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Abstract. Usage of combinatorial testing is wide spreading as an ef-
fective technique to reveal unintended feature interaction inside a given
system. To this aim, test cases are constructed by combining tuples of
assignments of the different input parameters, based on some effective
combinatorial strategy. The most commonly used strategy is two-way
(pairwise) coverage, requiring all combinations of valid assignments for
all possible pairs of input parameters to be covered by at least one test
case. In this paper a new heuristic strategy developed for the construction
of pairwise covering test suites is presented, featuring a new approach
to support expressive constraining over the input domain. Moreover, it
allows the inclusion or exclusion of ad-hoc combinations of parameter
bindings to let the user customize the test suite outcome. Our approach
is tightly integrated with formal logic, since it uses test predicates to
formalize combinatorial testing as a logic problem, and applies an exter-
nal model checker tool to solve it. The proposed approach is supported
by a prototype tool implementation, and early results of experimental
assessment are also presented.

1 Introduction

Verification of highly-configurable software systems, such as those supporting
many optional or customizable features, is a challenging activity. In fact, due
to its intrinsic complexity, formal specification of the whole system may require
a great effort. Modeling activities may become extremely expensive and time
consuming, and the tester may decide to model only the inputs and require
they are sufficiently covered by tests. On the other hand, unintended interaction
between optional features can lead to incorrect behaviors which may not be
detected by traditional testing [22,33].

A combinatorial testing approach is a particular kind of functional testing
technique consisting in exhaustively validating all combinations of size t of a
system’s inputs values. This is equivalent to exhaustively testing t-strength in-
teraction between its input parameters, and requires a formal modeling of just
the system features as input variables. In particular, pairwise interaction testing
aims at generating a reduced-size test suite which covers all pairs of input values.



Significant time savings can be achieved by implementing this kind of approach,
as well as in general with t-wise interaction testing, which has been experimen-
tally shown to be really effective in revealing software defects [21]. A test set that
covers all possible pairs of variable values can typically detect 50% to 75% of the
faults in a program [27,9]. Other experimental work shown that 100% of faults
are usually triggered by a relatively low degree of features interaction, typically
4-way to 6-way combinations [22]. For this reason combinatorial testing is used
in practice and supported by many tools [26].

From a mathematical point of view, the problem of generating a minimal set
of test cases covering all pairs of input values is equivalent to finding a covering
array (CA) of strength 2 over a heterogeneous alphabet [18]. Covering arrays
are combinatorial structures which extend the notion of orthogonal arrays [2]. A
covering array CAλ(N ; t, k, g) is an N x k array with the property that in every
N x t sub -array, each t-tuple occurs at least λ times, where t is the strength
of the coverage of interactions, k is the number of components (degree), and
g = (g1, g2, ...gk) is a vector of positive integers defining the number of symbols
for each component. When applied to combinatorial system testing only the case
when λ = 1 is of interest, that is, where every t-tuple is covered at least once.

In this paper we present our approach to combinatorial testing, which is
tightly integrated with formal logic, since it uses test predicates to formalize
combinatorial testing as a logic problem. The paper is organized as follows:
section 2 gives some insight on the topic and recently published related works.
Section 3 presents our approach and an overview of the tool we implemented,
while section 4 explains how we deal with constraints over the inputs. Section
5 presents some early results of experiments carried out in order to assess the
validity of the proposed approach. Finally, section 6 draws our conclusions and
points out some ideas for future extension of this work.

2 Combinatorial coverage strategies

Many algorithms and tools for combinatorial interaction testing already exist
in the literature. Grindal et al. count more than 40 papers and 10 strategies in
their recent survey [15]. There is also a web site [26] devoted to this subject. We
would like to classify them according to Cohen et al. [7], as:

a)algebraic when the CA is given by mathematical construction as in [20]. These
theoretic based approaches generally leads to optimal results, that is mini-
mal sized CA. Unfortunately, no mathematical solution to the covering ar-
ray generation problem exists which is generally applicable. Williams and
Probert [31] showed that the general problem of finding a minimal set of
test cases that satisfy t−wise coverage can be NP-complete. Thus, heuristic
approaches, producing a sub-optimal result are widely used in practice.

b) greedy when some search heuristic is used to incrementally build up the CA,
as done by AETG [5] or by the In Parameter Order (IPO)[27]. This approach
is always applicable but leads to sub-optimal results. Typically, only an upper
bound on the size of constructed CA may be guaranteed. The majority of
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existing solutions falls in this category, including the one we are proposing
here.

c) meta-heuristic when genetic-algorithms or other less traditional, bio-inspired
search techniques are used to converge to a near-optimal solution after an
acceptable number of iterations. Only few examples of this applications are
available, to the best of our knowledge [6,25].

Besides this classifications, it must be observed that most of the currently
available methods and tools are strictly focused on providing an algorithmic
solution to the mathematical problem of covering array generation only, while
very few of them account also for other complementary features, which are rather
important in order to make these tools really useful in practice, like i.e. the ability
to handle constraints on the input domains. We have identified the following
requirements for an effective combinatorial testing tool, extending the previous
work on this topic by Lott et al. [23]:

Ability to state complex constraints. This issue has been recently in-
vestigated by Cohen et al. [7] and recognized as a highly desirable feature of
a testing method. Still according to Cohen et al., just one tool, PICT [8], was
currently found able to handle full constraints specification, that is, without re-
quiring remodeling of inputs or explicit expansion of each forbidden test cases.
However, there is no detail on how the constraints are actually implemented in
PICT, limiting the reuse of its technique. Most tools require the user to re-write
the specification in a way that the inputs are separated and unconstrained, but
when combined the satisfy the constraints. AETG [5] and the TestCover [28]
service follow this approach. Other tools, like the IBM Whitch [16], require the
user to explicitly list all the forbidden combinations. Note that if constraints
on the input domain are to be taken into account then finding a valid test case
becomes an NP-hard problem [3]. In our work, not only we address the use of
full constraints as suggested in [7] but we feature the use of generic predicates to
express constraints over the inputs (see section 4 for details). Furthermore, while
Cohen’s general constraints representation strategy has to be integrated with an
external tool for combinatorial testing, our approach tackles every aspect of the
test suite generation process.

Ability to deal with user specific requirements on the test suite. The
user may require the explicit exclusion or inclusion of specific test cases, e.g. those
generated by previous executions of the used tool or by any other means, in order
to customize the resulting test suite. The tool could also let the user interactively
guide the on-going test case selection process, step by step. Moreover the user
may require the inclusion or exclusion of sets of test cases which refer to a
particular critical scenario or combination of inputs. In this case the set is better
described symbolically, for example by a predicate expression over the inputs.
Note that instant [15] strategies, like algebraic constructions of orthogonal arrays
and/or covering arrays, and parameter-based, iterative strategies, like IPO, do
not allow this kind of interaction.
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Integration with other testing techniques Combinatorial testing is just
one testing technique. The user may be interest to integrate results from many
testing techniques, including those requiring very complex formalisms (as in
[14,12,11,13]). This shall not be limited to having a common user-interface for
many tools. Instead, it should go in the direction of generating a unique test-suite
which simultaneously accounts for multiple kinds of coverages (e.g., combinato-
rial, state, branch, faults, and so on). Our method, supported by a prototype
tool, aims at bridging the gap between the need to formally prove any specific
properties of a system, relying on a formal model for its description, and the
need to also perform functional testing of its usage configurations, with a more
accessible black-box approach based on efficient combinatorial test design. Inte-
grating the use of a convenient model checker within a framework for pairwise
interaction testing, our approach gives to the user the easy of having just one
convenient and powerful formal approach for both uses.

Recently, several papers investigated the use of verification methods for com-
binatorial testing. Hnich et al. [19] translates the problem of building covering
arrays to a Boolean satisfiability problem and then they use a SAT solver to
generate their solution. In their paper, they leave the treatment of auxiliary
constraints over the inputs as future work. Conversely, Cohen et al. [7] exclu-
sively focuses on handling of with constraints and present a SAT-based constraint
solving technique that has to be integrated with external algorithms for com-
binatorial testing like IPO. Kuhn and Okun [21] try to integrate combinatorial
testing with model checking (SMV) to provide automated specification based
testing, with no support for constraints. In this work we investigate the integra-
tion of model checkers with combinatorial testing in the presence of constraints
while supporting all of the additional features listed above.

3 A logic approach to pairwise coverage

We now describe our approach to combinatorial testing which we can classify as
logic-based and which is supported by the ASM Test Generation Tool (ATGT)3.
ATGT was originally developed to support structural [14] and fault based testing
[13] of Abstract State Machines (ASMs), and it has been extended to support
also combinatorial testing. Since pairwise testing aims at validating each possible
pair of input values for a given system under test, we then formally express each
pair as a corresponding logical expression, a test predicate (or test goal), e.g.:

p1 = v1 ∧ p2 = v2

where p1 and p2 are two inputs or monitored variables of enumerative or boolean
domain and v1 and v2 are two possible values of p1 and p2 respectively. The eas-
iest way to generate test predicates for the pairwise coverage of an ASM model
is to employ a combinatorial enumeration algorithm, which simply loops over
3 A preview release of the tool is available at the following URL:

http://cs.unibg.it/gargantini/projects/atgt/.
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Fig. 1. antidiagonal order in combinatorial indexing of the values pairs, n and m being
the ranges of two input parameters.

the variables and their values to build all the possible test predicates. Another
variation of the test predicate generation algorithm we support is the antidiago-
nal algorithm, which instead has been specially devised to output an ordered set
of logic test predicates (tp) such that no two consecutive tp ≡ p1 = v1 ∧ p2 = v2
and tp′ ≡ p′

1 = v′
1 ∧ p′

2 = v′
2 where p1 = p′

1 and p2 = p′
2 will have v1 = v′

1

or v2 = v′
2. Simply put, for each pair of input variables, the algorithm indexes

through the matrix of their possible values in antidiagonal order, see Fig.1. Thus,
generating their sequence of pair assignments such that both values always differ
from previous ones. 4 This alternative way of ordering of the pairs combinations
to be covered is motivated by a performance improvement it produces on the
execution of our covering array generation algorithm, as will be explained later
in Sect. 3.3.

In order to correctly derive assignment pairs required by the coverage we
assume the availability of a formal description of the system under test. This de-
scription includes at least the listing of input parameters and respective domains
(finite and discrete). The description has to be entered in the ATGT tool as an
ASM specification in the AsmetaL language [29]. The description is then parsed
and analyzed by our tool in order instantiate a convenient corresponding data
structure. As an example, consider the following, which declares two parameters
both with domain size three, without constraints:

asm simpleexample signature :
enum domain D = {V1 | V2 | V3 }
dynamic monitored p1 : D
dynamic monitored p2 : D

The ASM model has to declare the domains, which currently must be either
boolean or an enumeration of constants, like in the given example. The keyword
monitored alerts the tool that the following parameter is in the set of input
variables under test. Non monitored variables and variables of other types are
ignored.

4 Apart from the set’s first and last pairs special cases.

5



3.1 Tests generation

A test case is a set of assignments, binding each monitored (input) variable
to a value in its proper domain. It is easy to see that a test case implicitly
covers as many t-wise test predicates as

(
n
t

)
, where n is the number of system’s

input parameters and t = 2 (for pairwise interaction testing) is the strength of
the covering array. A given test suite satisfies the pairwise coverage iff all test
predicates are satisfied by at least one of its test cases. Note that the smallest
test suite is that in which each test predicate is covered by exactly one test case.
Note that a test predicate in pairwise coverage binds only two variables to their
values, while a test case assigns values to all the monitored variables.

By formalizing the pairwise testing by means of logical predicates, finding
a test case that satisfy a given predicate reduces to a logical problem of sat-
isfiability. To this aim, many logical solvers, like e.g. constraint solvers, SAT
algorithms, SMT (Satisfiability Modulo Theories) solver, or model checkers can
be applied. Our approach exploits a well known model checker tool, namely the
bounded and symbolic model checker tool SAL [10]. Given a test predicate tp,
SAL is asked to verify a trap property [11] which is the logical negation of tp:
G(NOT(tp)). The trap property is not a real system property, but enforces the
generation of a counter example, that is a set of assignments falsifying the trap
property and satisfying our test predicate. The counter example will contain
bindings for all monitored inputs, including those parameters missing (free) in
the predicate, thus defining the test case we were looking for.

A first basic way to generate a suitable test suite consists in collecting all the
test predicates in a set of candidates, extracting from the set one test predicate at
the time, generating the test case for it by executing SAL, removing it from the
candidates set, and repeating until the candidates set is empty. This approach,
which according to [15] can be classified as iterative, is very inefficient but it can
be improved as follows.

Skip already covered test predicates Every time a new test case s is added
to the test suite, s always covers

(
n
t

)
test predicates, so the tool detects if any

additional test predicate tp in the candidates is covered by s by checking whether
s is a model of tp (i.e. it satisfies tp) or not, and in the positive case it removes
tp from the candidates.

Randomly process the test predicates Randomly choosing the next predi-
cate for which the tool generates a test case makes our method non deterministic,
as the generated test suite may differer in size and composition at each execu-
tion of the algorithm. Nevertheless, it is important to understand the key role
played on the final test suite outcome by just the order in which the candidate
test predicates are choose for processing. In fact, each time a tp is turned into
a corresponding test case it will dramatically impact on the set of remaining
solutions which are still possible for the next test cases. This is clear if we con-
sider the following: the ability to reduce the final test suite size depends on the
ability to group in each test case the highest possible number of uncovered tps.
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The grouping possibilities available in order to build a test case starting from
the tp currently selected for processing are directly proportional to the number
and ranges of involved input variables, and limited by input constraint relations.
Thus, for a given example, they can vary from tp to tp, and since each processing
step will actually subtract to the next grouping possibilities, eventually the first
step, that is the choice of first tp to process, will be the most influent, as it will
indirectly impact on the whole test suite composition process.

Ordered processing of test predicates A different policy is to order the tps
in the candidates pool according to a well defined ordering criterion, and then
process them sequentially. At each iteration, the pool is again sorted against this
criterion and the first test predicate is selected for processing. In order to do this
we define a novelty comparison criteria as follows.

Definition 1. Let t1 and t2 bet two test predicates, and T a test suite. We say
that t1 is more novel than t2 if the variables assignments of t1 have been already
tested in T less times than the assignments of t2.

Ordering by novelty and taking the most novel one helps ensuring that during
the test suite construction process, for each parameter, all of its values will be
evenly used, which is also a general requirement of CAs. To this purpose, usage
counting of all values of all parameters in current test suite is performed and
continuously updated by the algorithm, when this optional strategy is enabled.

Despite deterministic processing of the tps has the advantage of producing
repeatable results, and we also included this option in our tool, it requires ad-
ditional computational effort in order to guess the correct processing order of
the test predicates, that is, that producing the best groupings. On the other
hand, random processing strategy accounts for average performance in all suite
of practical applications, and the rather small computation times easily allows
for several trials to be shoot, and the best result to be statistically improved
without significant additional effort.

3.2 Reduction

Even if one skips the test predicates already covered, the final test suite may still
contain some test cases which are redundant. We say that a test case is required
if contains at least a test predicate not already covered by other test cases in the
test suite. We then try to reduce the test suite by deleting all the test cases which
are not required in order to obtain a final test suite with fewer test cases. Note,
however, that an unnecessary test case may become necessary after deleting
another test case from the test suite, hence we cannot simply remove all the
unnecessary test predicates at once. We have implemented a greedy algorithm,
reported in Alg. 1, which finds a test suite with the minimum number of required
test cases.
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Algorithm 1 Test suite reduction

T = test suite to be optimized
Op = optimized test suite
Tp = set of test predicates which are not covered by tests in Op

0. set Op to the empty set and add to Tp all the test predicates
1. take the test t in T which covers most test predicates in Tp and add t to Op
2. remove all the test predicates covered by t from Tp
3. if Tp is empty then return Op else goto 1

3.3 Composing test predicates

Since a test predicate binds only the values of a pair of variables, all the other
variables in the input set are still free to be bound by the model checker. Besides
guiding the choice of the selected test predicate in some effective way, we can only
hope that the model checker will choose the values of unconstrained variables
in order to avoid unnecessary repetitions, such that the total number of test
cases will be low. It is apparent that a guide in the choice of the values for all
the variables not specified by the chosen test predicate is necessary to improve
the effectiveness of test case construction, even if this may require a greater
computational effort. To this aim, our proposed strategy consist in composing
more test predicates into an extended, or composed test predicate,which specifies
the values for as many variables as possible. We define a composed test predicate
the conjoint of one or more test predicates. When creating a composed test
predicate, we must ensure that we will be still able to find a test case that
covers it. In case we try to compose too many test predicates which contradict
each other, there is no test case for it. We borrow some definitions from the
propositional logic: since a sentence is consistent if it has a model, we can define
consistency among test predicates as follows.

Definition 2. Consistency A test predicate tp1 is consistent with a test pred-
icate tp2 if there exists a test case which satisfies both tp1 and tp2.

Let us assume now, for simplicity, that there are no constraints over the variables
values so that the composition will take into account just the variables values of
the test predicates we compose. The case where constraints over the model are
defined will be considered in Sect. 4.

Theorem 1. Let tp1 : v1 = a1 ∧ v2 = a2 and tp2 : v3 = a3 ∧ v4 = a4 be
two pairwise test predicates. They are consistent if and only if ∀i ∈ {1, 2}∀j ∈
{3, 4}vi = vj → ai = aj

We can add a test predicate tp to a composed test predicate TP , only if tp is
consistent with TP . This keeps the composed test predicate consistent.

Theorem 2. A conjoint TP of test predicates is consistent with a test predicate
tp if and only if every t in TP is consistent with tp
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Algorithm 2 Pseudo code for the main algorithm

C = the set of logical test predicates of the form (p1=v1 AND p2=v2), to be covered
T = the Test Suite initially empty
0. reset usage counts for bindings of all parameters.
1. if C is empty then return T and stop
2. (optional) sort the tps in C according to their novelty or shuffle C
3. pick up the first tp, P, from C
4. try composing P’ by joining P with other consistent test predicates in C
5. run SAL trying to prove the trap property G(not(P’))
6. convert resulting counter example into the test case tc, and add tc to T
7. remove from C all tps in P’ and all additional tps covered by tc
8. update usage frequencies for all covered tps.
9. goto step 1

Now the test suite is built up by iteratively adding new test cases until no
more tps are left uncovered, but each test predicate is composed from scratch
as a logical conjunction of as many still uncovered tps as possible. The heuristic
stage of this approach is in the process of extracting from the pool of candidate
tps the best sub-set of consistent tps to be joined together into TP. Than, the
resulting composed test predicate is in turn is used to derive a new test case by
means of a SAL counterexample.

3.4 Composing and ordering

The initial ordering of the predicates in the candidate pool may influence the
later process of merging many pairwise predicates into an extended one. In fact,
the candidates tps for merging are searched sequentially in the candidates pool.
The more diversity there will be among subsequent elements of the pool and
the higher will be the probability that a neighboring predicate will be found
compatible for merging. This will in turn impact on the ability to produce a
smaller test suite, faster, given that the more pairwise predicates have been
successfully compacted into the same test case and the less number of test cases
will be needed to have a complete pairwise coverage.

There are more than one strategy we tested in order to produce a effective
ordering of the predicates, to easy the merging process. In the implemented tool
one can choose the test predicate at step 2 by the following several pluggable
policies which impact on the efficiency of method. By adopting the random
policy, the method randomly chooses at step 2 the next test predicate and check
if it is consistent. By novelty policy the method chooses the most novel test
predicate and try to combine it with the others already chosen. The resulting
whole process is described in Alg. 2.
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4 Adding Constraints

We now introduce the constraints over the inputs which we assume are given in
the specification as axioms in the form of boolean predicates. For example for
the well known asm specification example Basic Billing System (BBS) [23], we
introduce an axiom as follows:

axiom inv calltype over billing, calltype :
billing = COLLECT implies calltype != INTERNATIONAL

To express constraints we adopt the language of propositional logic with
equality (and inequality)5. Note that most methods and tools admit only few
templates for constraints: the translation of those templates in equality logic is
straightforward. For example the require constraint is translated to an impli-
cation; the not supported to a not, and so on. Even the method proposed in
[7] which adopt a similar approach to ours prefer to allow constraints only in a
form of forbidden configurations [17], since it relies for the actual tests generation
on existing algorithms like IPO. A forbidden combination would be translated
in our model as not statement. Our approach allows the designer to state the
constraints in the form he/she prefers. For example, the model of mobile phones
presented in [7] has 7 constraints. The constraint number 5 states that “Video
camera requires a camera and a color display”. In [7], this constraint must be
translated into two forbidden tuples, while we allow the user simply to write the
following axiom, which is very similar to the informal requirement.

axiom inv 5 over videoCamera, camera, display :
videoCamera implies (camera!= NO CAMERA and display != BLACK WHITE)

A constraint may not only relate two variable values (to exclude a pair), but it
can contain generic bindings among variables. Any constraint models an explicit
binding, but their combination may give rise to complex implicit constraints. In
our approach, the axioms must be satisfied by any test case we obtain from the
specification, i.e. a test case is valid only if it does not contradict any axiom in
our specification. While others [4] distinguish between forbidden combinations
and combinations to be avoided, we consider only forbidden combinations, i.e.
combinations which do satisfy the axioms. Finding a valid test case becomes with
the constraints a challenge similar to finding a counter example for a theorem
or proving it. For this reason verification techniques are particularly useful in
this case and we have investigated the use of the bounded and symbolic model
checkers in SAL.

To support the use of constraints, they must be translated in SAL and this
requires to embed the axioms directly in the trap property, since SAL does not
support assumptions directly. The trap property must be modified to take into
account the axioms. The general schema for it becomes:

5 SAL, as other SMT solvers, has decision theories for linear arithmetic, uninterpreted
functions, etc.. However, since we consider only inputs with enumerative domains,
users can only write constraints as logic propositions with equality at most.

10



G(<AND axioms>) => G(NOT(<test predicate>)) (1)

A counter example of the trap property (1) is still a valid test case. In fact,
if the model checker finds an assignment to the variables that makes the trap
property false, it finds a case in which both the axioms are true and the implied
part of the trap property is false. This test case covers the test predicate and
satisfies the constraints.

Without constraints, we were sure that a trap property derived from a con-
sistent test predicate had always a counter example. Now, due to the constraints,
the trap property (1) may not have a counter example, i.e. it could be true and
hence provable by the model checker. We can distinguish two cases. The simplest
case is when the axioms are inconsistent, i.e. there is no assignment that can
satisfy all the constraints. In this case each trap property is trivially true since
the first part of the implication (1) is always false. The inconsistency may be not
easily discovered by hand, since the axioms give rise to some implicit constraints,
whose consequences are not immediately detected by human inspection. For ex-
ample a constraint may require a 6= x, another b 6= y while another requires
a 6= x → b = y; these constraints are inconsistent since there is no test case
that can satisfy them. Inconsistent axioms must be considered as a fault in the
specification and this must be detected and eliminated. For this reason when we
start the generation of tests, if the specifications has axioms, we check that the
axioms are consistent by trying to prove:

G(NOT <AND axioms>)

If this is proved by the model checker, then we warn the user, who can ignore
this warning and proceed to generate tests, but no test will be generated, since
no valid test case can be found. We assume now that the axioms are consistent.
Even with consistent axioms, some (but not all) trap properties can be true:
there is no test case that can satisfy the test predicate and the constraints. In
this case we define the test predicate as unfeasible.

Definition 3. Let tp a test predicate, M the specification, and C the conjunction
of all the axioms. If the axioms are consistent and the trap property for tp is
true, i.e. M ∧ C |= ¬tp, then we say that tp is unfeasible. Let tp be the pair of
assignments v1 = a1 ∧ v2 = a2, we say that this pair is unfeasible.

An unfeasible pair of assignments represents a set of invalid test cases: all the test
cases which contain this pair are invalid. Our method is able to detect infeasible
pairs, since it can actually prove the trap property derived from it. The tool
finds and marks the infeasible pairs, and the user may derive from them invalid
test cases to test the fault tolerance of the system.

For example, the following test predicate results infeasible for the BBS ex-
ample:

calltype = INTERNATIONAL and billing = COLLECT −−−> unfeasible

Note that since the BMC is in general not able to prove a theorem, but only
to find counter examples, it would be not suitable to prove unfeasibility of test
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predicates. However, since we know that if the counter example exists then it
has length 1, if the BMC does not find it we can infer that the test predicate is
unfeasible.

4.1 Composition and constraints

By introducing constraints, Theorems 1 and 2 are no longer valid and the com-
position method presented in Sect. 3.3 must be modified. Every time we want
to add a test predicate to a conjoint of test predicates we have to check its
consistency by considering the constraints too. We can exploit again the model
checker SAL. Given a test predicate tp, the axioms Axs and the conjoint TPs,
we can try to prove by using SAL:

G(<TPs>) AND G(<Axs>) => G(NOT(tp))

If this is proved, we skip tp since it is inconsistent with TPs, otherwise we
can add tp to TPs and proceed.

4.2 User defined test goals and tests

Our framework is suitable to deal with user defined test goals. In fact, the user
may be interested to test some particular critical situations or input combina-
tions and these combinations are not simple pairwise assignments. Sometimes
these combinations are n assignments to n variables (for example with n=3 one
could specify a 3-wise coverage) but this is not the most general case. We assume
that the user defined test goals are given as generic logical predicates, allowing
the same syntax as for the constraints. The user wants to obtain a test case which
covers these test goals. For example, we allow the user to write the following test
goal:

testgoal loop:
access = LOOP and billing != CALLER

and calltype != LOCALCALL;

which requires to test a combination of inputs such that access is LOOP but
the billing is not the CALLER and the calltype is not LOCALCALL. A counter
example for the trap property derived from the test goal loop is again a test case
that covers the test goal.

Besides user defined test goals, we allow also user defined test cases (some-
times called seeds) The user may have already some tests cases to be considered,
which have already been generated (by any other means). For example, the user
may add the following test:

test basic call:
access = LOOP, billing = CALLER,
calltype = LOCALCALL, status = SUCCESS;
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one tp at the time collect + reduction

spec mc no opt time skip +rnd +antDg +nov red time no rnd rnd time

TCAS SMC 837 310 352 113 300 280 241 113 107 100 45

TCAS BMC 837 352 452 120 452 420 419 200 110 101 48

three four SMC 48 22 37 20 37 30 10 15 19 10 10

three four BMC 48 16 37 23 37 28 10 18 20 10 10

Table 1. Test suite size and time (in sec.) using several options

Note that a test case specifies the exact value of all the input variables, while
a test predicate specifies a generic scenario. ATGT allows the tester to load an
external file containing user defined tests and test goals. When an external file
is loaded, ATGT adds the user defined test in the set of test predicates to be
covered. Than it adds the user defined tests and it checks which test predicates
are satisfied by these tests. In this way the tester can decide to skip the test
predicates covered by tests he/she has written ad hoc.

5 Early evaluation

We have experimented our method in three different ways. First we explored the
impact of the run-time configuration options on the tool itself. The second set of
experiments aimed at exploring the tool’s combinatorial algorithm performance.
And the last set of experiment assessed the validity of our approach in the
presence of constrained models. Experiments were executed on a PPC G4 1,5Mhz
processor, equipped with 1Gbyte of physical memory.

We report in Tab. 1 the results of the experiments regarding the use of all the
options presented in this paper applied to the case study TCAS, which models a
Traffic Collision Avoidance System described in [21] and to the benchmark model
three four which contains three variables with four possible values each. If no
optional features are selected (no opt column) the test suite will contain as many
tests as the test predicates. Still covering one test predicate at the time, if one
applies the skip policy and either the random, or the anti diagonal or the novelty
technique, the size of the test suite and the time taken is reduced. However,
if one applies the reduction algorithm (red column) we found no difference
among which other technique is applied before the reduction. The best results are
obtained applying the collect and the reduction. In this case we found the best
results when applying the random strategy (rnd column). While it is widely
recognized that the Bound Model Checker (BMC) performs better then the
Symbolic Model Checker (SMC) when searching for counter example, we found
the opposite: the SMC generally performed better than BMC.

In Table 2 we compared the size of the test suites obtained applying our best
method with results from several tools available in the literature [8][18]. This
new set of experiments was designed in order assess the scalability of the combi-
natorial algorithm we implemented. Note that we adopt below the exponential
symbolic notation used in [18] to represent the problem domain size. Reported
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Task ATGT AETG PairTest TConfig CTS Jenny AllPairs PICT
[5] [27] [32] [16] [30] [24] [8]

34 11 9 9 9 9 11 9 9
313 23 15 17 15 15 18 17 18
415317229 62 41 34 40 39 38 34 37
41339235 65 28 26 30 29 28 26 27
2100 25 10 15 14 10 16 14 15
410 37 31 28 28 30
420 54 34 28 28 37
430 68 41 40 40 41
440 88 42 40 40 43
450 104 47 40 40 46
460 114 47 40 40 49
470 127 49 40 40 50
480 136 49 40 40 52
490 143 52 43 43 53
4100 151 52 43 43 53
1020 367 180 212 231 210 193 197 210

Table 2. Combinatorial performance comparison.

results clearly show that our algorithm performed worse than the others for ev-
ery benchmark. Despite the performance is still reasonable for simpler tasks, it
decays rapidly with the increase of the task size. Also, the time to generate the
tests (which are not reported but are in the order of few tens to many hundreds
of seconds) are significantly greater than the average time taken by other tools,
mainly due to the fact that we iteratively call an external program (SAL) by
exchanging files. However, this problem could be alleviated easily with an hard-
ware upgrade. As far as the time taken by the generation of tests is kept within
minutes, we believe that it is not an issue, since this test suite generation is
done only once. Note that the pure numeric performance of the combinatorial
algorithm was never meant to be an objective of primary importance in our
intentions, being it really to explore the viability of using model checkers for
testing purposes. The current ATGT combinatorial test generation algorithm
has been devised purposely to support us to this aim only, that is, being more
flexible and integrated with other testing techniques, as explained earlier in this
paper. We are very confident that its combinatorial efficiency could still be im-
proved significantly if desired, although we intentionally left this issue outside
the scope of this paper.

In table 3 results for constrained asm specifications are reported. All the ex-
ample’s domains used in this case were subject to a number of restrictions in
the form of asm axioms, quantitatively reported in the third column. Computed
test suite sizes with and without constraints are reported. In this set of ex-
periments we considered three example specifications taken from the literature.
BBS is a basic billing system presented in [23] that processes telephone call data
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with four call properties, and in which every property has three possible values.
Cruise Control models a simple cruise control system originally presented in [1],
while the Mobile Phone example models the optional features of a real-world
mobile phone product line, and has been recently presented in [7]. In all the
computed test suites the tool was able to correctly handle the axioms restric-
tions in order ensure complete coverage of all non-forbidden pairs, without the
need to enumerate those pairs explicitly. This has been particularly helpful in
the last example, involving many explicit and also a few implicit (to be derived)
constraints. Size of computed test suite is also the least possible in the presence
of the constraints, and equals the size of the test suite computed in [7]. Note that
in two of the considered cases the test suite size increased with respect to their
unconstrained equivalent, while it decreased in the last one, where constraints
where more pervasive. Figure 2 reports all the AsmetaL axioms translating the
constraints for this model.

Name Task size # of constraints constrained size unconstrained size

BBS 34 1 13 11

Cruise Control 413124 2 8 6

Mobile Phone 3322 7 9 11
Table 3. Test suite sizes for constrained models

axiom inv 1 over display, email : display=BW implies email!=GV
axiom inv 2 over display, camera : display=BW implies camera!=MP2
axiom inv 3 over camera, email : camera=MP2 implies email!=GV
axiom inv 4 over display, camera : display=MC8 implies camera!=MP2
axiom inv 5 over videoCamera, camera, display :

videoCamera implies (camera!=NOC and display!=BW)
axiom inv 6 over camera, videoRingtones : camera=NOC implies !videoRingtones
axiom inv 7 over display, email, camera :

!(display=MC16 and email=TV and camera=MP2)

Fig. 2. constraints for mobile phone example

6 Conclusions and future work

In this paper we presented a logic based approach to combinatorial testing,
supporting a number of original features, to the best of our knowledge, which
have been also implemented in the software tool ATGT. These contributions
include: support for Asm specifications, support for expressing constraints on
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the input domain as formal predicate expression on the input variables, inte-
grated support for multiple types of coverages evaluation over the same system
specification, support for combinatorial test case generation through selectable
random or deterministic strategies, and support for user-level customization of
the derived combinatorial test suite by import or banning of specific set of test
cases. This work is currently on going and early evaluation results have been
presented in this paper. We believe that our approach satisfies, even though not
completely, the three goals stated in the introduction: ability to state complex
constraints, ability to deal with user specific requirements on the test suite, and
integration with other testing technique.

We plan to improve our technique along these directions. We already support
enumerations and boolean, but we plan to extend also to: domain products (e.g.
records), functions (arrays), derived functions, and discrete, finite sub-domains
of integer. Converting integers to enumerations by considering each number one
enumeration constant, is unfeasible unless for very small domains. We plan to
investigate the partition of integer domains in sub-partitions of interest. We plan
to extend the language of the constraints by allowing generic temporal logic
expressions, which may specify how the inputs evolve. For this reason, we chose
the model checker SAL instead of a simple SMT solver in the first place: it is
able to deal with temporal constraints and transition systems. Moreover, further
improvements can include taking into account the output and state variables,
assuming that a complete behavioral model for the given system is available,
and the binding of monitored input variables to some initial value at the system
start state. We plan to apply combinatorial testing to complete specifications
and compare it with other types of testing like structural testing [12] and fault
based testing [13], which, however, require a specification complete of outputs,
controlled variables, and transition rules.
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