by Ry Bernoulli trials each with
probability 217™% of success. Hence assuming

|Rj| <4cn2n~i(Bn)-1 for each j we have Bernoulli
trials with expectation 4c¢/B. To upper bound

d
b

we appeal to Hoeffding's Theorem (Fact 4.4). We
have at most c¢n2' trials with mean at most
(4c/B) (44Bn) €5cn if B 24. Using Fact 4.2 it
follows that

-c_con

3

Prob(Z|Kjl >c3cun) <2 (1)

if c3OL > 5e2.

Finally, we have to consider the case of
packets being involved in more than one task of D.
This can be done by considering any fiwed assign-
ment of keys to departure points in D and con-
sidering the probabilities of repeated earlier in-
volvement in D. If a key was involved in D at
T4 then the probability of a previous involvement
at T4 is at most one half independent of subse-
quent” involvements. Hence if a key was involved in
D at Ty then the probability of t previous in-
volvements (i.e., with T. .,...,T. ,) 1s at most
27t. It follows that -1 -1

Prob(T(D) >K+s and L|K,[=K) <2_S-Prob(2|xj|>1<).
(2)

c G,>5e2.

From (1) and (2) it follows that if 3

1~-c_con
Prob ( T(D) >2c3cocn) <2 . o

6. DETERMINISTIC SORTING AND RANKING

We use as subroutines some known deterministic
algorithms. A crucial step in splitter finding is
sorting a sparse subset of elements. For this we can
use the algorithm of Nassimi and Sahni [8].

Theorem NS. For any €>0 Nt e keys can be sorted
on a CCC, when N=n2" <in time O(n).

Step C of the overall algorithm determines the
rank of every element given that it is "almost"
sorted. Suppose that for some v we have that all
elements are in nodes at stage i and for all
Wy <* Wy, |wl| = lwzl =i the keys in Viw;] are
smaller than the keys in Viwp]l. If i=n then we
have a complete sort except that the elements may
not be uniformly distributed among the stage O nodes.
In this situation the rank of each key can be deter-
mined by first sorting the keys at each node locally.
The global rank computation is performed on the
binary tree that has these nodes as leaves and con~
sists of all forward internal edges, and just those
forward external edges along which some address bit
changes from 0 to 1. The number of keys in each
subcube can be determined recursively by sending
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these sums from the leaves toward the root and
accumulating at each internal tree node. Finally

in a reverse information flow from the root to the
leaves, the range of the ranks in each subcube can
be determined, and hence the ranks of the individual
keys. This all takes O(n) parallel transfers of
tokens that contain only binary numbers of 0©{(n)
digits.

In Step C of the actual algorithm we start
with only a partial sort (i.e., for all wj <*wy
with lwli =|w2 =n-s where s =6logyn, for all
x€V[wl] and y€V[wal, x<y). To find ranks in
this situation we determine the rank range for each
X[w;], sort each X[wj], and finally deduce the
rank of each element. The determination of the
rank ranges and final rank is'as described in the
above paragraph. With overwhelming probability
each X[wj] will have at most 2n25 packets. For
sorting X[wj] we assign a separate CCC! to it
where t=s+logn-logs. At least if t divides
n, one can find n2B/(t22) disjoint copies of CCCE
in CCCS. The packets are routed to their
appropriate copy of CCC} (Theorem D) and then
sorted there by some o?n) method such as Batcher's
(see Preparata and Vuillemin [9]) which takes
O(log n)2. The above described algorithm for
ranking the elements given a partial sort will be

“called Algorithm C.

7. SPLITTER FINDING

We describe a procedure SF that given a CCC}
with ¢ _packets at each node finds a subset U
of 2/n° packets called "splitters" that divide
the ordered sequence of the c¢n2" total packets
into intervals that are, with large probability,
all of length smaller than 2cnb*l,  The procedure
is recursive, nested recursive calls corresponding
to nested subcubes. At the i-th level of recursion
the splitters found divide the ordered segquence
into 20(1-1/2%)  roughly equal intervals. The
subcubes at the i-th level are ccc; where r:=n/2:L
[i=0,...,109 n ~1og(28 logn)]. At the i-th level
a fraction of about 271 of the packets are con-
sidered "active". The choice of splitters at lower
levels is restricted to these active elements. In
this way the average density of active packets in
each CCC§ is kept a constant c¢ independent of
the cube size. This is necessary for the recursive
procedure to succeed. Any integer greater than or
equal to six suffices as a value of &.

The set U of all splitters found in a run of
SF[A] will be used in Step B of the overall sorting
procedure.

The procedure SF applied to the subcube with
root (w,n-m), where le =n-m, is as follows.
When the procedure is called initially with w=2A
all the packets are considered active.

Procedure SF(w)
(1) Let YI(w]

For each x€Y][w]
viw].

be the active packets in V[w].
route x to a random node in

(2) For each w., |w1| =m/2 +2 logn, choose
at random an active e%ement from V[wwl]. Sort this



2 .
S* of n 2m/2 chosen elements using Theorem

Route the j~th largest to the address that is
the binary representation of w+32™2/n2. ILet s
the newly created set of splitters be the packets

at addresses w+32M/2 for j=1,...,20/2 -1, 1f
the splitter is found at address wwy and w3 =wylwgy

set
NS.

where W1 €0* then the splitter is denoted by
o[wwy;] and routed deterministically to every node
in Viww,1l.

2

(3) For each x€Y[w] -S decide according to
a Bernoulli trial with probability one half whether
it is to remain active. Let the active subset of

Yiw] Dbe 2z[w].

(4) Apply SDR with the newly found splitters
to Ziw].

(5) For each w' with ]w']==m/2 let Y{ww']

be the subset of Z[w] routed to subcube Viww']
by (4). For each such w' call in parallel SF{ww')
for Y[ww'] as active elements, unless m=20 logn.

We have seen that SDR for CCC, takes time
O(r} with overwhelming probability. Theorem A will
establish that if SF is run, with the recursive
calls of SF being allowed to be asynchronous, then
the overall algorithm runs in time O(n) with large
probability. The main fact which has to be
established (Theorem 7.2) is that with overwhelming
probability, at every call of SDR the hypotheses of
Theorem B are satisfied. We leave it to the reader
to verify that all the other operations performed
in a call of SF(w) with |w|~—n -m can be achieved
deterministically, by plpellnlng if necessary, in
time O(m).

First we need a technical lemma :

Lemma 7.1. Given an ordered set T suppose that a

et s* of n220W2 glements are then chosen from T

at random and $* <is then sorted. Let S < S* be

the subset of elements having positions nZ,2n
.(2M/2.1)n?  in the ordered set.

Suppose  tgy,...,tp., ts the longest ordered
subsequence of T sucﬁ %hat tg tf+1>€s but
tl,...,thS Then

(1) Prob(f> (1+n /3y |z[ 2™ = g0
(i1) Prob(f < (1-n Y3 || /2™?) = g0

Suppose that a subset Y € T-S s chosen by per-
forming independent Bermoulli trials with probability

1/2. Let ygi---.¥pa1l be the longest ordered sub-
sequence of Y'US such that vy 1Yy €S but
fee gs. Then 0" h+l
yl lyh
(1ii) Prob(n> (120 ¥3) |¥|/(2:2V?)) = y @D
(iv) Prob(h < (1-2n 3 |y|/(2:2™?)) = v 0D
These claims assume that n*2™?= ot|t]) and
2 2
2m/2 (|T| /3
Proof. Aall chéices of S* are equally likely. To
prove (i) and (ii) consider any sequence t ,...,tf
-1/3 w/2 0 *1
with f=(l%n )|T|/2 .  Then the probability
that of the n92M/2 pembers of S* exactly n? 1lie

in the above rance and the rest outside is
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Applying Fact 4.6 with A= IT]—f, a=f, X= n22m/2
—n2, x==n2 gives G==n5/3 and an upper bound of
exp (-n*/3/6)

provided n 2 /2—O(ITI) and n 2m/2 (|T|2/3)

This establishes (i) and (ii) since there are at
most 2? choices of tg, tg,; and f,
respectively.

To show {(iii) and (iv) it is sufficient to
prove that in a sequence of (1 xn~1/3)]r|/2m/2
ordered elements of T the probability that the
number of elements chosen to be in Y is outside
the range (1 i2n'l/3)[T|/2'2m/2 is negligible.
In fact Lemma 4.3 upper bounds this probability by

exp(-n~ 23 |z|/(4-2"%))
. . 4/3 .
which is bounded above by exp(-n y if
2202 o). : o
Theorem 7.2. In a run of SF(\) the probability

of each of the following events for each recursive
call of SF(w) 1is bounded above by wn-w(l)
provided m212log n.

(a) Step (ii) fails because has no
active packets.

(b) In the call SDR for subcube w with
w| =n-m, it happens that |zlw]| >2cm2® or
|21wl] < cm2™/2.

(¢) In the call SF for subcube w with
[w| =n-2m two neighboring splitters are created
that in the total ordering of the cn2R elements
have more than 2cn2™ elements between them.

V[wwl]

Since in a run of SF[\] there are at most 3N
such events altogether the probability that any
such event ever occurs in a run is therefore also
bounded by nw(l),

Proof. The proof proceeds by induction on the
depth of recursion. We assume that the Theorem
holds down to the current level of recursion and

arcue that the probability of "going wrong" at the
current call is less than N~®W({1),
(a) Since the active elements Y[w] have been

sent to random nodes in
all of at least cm2™/2
at most

Viw] the probability that
elements miss Viww;] 1is

m/2 2 em2™/2

1-1/(2 ))

By Fact 4.1 this is bounded above by

exp (-em2™?/(2n%)) = O

if m=212log n.

(b) We assume inductively that in the call of
SDR at the i-th level of recursion the set of active
elements denoted again by T in the subcube corres-
ponding to w is in the range (1 +2n~1/3yigom-i,



Then by Lemma 7.1 (iii) the preobability that the
number of active elements in a subcube at the
(i+1)~-st level call is in the range (1%2n-1/3)

-m/2 _- . . s
2Am/ -2 1 times this quantity, which is

-1/3) i+1cn2m/2- (i+1) ~w(l) .

(1+2n , 1s bounded by N
(c) We assume inductively that in the call of
SDR at the i-th level of recursion the set T of
elements in the corresponding subcube had size at
most (L+n~1/3)icn2™ (where m=n/2%). applying
Lemma 7.1 (i) gives that, at the next level of
recursion, the probability of a subcube having
more than u+fU%TW2tM%asmwpmmw
is bounded above by N W{(1), o

Theorem A. For all c>1 there is a cg such
that for all sufficiently large B <if SF(\) te
run on  ccck with ¢ packets per node then

Prob (T > ccSBn) <N”CB .

Proof. In a run of SF a critical path is a sequence
of nested calls of SF(A), SF(wy), SF{wyw,),

<. .SF(w1wy...w;),... where lwi| =n2"37 "The deter-
ministic components of ‘each také time proportional
to |wi| When summed for i=1,...,logn-~
log(12log n) this gives an upper bound of O0(n)

as required. Hence it remains only to analyze the
cumulative probabilistic effects of such a chain

of calls of SDR. Note that these calls are
probabilistically independent.

Theorems B and 7.2 (b) say that for sufficiently

large & a call of SDR on the subcube with address
prefix wy...w; exceeds runtime 2cc20m/2l with
probability less than
i 6
ymcan/27 o =f(n7)

Hence it exceeds runtime 2cc2n/21-+2c(a—1)c2n/21=
2cc2n/2l +ti (say) with probability less than
-t./(3c.)
5 1 2

Hence the probability that such a sequence of nested

calls takes time more than c2n-+t is less than
-t./(3c,) -t/ (3c,)
mo2 Y%« 2 2
Tt.=t i It.=t
i i

< 2—c(a-l)n/3+o(n)

The result follows for B=0a/2

5=4c2. Ci

if t=2cyc(a-1)n.
for a>6 with ¢

In conclusion we note that Theorem 7.2(c)
ensures that the hypotheses of Theorem B hold when
Step B of the overall algorithm is invoked. 1In
other words, when SDR is called with the 2R/
splitters found in Step A then the number of ele-
ments destined for each 6logn dimensional sub-
cube is never more than twice the average.

In the unlikely event that Step (ii) of SF
fails in any call of SF the sorting algorithm is
restarted from the beginning.
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